
The Beanstalk
$BEAN
exploit

CS 8803 ESC – Team Loan Rangers

March 3rd, 2023

Agenda

Background

Description of the attack

Post-mortem analysis

Actions taken

Discussion

In a nutshell

On April 17th, 2022, an attacker fraudulently stole
$77 million worth of assets from the BEANSTALK
governance contract.

The attack was performed with flash loans.

The attacker also leveraged social engineering in
their attack.

Parts of the stolen assets were sent to a smart
contract for helping Ukraine.

The Beanstalk protocol

Based on the
ERC-20 protocol
(token: $BEAN) .

Stablecoin with a
1:1 peg against

the USD.

Maintains its low
volatility by

leveraging debts.

Decentralized
management

Decentralized
price oracle

Decentralized
governance

Decentralized
credit facility

Decentralized
governance

Promotes “equal” contribution of users to
changes in a community.

A user typically creates a proposal (EIP for
Ethereum, or BIP for Beanstalk) that is then
voted on by the community.

Specific rules determine whether the proposal is
accepted or not.

The voted proposal is applied according to
specified rules.

https://imgs.xkcd.com/comics/voting_software_2x.png

$

0x….deadbeef

$

STALK SYSTEM

0x….deadbeef

total stalk

0x…..deadbeef

$

STALK SYSTEM

0x….deadbeef

total stalk

0x…..deadbeef

SILO / BEANSTALKDAO
submit BIP

$

STALK SYSTEM

0x….deadbeef

total stalk

0x…..deadbeef

SILO / BEANSTALKDAO
submit BIP

Vote period
(169 seasons
/ ~ 1 week +

1 hour)

$

STALK SYSTEM

0x….deadbeef

total stalk

0x…..deadbeef

SILO / BEANSTALKDAO
submit BIP

Vote period
(169 seasons
/ ~ 1 week +

1 hour)

$

STALK SYSTEM

0x….deadbeef

total stalk

0x…..deadbeef

SILO / BEANSTALKDAO
submit BIP

Vote period
(169 seasons
/ ~ 1 week +

1 hour)

Emergency commit

Attack scenario

• On April 16th, 2022, an Ethereum address swapped
73 ETH for 212,858 $BEAN on Uniswap v2.

• The awarded BEAN was deposited into the
Beanstalk Silo allowing the user to create two
proposals:

• BIP18
(0x68cdec0ac76454c3b0f7af0b8a3895db00ad
f6daaf3b50a99716858c4fa54c6f)

• BIP19
(0x9575e478d7c542558ecca52b27072fa1f1ec
70679106bdbd62f3bb4d6c87a80d) named
InitBip18

• BIP18 was left blank, and BIP19 proposed a
$250k donation to the Ukraine wallet address,
and $10k to the attacker’s address.

YOU CANNOT TAKE IT TO HEAVEN

… SURE, BUT MAYBE TO UKRAINE??

https://etherscan.io/tx/0x68cdec0ac76454c3b0f7af0b8a3895db00adf6daaf3b50a99716858c4fa54c6f/advanced
https://etherscan.io/tx/0x68cdec0ac76454c3b0f7af0b8a3895db00adf6daaf3b50a99716858c4fa54c6f/advanced
https://etherscan.io/tx/0x9575e478d7c542558ecca52b27072fa1f1ec70679106bdbd62f3bb4d6c87a80d
https://etherscan.io/tx/0x9575e478d7c542558ecca52b27072fa1f1ec70679106bdbd62f3bb4d6c87a80d

How to get >
66% of stalks
101

• The attacker still needs to
get their proposals
through.

• For that they need 2/3 of
the stalks which was
worth hundreds of
millions of dollars on the
day of the attack.

How to get >
66% of stalks
101

• The attacker still needs to
get their proposals through.

• For that they need 2/3 of the
stalks which was worth
hundreds of millions of
dollars on the day of the
attack.

• Solution: Flash loans

• User requests a loan
from a smart contract.

• Must be paid entirely in
the same transaction.

Flash loans

• Access to large quantities of capital without collateral requirements
• Arbitrage: take advantage of price discrepancies among exchanges

• Collateral swaps: switch collateral used in more traditional lending protocols

• Standard lending protocols...
• Most protocols (i.e. stake ETH for DAI) require overcollateralization

• This lets them absorb volatile prices and liquidate positions in time

• How do we give a loan without collateral?
• The catch: the loan must be repaid within the same transaction

• Smart contract gives the loan for a fee

• Function reverts if the loan is not paid back! (relies on atomicity)

• Attacker loaned ~ $1B from Aave in
various tokens which they later
converted to 3CRV (one day after
the creation of the proposals *)

• They added liquidity from 3CRV to
BEAN:3CRV and BEAN:3LUSD which
allowed them to get important
amounts of BEAN3CRV-f and
BEAN3LUSD-f.

• The collected assets were deposited
to the Silo which gave the attacker
70% of all available stacks.

• They were then able to vote and do
an emergencyCommit() on BIP-18.

Whitepaper Ch.4

Attack explained

• The _init argument of the
`propose` method, specifies a
contract that is called when the
proposal is voted.

• The value in _calldata is passed as
argument.

• The attacker used the CREATE2 op
code to pre-compute the address
of the contract.

• The contract itself was created in
the same transaction where the
proposal was voted.

Credit: https://medium.com/@nvy_0x/the-beanstalk-bean-exploit-b038f4d324ea

• The attack code was delegated to the FlashLoan smart contract which resulted in it directly collecting
the assets.

• Once the attack was over, the debt was settled and the transfers were made to Ukraine’s address
($250k)

• and the remaining profit to the hacker 24,830 WETH

Cleanup

The attacker routed the stolen funds through TornadoCash

Impact

Post-mortem

• The governance contract has been paused using ownership privileges
of the main developers – Publius.

• Publius revealed their identity (3 developers) to the community on
Discord.

• A complaint has been filed with the FBI.

• Out of the ~181M stolen tokens, the attacker only got away with
around 77M. The remaining was burned by the developers.

• A town hall was hosted on April 18th, just one day after the incident
with a detailed dev team plan.

Code patches

• GFT-01C: Code Duplication: To address issues of naming the BIPs
exploited by the hacker.

• GFT-02C: Inefficient First Vote: Forces the author of the proposal to
cast their vote immediately upon creation.
• The one-day delay before execution means that even with a flash loan, the

creator of the proposal cannot get it through.

Reference: https://omniscia.io/beanstalk-core-protocol/code-style/GovernanceFacet-GFT

Way forward

executed on August 16th, 2022

Reference: https://bean.money/blog/path-forward

In summary

Tutorial

• Take out a flash loan from a custom ERC-20

Basic Lender contract

Loan must be repaid!

Receiver function
called

Token transferred to
receiver

Your goal: call this function

Receiver boilerplate

References

• https://bean.money/blog/path-forward

• Beanstalk whitepaper - https://bean.money/beanstalk.pdf

• https://omniscia.io/beanstalk-core-protocol/code-
style/GovernanceFacet-GFT

• https://medium.com/@nvy_0x/the-beanstalk-bean-exploit-
b038f4d324ea

• https://rekt.news/beanstalk-rekt/

https://bean.money/blog/path-forward
https://bean.money/beanstalk.pdf
https://omniscia.io/beanstalk-core-protocol/code-style/GovernanceFacet-GFT
https://omniscia.io/beanstalk-core-protocol/code-style/GovernanceFacet-GFT
https://medium.com/@nvy_0x/the-beanstalk-bean-exploit-b038f4d324ea
https://medium.com/@nvy_0x/the-beanstalk-bean-exploit-b038f4d324ea
https://rekt.news/beanstalk-rekt/

Thank you for your
attention

	Slide 1: The Beanstalk *$BEAN* exploit
	Slide 2: Agenda
	Slide 3: In a nutshell
	Slide 4: The Beanstalk protocol
	Slide 5: Decentralized governance
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Attack scenario
	Slide 13: How to get > 66% of stalks 101
	Slide 14: How to get > 66% of stalks 101
	Slide 15: Flash loans
	Slide 16
	Slide 17
	Slide 18: Attack explained
	Slide 19
	Slide 20
	Slide 21: Cleanup
	Slide 22: Impact
	Slide 23: Post-mortem
	Slide 24: Code patches
	Slide 25: Way forward
	Slide 26: In summary
	Slide 27: Tutorial
	Slide 28: Basic Lender contract
	Slide 29: Receiver boilerplate
	Slide 30: References
	Slide 31: Thank you for your attention

