# Motorbike

Ethernaut's motorbike has a brand new upgradeable engine design.

Would you be able to selfdestruct its engine and make the motorbike unusable ?

Things that might help:

// SPDX-License-Identifier: MIT

pragma solidity <0.7.0;

import "@openzeppelin/contracts/utils/Address.sol";
import "@openzeppelin/contracts/proxy/Initializable.sol";

contract Motorbike {
    // keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1
    bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
    
    struct AddressSlot {
        address value;
    }
    
    // Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
    constructor(address _logic) public {
        require(Address.isContract(_logic), "ERC1967: new implementation is not a contract");
        _getAddressSlot(_IMPLEMENTATION_SLOT).value = _logic;
        (bool success,) = _logic.delegatecall(
            abi.encodeWithSignature("initialize()")
        );
        require(success, "Call failed");
    }

    // Delegates the current call to `implementation`.
    function _delegate(address implementation) internal virtual {
        // solhint-disable-next-line no-inline-assembly
        assembly {
            calldatacopy(0, 0, calldatasize())
            let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
            returndatacopy(0, 0, returndatasize())
            switch result
            case 0 { revert(0, returndatasize()) }
            default { return(0, returndatasize()) }
        }
    }

    // Fallback function that delegates calls to the address returned by `_implementation()`. 
    // Will run if no other function in the contract matches the call data
    fallback () external payable virtual {
        _delegate(_getAddressSlot(_IMPLEMENTATION_SLOT).value);
    }

    // Returns an `AddressSlot` with member `value` located at `slot`.
    function _getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly {
            r_slot := slot
        }
    }
}

contract Engine is Initializable {
    // keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1
    bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    address public upgrader;
    uint256 public horsePower;

    struct AddressSlot {
        address value;
    }

    function initialize() external initializer {
        horsePower = 1000;
        upgrader = msg.sender;
    }

    // Upgrade the implementation of the proxy to `newImplementation`
    // subsequently execute the function call
    function upgradeToAndCall(address newImplementation, bytes memory data) external payable {
        _authorizeUpgrade();
        _upgradeToAndCall(newImplementation, data);
    }

    // Restrict to upgrader role
    function _authorizeUpgrade() internal view {
        require(msg.sender == upgrader, "Can't upgrade");
    }

    // Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
    function _upgradeToAndCall(
        address newImplementation,
        bytes memory data
    ) internal {
        // Initial upgrade and setup call
        _setImplementation(newImplementation);
        if (data.length > 0) {
            (bool success,) = newImplementation.delegatecall(data);
            require(success, "Call failed");
        }
    }
    
    // Stores a new address in the EIP1967 implementation slot.
    function _setImplementation(address newImplementation) private {
        require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
        
        AddressSlot storage r;
        assembly {
            r_slot := _IMPLEMENTATION_SLOT
        }
        r.value = newImplementation;
    }
}

TIP

The advantage of following an UUPS pattern is to have very minimal proxy to be deployed. The proxy acts as storage layer so any state modification in the implementation contract normally doesn't produce side effects to systems using it, since only the logic is used through delegatecalls.

This doesn't mean that you shouldn't watch out for vulnerabilities that can be exploited if we leave an implementation contract uninitialized.

This was a slightly simplified version of what has really been discovered after months of the release of UUPS pattern.

Takeways: never leave implementation contracts uninitialized 😉

If you're interested in what happened, read more here (opens new window).