Denial of Service
(DoS)

Team-3:
Adit, Avi, & Emma

What is a DoS Attack?

https://gist.github.com/vasa-develop/32b7472991feaeda33e5eb96af980
d7a##file-snippet-sol

= Attack where the contract is made oool, puble Sefipalived = false;
address public owner; // gets set somewhere

inoperational temporarily or even

function finalize() public {
permanently

require(msg.sender == owner);

ETH can be stuck forever! } RIS = RS

Potential Vulnerabilities: // ... extra IC0 functionality

) . // overloaded transfer function
Execution gas > block gas limit function transfer(address _to, uint _value) returns (hool) {

Owner loses pvt key require(isFinalized);
Necessary call failure super.transfer(_to,_value)

DoS vulnerability

_ Real World Example:
GovernMental

What is GovernMental?

== An educational game which simulates the finances of a
government - in other words: It's a Ponzi scheme.

Four rules to play the game:

1.
2.

Lend the government money who promise to pay back + 10% interest
If the government does not receive money for 12 hours, it breaks
down. Only the last creditor gets the jackpot. All others lose claim.

All incoming money is used in the following way: 5% goes into the
"jackpot" (capped at 10k Ether), 5% goes to the corrupt elite that runs
the government, 90% are used to pay out creditors in order of their
date of credit. When the jackpot is full, 95% go toward the payout of
creditors.

Creditors can share an affiliate link. Money deposited this way is
distributed as follows: 5% go toward the linker directly, 5% to the
corrupt elite, 5% into the jackpot (until full). The rest is used for
payouts.

http://governmental.github.io/GovernMental/

Contract 0xF45717552f12Ef7cb65e95476F217Ea008167Ae3

Sponsored: @ Metawin: Click Here to claim your FREE Entry to MetaWi

¥ PonziGovernmental Source Code

Overview

ETH BALANCE
$0ETH

ETH VALUE
$0.00

TOKEN HOLDINGS

$0.00 (1 Tokens)

The Deployed Contract

PostMortem (what happened?)

@ Tre ash: 0x0d80d67202bd9ch6773df8dd2020e7190a1b0793e8ec4fc105257e8128f0506b
Governmental has a large c

© 2448 days 16 hrs ago (Jun-17-2016 09:11:19 AM +UTC)

array of creditors

When the contract pays out
the prize to the lucky winner, ;
it clears the array.

0.12664815 ETH $209.05

ENORMOUS AMOUNT OF GAS, == B
> 5 million - e

5,074,054 | 2,532,963 (49.92%)

Block gas limitis ~4 million at
the time "

Met 0 42
[o] 000000000000000000000000818d14614d51

nziGovernmental) (' @

View InputAs v & Decode Input Data

The Final Transaction to
Withdraw

PostMortem (code)

contract Government {
// Global Variables
address[] public creditorAddresses;
function lendGovernmentMoney(address buddy) returns (bool) {
if (lastTimeOfNewCredit + TWELVE_HOURS < block.timestamp) {

creditorAddresses = new address[](9);

creditorAmounts = new uint[](9);

Preventative techniques

Contracts should not loop over data structures whose size
can be changed by external users

In GovernMental:

- One option: keep track of live element instead of
deleting

If privileged users are needed to change the state:

- Have multiple privileged users
- Time constraint alternative: unlocking either by owner
or if current_time > presetTime

If external calls are needed to move forward:

- Account of their possible failures
- Again could have a time constraint alternative

https://ethereum.stackexchange.com/questions/3373/how-to-clear-large-arrays-without-blowing-the-gas-limit

uint numElements
uint[] array;

function insert(uint value) {
if(numElements == array.length) {
array. length += 1;
}
array [numElements++] = value;

by

function clear() {
numElements = 0;

}

One Possible Alternative

The Challenges!!

Token Distributor . KickStart- Unst

The owner wishes to distribute You will beat this level if you are Stop this relentless lender from
tokens amongst their able to prevent everyone from offering loans.You start out
investors. How can you prevent withdrawing their money, even with 50 DVT tokens.

everyone from claiming their the owner !!

funds?

Tutorial: For Loops can be Gas Guzzlers

function testLoopl() public {
for(uint i = 0; i < 3; i++) {

¥
s

function testLoop2() public {
for(uint i = @; 1 <= 2; i++) {

¥

value = value + i;

value = value + i;

Both Functions do 3 iterations
e Function 1 uses LESS THAN

e Function 2 uses LESS THAN OR
EQUAL

Which function uses more gas?

Tutorial: For Loops can be Gas Guzzlers

1
function testLoopl() public {
for(uint i = 0; i < 3; i++) {
value = value + ij;

}
Y
Gas Used by Transaction 27,779

function testLoop2() public {
for(uint i = 0; i <= 2; i++) {
value = value + ij;

Gas Used by Transaction 27,789

-
-

Function 2 uses ~10 extra gas

Why?
e There are only LT, GT, and EQ
opcodes

e Each one costs a minimum 3 gas

e So function 2 needstodo a LT and
an EQ operation everytime it checks
loop condition

OPCODE NAME MINIMUM GAS

10 LT 3
1 GT 3
12 SLT 3
13 SGT 3

14 EQ 3

Tutorial: For Loops can be Gas Guzzlers

function testLoopl() public {
for(uint i = @0; i < 3; i++) {

: Again, we have two functions, each does
value = value + i;

) 3 iterations.

} Which one is cheaper now?

function testLoop2() public {
for(uint i = 0; i < 3;) {
value = value + 1i;
unchecked {
i++;

}

Tutorial: For Loops can be Gas Guzzlers

function testLoopl() public {
for(uint i = 0; 1 < 3; i++) {
value = value + ij;
}
}

Gas Used by Transaction 27,779

function testLoop2() public {
for(uint 1 =0; 1 <37) {
value = value + i;
unchecked {
i++;
}
}
}

Gas Used by Transaction 27,432

Function 2 is much cheaper now
Why?

After version 0.8 Solidity has safety
checks for all integer arithmetic, including
overflow and underflow guards.

If we know something will never
over/underflow, we can use unchecked for
gas savings

Tutorial: Token Distributor Challenge

pragma solidity 70.8.11;

et TokenDistributor < This contract lets anyone invest into the
address public ouner; Token. After people have invested, the

address[] investors; // array of investors

uint[] investorTokens; // the amount of tokens each investor gets CO ntract Owner Can transfer everyone
function invest() public payable { thelr to kens

investors.push(msg.sender);

investorTokens.push(msg.value);
)

?

function distribute() public { What COUld go Wrong :

require(msg.sender == owner);

for(uint i = @; i < investors.length; i++) {

transferToken(i);

b

}

function transferToken(uint index) private {
address to = investors[index];
uint amount = investorTokens[index];
investorTokens [index] = 0;

ik
constructor() {
owner = msg.sender;

}

receive() external payable {}

Tutorial: Token Distributor Challenge

pragma solidity 70.8.11;

I Anyone can invest into the token with as
address public owner; mUCh money aS they Wa nt

address[] investors; // array of investors
uint[] investorTokens; // the amount of tokens each investor gets

function invest() public payable {
investors.push(msg.sender);

Loes ket g et e But, this function doesn’t check if you are
already an investor

I

function distribute() public {
require(msg.sender == owner);
for(uint i = @; i < investors.length; i++) {
transferToken(i);
b
}

function transferToken(uint index) private {
address to = investors[index];
uint amount = investorTokens[index];
investorTokens [index] = 0;

ik
constructor() {
owner = msg.sender;

}

receive() external payable {}

Tutorial: Token Distributor Challenge

pragma solidity 70.8.11;

et TokenDistributor < When it's time to give everyone their
el tokens, the owner calls distribute()

address[] investors; // array of investors
uint[] investorTokens; // the amount of tokens each investor gets

function invest() public payable {
investors.push(msg.sender);

LS A S A T KL But, this function iterates over the whole
investors array (which isn't a fixed size)

function distribute() public {
require(msg.sender == owner);
for(uint i = @; i < investors.length; i++) {
transferToken(i);
}
}

function transferToken(uint index) private {
address to = investors[index];
uint amount = investorTokens[index];
investorTokens [index] = 0;

b
constructor() {
owner = msg.sender;

}

receive() external payable {}

Tutorial: Token Distributor Challenge

pragma solidity 70.8.11;

contract TokenDistributor { dlStrlbUte() makes a Ca” to
address public owner; traﬂSfe rTOken()

address[] investors; // array of investors
uint[] investorTokens; // the amount of tokens each investor gets

function invest() public payable {
investors.push(msg.sender);

investorTokens.push(msg.value); But, thiS functlon doesn’t remove

onetion dictrs . investors from the array after they have
unction distribute() public {)

require(msg.sender == owner); been pald

for(uint i = @; i < investors.length; i++) {
transferToken(i);

it

}

b It just sets their token allocation to zero

function transferToken(uint index) private {
address to = investors[index];
uint amount = investorTokens[index];
investorTokens[index] = 0;

}

constructor() {
owner = msg.sender;

}

receive() external payable {}

Tutorial: Token Distributor Challenge

pragma solidity 70.8.11;

contract TokenDistributor { dlStrlbUte() makes a Ca” to
address public owner; traﬂSfe rTOken()

address[] investors; // array of investors
uint[] investorTokens; // the amount of tokens each investor gets

function invest() public payable {
investors.push(msg.sender);

investorTokens.push(msg.value); But, thiS functlon doesn’t remove

onetion dictrs . investors from the array after they have
unction distribute() public {)

require(msg.sender == owner); been pald

for(uint i = @; i < investors.length; i++) {
transferToken(i);

it

}

b It just sets their token allocation to zero

function transferToken(uint index) private {
address to = investors[index];
uint amount = investorTokens[index];
investorTokens[index] = 0;

}

constructor() {
owner = msg.sender;

}

receive() external payable {}

_ THANKS!

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

18

http://www.slidescarnival.com/?utm_source=template

