
Parity Wallet Hacks: Postmortem

Zihan Zheng
Jerry Chen
Ethan Wang
Jakub Jackowiak

Overview

1. Wallet Account Explained

2. Implementation Choices

3. Postmortem:

The First Hack: July 19, 2017

The Second Hack: Nov 6, 2017

1. Challenges Explained

Wallet Account Explained

A wallet is essentially a product for managing the

ethereum account(s).

Wallets can provide additional features:

Multisig: another layer of security/robustness

Quotas and Limits: More detailed management

Ownership Transfer, Logging, etc.

Additional feature means additional code, as well as

additional gas and risks!

Ethereum Account (EOA)

Wallet (Contract Account)

Auth & Sign

Other contracts …

Implementation Choice

A wallet library contains function implementations

for the wallet contract, and is deployed separately.

Benefits:

● Save expensive storage

● Reduction of gas for wallet deployment

● Upgradability of the library functions

* function updates

* security updates

without changing the wallet instance

Ethereum Account (EOA)

Wallet Instance

Auth & Sign Wallet Library

delegatecall()

Other contracts …

Implementation Choice

A wallet library contains function implementations

for the wallet contract, and is deployed separately.

Risks:

● Delegatecall can modify states.

● Additional maintenance for the library.

Ethereum Account (EOA)

Wallet Instance

Auth & Sign Wallet Library

delegatecall()

Other contracts …

The First Hack: July 19, 2017: Ownership Claimed

Wallet contracts were

compromised.

The attacker claim sole ownership

of the user’s multisig wallet contract

using delegatecall() in the

fallback function.

The First Hack: July 19, 2017: Balance Transferred

Then the attacker issued a transaction

draining all the remaining funds from

the wallet.

The First Hack: July 19, 2017: Vulnerable Code

Code Snippet of the enhanced-wallet.sol:

External?

Internal?

Private?

Public?

The First Hack: July 19, 2017: Vulnerable Code

Code Snippet of the enhanced-wallet.sol:

External?

Internal?

Private?

Public?

The First Hack: July 19, 2017: the Fix

Will this fix work?

The First Hack: July 19, 2017: Another Fix

Will this fix work?

The Second Hack: Nov 6, 2017

● Function initWallet hadn’t been called and

owner had not been initialized on the library

contract

● User calls initWallet() on the library

contract function and becomes owner

Call to initWallet() on the library contract

Wallet

1

Wallet

2

…

Wallet

N

Wallet

Library

Attacker

InitWallet(...)

The Second Hack: Nov 6, 2017

As owner, attacker calls the self-destruct function
making all Parity multi-sig wallet funds
unrecoverable

Two main points of failure:

● Inclusion of self-destruct function, which
remained from the original contract

● Failure to initialize the library contract wallet
● Recommended by a user three months

prior, but didn’t consider possibility for
contract to self-destruct

Any subsequent calls to library functions return
false

Function self-destructs contract and sends all funds
to the address in argument

Call to self-destruct function

Aftermath of Second Hack: Nov 6, 2017

● 513,774.16 ETH ($115 million) of funds

frozen from over 587 wallets

● No clear way to unfreeze the funds
○ Hard Fork required

○ EIP156

○ EIP999

● Funds still frozen due to disagreements

Parity took the following actions

● Paused deployments of multisig wallets

● Security Audits

● Establishing procedures for code review

and contract deployments

● Extending research and bug bounty

programs

Lessons Learned: at the cost of 150k ETH(~$30M)

● Balancing security and savings
● Bugs are a likelihood, even with trivial code
● Code should be reviewed by external auditors in addition to peer-review
● More community auditing
● Define guards and specify function visibility in the code

● Solidity can have improved security design

● Limit copying/pasting of Defi contracts
○ Aftermath of attack: Funds in other wallets with same vulnerability were recovered by a white hat group

● Decrease contract complexity

Lessons Learned: at the cost of 514k ETH(~$115M)

● Use library instead of contract keyword

● selfdestruct in libraries is risky

● Libraries introduce single point of failure

● Correctly initialize library contracts

● Fully review and consider security

implications of found issues

Wallet Contract Design:

● Keep complexity minimal

● Follow Solidity best practices

● Conduct end-to-end testing prior to

deployment

Refactoring as a library implementation:
● Stateless
● Link wallet contracts with Solidity using keyword on a data struct
● Unable to self destruct
● Avoids catch-all delegate calls and makes clear which functions are

called from contract

Challenges Explained: Hack the Wallet!

Simplified WalletLibrary and Wallet contracts.

Claim ownership of the wallet!

You

Wallet Library

delegatecall(
)

attack

Challenges Explained: Hack the Library!

Simplified WalletLibrary and Wallet contracts.

devops199 “I accidentally killed it”

You

Wallet Library

delegatecall(
)

attack

Challenges Explained: the Fix

Implement a WalletLibrary contract that’s safe

against the previous two attacks.

You

Wallet Library

delegatecall(
)

attack

Adversary

Fix

	Slide 1: Parity Wallet Hacks: Postmortem
	Slide 2: Overview
	Slide 3: Wallet Account Explained
	Slide 4: Implementation Choice
	Slide 5: Implementation Choice
	Slide 6: The First Hack: July 19, 2017: Ownership Claimed
	Slide 7: The First Hack: July 19, 2017: Balance Transferred
	Slide 8: The First Hack: July 19, 2017: Vulnerable Code
	Slide 9: The First Hack: July 19, 2017: Vulnerable Code
	Slide 10: The First Hack: July 19, 2017: the Fix
	Slide 11: The First Hack: July 19, 2017: Another Fix
	Slide 12: The Second Hack: Nov 6, 2017
	Slide 13: The Second Hack: Nov 6, 2017
	Slide 14: Aftermath of Second Hack: Nov 6, 2017
	Slide 15: Lessons Learned: at the cost of 150k ETH(~$30M)
	Slide 16: Lessons Learned: at the cost of 514k ETH(~$115M)
	Slide 18: Challenges Explained: Hack the Wallet!
	Slide 19: Challenges Explained: Hack the Library!
	Slide 20: Challenges Explained: the Fix

