he Beanstalk
SBEAN
exploit

CS 8803 ESC — Team Loan Rangers
March 3rd, 2023

Background

Description of the attack

Post-mortem analysis

Actions taken

Discussion

In @ nutshell

P
The attacker also leveraged social engineering in
their attack.

&

)

o

Based on the
ERC-20 protocol
(token: SBEAN).

J

Stablecoin with a
1:1 peg against
the USD.

Bl| The Beanstalk protocol

Maintainsits low
volatility by
leveraging debts.

J

Decentralized
price oracle

Decentralized
management

Decentralized
governance

Decentralized
credit facility

. ASKING AIRCRAFT DESIGNERS | ASKING BUILDING ENGINEERS | 4 ASKING SOFTWARE
Decentrahzed ABOUT AIRPLANE SAFETY: || |ABOUT ELEVATOR SAFETY: | || ENGINEERS ABOUT
COMPUTERIZED VOTING:
NOTHING 15 EVER FOOLPROOE | ELEVATORS ARE PROTECTED BY
BUT MODERN AIRLINERS ARE | MULTIPLE TRIED-AND-TESTED
governance INCREDBLY RESLIENT. FLYNG 5 | FALSAFE MECHANISMS, THEYRE. | THATS TERRIFVING,
THE SAFEST WAY TO TRAVEL. | NEARLY INCAPABLE OF FALLING, t
\ \
Promotes “equal” contribution of users to
changes in a community.
A user typically creates a proposal (EIP for VAT, REALLY? THEY SAY THEY'VE FIXED IT WITH
Ethereum, or BIP for Beanstalk) that is then DON'T TRUST VOTING SOFTWARE AND DON'T SOMETHING CALLED “BLOCKCHAIN."
voted on by the community. LISTEN To ANYONE WHO TELLS YOU TS SAFE. AAARA!!
\HY? | WHATEVER THEY SOLD
I DON'T QUITE KNOW HOW To PUT THIS, BUT YD(-!DDNT'IDU&I\II
e : : OUR ENTIRE FIELD IS BAR AT WHAT WE DO, BURY IT IN THE. DESERT.
Specific rules determine whether the proposalis AND FF YOU RELY ON US, EVERYONE WLLDE. e
accepted or not. GLD/“ES'
The voted proposal is applied accordingto
specified rules.

https://imgs.xkcd.com/comics/voting_software_2x.png

d

%2
é .5@;‘2;
o

Ox....deadbeef

— total stalk

STALK SYSTEM

Ox....deadbeef

STALK SYSTEM
0 r /

— total stalk

%

Ox....deadbeef

submit BIP

»{ SILO / BEANSTALKDAO

STALK SYSTEM
/ Vote period
169 seasons
0F ‘

— total stalk

i

/~ 1 week +
1 hour)

%

Ox....deadbeef

submit BIP

> SILO / BEANSTALKDAO

STALK SYSTEM
0 .\ /

— total stalk

i

%

Ox....deadbeef

submit BIP

> SILO / BEANSTALKDAO

Vote period
(169 seasons

/~ 1 week +
1 hour)

/ STALK SYSTEM

— total stalk

Ox....deadbeef

submit BIP

A4

SILO / BEANSTALKDAO

Vote period
(169 seasons

/~ 1 week +
1 hour)

Emergency commit

Attack scenario

* On April 16%, 2022, an Ethereum address swapped
73 ETH for 212,858 SBEAN on Uniswap v2. YOU CANNOT TAKE IT TO HEAVEN

 The awarded BEAN was deposited into the
Beanstalk Silo allowing the user to create two
proposals:

* BIP18

(Ox68cdec0ac76454c3b0f7afOb8a3895db00ad ,i ’

f6daaf3b50a99716858c4fa54c6f)

* BIP19
(0x9575e478d7c542558ecca52b27072falflec
70679106bdbd62f3bb4d6c87280d) named
InitBipl8

e BIP18 was left blank, and BIP19 proposed a
S250k donation to the Ukraine wallet address,
and S10k to the attacker’s address.

... SURE, BUT MAYBE TO UKRAINE??

https://etherscan.io/tx/0x68cdec0ac76454c3b0f7af0b8a3895db00adf6daaf3b50a99716858c4fa54c6f/advanced
https://etherscan.io/tx/0x68cdec0ac76454c3b0f7af0b8a3895db00adf6daaf3b50a99716858c4fa54c6f/advanced
https://etherscan.io/tx/0x9575e478d7c542558ecca52b27072fa1f1ec70679106bdbd62f3bb4d6c87a80d
https://etherscan.io/tx/0x9575e478d7c542558ecca52b27072fa1f1ec70679106bdbd62f3bb4d6c87a80d

How to get >
66% of stalks
101

* The attacker still needs to
get their proposals
through.

* For that they need 2/3 of
the stalks which was
worth hundreds of
millions of dollars on the
day of the attack.

How to get >
66% of stalks
101

* The attacker still needs to
get their proposals through.

* For that they need 2/3 of the
stalks which was worth
hundreds of millions of
dollars on the day of the
attack.

e Solution: Flash loans

* Userrequestsaloan
from a smart contract.

* Must be paid entirelyin
the same transaction.

— Payments

request

network
oo X
Protocol

Dai Card
OPEN PLATFORM

. xDai Chain

Groundhog
_ MRADEN

Custodial Services

@ MyEtherWallet)

Ethereum’s DeFi

Infrastructure - KYC & Identity Stablecoins
maxcert GSELFKEY$ SYNTHETIX\
@ . JoLocom @ digix DAI
GITCOIN Av uport || @ usbcoin
ClVIC
%t DutchX ‘Ethlance «% Bloom GEMINI
o‘,__” ollar N
0‘ Ox # FOAM BO‘U“I)EIESW Derivatives \ StableU
.| §4 MARKETFROTOCO!
Exchanges & Liquidity 3 ¥
expoe -
] @ entnfuge QAIRSWAP PC LM || @)meuso
% Uniswap (&2, kDelta @ Lenproip| | (B carson
Marble \ R
°|DCX slow.trade RADAR 6Y/6X " DA/<|A eserve
K2 ® ToTLE hydro 4 LooRie @ Terra
k ¥ Bancor % Ren a bZx VAR.ABL Ampleforch

P

Investing

THE
BLOCK

— Insurance
S~ ETHERI S?

Nexus e§e Mutual

iXledger
CO VouchForMe

ail
gang

\ 0.

Credit & Lending
@) LENDROID
Lencoit 5c

Ripio
£ © elsius @ﬁfm

‘)InstaDApp
Marble. saLT
) BLOQBOARD

\Uo

=210 N Set . / ‘Marketplaces \ Predlction Markets 1
AT a;gent Omusr u. HARBOR v' FETCH Rare Flts 9;559(@ angUr

.METAMASK @ MELONPORT ¥ 2 0 district@x $ Bodhi

) Balance 9 Brickblock SPICE bskt MERIDIO ORlGlN /—| OX
K\é MyCrypto | k‘ BsEchgNL(EEr:I\nATrezlélLijn k@ OpenSea C@, GCNOSIS
- .

—O]

~=" COLENDI
—0

Flash loans

» Access to large quantities of capital without collateral requirements

* Arbitrage: take advantage of price discrepancies among exchanges
e Collateral swaps: switch collateral used in more traditional lending protocols

e Standard lending protocols...
* Most protocols (i.e. stake ETH for DAI) require overcollateralization
* This lets them absorb volatile prices and liquidate positions in time

* How do we give a loan without collateral?
* The catch:the loan must be repaid within the same transaction
* Smart contract gives the loan for a fee
* Function reverts if the loan is not paid back! (relies on atomicity)

 Attacker loaned ~ S1B from Aave in
various tokens which they later
converted to 3CRV (one day after
the creation of the proposals *)

® They added I|qu|d|ty fr‘om 3CRV to Hacker 0xlc5dcdd006ea78a7e4783£9e6021c32935a10£b4

Hacker Contract 0x79224bcObf70ec34f0ef56ed8251619499a59def
.
. . BIP18 O0Oxe5ecf73603d98a0128f05ed30506ac7a663dbb69
BEAN:3CRV and BEAN:3LUSD which

. Propose BIP18 tx: 0x68cdeclac76454c3b0f7af0b8a3895db00adf6daaf3b50a99716858c4fa54c6E
allowed thel I I to get II I |p0rta nt 1. Hacker proposes a malicious proposal BIP with initAddress @ Oxe5ecf73603d98a0128f05ed30506ac7a663dbb69
arnou nts Of BEAN3CRV-f and Launch the hack tx: 0xcd314668aaa9bbfebaflalbd2b6553d01dd58899c508d4729fa7311dc5d33ad?

. Flashloan 350,000,000 DAI, 500,000,000 USDC, 150,000,000 USDC, 32,425,202 BEAN, and 11,643,065 LUSD
BEAN3LUSD-f.

. Vyper_contract_bebc.add_liquidity 350,000,000 DAI, 500,000,000 USDC, 150,000,000 USDT to get 979,691,328 3Crv
. LUSD3CRV-f.exchange to convert 15,000,000 3Crv to 15,251,318 LUSD
. BEAN3CRV-f.add_liquidity to convert 964,691,328 3Crv to 795,425,740 BEAN3CRV-f
* The collected assets were deposited
to the Silo which gave the attacker
70% of all available stacks.

| FSERE SSRAEE TN SRR WM SR e s
* They were then able to vote and do
an emergencyCommit() on BIP-18.

Diamond.vote bip=18

Diamond.emergencyCommit bip=18 ' and hacker proposed _init contract is excuted to get 36,084,584 BEAN and 0.54 UNI-V2_WETH_BEAN,
874,663,982 BEAN3CRV-f, 60,562,844 BEANLUSD-f to hacker contract

N OW s W N

We define a Season (t), such that ¢ € Z', as an approximately 3,600 second (1 Hour) interval.
The first Season begins when a successful transaction on the Ethereum blockchain that includes a
sunrise function call is mined. When Beanstalk accepts the sunrise function call, the necessary

code is executed.

Beanstalk only accepts one sunrise function call per Season.

Beanstalk accepts the first sunrise

function call provided that the timestamp in the Ethereum block containing it is sufficiently distant
from the timestamp in the Ethereum block containing the Beanstalk deployment (E).

Whitepaper Ch.4

Attack explained

* The _init argument of the
‘propose method, specifies a
contract that is called when the
proposal is voted.

* Thevaluein calldatais passed as
argument.

* The attacker used the CREATE2 op
code to pre-compute the address
of the contract.

 The contract itself was created in
the same transaction where the
proposal was voted.

Emitted events:

[recei

18] [recei

ver] Diamond.Proposal (account=[sender] @x1c5dcdde@sea78a7ed783f0e6021c32935a10fb4, bip-18, start-6048, period-168)
ver] Diamond.Vote(account=[sender] @x1cSdcddee6ea78a7e4783f9e6021c32935a10fba, bip=18, roots=100148938055493285876625523)

Execution trace:

[s

Byte

PP

ender] @x1c5dcdd@Bbea78a7e4783f9e6021c32935a10fbd

[receiver] Diamond[.propose](_diamondCut=[], _init=0xeSecf73603d9820128f05ed30506ac7a663dbb69, _calldata=dxelc7392a, _pauseOrUnpaus
e e e

Code Decompilation Result:

1 [Palkeoramix decompiler.

def _fallback() payable: # default function
create2 contract with callvalue wei
salt: call.func_hash
code: call.data[32 len calldata.size - 32]
require createZ.new_address
return addr(createZ.new_address)

P& WOWo~NOUTL~ WMN

e=3) =>

(0)

ByteCode Decompilation Result:

1 # Palkeoramix decompiler.
2]
3 def fallback() payable: # default function — E}t_F‘ﬂlt&l’ 'CIJMA ress
4 if tx.origin != @xlc5dcdd@@tea7Ba7ed78319e6821c32935a18Th4:
e —
= revert with @, 'Not Signer’
6 static call @xdcS59acdfefa32293a95889dc396682858d52e5db.balancedf(address tokenOwner) with:
7 as gas_remaining weil - :
8 aEgs Ehig.addressg $ BEAN
9 if not ext_call.success:
1@ revert with ext call.retugn data[@ len return_data.size]
11 require return_data.size >=I(CE 32
12 call BxdcS9acdfefa32293595889dc396682858d52e5db.transfer(address to, uint256 tokens) with:
13 gas gas_remalning weil
14 args caller, ext call.return_data[@]
15 if not ext call.success:
16 revert with ext call.retugn data[@ len return_data.size]
17 require return_data.size >=ICE 32
18 require ext call.return_data == bool(ext call.return_data[2])
19 static call @xB87898263b6cSbabe34bdec53122d98438b01e371.balancedf (address tokenOwner) with:
20 gas gas_remalning weil ,
21 args this.address '\...___. Uw \el EEANE
22 if not ext_call.success:
23 revert with ext call.retugn data[@ len return_data.size]j
24 require return_data.size >=ICE 32 o
25 call @{E?EEE2E3hEcShahE34h4ec53f2EdEWtransfer{address to, uint256 tokens) with:

Credit: https://medium.com/@nvy_0x/the-beanstalk-bean-exploit-b038f4d324ea

The attack code was delegated to the FlashLoan smart contract which resulted in it directly collecting
the assets.

Once the attack was over, the debt was settled and the transfers were made to Ukraine’s address
(S250k)

and the remaining profit to the hacker 24,830 WETH

[40230): Diamond.vote(bip=18) => ()

[35282]: (delegate) GovernanceFacet.vote(bip=18) => ()
(194510 Diamond.emergencyComnit (bip=18) => () Malicious BIP 18 Proposal Execution
- [192062]: (delegate) GovernanceFacet.emergencyCommit(bip=18) => ()

4 [113460]: (delegate) 0xeSecf73603d98a0128£05ed30506ac7a663dbb69.init() => ()

[2602]: BEAN.balanceOf (account=Diamond) => (36,084,584.376516)

[26154]:lBEAN.transfer(recipient-0x79224bc0bf70ec34f0ef56ed8251619499a59def, amount=36,084,584.376516) => (true)]

[2480): UNI-V2_WETH_BEAN.balanceOf (account=Diamond) => (0.5407161009687569)

[27840]:[UNI-VZ_WETH_BBAN.transfer(recipient=0x79224bc0bf70ec34f0e£56ed8251619499359def, amount=0.5407161009687569) => (tr}e)

[2659]: BEAN3CRV-f.balanceOf (account=Diamond) => (874,663,982.2374194)

[23288)4 BEAN3CRV-f.transfer(recipient=0x79224bc0bf70ec34f0ef56ed8251619499a59def, amount=874,663,982.2374194) => (true)

[1481]: BEANLUSD-f.balanceOf(account=Diamond) => (60,562,844.064129084)

[22855]:lBEANLUSD-f.transfer(recipient-0x79224bc0bf70ec34f0ef56ed8251619499a59def, amount=60,562,844.064129084) => (true)]

[10210): BEAN.mint(_to=0x79224bc0bf70ec34f0ef56ed8251619499a59def, amount=100000000) => ()

Cleanup

0x98514294978289251f...

Oxde330264614e88ea06. ..

Oxc99afcc3850c16638. ..

Oxf21af82216429e2bc61...

Oxd9c57ec00725710291...

Oxd19aa91b3928de002. ..

Oxcd314668aaa9bbfebar. ..

Ox677660ce489935b94b. ..

Ox3ckb358d40647e178ee...

0x9575ed478d7c542558e...

OxG68cdecOac76454c3b0. ..

Deposit

Deposit

Deposit

Deposit

Deposit

Deposit

Buy And Free2245...

Transfer

0x956afd6s

x856afdia

14602886

14602883

14602882

14602878

14602877

14602829

14602790

14602750

14596011

3 days 7 hrs ago

3 days 7 hrs ago

3 days 7 hrs ago

3 days 7 hrs ago

3 days 7 hrs ago

3 days 8 hrs ago

3 days 8 hrs ago

3 days 8 hrs ago

4 days 9 hrs ago

4 days 9 hrs ago

4 days 9 hrs ago

The attacker routed the stolen funds through TornadoCash

Beanstalk Flashloan Exp. ..
Beanstalk Flashloan Exp. ..
Beanstalk Flashloan Exp. ..
Beanstalk Flashloan Exp. ..
Beanstalk Flashloan Exp...
Beanstalk Flashloan Exp. ..
Beanstalk Flashloan Exp. ..
Beanstalk Flashloan Exp. ..
Beanstalk Flashloan Exp...
Beanstalk Flashloan Exp...

Beanstalk Flashloan Exp...

ouT

ouT

ouT

ouT

ouT

ouT

ouT

ouT

ouT

ouT

ouT

[® Tornado.Cash: Router

[® Tornado.Cash: Router

[® Tornado.Cash: Router

[® Tornado.Cash: Router

[® Tornado.Cash: Router

[® Tornado.Cash: Router

Contract Creation

[2) 0x4e59b44847b379578...

Oxedecf73603d98a0128f...

Beanstalk: Beanstalk Pr...

Beanstalk: Beanstalk Pr...

100 Ether

100 Ether

100 Ether

100 Ether

100 Ether

100 Ether

0 Ether

0 Ether

0.25 Ether

0 Ether

0 Ether

0.03033226 §

0.03520172 '§

0.03240511 §

0.04003237 ¥

0.03872852 @

0.0249621 ¥

0.33792333 ®

0.01434477 &

0.00041721 &

0.00374221 ¥

0.00565519 §

Impact

Beanstalk Farms @BeanstalkFarms - Apr 19
In the wake of yesterday's attack, Beanstalk Farms makes the following
offer to the Exploiter:

QO 1 1 30 QO 128 Ty A Tip

Beanstalk Farms @BeanstalkFarms - Apr 19

If you will return 90% of the withdrawn funds to the Beanstalk Farms multi-
sig wallet Ox21DE18B6A8f78eDe6D16C50A167f6B222DCO8DF7,
Beanstalk will treat the remaining 10% as a Whitehat bounty properly

payable to you.

Q 16 1 40 99 g A Tip

“« Thread

Certi Alert

We are seeing a possible exploit on @Beanstal
| which has dropped 100%

symbol SBEA

Address:
Oxdcbh9ac4fefa32293a95889dc396682858d52e5db0
x48f33863b1defc7b294717498¢c634ba9abfb58a7

Be careful out there!

Post-mortem

* The governance contract has been paused using ownership privileges
of the main developers — Publius.

* Publius revealed their identity (3 developers) to the community on
Discord.

* A complaint has been filed with the FBI.

e Out of the ~181M stolen tokens, the attacker only got away with
around 77M. The remaining was burned by the developers.

A town hall was hosted on April 18, just one day after the incident
with a detailed dev team plan.

Code patches

* GFT-01C: Code Duplication: To address issues of naming the BIPs
exploited by the hacker.

* GFT-02C: Inefficient First Vote: Forces the author of the proposal to
cast their vote immediately upon creation.

 The one-day delay before execution means that even with a flash loan, the
creator of the proposal cannot get it through.

Reference: https://omniscia.io/beanstalk-core-protocol/code-style/GovernanceFacet-GFT

Way forward

A Rough Timeline

The following timeline is intended to provide a rough timeline of steps in the critical path to Replant

Beanstalk. This timeline is subject to change.
May 2022

Halborn audit begins May 9

Hold OTC negotiations to recapitalize Beanstalk
June 2022

Finalize OTC negotiations to recapitalize Beanstalk
Trail of Bits audit begins June 6

Barn Raise begins June 6
July 2022

Halborn and Trail of Bits audits complete

Audits reports published

Replant Beanstalk (exact date to be voted on by the Beanstalk DAO) \

executed on August 16, 2022

Reference: https://bean.money/blog/path-forward

In summary

Hacker 0xlc5dcdd006ea78a7e4783f9e6021c32935a10£fb4
Hacker Contract 0x79224bcObf70ec34f0ef56ed8251619499a59def
BIP18 Oxe5ecf73603d98a0128f05ed30506ac7a663dbb69

Propose BIP18 tx: 0x68cdeclac76454c3b0f7af0b8a3895db00adf6daaf3b50a99716858c4fa54c6f
1. Hacker proposes a malicious proposal BIP with initAddress @ 0xeS5ecf73603d98a0128f05ed30506ac7a663dbb69

Launch the hack tx: 0Oxcd314668aaa9bbfebaflalbd2b6553d01dd58899c508d4729fa7311dc5d33ad7

1. Flashloan 350,000,000 DAI, 500,000,000 USDC, 150,000,000 USDC, 32,425,202 BEAN, and 11,643,065 LUSD

2. Vyper_contract_bebc.add_liquidity 350,000,000 DAI, 500,000,000 USDC, 150,000,000 USDT to get 979,691,328 3Crv

3. LUSD3CRV-f.exchange to convert 15,000,000 3Crv to 15,251,318 LUSD

4. BEAN3CRV-f.add liquidity to convert 964,691,328 3Crv to 795,425,740 BEAN3CRV-f

5. BEANLUSD-f.add_liquidity to convert 32,100,950 BEAN and 26,894,383 LUSD and get 58,924,887 BEANLUSD-f

6. Deposit 795,425,740 BEAN3CRV-f and 58,924,887 BEANLUSD-f into Diamond

7. Diamond.vote bip=18

8. Diamond.emergencyCommit bip=18 and hacker proposed _init contract is excuted to get 36,084,584 BEAN and 0.54 UNI-V2_WETH_BEAN,
874,663,982 BEAN3CRV-f, 60,562,844 BEANLUSD-f to hacker contract

9. BEAN3CRV-f.remove_liquidity one_coin 874,663,982 BEAN3CRV-f to get 1,007,734,729 3Crv

10. BEANLUSD-f.remove_ liquidity one_coin 60,562,844 BEANLUSD-f to get 28,149,504 LUSD

11. Flashloan back LUSD 11,795,706 and BEAN 32,197,543

12. LUSD3CRV-f.exchange to swap 16,471,404 LUSD to 16,184,690 3Crv

13. Burn 16,184,690 3Crv to get 522,487,380 UsSDC, 365,758,059 DAI, and 156,732,232 USDT

14. Flashloan back 150,135,000 uspT, 500,450,000 USDC, 350,315,000 DAI

15. Burn UNI-V2_WETH_BEAN 0.54 to get 10,883 WETH and 32,511,085 BEAN

16. Donate 250,000 USDC to Ukraine Crypto Donation

17. swap 15,443,059 DAI to 15,441,256 USDC

18. swap 37,228,637 USDC to 11,822 WETH

19. swap 6,597,232 USDT to 2,124 WETH

20. Profit 24,830 WETH is sent to hacker

Tutorial

* Take out a flash loan from a custom ERC-20

import "OpenZeppelin/openzeppelin-contracts@4.4.2/contracts/token/ERC20/ERC20.s0l";

contract LoanToken is ERC20 {
constructor(uint256 initialSupply) ERC20("LoanETH", "1ETH") {

_mint(msg.sender, initialSupply);

Basic Lender contract

function flashLoan(address borrower, uint256 borrowAmount) external {

require(borrowAmount > @, "Borrow amount must be greater than 0");

uint256 balanceBefore = token.balanceOf(address(this));
require(balanceBefore >= borrowAmount, "Not enough ETH in pool");

Token transferred to token.transfer(borrower, borrowAmount);
. require(token.balance0f(address(borrower)) == borrowAmount, "Borrower did not receive loan");
recelver
)) ReceiverInterface borrowerInterface = ReceiverInterface(borrower);
Receiver function bool success = borrowerInterface.receivelLoan(address(token));
called require(success, "Call to receivelLoan(token_address) failed");
. require(token.balanceOf(address(this)) == balanceBefore, "Loan was not repaid!");
Loan must be repaid! TR = ek

function mustHaveMoney() external returns (bool) {
require(token.balanceOf(address(msg.sender)) == 100);

Your goal: call this function calledFunction = true;

return true;

Receiver boilerplate

// SPDX-License-Identifier: MIT

pragma solidity ~0.8.0;
import 'IERC20.sol’;

interface LoanerInterface {

function mustHaveMoney() external returns (bool);

1
J

interface ReceiverInterface {
function receivelLoan(address token_address) external returns (bool);
3

contract Receiver is ReceiverInterface {

References

* https://bean.money/blog/path-forward

* Beanstalk whitepaper - https://bean.money/beanstalk.pdf

* https://omniscia.io/beanstalk-core-protocol/code-
style/GovernanceFacet-GFT

* https://medium.com/@nvy 0x/the-beanstalk-bean-exploit-
b038f4d324ea

* https://rekt.news/beanstalk-rekt/

https://bean.money/blog/path-forward
https://bean.money/beanstalk.pdf
https://omniscia.io/beanstalk-core-protocol/code-style/GovernanceFacet-GFT
https://omniscia.io/beanstalk-core-protocol/code-style/GovernanceFacet-GFT
https://medium.com/@nvy_0x/the-beanstalk-bean-exploit-b038f4d324ea
https://medium.com/@nvy_0x/the-beanstalk-bean-exploit-b038f4d324ea
https://rekt.news/beanstalk-rekt/

POWER COHES GREAT

CURRENT SQUARED
TIMES RESISTANCE .
Thank you for your
attention K

OHM NEVER FORGOT HIS
DYING UNCLE'S ADVICE.

	Slide 1: The Beanstalk *$BEAN* exploit
	Slide 2: Agenda
	Slide 3: In a nutshell
	Slide 4: The Beanstalk protocol
	Slide 5: Decentralized governance
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Attack scenario
	Slide 13: How to get > 66% of stalks 101
	Slide 14: How to get > 66% of stalks 101
	Slide 15: Flash loans
	Slide 16
	Slide 17
	Slide 18: Attack explained
	Slide 19
	Slide 20
	Slide 21: Cleanup
	Slide 22: Impact
	Slide 23: Post-mortem
	Slide 24: Code patches
	Slide 25: Way forward
	Slide 26: In summary
	Slide 27: Tutorial
	Slide 28: Basic Lender contract
	Slide 29: Receiver boilerplate
	Slide 30: References
	Slide 31: Thank you for your attention

