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High-Level Languages for Safety/Security

� Java, C#, Haskell, F*…

� JavaScript for web applications

� Benefits

� Better support for safety and security

� Portability

� Better programming abstractions

� …

So why bother enforcing security at the binary level?
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Why Binary-Level Software Security?

� Programming language agnostic

� Eventually all software is turned into native code

� Apply to all languages: C, C++, OCaml, assembly …

� Accommodate legacy code/libraries written in C/C++

� E.g., zlib, codec, image libraries (JPEG), fast FFT libraries …

� Apply to applications that are developed in multiple 

languages

� Native code is an unifying representation
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Why Binary-Level Software Security?

� Low-level languages (i.e. C/C++) have better 

Performance

� Compilers for high-level languages still not as good as 

you might hope

� Example: Box2D physics engine for games (C++)

� Java: 3x slowdown

� Javascript V8: 15-25x slowdown
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C vs. Java vs. JavaScript Speed 

Comparison
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Source: The Computer Language Benchmarks Game 



Why Binary-Level Software Security?

� Buggy compilers and language runtimes

� May invalidate the guarantees provided by source-level 
techniques

� Example [Howard 2002]:

� Csmith discovered 325 compiler bugs [Yang et al. PLDI 
2011]
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…

memset(password, 0, len); // zeroing out the password 

… // password never used again

Compiler dead-

code elimination



Yet the Binary Level is Challenging

� High-level abstractions disappear

� No notion of variables, classes, objects, functions, …

� Relevant concepts: registers, memory, …

� Security policies can use only low-level concepts

� E.g., can’t use pre- and post-conditions of functions

� Semantic gap between what’s expressible at high level 

and at low level
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Challenges at the Binary Level

� No guarantee of basic safety

� Lack of control-flow graph: a computed jump can 
jump to any byte offset

� Enable return-oriented programming (ROP)

� A memory op can access any memory in the address 
space

� Modifiable code

� Can invoke OS syscalls to cause damages

Much harder to perform analysis and enforce 
security at the binary level
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Two Extremes of Dealing With Native 

Code

� Allow native code

�With some code-signing mechanism

� Examples: Microsoft ActiveX controls; browser plug-

ins

� Disallow native code

� By default, Java applet cannot include native libraries
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Approaches for Obtaining Safe Native Code

� Certifying compilers

� Proof-carrying code (PCC) [Necula & Lee 1996]

� Typed assembly languages (TAL) [Morrisett et al. 1999]

� …

� However, producing proofs (annotations) in code is 
nontrivial

� Certified compilers: proving compiler correctness

� CompCert [Leroy POPL 06]

� An alternative approach: use reference monitors
to implement a sandbox in which to execute the 
native code
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Reference Monitors
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Reference Monitor
12

� Observe the execution of a program and halt the 

program if it’s going to violate the security policy.

system 

events

allowed

denied

Program

being

monitored

Reference

Monitor (RM)

or



Common Examples of RM
13

� Operating system: syscall interface

� Interpreters, language virtual machines, software-

based fault isolation

� Firewalls

� …

� Claim:  majority of today’s enforcement 

mechanisms are instances of reference monitors.



What Policies Can be Enforced?
14

� Some liberal assumptions:

�Monitor can have infinite state

�Monitor can have access to entire history of 
computation

� But monitor can’t guess the future – the predicate it 
uses to determine whether to halt a program must be 
computable

� Under these assumptions:

� There is a nice class of policies that reference monitors 
can enforce: safety properties

� There are desirable policies that no reference monitor 
can enforce precisely



Classification of Policies
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� “Enforceable Security Policies” [Schneider 00]

Security policies

Security properties

safety

properties

safety

properties

liveness

properties

liveness

properties



Classification of Policies
16

� A system is modeled as traces of system events

� E.g., A trace of memory operations (reads and writes)

� Events: read(addr); write(addr, v)

� A security policy: a predicate on sets of allowable 

traces

� A security policy is a property if its predicate 

specifies whether an individual trace is legal

� E.g., a trace is legal is all its memory access is within 

address range [1,1000]



What is a Non-Property?
17

� A policy that may depend on multiple execution 
traces

� Information flow polices

� Sensitive information should not flow to unauthorized 
person implicitly

� Example: a system protected by passwords

� Suppose the password checking time correlates closely to 
the length of the prefix that matches the true password

� Then there is a timing channel

� To rule this out, a policy should say: no matter what the 
input is, the password checking time should be the same in 

all traces



Safety and Liveness Properties [Alpern & 

Schneider 85,87]
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� Safety: Some “bad thing” doesn’t happen.

� Proscribes traces that contain some “bad” prefix

� Example: the program won’t read memory outside of 
range [1,1000]

� Liveness: Some “good thing” does happen

� Example: program will terminate

� Example: program will eventually release the lock

� Theorem: Every security property is the 
conjunction of a safety property and a liveness
property



Policies Enforceable by Reference 

Monitors
19

� Reference monitor can enforce any safety property

� Intuitively, the monitor can inspect the history of 

computation and prevent bad things from happening

� Reference monitor cannot enforce liveness

properties

� The monitor cannot predict the future of computation

� Reference monitor cannot enforce non-properties

� The monitor inspects one trace at a time



Inlined Reference Monitors (IRM)
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� Lower performance overhead 

� Enforcement doesn’t require context switches

� Policies can depend on application semantics

� Environment independent---portable

21

Reference Monitor, Inlined

RM

Program being

monitored
Integrate reference 

monitor into program 

code



IRM via Program Rewriting 

� The rewritten program should satisfy the desired 
security policy

� Examples: 

� Source-code level

� CCured [Necula et al. 02]

� [Ganapathy Jaeger Jha 06, 07]

� Java bytecode-level rewriting: PoET [Erlingsson and 
Schneider 99]; Naccio [Evans and Twyman 99]
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RewriteProgram Program

RMRM



This Lecture: Binary-Level IRM

� Software-based Fault Isolation (SFI)

� Control-Flow Integrity (CFI)

� Data-Flow Integrity (DFI)

� [Castro et al. 06]

� Fine-grained data integrity and confidentiality

� Protecting small buffers

� [Castro et al. SOSP 09]; [Akritidis et al. Security 09]

� …
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Enforceable Policies via IRM

� Clearly, it can enforce any safety property

� Surprisingly, it goes beyond safety properties 

[Hamlen et al. TOPLAS 2006]

� Intuition: the rewriter can statically analyze all 

possible executions of programs and rewrite 

accordingly

� Timing channels could be removed [Agat POPL 2000]
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A Separate Verifier
25

� Verifier: checking the reference monitor is inlined

correctly (so that the proper policy is enforced)

� Benefit: no need to trust the RM-insertion phase

RewriteProgram Program

RMRM

OK
Verifier



Software-Based Fault Isolation (SFI)
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Software-Based Fault Isolation (SFI)
27

� Originally proposed for MISP [Wahbe et al. SOSP 

93]

� PittSFIeld [McCamant & Morrisett 06] extended it to 

x86

� Use an IRM to isolate components into “logical” 

address spaces in a process

�Conceptually:  check each read, write, & jump to 

make sure it’s within the component’s logical 

address space



SFI Policy

Fault Domain

Code Region

(readable, 

executable)

Data Region

(readable, writable)

CB

CL

DB

DL
All R/W remain in DR

[DB, DL]

1) All jumps remain in CR

2) Reference monitor not 

bypassed by jumps
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Enforcing SFI Policy
29

� Insert monitor code into the target program before 

unsafe instructions (reads, writes, jumps, …)

[r3+12] := r4 //unsafe mem write

r10 := r3 + 12

if r10 < DB then goto error

if r10 > DL then goto error

[r10] := r4



Optimizations for Better Performance

� Naïve SFI is OK for security

� But the runtime overhead is too high

� Performance can be improved through a set of 

optimizations
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Optimization: Special Address Pattern
31

� Both code and data regions form contiguous segments

� Upper bits are all the same and form a region ID

� Address validity checking: only one check is necessary

� Example: DB = 0x12340000 ; DL = 0x1234FFFF

� The region ID is 0x1234

� “[r3+12]:= r4” becomes

r10 := r3 + 12

r10 := r10 >> 16 // right shift 16 bits to get the region ID

if r10 <> 0x1234 then goto error

[r10] := r4



Optimization: Ensure, but don’t check
32

� Force the upper bits in the address to be the 

region ID

� Called masking

� no branch penalty

� Example: DB = 0x12340000 ; DL = 0x1234FFFF

� “[r3+12]:= r4” becomes

r10 := r3 + 12

r10 := r10 & 0x0000FFFF

r10 := r10 | 0x12340000

[r10] := r4

Force the address to 

be in data region



Wait! What about Program Semantics?

33

� “Good” programs won’t get affected

� For bad programs, we don’t care about whether its 

semantics is destroyed

� PittSField reported 12% performance gain for this 

optimization

� Cons: does not pinpoint the policy-violating 

instruction



Optimization: One-Instruction 

Masking (PittSField)
34

� Idea

� Make the region ID to have only a single bit on

� Make the zero-tag region unmapped in the virtual address space

� Benefit: cut down one instruction for masking

� Example: DB = 0x20000000 ; DL = 0x2000FFFF

� Region ID is 0x2000

� “[r3+12]:= r4” becomes

� Result is an address in DR or in the (unmapped) zero-tag region

� PittSField reported 10% performance gain for this optimization

r10 := r3 + 12

r10 := r10 & 0x2000FFFF

[r10] := r4



Optimization: Fault Isolation vs. 

Protection
35

� Protection is fail stop

� Sandbox reads, writes, and jumps

� Guarantee integrity and confidentiality

� 20% overhead on 1993 RISC machines

� XFI JPEG decoder: 70-80% 

� Fault isolation: covers only writes and jumps

� Guarantee integrity, but not confidentiality

� 5% overhead on 1993 RISC machines

� XFI JPEG decoder: Writes only: 15-18%

� As a result, most SFI systems do not sandbox reads



Risk of Computed (Indirect) Jumps

� Worry: what if the return address is modified so that the ret 
instruction jumps directly to the address of  “r[10] := r4”?

� The attack bypasses the masking before “r[10] := r4”!

� If attacker can further control the value in r10, then he can write 
to arbitrary memory location

� In general, any computed jump might cause such a worry

� jmp %eax

� BTW, direct jumps (pc-relative jumps) are easy to deal with

36 r10 := r3 + 12

ret

r10 := r3 + 12

r10 := r10 & 0x2000FFFF

[r10] := r4

…

ret



The Original SFI Solution [Wahbe et al. 

1993]
37

� Make r10 a dedicated register
� r10 only used in the monitor code, not used by application 

code

� Also maintain the invariant that r10 always contains an 
address with the correct region ID before any computed 
jumps

� Cons?
� Reduce the number of registers available to application 

code

� OK for most CISC machines (E.g., MIPS has 32 registers)

� x86-32 has only 8 integer registers (6 general purpose 
ones); 
� x86-64: 16



A Solution for x86 (PittSFIeld)

� Divide the code into chunks of some size

� E.g., 16 bytes

� Make unsafe ops and their checks stay within one 
chunk

� E.g., “r10 := r10 & 0x2000ffff; [r10] := r4”

� Mask jump targets so that they are aligned: multiples 
of the chunk size

� E.g., “jmp r5” becomes

r5 := r5 & 0x1000FFF0

jmp r5

Note: the above assumes the region ID for the code 
region is 0x1000; a single instruction for sandboxing and 
alignment requirement
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Downside of the alignment solution
39

� All legitimate jump targets have to be aligned

� No-op instructions have to be inserted sometimes

� For example: “i1; i2; i3”

� Suppose both i1 and i3 are possible jump targets

� Then it becomes “i1; i2 ; nop; nop; …; nop; i3”

� Cons: slow down execution and increase code size



Jumping Outside of Fault Domains
40

� Sometimes need to invoke code outside of the domain

� For system calls; for communication with other domains

� Danger: Cannot allow untrusted code to invoke code 

outside of the fault domain arbitrarily

� Idea:

� Insert a jump table into the (immutable) code region

� Each entry is a control transfer instruction whose target 

address is a legal entry point outside of the domain



A Fixed Jumptable (Trampolines)

� For example

� Trampolines for system 

calls: fopen; fread; …

� Trampoline for 

communication with 

other fault domains

41

stubs to trusted routines

Fault Domain

Code Region

Data Region

Trampolines



Trusted Stubs
42

� Stubs are outside of the fault domain

� Stubs can implement security checks

� E.g., can restrict fopen to open files only in a particular 

directory

� Or can disallow fopen completely

� Just not install a jump table entry for it

� It can implement system call interposition



Incorporating SFI in Applications

43



Google’s Native Client (NaCl)

� New SFI service in 
Chrome

� [Yee et al. Oakland 09]

� Goal: download native 
code and run it safely in 
the Chrome browser

� Much safer than ActiveX 
controls

� Much better 
performance than 
JavaScript, Java, etc. 
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NaCl: Code Verification
45

� Code is verified before running

� Allow restricted subset of x86 instructions

� No unsafe instructions: memory-dependent jmp and call, 

privileged instructions, modifications of segment state …

� Ensure SFI checks are correctly implemented for 

memory safety



NaCl Sandboxing
46

� x86-32 sandboxing based on hardware segments

� Sandboxing reads and writes for free

� 5% overhead for SPEC2000

� However, hardware segments not available in x86-

64 or ARM

� Still need masking instructions [Sehr et al. 10]

� x86-64/ARM: 20% for sandboxing mem writes and 

computed jumps



NaCl SDK
47

� Modified GCC tool-chain

� Inserts appropriates masks, alignment requirements

� Trampolines allow restricted system-call interface 

and also interaction with the browser

� Pepper API: access to the browser, DOM, 3D 

acceleration, etc.



Robusta [Siefers, Tan, Morrisett CCS 2010]

� New SFI service in a Java Virtual Machine (JVM)

� Allow Java code to invoke native code safely through 

the Java Native Interface (JNI)

� The basic idea

� Put native code in an SFI sandbox and allows only 

controlled access to JVM services
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Robusta [Siefers, Tan, Morrisett CCS 2010]

49

Robusta Remedy

� SFI: Prevent direct JVM access

� Perform JNI safety checking

� Reroute syscall requests to 

Java’s security manager

Native Code Threat

� Direct JVM mem access

� Abusive JNI calls

� OS syscalls

SFI sandbox

Java 

code

Native

libs

JVM

J
N
I

Operating       SystemOperating       System



Control-Flow Integrity (CFI)
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Main Idea

1) Pre-determine the control flow graph (CFG) of an 
application 

2) Enforce the CFG through a binary-level IRM

CFI Policy: execution must follow the pre-determined 
control flow graph, even under attacks

Attack model: the attacker can change memory 
between instructions, but cannot directly change 
contents in registers
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Why is it Useful?

Lots of attacks induce illegal control-flow transfers: 

buffer overflow, return-to-libc, ROP
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Control-Flow Graph (CFG)
53

� The CFG is part of the policy

� Can be coarse grained or fine grained

� Examples:

� A control-flow transfer must target the beginning of a legal 
machine instruction

� A control-flow transfer must target the beginning of a 16-
byte trunk (required by NaCl and PittSFIeld)

� An indirect jump must target the beginning of a libc
function

� How to get the CFG?

� Explicit specification; Static analysis of source code; 
Execution profiling; Static binary analysis



CFG Example
54

bool lt(int x, int y) {return x<y;}

bool gt(int x, int y) {return x>y;}

void sort(…) {…; return;}

void sort2(int a[], int b[], int len) {

sort(a, len, lt);

sort(b, len, gt);

}



CFI Enforcement
55

� Can be enforced through an IRM [Abadi, Budiu, 

Erlingsson, Ligatti CCS 2005]

� A direct jump can be verified statically

� For computed jumps

� Insert an ID at every destination given by the CFG

� Insert a runtime check to compare whether the ID of 

the target instruction matches the expected ID



CFI Example
56

call sortcall sort call sort

prefetchnta [$ID]

sort:

…

ret

sort:sort:

…

ecx := [esp]

esp := esp + 4

if [ecx+3] <> $ID goto error

jmp ecx

ffA side-effect free instruction with 

an ID embedded

Opcode of prefetch

takes 3 bytes



slide 57

� Non-writable code region

� IDs are embedded into the code

� Non-executable data region

� Otherwise, the attacker can fake an ID

� Unique IDs

� Bit patterns chosen as IDs must not appear anywhere 

else in the code region

CFI Assumptions



slide 58

� Equivalent destinations

� Two destinations are equivalent if CFG contains edges 

to each from the same source

� Use same ID for equivalent destinations

� This is imprecise

CFI Imprecision



Example of Imprecision
59

� Return in bar() can return to either foo1 or foo2

� Essentially, CFI allows unmatched calls and returns

� foo1 -> bar -> return to foo2

� It enforces a FSA, instead of PDA

void foo1 () {void foo1 () {

…; bar(); …

}

void foo2 () {

…; bar(); …

}

void bar () {

…; return;

}



slide 60

CFI: Security Guarantees

� Effective against attacks based on illegal control-

flow transfer

� Stack-based buffer overflow, return-to-libc exploits, 

pointer subterfuge

� Does not protect against attacks that do not violate 

the program’s original CFG

� Incorrect arguments to system calls

� Substitution of file names

� Non-control data attacks



CFI and Static Analysis
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Going Beyond Simple IRM

� In simple IRM, a check is inserted right before each 

unsafe instruction

Can we do better than that? Do we have to insert a 

check right before each unsafe instruction?
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IRM Optimization

� IRM optimization through static analysis

� Analyze contexts where checks are inserted

� Simplify, eliminate, and move checks

� Challenges

� Static analysis requires a control-flow graph

� That is exactly what CFI gives you

� Verifier harder to construct: need to verify the result 

of optimizations
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CFI and Static Analysis
64

� CFI enables static analysis

� Optimization: eliminate safety checks if they are 

statically proven unnecessary

� Verification: use static analysis to verify the result of 

optimizations.



Efficient Data SFI [Zeng, Tan, Morrisett CCS 2011]

65

� We tried this idea to optimize data SFI

� Sandbox both memory writes and reads

� Previous software-based SFI systems have high 

overheads when sandboxing both reads and writes

� JPEG image decoder in XFI

� Writes only: 15-18%

� Reads and writes: 70-80% 



Data SFI Policy
66

Data Region

DB

DL

Guard Zone

Guard Zone

GSize

GSize

A memory read/write is safe if 

the address is in

[DB-GSize, DL+GSize]

Assumption: access to guard 

zones are trapped by hardware



Data SFI Optimizations 
67

� Liveness analysis to find spare registers for masking

� In-place sandboxing

� Redundant check elimination

� Loop check hoisting

Similar to those classic optimizations performed in 

an optimizing compiler



Example: Redundant Check 

Elimination
68

ecx := mask(ecx)

eax := [ecx + 4]

ecx := mask(ecx)

eax := [ecx + 8]

ecx := mask(ecx)

eax := [ecx + 4]

ecx := mask(ecx)

eax := [ecx + 8]

Before optimization After optimization

The masking forces ecx to 

be in DR; then exc+4 must 

be in DR or guard zones



Example: Loop Check Hoisting
69

esi := eax

ecx := eax + ebx * 4

edx := 0

loop: 

if esi >= ecx goto end

esi := mask(esi)

edx := edx + [esi]

esi := esi + 4

jmp loop

end:

Before optimization

esi := eax

ecx := eax + ebx * 4

edx := 0

esi := mask(esi)

loop: 

if esi >= ecx goto end

edx := edx + [esi]

esi := esi + 4

jmp loop

end:

After optimization



Constructing a Verifier
70

� Without optimizations, the logic of the verifier is easy

� Just check there is a masking instruction immediately 
before each memory operation

� Our new verifier

1. Perform range analysis to compute the ranges of values 
in registers

2. Traverse the program and check the range of the address 
of each mem operation

if the address range is within [DB-GSize, DL+GSize], 

then OK

else report_error ()



Checking the Safety of the Loop-Hoisting 

Example
71

esi := eax

ecx := eax + ebx * 4

edx := 0

esi := mask(esi)

esi ∈ [DB, DL]

loop: 

esi ∈ [DB, DL+4]

if esi >= ecx goto end

esi ∈ [DB, DL+4]

edx := edx + [esi]

esi ∈ [DB, DL] 

esi := esi + 4

esi ∈ [DB+4, DL+4]

jmp loop

end:

[DB, DL+4] 

⊆ [DB-GSize, DL+GSize]



SPECint2000 Evaluation
72

W+CFI: 10.4%

R+W+CFI: 27.1% 



Verifying the Verifier
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One Key Issue in IRM

� Code is verified before execution

� Google NaCl’s verifier: pile of C code with manually 

written decoder for x86 binaries

� A bug in the verifier could result in a security 

breach.

� Google ran a security contest early on its NaCl verifier:  

bugs found!

Question: How to construct high-fidelity verifiers?
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Verifying the Verifier
75

� Goal: a provable correct SFI verifier

� Theorem: if some binary passes the verifier, then 

the execution of the binary should obey the SFI 

policy



RockSalt Punchline

� RockSalt: a new verifier for x86-32 NaCl

� [Morrisett, Tan, Tassarotti, Gan, Tristan PLDI 2012]

� Smaller

� Google: 600 lines of C with manually written code for 
partial decoding

� RockSalt: 80 lines of C + regexps for partial decoding

� Faster: on 200Kloc of C

� Google’s:  0.9s

� RockSalt:  0.2s

� Stronger: (mostly) proven correct

� The proof is machine checked in Coq
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RockSalt Architecture
77

Verifier
Regexps for decoding

Code for checking 

SFI constraints

Code for checking 

SFI constraints

x86 

model Decoder 

Spec

Instruction 

semantics 

Instruction 

semantics 

RTL machine

~5,000 

Coq

Correctness 

Proof
~10,000 

CoqDecoding 

correctness

Properties of 

instructions

SFI theorem and proof



How RockSalt’s Verifier Works

� Specify regular expressions (regexps) for partial 
decoding of x86 instructions

� One regexp to recognize all legal non-control-flow 
instructions

� One regexp for all direct control flow instructions

� One regexp for a masking instruction followed by indirect 
jumps

� Compile regexps to DFA tables

� Run DFAs and check SFI constraints

� Record start positions of instructions

� Check jump and alignment constraints

78



x86 Decoder Specification
79

� A decoder spec language: a set of regular 

expression parsing combinators

� Used in the partial decoder of the verifier

� Also used in the full decoder

� Extracted an executable decoder from the spec

� Based on derivative-based parsing [Brzozowski 1964; 

Owens et al. 2009; Might et al. 2001]



Example Coq Definition for CALL

Definition CALL_p : grammar instr :=

"1110" $$ "1000" $$ word @

(fun w => CALL true false (Imm_op w) None)

|| "1111" $$ "1111" $$ ext_op_modrm2 "010" @

(fun op => CALL true true op None)

|| "1001" $$ "1010" $$ halfword $ word @

(fun p => CALL false false (Imm_op (snd p)) (Some (fst p)))

|| "1111" $$ "1111" $$ ext_op_modrm2 "011" @

(fun op => CALL false true op None).

alternatives

Decode pattern

Semantic 

actions

Semantic 

actions
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x86 Decoder Specification
81

� Specified the decoding of all integer x86-32 

instructions

� Over 130 instructions for the decoder

�With prefixes

� An almost direct translation from Intel’s decoding 

tables to patterns in the spec

� One undergraduate constructed a decoder for 

MIPS in just a few days



x86 Operational Semantics

� Semantics specified by translating an instruction 

into a sequence of instructions in a register 

transfer language (RTL)

� RTL is a RISC-like machine with a straightforward 

semantics

�With a few orthogonal instructions

� Over 70 instructions with semantics

� With modeling of flags, segment registers, …
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Model Validation

� Extracted from the model an executable x86 
interpreter

� Compared the interpreter with real processors

� Used Intel’s PIN to instrument binaries to dump out 
intermediate states

� Testing

� Csmith: generate random C programs, compile, test 
the interpreter against implementations.

� Tested ~10M instructions in ~60 hours

� Used decoder spec to generate fuzz tests.
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What was Proved…

� Translation of regexps to DFA tables is correct.

� RockSalt verifier correctness

� Program passing the verifier preserves a set of 

invariants that imply that the code obeys the SFI policy

� A lot of automation to make the proof scale

� Relative easy to add a new instruction and extend the 

proof
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Open Problems

85



Does SFI Scale to Secure Systems?

� SFI is good at isolating untrusted code in a trusted 

environment

� Can we partition a large system into domains of 

least privileges?

� How to perform partitioning? At binary level?

�Monitor information flow between domains?

�What about performance?
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Accommodating Dynamic Features

� IRM: requires statically known code for rewriting 
and verification

� Dynamic loading/unloading libraries

� E.g., how to do CFI in the presence of dynamically 
loaded libraries?

� Dynamic code generation; JIT; self-modifying code

� How to maintain SFI, CFI invariants when code is 
generated on the fly?

� Need modular rewriting and verification
techniques
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Binary Rewriting on Off-the-Shelf Binaries

� SFI implementations ask cooperation from code producers

� NaCl has a modified GCC toolchain to emit policy-compliant 
binary

� Our lab session: modify LLVM

� Ideally, want to statically rewrite off-the-shelf binaries

� Two key challenges

� Disassembly: code mixed with data; obfuscation; …

� Adjusting jump targets after rewriting

� Possible way out: incorporating some dynamic component

� DynamoRio; PIN; …

� E.g., [Smithson et al. 10] made some progress on rewriting 
binaries without relocation information
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Processor Models

� Useful: certified software; binary analysis; …

� Not ideal: each research group works on its own 
x86 model

� We want public spec of processors

�Well tested

� Incorporate commonly used features

� Robust to processor evolution

� Support formal reasoning

� Support x86-32, x86-64, ARM

� A set of reusable tools is the key
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Lab Session Overview
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LLVM Compiler Architecture

� Optimizer: has multiple passes that perform 

bitcode-to-bitcode transformation

� LLVM command-line tool demo
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Lab Setup

� We ask you add an extra LLVM pass to instrument 

memory writes

� Add one masking instruction before each memory 

write

� If you are new to LLVM, read some online tutorial 

about how to add a pass
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Several steps

� Step 1:

� Add a pass to Hello.cpp to dump every memory operation 

in bitcode

� Step 2:

� Add a pass in InsMemWrite.cpp to instrument memory 

writes

� Step 3

� An optimization that has less instrumentation overhead

� I have a VirtualBox VM image, which you can use after 

the lab session
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Notes

� Simplifications made for the lab exercise

� Control-flow aspect is ignored

� Because we perform bitcode-to-bitcode tranform, we 

need to trust the code generator

� After instrumentation, the binary cannot run 

directly

� You need a special loader that sets up the data and 

code regions at the correct place 
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