
Denial of Service
(DoS)

Team-3:
Adit, Avi, & Emma

What is a DoS Attack?

Attack where the contract is made
inoperational temporarily or even
permanently

ETH can be stuck forever!

Potential Vulnerabilities:

╸ Execution gas > block gas limit
╸ Owner loses pvt key
╸ Necessary call failure

2

https://gist.github.com/vasa-develop/32b7472991feaeda33e5eb96af980
d7a#file-snippet-sol

DoS vulnerability

Real World Example:
GovernMental

3

An educational game which simulates the finances of a
government - in other words: It's a Ponzi scheme.

Four rules to play the game:

1. Lend the government money who promise to pay back + 10% interest
2. If the government does not receive money for 12 hours, it breaks

down. Only the last creditor gets the jackpot. All others lose claim.
3. All incoming money is used in the following way: 5% goes into the

"jackpot" (capped at 10k Ether), 5% goes to the corrupt elite that runs
the government, 90% are used to pay out creditors in order of their
date of credit. When the jackpot is full, 95% go toward the payout of
creditors.

4. Creditors can share an affiliate link. Money deposited this way is
distributed as follows: 5% go toward the linker directly, 5% to the
corrupt elite, 5% into the jackpot (until full). The rest is used for
payouts.

What is GovernMental?

4

http://governmental.github.io/GovernMental/

The Deployed Contract

PostMortem (what happened?)

- Governmental has a large
array of creditors

- When the contract pays out
the prize to the lucky winner,
it clears the array.

- ENORMOUS AMOUNT OF GAS,
> 5 million

- Block gas limit is ~ 4 million at
the time

5

The Final Transaction to
Withdraw

PostMortem (code)

contract Government {

 // Global Variables

 ...

 address[] public creditorAddresses;

 ...

 function lendGovernmentMoney(address buddy) returns (bool) {

 ...

 if (lastTimeOfNewCredit + TWELVE_HOURS < block.timestamp) {

 ...

 creditorAddresses = new address[](0);

 creditorAmounts = new uint[](0);

 ...

6

Preventative techniques

7

Contracts should not loop over data structures whose size
can be changed by external users

In GovernMental:

╸ One option: keep track of live element instead of
deleting

If privileged users are needed to change the state:

╸ Have multiple privileged users
╸ Time constraint alternative: unlocking either by owner

or if current_time > presetTime

If external calls are needed to move forward:

╸ Account of their possible failures
╸ Again could have a time constraint alternative One Possible Alternative

https://ethereum.stackexchange.com/questions/3373/how-to-clear-large-arrays-without-blowing-the-gas-limit

The Challenges!!

8

UnstoppableToken Distributor

The owner wishes to distribute
tokens amongst their
investors. How can you prevent
everyone from claiming their
funds?

KickStarter

You will beat this level if you are
able to prevent everyone from
withdrawing their money, even
the owner !!

Stop this relentless lender from
offering loans.You start out
with 50 DVT tokens.

Tutorial: For Loops can be Gas Guzzlers

9

Both Functions do 3 iterations

● Function 1 uses LESS THAN
● Function 2 uses LESS THAN OR

EQUAL

Which function uses more gas?

Tutorial: For Loops can be Gas Guzzlers

10

Function 2 uses ~10 extra gas

Why?
● There are only LT, GT, and EQ

opcodes
● Each one costs a minimum 3 gas
● So function 2 needs to do a LT and

an EQ operation everytime it checks
loop condition

Tutorial: For Loops can be Gas Guzzlers

11

Again, we have two functions, each does
3 iterations.

Which one is cheaper now?

Tutorial: For Loops can be Gas Guzzlers

12

Function 2 is much cheaper now

Why?

After version 0.8 Solidity has safety
checks for all integer arithmetic, including
overflow and underflow guards.

If we know something will never
over/underflow, we can use unchecked for
gas savings

Tutorial: Token Distributor Challenge

13

This contract lets anyone invest into the
Token. After people have invested, the
contract owner can transfer everyone
their tokens

What could go wrong?

Tutorial: Token Distributor Challenge

14

Anyone can invest into the token with as
much money as they want

But, this function doesn’t check if you are
already an investor

Tutorial: Token Distributor Challenge

15

When it’s time to give everyone their
tokens, the owner calls distribute()

But, this function iterates over the whole
investors array (which isn’t a fixed size)

Tutorial: Token Distributor Challenge

16

distribute() makes a call to
transferToken()

But, this function doesn’t remove
investors from the array after they have
been paid

It just sets their token allocation to zero

Tutorial: Token Distributor Challenge

17

distribute() makes a call to
transferToken()

But, this function doesn’t remove
investors from the array after they have
been paid

It just sets their token allocation to zero

THANKS!
Happy Hacking ;)
Presentation template by SlidesCarnival

18

http://www.slidescarnival.com/?utm_source=template

