
Reentrancy Attack

Ding Zhang

Peijia Yao

Rohan Pawar

Yizhi Huang

Wenxuan Zhang

How does it work

• contract A makes an external call to
another untrusted contract B

• B makes a recursive call back to the
original function in A, attempting to
drain funds

DAO Hack (2016)

• In 2016, DAO was created and raised $150m worth of ETH
• 3 month later, “blackhat” hacker use reentrancy attack to drain most funds

• During debating, “whitehat” hacker use same hack try to rescue

• To fork or not?
• Invalidate the hack

• Against the principle of decentralization

• Today: Ethereum Classic & Ethereum

Overview

Example DAO contract

• deposit(): once a contribution is
received, it increments the investor’s
balance

• withdraw() function sends the ETH to
the investor before it resets their
balance to zero

• The send transaction does not finish
executing until the hacker’s fallback
function finishes executing, so the
hacker’s balance is not set to zero
until the fallback function finishes

Hacker’s Contract

• attack() function deposits the hacker’s
“investment” in The DAO and then kicks
off the attack by calling The DAO
contract’s withdraw()

• Fallback() checks that The DAO’s contract
still has some ETH left in it and then calls
The DAO contract’s withdraw() function

• Once The DAO contract’s ETH balance is
drained, the fallback() function will no
longer execute the withdraw() function

Update balance earlier Lock withdraw()

Possible Fix

Lendf.me Protocol (2020)

• Lendf.me
decentralized finance protocol
designed to support lending
operations on the Eth platform

• April 18th 2020, hacker
used a reentrancy attack
to steal $25 million

• …

Overview

Code Analysis

Can you spot the vulnerability by now?

Code Analysis

The issue here is that:

MoneyMarket.supply() is actually updating the user’s asset
balance after the external call to asset.transferFrom() (lines 1599–1600),
but based on a value that was read before the external call (line 1514), which
means that the update potentially ignores any updates that were made within
the external call. In many terms, we can consider this anomaly to be a “Lost
Update”.

Tutorial: Monster Bank

Monster Bank

A Bank with deposit and withdraw
functionalities

Anyone can deposit ether to the bank

Goal: Drain the bank's balance

The Exploit

WithdrawAll: The balance mapping is
updated after the transaction!

Attacker can re-enter the function again!

Challenge #1: SafeNFT

Safe NFT

SafeNFT: An ERC721 Non-fungible Token

How safe is SafeNFT?

Goal: Purchase 2 NFTs for the price of 1

Challenge #2: Vending
Machine

Vending Machine

A simple contract that models after a
vending machine

Only has one item: Peanuts :)

Goal: Drain the machine from the whole
balance

Vending Machine

Key functions for this challenge:

1. Deposit

2. Withdrawal

Reference
https://blog.chain.link/reentrancy-attacks-and-the-dao-hack/

https://valid.network/post/the-reentrancy-strikes-again-the-case-of-lendf-me

https://blog.chain.link/reentrancy-attacks-and-the-dao-hack/
https://valid.network/post/the-reentrancy-strikes-again-the-case-of-lendf-me

	Slide 1: Reentrancy Attack
	Slide 2: How does it work
	Slide 3: DAO Hack (2016)
	Slide 4: Overview
	Slide 5: Example DAO contract
	Slide 6: Hacker’s Contract
	Slide 7: Possible Fix
	Slide 8: Lendf.me Protocol (2020)
	Slide 9: Overview
	Slide 10: Code Analysis
	Slide 11: Code Analysis
	Slide 12: Tutorial: Monster Bank
	Slide 13: Monster Bank
	Slide 14: The Exploit
	Slide 15: Challenge #1: SafeNFT
	Slide 16: Safe NFT
	Slide 17: Challenge #2: Vending Machine
	Slide 18: Vending Machine
	Slide 19: Vending Machine
	Slide 20: Reference

