Bong DAO oracle
manipulation attack

Team 5

Ky -

Agenda

S Oos wh =

Background

Attack

Post-mortem

Actions-Taken

Tutorial

Mitigations & best practices

Ky -

Bonq is a non-custodial, decentralized and over-collateralized lending platform
that solves four critical problems for projects and protocols that have a token:

Bonq DAO

Allows them to borrow against their own tokens at zero interest rate

Creates deep liquidity solution without the need to incentivize or pay the other
side of the liquidity pool

Offers sustainable yields to their community members holding tokens in a
safe and secure environment

Allows treasuries to de-risk and create a smart capital allocation

Ky -

Users can access the liquidity of their own digital assets by locking them up in a
trove, which is a smart contract controlled only by the users, and mint a low
volatility payment coin BEUR, pegged to the Euro.

How does it work?

Fees: minting and redeeming but not repaying.

Risks: Trove Liquidation and market volatility.

Ky -

e Tradable and exchangeable - Anyone can buy or sell them, whether they
have an open Trove or not
e Fully redeemable - Users can always swap 1 BEUR for 1 EUR worth of

collateral (minus fees) directly on the Bonq platform. This will create a floor for
BEUR price

Mintable - Users mint BEUR in their trove smart contracts
Burnable - BEUR tokens are burned when used to repay a Trove's debt

Properties of BEUR

Bong

Overview of Bonq Lending Protocol

Collateral MINT

_ User Trove _

Issuance fee as
low as 0.5%

Leverage

Variable =
opportunities

redemption fee inside Bonq
4 BEUR protocol
User Trove
————————————————— 1

Equal to EUR value

/- BURN
G User Trove BEUR 44—

Withdraw Free of Charge
Collateral

Repayment

Credit: https://blog.allianceblock.io/abfundrs-getting-to-know-bong-f470b4e4bb3b

Oracles in Ethereum ecosystem: Chainlink

Real World Data and Events Blockchains

Credit: chainlink.com

Oracles provide a way for the decentralized Web3 ecosystem to access existing data sources, legacy systems, and advanced computations

Oracles: Centralized V/s Decentralized

Data Sources Centralized Oracle Decentralized Computation

— a2 oe =
o —_— B Yeera
MHEco s A
) ;@ _[lﬂ.l @ 11001100100 10110100101 .
2 Ay
e
= ~

Credit: chainlink.com

Oracles: Centralized V/s Decentralized

Raw Crypto
Exchange Data

Price Data
Aggregators

«+s amberdata (D Crypto BRAVE NEWCOIN. %) CoinGecko

Chainlink
Node Operators

T - -Systems:- Q swisscom ((g) LinkPool @ Mycelium Node XD) stake-fish

Oracle Network
Aggregation

%polygon == SOLANA Q) avaLanche

Credit: chainlink.com

The Tellor system
Tellor solves the problem by aligning the incentives of data reporters, data
consumers, and Tellor token holders.

In brief, anyone can deposit a stake and report data. For a period of time, anyone
can pay a dispute fee to challenge any piece of data.

Tellor stakeholders vote to determine the outcome of the dispute.

If the data reporter loses the dispute, the reporter's stake goes to the disputing
party. This creates a system where bad actors are punished and good actors are
rewarded.

Tellor System: Caveats

Tellor operates under a similar principle of finality. When a Tellor data reporter
submits some data, it's usually unwise to immediately use that value in your
protocol. Fo t pract values should only be used once they have been on
chain for a period of time to allow for someone to dispute a bad value. The longer a
value has been on chain, the more likely it is to be valid.

function getBtcSpotPrice() external view returns(uint256) {

bytes memory _queryData = abi.encode("SpotPrice", abi.encode("btc", "usd"));
bytes32 _queryIld = keccak256(_queryData);

(bytes memory _value, uint256 _timestampRetrieved) =

getDataBefore(_queryId, block.timestamp - 20 minutes);
if (_timestampRetrieved == 0) return 0;
require(block.timestamp - _timestampRetrieved < 24 hours);
return abi.decode(_value, 1int256) ;

@ Note: Use usingtellor's getDataBefore(bytes32 _queryld, uint256 _timestamp) function with a buffer time (20
minutes for example) to allow time for a bad value to be disputed

Credit: tellor.io

The exploit

o [

The Attack

)

\

€W

a

BEUR ALBT

The Attack

?) From:
?) Interacted With (To):

7) Tokens Transferred: @

Oxcacf2d28b2a5309e099f0c6e8c60ec3ddi656642 (BongDAO Exploiter) ([

@ Contract Oxed596991ac5f1aa1858da66c67f7cfa76e54b5(1 @

» From Oxed596991ac5f1...
» From Oxbaf48429b4d30...

» From Oxed596991ac5f1...

» From Null: 0x000...000

» From 0x4248fd3e2c055...
» From 0x4248fd3e2c055...

» From Oxed596991ac5f1...

To
To
To
To
To
To
To

Oxbaf48429b4d30...

0x8155d884cad66. ..
0x4248fd3e2c055..

0x4248fd3e2c055...

0xb1b72b3579b03...

Oxed596991ac5f1...

0x5343c5d0af82b...

For 10 ($126.80) °TellorTrrbu...(TRB)

For 10 ($126.80) @ Tellor Tribu... (TRB)

For 0.1 Wrapped Alli... (WALBT)

For 100,514,098.3407949499 Bonq EUR (BEUR)

For 514,097.3407949499 Bong EUR (BEUR)
For 100,000,000 Bonq EUR (BEUR)

For 13.25973256272339977 Wrapped Alli... (WALBT)

Post-mortem

The line
return uint256(bytes32(oracle.getCurrentValue(queryId)));
should have been

return uint256 (bytes32(getDataBefore(queryId, block.timestamp - 20
minutes)));

Using the getCurrentValue function allowed the attacker to set the price and use it
in the same transaction. Had the price feed used the getDataBefore , the attacker
would have had to change the price for 20 minutes.

Source: BonQ DAO analysis

Post-mortem

1]: 0x000000...0000.create(0x3d602d80...) => |(0xbaf48429b4 bdfad488508d3b528033331fe8a

TellorFlex.getStakeAmount () => (10,000,000,000,000,0//0) A new contract updates the WALBT price
1

56761: TRB.transfer(_to=0xbaf48429b4d30bdfad488508d3b528033 feBaaﬁ\dl étg)a%ﬁroved Wlth enou h TRB Stakln |

[Receiver] 0xed59699lac5flaal858da66c67f7cfa76e54b5f1.updatePrice(newPrice=10,000,000,000,000,000,000, timeSent=5,

TRB.approve(_spender=TellorFlex, _value=115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584

TellorFlex.depositStake(_numRTC=10,000,000,000,000,000,000) => ()

0x7b74cc7d66£4b286a78d5f02a55e36e89c3fa9f0.getVoteCount() => (0)
532]: 0x7b74cc7d66£4b286a78d5£02a55e36e89c3fa9f0.getVoteTallyByAddress(_voter=0xbaf48429b4d30bdfad488508d3b528033331fe8a) => (0
93]: TRB.transferFrom(_from=0xbaf48429b4d30bdfad488508d3b528033331fe8a, _to=TellorFlex, value=10.0) => (success=true)

TellorFlex.submitValue(_queryId=12906c5e9178631dba86f1f750£f7ab7451c61e6357160eb890029b9%eac1£fb235, value=0000000000

Credit: Peckshield

Post-mortem

Trow(resefpve=[Receiver] 0xed59699lac5flaal858da66c67f7cfa76e54b5f1, amount
Trove_dcl orrow(reserve=[Receiver] 96991ac5flaal858da66c67f7cfa76e54b5f1, amount=100,000,000,000,000,000,00(
: BongProxy_ 3bb7.paused => (false)
5]: BongProxy_3bb7.liquidati§nPool(_token=WALBT) => (CommunityLiquidationPool) n
: CommunityLiquidationPool.li§TokenRate() => (1,000,000,000,000,000,000) T"Is Is 1 wnlBT

WALBT.balanceOf (0x4248fd3e2c055a02117eb13de4276170003ca295) => (0.1)

BongProxy_3bb7.feeRecipient() =3 (BongProxy_ blb7) ¥

BongProxy_3bb7.getBorrowingFee(_LUSDDebt=100,000,000,000,000,000,000,000,000) => (514,097,340,794,949,900,000,000)

BongProxy_3bb7.tokenToPriceFeed() =>\ (TokenToPriceFeed) W|th the manlpulated WALBT pr|ce,

TokenToPriceFeed.mcr (_token=WALBT) =>\(2,000,000,000,000,000,000) ’ ; (&

BongProxy_3bb7.tokenToPriceFeed() => (TokenToPriceFeed) the aCtOr IS able to mlnt 100m BEUR '

: TokenToPriceFeed.tokenPrice(WALBT) => (43%79,375,226,679,073,720,614,149,170) . v
s]: ConvertedPriceFeed.price() => (4,579,375,226,679,073,720,614,149,170) IWAIB]T B“vs vn“ 100“ BEI'Hl
: ChainlinkPriceFeed.price() => (1,091,852,000,000,000,000) — —
TellorPriceFeed.price() => (5,000,000,000,000,000,000,000,000,000)
TellorFlex.getCurrentValue(_queryId=12906c5e9178631dba86f1f750£7ab7451c61e6357160eb890029b9%eaclfb235)
BongProxy_3bb7.troveCount (_token=WALB' => (44)
6]: BongProxy_3bb7.insertTrove(_tokew=WALBT, _newNextTrove=0x00) => ()
: BongProxy_3bb7.tokenOwner() => intableTokenOwner)
:} MintableTokenOwner.mint (receiver=0x4248fd3e2c055a02117eb13de4276170003ca295, amount=100,514,098.3407949
BEUR.mint (receiver=0x4248fd3e2c055a02117eb13de4276170003ca295, amount=100,514,098.34079495) => ()

Credit: Peckshield

Post-mortem

0xb5c0ba8ed0f4fb9a3lfccf84b9fb3da639alede5.updatePrice (newPrice=10,000,000,000,000,000,000, timeSent=100,000,000,000) => ()
1is [Receiver] 0xed59699lac5fillaal858da66c67f7cfa76e54b5f1.updatePrice(newPrice=10,000,000,000,000,000,000, timeSent=100
Trove_454c.liquidate() => ()

0x6e237d5fb96d9c7aedfd37e679017849dc845502.liquidate() =>

= By also manipulating #WALBT price,
0x605778c9b0938£fd60634fce0£73b908500achb8aa.liquidate N .
|+ Trove_b257.liquidate() => () the actor liquidates a bunch of Troves !

0x1331703ec4£f45d00c2e35de7ead0756f2c4ab70c.liquidate()
Trove 6f3f.liquidate() => ()
0x87020cf72ac4a45a34£394bb665a7bc803896840.1liquidate()

: Trove_febé6.liquidate() => ()

: Trove_£80d.liquidate() => ()
0x41d325c2292deab5c7ae29a81070b9£fb46b8c728.1liquidate()
Trove_97be.liquidate() => ()

]: Trove_ 9b84.liquidate() => ()
0x6797485f67ef7c6c59al4cal8cd06e73b2213e8b.liquidate()
0xac6597006ceb7ed6f6a2b01c4fa90badl9525¢cl13.liquidate()

0x1b345£2006bf889212afe6a04534e£365129405f.1liquidate()

Credit: Peckshield

Impact

AllianceBlock to USD Chart

Bongq Euro to U

Price MarketCap TradingView Price MarketCap TradingView

2/5/2023

2/4/2023

® Price: $0.008872
1 24h: $11.01M

® Price: $01297
1h: $1582.39

‘ant more data? Check out our API

Impact

Trove Liquidations

Uniswap Liquidity

s Token Price on 2/1/2023
t time of hack

waLst Sooowss "

Redemptions

Token Balance Price on 2/1/2023 Loss in USD
the of hack

uUsSDC ,798. $1 $56,798.98

o I N

he remaining balance of BEUR in the attacker account
has zero value, as there’s no more liquidity to trade it.

Actions-Taken:

Next steps for BonqDAO

In the following days, BonqDAO is going to:

Publish the BNQ airdrop plan
Distribute the BNQ to the affected wallets.
Present a recovery strategy for BongDAO to the BongDAO community.

Organize a series of votes, where all BNQ holders will be able to approve or reject
several key decisions related to the future of BongDAO, including the current
executive DAO members and the recovery strategy.

ANNOUNCEMENT

There has been a recent incident involving several ALBT
Troves on Bonq, with the attacker gaining access to around
110M ALBT. The incident is isolated to these Troves. None of our
smart contracts was breached.

The AllianceBlock and Bong Teams, including all connected
partners, are now in the process of removing the liquidity, and
are halting all exchange trading. We have paused all activity on
AllianceBlock Bridge in the meantime.

The next step is taking a snapshot just before the attack,
followed by working on a solution for all affected users from the
moment of the snapshot. This includes minting a new ALBT
token and airdropping to the addresses in the snapshot.

NOTE: Any addresses trading (this both includes buying and
selling) after this announcement will be excluded from the
mentioned compensation scheme.

We will share more information as we go, and we encourage our
community to avoid speculation.

7\ .
7 AllianceBlock

Mitigations and Best Practices

e Use oracles such as Chainlink that provide price
update via whitelisted node operators.

e \When using a project like Tellor, ensure that the
best practices are followed.

e Asingle person (the CTO) was named as
responsible for development and testing - use
professional auditing services!

e Large projects should think twice before
partnering with lesser known 3rd party projects.

Mitigations and Best Practices

The protocol using oracle as price feeds must have a time difference in order
for the price to be checked and verified before being utilized, and it cannot
significantly rely on changes made in the oracle instantly.

Uniswap V2 introduces a TWAP (Time Weighted Average Price) oracle for
use by on-chain developers which is highly resistant to oracle manipulation
attacks.

Protocols need to add security layers, using at least two oracles to verify the
price. This would mitigate the hack and ensure proper checks on critical
functions and variables that are publicly accessible.

Tutorial: Liquidator

e Actual price of TokenX = 1 TokenUSD
e Manipulate price of TokenX by feeding off-chain price
e Exchange 1 TokenX to 10000 TokenUSD and drain the Liquidator

contract SimpleTellor is TellorPlayground {
uint256 originTimestamp;
constructor() {
originTimestamp = block.timestamp;
initialize();

Price Feed Oracle

Tutorial: Liquidator

contract SimpleTellor is TellorPlayground {
uint256 originTimestamp;

e Use the SimpleTellor oracle to constructor() {
manipulate price of TokenX originTimestamp = block.timestamp;
initialize();
+
function submitValue(// Copied from TellorPlayground for reference

bytes32 _queryld,

bytes calldata _value,

uint256 _nonce,

bytes memory _queryData
) external {

Tutorial: Liquidator

Set price feed oracle to
SimpleTellor

Calls getCurrentValue
of price feed oracle

contract Liquidatodﬂ

bytes32 queryId;
address public player;

address public tokenX;

address public tokenUSD;
ISimpleTellor public priceFeedOracle;

constructor(address _player, address _tokenX, address _tokenUSD, address tellor){
_player;
tokenX = _tokenX;
tokenUSD = _tokenUSD;

queryId = keccak256(bytes("TokenX"));
priceFeedOracle

player

ISimpleTellor(tellor);

function completed() external view returns (bool) {
return IERC20(tokenUSD).balanceOf(player) == 10000;

}

function exchange(uint256 amountIn) external returns (bool success)

{

require(IERC20(tokenX).transferFrom(msg.sender, address(this), amountIn),

uint256 _value

require(_value != @, "price of a token in USD cannot be 0");

priceFeedOracle.getCurrentValue(queryId);

uint256 amountOut = amountIn * _value;
require(IERC20(tokenUSD).transfer(msg.sender, amountOut), "transfer to reciepent failed");

success

}

true;

'transferFrom failed, is the bank approved?');

Tutorial: Liquidator

SimpleTellor oracle

function getCurrentValue(bytes32 queryId)
external
view
returns (uint256 value)

uint256 currentTimestamp = block.timestamp;

// Retrieve the index of queryId where last update happened
(bool found, uint256 index) = getIndexForDataBefore(queryId, currentTimestamp + 1);
if (!found){revert();}

// Retrieve the timestamp of the last update of queryId
([) Get the current prlce feed US|ng uint256 timestampRetrieved = getTimestampbyQueryIdandIndex(queryId, index);

bytes memor rice;
queryld g o

if (timestampRetrieved == block.timestamp) {
bool _didGet;
(_didGet, price,) = getDataBefore(queryId, currentTimestamp + 1);
if(!_didGet){revert();}

}

else { // Reporters reset the price
bool _didGet;
(_didGet, price,) = getDataBefore(queryId, originTimestamp + 1);
if(!_didGet){revert();}

ik

value = uint256(bytes32(price));

Thank You

