
Binary-Level Software Security

Gang Tan

Department of CSE, Lehigh University

@ Penn State; Jun 1st, 2012

For Joint Summer Schools on Cryptography and

Principles of Software Security

High-Level Languages for Safety/Security

� Java, C#, Haskell, F*…

� JavaScript for web applications

� Benefits

� Better support for safety and security

� Portability

� Better programming abstractions

� …

So why bother enforcing security at the binary level?

2

Why Binary-Level Software Security?

� Programming language agnostic

� Eventually all software is turned into native code

� Apply to all languages: C, C++, OCaml, assembly …

� Accommodate legacy code/libraries written in C/C++

� E.g., zlib, codec, image libraries (JPEG), fast FFT libraries …

� Apply to applications that are developed in multiple

languages

� Native code is an unifying representation

3

Why Binary-Level Software Security?

� Low-level languages (i.e. C/C++) have better

Performance

� Compilers for high-level languages still not as good as

you might hope

� Example: Box2D physics engine for games (C++)

� Java: 3x slowdown

� Javascript V8: 15-25x slowdown

4

C vs. Java vs. JavaScript Speed

Comparison
5

Source: The Computer Language Benchmarks Game

Why Binary-Level Software Security?

� Buggy compilers and language runtimes

� May invalidate the guarantees provided by source-level
techniques

� Example [Howard 2002]:

� Csmith discovered 325 compiler bugs [Yang et al. PLDI
2011]

6

…

memset(password, 0, len); // zeroing out the password

… // password never used again

Compiler dead-

code elimination

Yet the Binary Level is Challenging

� High-level abstractions disappear

� No notion of variables, classes, objects, functions, …

� Relevant concepts: registers, memory, …

� Security policies can use only low-level concepts

� E.g., can’t use pre- and post-conditions of functions

� Semantic gap between what’s expressible at high level

and at low level

7

Challenges at the Binary Level

� No guarantee of basic safety

� Lack of control-flow graph: a computed jump can
jump to any byte offset

� Enable return-oriented programming (ROP)

� A memory op can access any memory in the address
space

� Modifiable code

� Can invoke OS syscalls to cause damages

Much harder to perform analysis and enforce
security at the binary level

8

Two Extremes of Dealing With Native

Code

� Allow native code

�With some code-signing mechanism

� Examples: Microsoft ActiveX controls; browser plug-

ins

� Disallow native code

� By default, Java applet cannot include native libraries

9

Approaches for Obtaining Safe Native Code

� Certifying compilers

� Proof-carrying code (PCC) [Necula & Lee 1996]

� Typed assembly languages (TAL) [Morrisett et al. 1999]

� …

� However, producing proofs (annotations) in code is
nontrivial

� Certified compilers: proving compiler correctness

� CompCert [Leroy POPL 06]

� An alternative approach: use reference monitors
to implement a sandbox in which to execute the
native code

10

Reference Monitors

11

Reference Monitor
12

� Observe the execution of a program and halt the

program if it’s going to violate the security policy.

system

events

allowed

denied

Program

being

monitored

Reference

Monitor (RM)

or

Common Examples of RM
13

� Operating system: syscall interface

� Interpreters, language virtual machines, software-

based fault isolation

� Firewalls

� …

� Claim: majority of today’s enforcement

mechanisms are instances of reference monitors.

What Policies Can be Enforced?
14

� Some liberal assumptions:

�Monitor can have infinite state

�Monitor can have access to entire history of
computation

� But monitor can’t guess the future – the predicate it
uses to determine whether to halt a program must be
computable

� Under these assumptions:

� There is a nice class of policies that reference monitors
can enforce: safety properties

� There are desirable policies that no reference monitor
can enforce precisely

Classification of Policies
15

� “Enforceable Security Policies” [Schneider 00]

Security policies

Security properties

safety

properties

safety

properties

liveness

properties

liveness

properties

Classification of Policies
16

� A system is modeled as traces of system events

� E.g., A trace of memory operations (reads and writes)

� Events: read(addr); write(addr, v)

� A security policy: a predicate on sets of allowable

traces

� A security policy is a property if its predicate

specifies whether an individual trace is legal

� E.g., a trace is legal is all its memory access is within

address range [1,1000]

What is a Non-Property?
17

� A policy that may depend on multiple execution
traces

� Information flow polices

� Sensitive information should not flow to unauthorized
person implicitly

� Example: a system protected by passwords

� Suppose the password checking time correlates closely to
the length of the prefix that matches the true password

� Then there is a timing channel

� To rule this out, a policy should say: no matter what the
input is, the password checking time should be the same in

all traces

Safety and Liveness Properties [Alpern &

Schneider 85,87]
18

� Safety: Some “bad thing” doesn’t happen.

� Proscribes traces that contain some “bad” prefix

� Example: the program won’t read memory outside of
range [1,1000]

� Liveness: Some “good thing” does happen

� Example: program will terminate

� Example: program will eventually release the lock

� Theorem: Every security property is the
conjunction of a safety property and a liveness
property

Policies Enforceable by Reference

Monitors
19

� Reference monitor can enforce any safety property

� Intuitively, the monitor can inspect the history of

computation and prevent bad things from happening

� Reference monitor cannot enforce liveness

properties

� The monitor cannot predict the future of computation

� Reference monitor cannot enforce non-properties

� The monitor inspects one trace at a time

Inlined Reference Monitors (IRM)

20

� Lower performance overhead

� Enforcement doesn’t require context switches

� Policies can depend on application semantics

� Environment independent---portable

21

Reference Monitor, Inlined

RM

Program being

monitored
Integrate reference

monitor into program

code

IRM via Program Rewriting

� The rewritten program should satisfy the desired
security policy

� Examples:

� Source-code level

� CCured [Necula et al. 02]

� [Ganapathy Jaeger Jha 06, 07]

� Java bytecode-level rewriting: PoET [Erlingsson and
Schneider 99]; Naccio [Evans and Twyman 99]

22

RewriteProgram Program

RMRM

This Lecture: Binary-Level IRM

� Software-based Fault Isolation (SFI)

� Control-Flow Integrity (CFI)

� Data-Flow Integrity (DFI)

� [Castro et al. 06]

� Fine-grained data integrity and confidentiality

� Protecting small buffers

� [Castro et al. SOSP 09]; [Akritidis et al. Security 09]

� …

23

Enforceable Policies via IRM

� Clearly, it can enforce any safety property

� Surprisingly, it goes beyond safety properties

[Hamlen et al. TOPLAS 2006]

� Intuition: the rewriter can statically analyze all

possible executions of programs and rewrite

accordingly

� Timing channels could be removed [Agat POPL 2000]

24

A Separate Verifier
25

� Verifier: checking the reference monitor is inlined

correctly (so that the proper policy is enforced)

� Benefit: no need to trust the RM-insertion phase

RewriteProgram Program

RMRM

OK
Verifier

Software-Based Fault Isolation (SFI)

26

Software-Based Fault Isolation (SFI)
27

� Originally proposed for MISP [Wahbe et al. SOSP

93]

� PittSFIeld [McCamant & Morrisett 06] extended it to

x86

� Use an IRM to isolate components into “logical”

address spaces in a process

�Conceptually: check each read, write, & jump to

make sure it’s within the component’s logical

address space

SFI Policy

Fault Domain

Code Region

(readable,

executable)

Data Region

(readable, writable)

CB

CL

DB

DL
All R/W remain in DR

[DB, DL]

1) All jumps remain in CR

2) Reference monitor not

bypassed by jumps

28

Enforcing SFI Policy
29

� Insert monitor code into the target program before

unsafe instructions (reads, writes, jumps, …)

[r3+12] := r4 //unsafe mem write

r10 := r3 + 12

if r10 < DB then goto error

if r10 > DL then goto error

[r10] := r4

Optimizations for Better Performance

� Naïve SFI is OK for security

� But the runtime overhead is too high

� Performance can be improved through a set of

optimizations

30

Optimization: Special Address Pattern
31

� Both code and data regions form contiguous segments

� Upper bits are all the same and form a region ID

� Address validity checking: only one check is necessary

� Example: DB = 0x12340000 ; DL = 0x1234FFFF

� The region ID is 0x1234

� “[r3+12]:= r4” becomes

r10 := r3 + 12

r10 := r10 >> 16 // right shift 16 bits to get the region ID

if r10 <> 0x1234 then goto error

[r10] := r4

Optimization: Ensure, but don’t check
32

� Force the upper bits in the address to be the

region ID

� Called masking

� no branch penalty

� Example: DB = 0x12340000 ; DL = 0x1234FFFF

� “[r3+12]:= r4” becomes

r10 := r3 + 12

r10 := r10 & 0x0000FFFF

r10 := r10 | 0x12340000

[r10] := r4

Force the address to

be in data region

Wait! What about Program Semantics?

33

� “Good” programs won’t get affected

� For bad programs, we don’t care about whether its

semantics is destroyed

� PittSField reported 12% performance gain for this

optimization

� Cons: does not pinpoint the policy-violating

instruction

Optimization: One-Instruction

Masking (PittSField)
34

� Idea

� Make the region ID to have only a single bit on

� Make the zero-tag region unmapped in the virtual address space

� Benefit: cut down one instruction for masking

� Example: DB = 0x20000000 ; DL = 0x2000FFFF

� Region ID is 0x2000

� “[r3+12]:= r4” becomes

� Result is an address in DR or in the (unmapped) zero-tag region

� PittSField reported 10% performance gain for this optimization

r10 := r3 + 12

r10 := r10 & 0x2000FFFF

[r10] := r4

Optimization: Fault Isolation vs.

Protection
35

� Protection is fail stop

� Sandbox reads, writes, and jumps

� Guarantee integrity and confidentiality

� 20% overhead on 1993 RISC machines

� XFI JPEG decoder: 70-80%

� Fault isolation: covers only writes and jumps

� Guarantee integrity, but not confidentiality

� 5% overhead on 1993 RISC machines

� XFI JPEG decoder: Writes only: 15-18%

� As a result, most SFI systems do not sandbox reads

Risk of Computed (Indirect) Jumps

� Worry: what if the return address is modified so that the ret
instruction jumps directly to the address of “r[10] := r4”?

� The attack bypasses the masking before “r[10] := r4”!

� If attacker can further control the value in r10, then he can write
to arbitrary memory location

� In general, any computed jump might cause such a worry

� jmp %eax

� BTW, direct jumps (pc-relative jumps) are easy to deal with

36 r10 := r3 + 12

ret

r10 := r3 + 12

r10 := r10 & 0x2000FFFF

[r10] := r4

…

ret

The Original SFI Solution [Wahbe et al.

1993]
37

� Make r10 a dedicated register
� r10 only used in the monitor code, not used by application

code

� Also maintain the invariant that r10 always contains an
address with the correct region ID before any computed
jumps

� Cons?
� Reduce the number of registers available to application

code

� OK for most CISC machines (E.g., MIPS has 32 registers)

� x86-32 has only 8 integer registers (6 general purpose
ones);
� x86-64: 16

A Solution for x86 (PittSFIeld)

� Divide the code into chunks of some size

� E.g., 16 bytes

� Make unsafe ops and their checks stay within one
chunk

� E.g., “r10 := r10 & 0x2000ffff; [r10] := r4”

� Mask jump targets so that they are aligned: multiples
of the chunk size

� E.g., “jmp r5” becomes

r5 := r5 & 0x1000FFF0

jmp r5

Note: the above assumes the region ID for the code
region is 0x1000; a single instruction for sandboxing and
alignment requirement

38

Downside of the alignment solution
39

� All legitimate jump targets have to be aligned

� No-op instructions have to be inserted sometimes

� For example: “i1; i2; i3”

� Suppose both i1 and i3 are possible jump targets

� Then it becomes “i1; i2 ; nop; nop; …; nop; i3”

� Cons: slow down execution and increase code size

Jumping Outside of Fault Domains
40

� Sometimes need to invoke code outside of the domain

� For system calls; for communication with other domains

� Danger: Cannot allow untrusted code to invoke code

outside of the fault domain arbitrarily

� Idea:

� Insert a jump table into the (immutable) code region

� Each entry is a control transfer instruction whose target

address is a legal entry point outside of the domain

A Fixed Jumptable (Trampolines)

� For example

� Trampolines for system

calls: fopen; fread; …

� Trampoline for

communication with

other fault domains

41

stubs to trusted routines

Fault Domain

Code Region

Data Region

Trampolines

Trusted Stubs
42

� Stubs are outside of the fault domain

� Stubs can implement security checks

� E.g., can restrict fopen to open files only in a particular

directory

� Or can disallow fopen completely

� Just not install a jump table entry for it

� It can implement system call interposition

Incorporating SFI in Applications

43

Google’s Native Client (NaCl)

� New SFI service in
Chrome

� [Yee et al. Oakland 09]

� Goal: download native
code and run it safely in
the Chrome browser

� Much safer than ActiveX
controls

� Much better
performance than
JavaScript, Java, etc.

44

NaCl: Code Verification
45

� Code is verified before running

� Allow restricted subset of x86 instructions

� No unsafe instructions: memory-dependent jmp and call,

privileged instructions, modifications of segment state …

� Ensure SFI checks are correctly implemented for

memory safety

NaCl Sandboxing
46

� x86-32 sandboxing based on hardware segments

� Sandboxing reads and writes for free

� 5% overhead for SPEC2000

� However, hardware segments not available in x86-

64 or ARM

� Still need masking instructions [Sehr et al. 10]

� x86-64/ARM: 20% for sandboxing mem writes and

computed jumps

NaCl SDK
47

� Modified GCC tool-chain

� Inserts appropriates masks, alignment requirements

� Trampolines allow restricted system-call interface

and also interaction with the browser

� Pepper API: access to the browser, DOM, 3D

acceleration, etc.

Robusta [Siefers, Tan, Morrisett CCS 2010]

� New SFI service in a Java Virtual Machine (JVM)

� Allow Java code to invoke native code safely through

the Java Native Interface (JNI)

� The basic idea

� Put native code in an SFI sandbox and allows only

controlled access to JVM services

48

Robusta [Siefers, Tan, Morrisett CCS 2010]

49

Robusta Remedy

� SFI: Prevent direct JVM access

� Perform JNI safety checking

� Reroute syscall requests to

Java’s security manager

Native Code Threat

� Direct JVM mem access

� Abusive JNI calls

� OS syscalls

SFI sandbox

Java

code

Native

libs

JVM

J
N
I

Operating SystemOperating System

Control-Flow Integrity (CFI)

50

Main Idea

1) Pre-determine the control flow graph (CFG) of an
application

2) Enforce the CFG through a binary-level IRM

CFI Policy: execution must follow the pre-determined
control flow graph, even under attacks

Attack model: the attacker can change memory
between instructions, but cannot directly change
contents in registers

51

Why is it Useful?

Lots of attacks induce illegal control-flow transfers:

buffer overflow, return-to-libc, ROP

52

Control-Flow Graph (CFG)
53

� The CFG is part of the policy

� Can be coarse grained or fine grained

� Examples:

� A control-flow transfer must target the beginning of a legal
machine instruction

� A control-flow transfer must target the beginning of a 16-
byte trunk (required by NaCl and PittSFIeld)

� An indirect jump must target the beginning of a libc
function

� How to get the CFG?

� Explicit specification; Static analysis of source code;
Execution profiling; Static binary analysis

CFG Example
54

bool lt(int x, int y) {return x<y;}

bool gt(int x, int y) {return x>y;}

void sort(…) {…; return;}

void sort2(int a[], int b[], int len) {

sort(a, len, lt);

sort(b, len, gt);

}

CFI Enforcement
55

� Can be enforced through an IRM [Abadi, Budiu,

Erlingsson, Ligatti CCS 2005]

� A direct jump can be verified statically

� For computed jumps

� Insert an ID at every destination given by the CFG

� Insert a runtime check to compare whether the ID of

the target instruction matches the expected ID

CFI Example
56

call sortcall sort call sort

prefetchnta [$ID]

sort:

…

ret

sort:sort:

…

ecx := [esp]

esp := esp + 4

if [ecx+3] <> $ID goto error

jmp ecx

ffA side-effect free instruction with

an ID embedded

Opcode of prefetch

takes 3 bytes

slide 57

� Non-writable code region

� IDs are embedded into the code

� Non-executable data region

� Otherwise, the attacker can fake an ID

� Unique IDs

� Bit patterns chosen as IDs must not appear anywhere

else in the code region

CFI Assumptions

slide 58

� Equivalent destinations

� Two destinations are equivalent if CFG contains edges

to each from the same source

� Use same ID for equivalent destinations

� This is imprecise

CFI Imprecision

Example of Imprecision
59

� Return in bar() can return to either foo1 or foo2

� Essentially, CFI allows unmatched calls and returns

� foo1 -> bar -> return to foo2

� It enforces a FSA, instead of PDA

void foo1 () {void foo1 () {

…; bar(); …

}

void foo2 () {

…; bar(); …

}

void bar () {

…; return;

}

slide 60

CFI: Security Guarantees

� Effective against attacks based on illegal control-

flow transfer

� Stack-based buffer overflow, return-to-libc exploits,

pointer subterfuge

� Does not protect against attacks that do not violate

the program’s original CFG

� Incorrect arguments to system calls

� Substitution of file names

� Non-control data attacks

CFI and Static Analysis

61

Going Beyond Simple IRM

� In simple IRM, a check is inserted right before each

unsafe instruction

Can we do better than that? Do we have to insert a

check right before each unsafe instruction?

62

IRM Optimization

� IRM optimization through static analysis

� Analyze contexts where checks are inserted

� Simplify, eliminate, and move checks

� Challenges

� Static analysis requires a control-flow graph

� That is exactly what CFI gives you

� Verifier harder to construct: need to verify the result

of optimizations

63

CFI and Static Analysis
64

� CFI enables static analysis

� Optimization: eliminate safety checks if they are

statically proven unnecessary

� Verification: use static analysis to verify the result of

optimizations.

Efficient Data SFI [Zeng, Tan, Morrisett CCS 2011]

65

� We tried this idea to optimize data SFI

� Sandbox both memory writes and reads

� Previous software-based SFI systems have high

overheads when sandboxing both reads and writes

� JPEG image decoder in XFI

� Writes only: 15-18%

� Reads and writes: 70-80%

Data SFI Policy
66

Data Region

DB

DL

Guard Zone

Guard Zone

GSize

GSize

A memory read/write is safe if

the address is in

[DB-GSize, DL+GSize]

Assumption: access to guard

zones are trapped by hardware

Data SFI Optimizations
67

� Liveness analysis to find spare registers for masking

� In-place sandboxing

� Redundant check elimination

� Loop check hoisting

Similar to those classic optimizations performed in

an optimizing compiler

Example: Redundant Check

Elimination
68

ecx := mask(ecx)

eax := [ecx + 4]

ecx := mask(ecx)

eax := [ecx + 8]

ecx := mask(ecx)

eax := [ecx + 4]

ecx := mask(ecx)

eax := [ecx + 8]

Before optimization After optimization

The masking forces ecx to

be in DR; then exc+4 must

be in DR or guard zones

Example: Loop Check Hoisting
69

esi := eax

ecx := eax + ebx * 4

edx := 0

loop:

if esi >= ecx goto end

esi := mask(esi)

edx := edx + [esi]

esi := esi + 4

jmp loop

end:

Before optimization

esi := eax

ecx := eax + ebx * 4

edx := 0

esi := mask(esi)

loop:

if esi >= ecx goto end

edx := edx + [esi]

esi := esi + 4

jmp loop

end:

After optimization

Constructing a Verifier
70

� Without optimizations, the logic of the verifier is easy

� Just check there is a masking instruction immediately
before each memory operation

� Our new verifier

1. Perform range analysis to compute the ranges of values
in registers

2. Traverse the program and check the range of the address
of each mem operation

if the address range is within [DB-GSize, DL+GSize],

then OK

else report_error ()

Checking the Safety of the Loop-Hoisting

Example
71

esi := eax

ecx := eax + ebx * 4

edx := 0

esi := mask(esi)

esi ∈ [DB, DL]

loop:

esi ∈ [DB, DL+4]

if esi >= ecx goto end

esi ∈ [DB, DL+4]

edx := edx + [esi]

esi ∈ [DB, DL]

esi := esi + 4

esi ∈ [DB+4, DL+4]

jmp loop

end:

[DB, DL+4]

⊆ [DB-GSize, DL+GSize]

SPECint2000 Evaluation
72

W+CFI: 10.4%

R+W+CFI: 27.1%

Verifying the Verifier

73

One Key Issue in IRM

� Code is verified before execution

� Google NaCl’s verifier: pile of C code with manually

written decoder for x86 binaries

� A bug in the verifier could result in a security

breach.

� Google ran a security contest early on its NaCl verifier:

bugs found!

Question: How to construct high-fidelity verifiers?

74

Verifying the Verifier
75

� Goal: a provable correct SFI verifier

� Theorem: if some binary passes the verifier, then

the execution of the binary should obey the SFI

policy

RockSalt Punchline

� RockSalt: a new verifier for x86-32 NaCl

� [Morrisett, Tan, Tassarotti, Gan, Tristan PLDI 2012]

� Smaller

� Google: 600 lines of C with manually written code for
partial decoding

� RockSalt: 80 lines of C + regexps for partial decoding

� Faster: on 200Kloc of C

� Google’s: 0.9s

� RockSalt: 0.2s

� Stronger: (mostly) proven correct

� The proof is machine checked in Coq

76

RockSalt Architecture
77

Verifier
Regexps for decoding

Code for checking

SFI constraints

Code for checking

SFI constraints

x86

model Decoder

Spec

Instruction

semantics

Instruction

semantics

RTL machine

~5,000

Coq

Correctness

Proof
~10,000

CoqDecoding

correctness

Properties of

instructions

SFI theorem and proof

How RockSalt’s Verifier Works

� Specify regular expressions (regexps) for partial
decoding of x86 instructions

� One regexp to recognize all legal non-control-flow
instructions

� One regexp for all direct control flow instructions

� One regexp for a masking instruction followed by indirect
jumps

� Compile regexps to DFA tables

� Run DFAs and check SFI constraints

� Record start positions of instructions

� Check jump and alignment constraints

78

x86 Decoder Specification
79

� A decoder spec language: a set of regular

expression parsing combinators

� Used in the partial decoder of the verifier

� Also used in the full decoder

� Extracted an executable decoder from the spec

� Based on derivative-based parsing [Brzozowski 1964;

Owens et al. 2009; Might et al. 2001]

Example Coq Definition for CALL

Definition CALL_p : grammar instr :=

"1110" $$ "1000" $$ word @

(fun w => CALL true false (Imm_op w) None)

|| "1111" $$ "1111" $$ ext_op_modrm2 "010" @

(fun op => CALL true true op None)

|| "1001" $$ "1010" $$ halfword $ word @

(fun p => CALL false false (Imm_op (snd p)) (Some (fst p)))

|| "1111" $$ "1111" $$ ext_op_modrm2 "011" @

(fun op => CALL false true op None).

alternatives

Decode pattern

Semantic

actions

Semantic

actions

80

x86 Decoder Specification
81

� Specified the decoding of all integer x86-32

instructions

� Over 130 instructions for the decoder

�With prefixes

� An almost direct translation from Intel’s decoding

tables to patterns in the spec

� One undergraduate constructed a decoder for

MIPS in just a few days

x86 Operational Semantics

� Semantics specified by translating an instruction

into a sequence of instructions in a register

transfer language (RTL)

� RTL is a RISC-like machine with a straightforward

semantics

�With a few orthogonal instructions

� Over 70 instructions with semantics

� With modeling of flags, segment registers, …

82

Model Validation

� Extracted from the model an executable x86
interpreter

� Compared the interpreter with real processors

� Used Intel’s PIN to instrument binaries to dump out
intermediate states

� Testing

� Csmith: generate random C programs, compile, test
the interpreter against implementations.

� Tested ~10M instructions in ~60 hours

� Used decoder spec to generate fuzz tests.

83

What was Proved…

� Translation of regexps to DFA tables is correct.

� RockSalt verifier correctness

� Program passing the verifier preserves a set of

invariants that imply that the code obeys the SFI policy

� A lot of automation to make the proof scale

� Relative easy to add a new instruction and extend the

proof

84

Open Problems

85

Does SFI Scale to Secure Systems?

� SFI is good at isolating untrusted code in a trusted

environment

� Can we partition a large system into domains of

least privileges?

� How to perform partitioning? At binary level?

�Monitor information flow between domains?

�What about performance?

86

Accommodating Dynamic Features

� IRM: requires statically known code for rewriting
and verification

� Dynamic loading/unloading libraries

� E.g., how to do CFI in the presence of dynamically
loaded libraries?

� Dynamic code generation; JIT; self-modifying code

� How to maintain SFI, CFI invariants when code is
generated on the fly?

� Need modular rewriting and verification
techniques

87

Binary Rewriting on Off-the-Shelf Binaries

� SFI implementations ask cooperation from code producers

� NaCl has a modified GCC toolchain to emit policy-compliant
binary

� Our lab session: modify LLVM

� Ideally, want to statically rewrite off-the-shelf binaries

� Two key challenges

� Disassembly: code mixed with data; obfuscation; …

� Adjusting jump targets after rewriting

� Possible way out: incorporating some dynamic component

� DynamoRio; PIN; …

� E.g., [Smithson et al. 10] made some progress on rewriting
binaries without relocation information

88

Processor Models

� Useful: certified software; binary analysis; …

� Not ideal: each research group works on its own
x86 model

� We want public spec of processors

�Well tested

� Incorporate commonly used features

� Robust to processor evolution

� Support formal reasoning

� Support x86-32, x86-64, ARM

� A set of reusable tools is the key

89

Bibliography
90

� Classification of security policies

� [Alpern & Schneider 85] Defining liveness. Information
Processing Letteers, 21(4):181–185, 1985.

� [Alpern & Schneider 87] Recognizing safety and liveness.
Distributed Computing 2(3):117–126, 1987.

� [Schneider 00] Enforceable security policies. ACM
Transactions on Information and System Security, 3(1),
February 2000.

� [Hamlen & Morrisett & Schneider 06] Computability
classes for enforcement mechanisms. ACM Transactions on
Programming Languages and Systems, 28(1):175–205,
2006.

Bibliography
91

� Inlined Reference Monitors

� [Erlingsson & Schneider 99]. SASI enforcement of security
policies: A retrospective. In Proceedings of the New Security
Paradigms Workshop (NSPW), pages 87–95. ACM Press, 1999.

� [Erlingsson & Schneider 00]. IRM enforcement of Java stack
inspection. In IEEE Symposium on Security and Privacy (S&P),
pages 246–255, 2000.

� [Evans & Twyman 99]. Flexible policy-directed code safety. In
IEEE Symposium on Security and Privacy (S&P), pages 32–45,
1999.

� [Necula & McPeak & Weimer 02]. CCured: type-safe retrofitting
of legacy code. In 29th ACM Symposium on Principles of
Programming Languages (POPL), pages 128–139, 2002.

Bibliography
92

� Low-level IRM

� [Wahbe et al. 93] Efficient Software-Based Fault Isolation.
Proceedings of the 14th ACM Symposium on Operating
System Principles (SOSP), December 1993.

� [McCamant & Morrisett 06]. Evaluating SFI for a CISC
architecture. In 15th USENIX Security Symposium, 2006.

� [Abadi et al. 05]. Control-flow integrity. In CCS ’05:
Proceedings of the 12th ACM conference on Computer and
communications security, pages 340–353, 2005.

� [Erlingsson et al. 06]. XFI: Software guards for system
address spaces. In OSDI, pages 75–88, 2006.

� [Castro et al. 06]. Securing software by enforcing data-flow
integrity. OSDI, 2006.

Bibliography
93

� Low-level IRM, cont’d

� [Yee et al. 09] Native client: A sandbox for portable, untrusted
x86 native code. In IEEE Symposium on Security and Privacy
(S&P), May 2009.

� [Sehr et al. 10]. Adapting software fault isolation to
contemporary CPU architectures. In 19th Usenix Security
Symposium, pages 1–12, 2010.

� [Siefers & Tan & Morrisett 10]. Robusta: Taming the native beast
of the JVM. In 17th CCS, pages 201–211, 2010.

� [Zeng & Tan & Morrisett 11] Combining control-flow integrity
and static analysis for efficient and validated data sandboxing. In
18th CCS, pages 29–40, 2011.

� [Morrisett et al. 12]. RockSalt: Better, Faster, Stronger SFI for the
x86. PLDI, 2012

Lab Session Overview

94

LLVM Compiler Architecture

� Optimizer: has multiple passes that perform

bitcode-to-bitcode transformation

� LLVM command-line tool demo

95

Front end Front end
(clang)

C

C++

bitcode LLVM
optimizer

bitcode LLVM
code

generator

Native code

Lab Setup

� We ask you add an extra LLVM pass to instrument

memory writes

� Add one masking instruction before each memory

write

� If you are new to LLVM, read some online tutorial

about how to add a pass

96

Several steps

� Step 1:

� Add a pass to Hello.cpp to dump every memory operation

in bitcode

� Step 2:

� Add a pass in InsMemWrite.cpp to instrument memory

writes

� Step 3

� An optimization that has less instrumentation overhead

� I have a VirtualBox VM image, which you can use after

the lab session

97

Notes

� Simplifications made for the lab exercise

� Control-flow aspect is ignored

� Because we perform bitcode-to-bitcode tranform, we

need to trust the code generator

� After instrumentation, the binary cannot run

directly

� You need a special loader that sets up the data and

code regions at the correct place

98

