
8803-BSS: Pre-proposal
I enatarajan3@gatech.edu
I gnaegle3@gatech.edu
I kflansburg3@gatech.edu
I kni3@gatech.edu
I meng.xu@gatech.edu
I michael.puckett@gatech.edu
I millerk@gatech.edu
I pjain43@gatech.edu
I santosh7@gatech.edu
I sdesai1@gatech.edu
I shoreray@gatech.edu
I sunnyneo@gatech.edu
I vyoung@gatech.edu
I yang.ji@gatech.edu
I yogesh.mundada@gatech.edu

Server-Aided Encryption for
Deduplicated Storage

-Eswar Natarajan

Background and Interests

•Network Engineer with experience in Networks, firewalls, NATs etc.

•Worked on interesting problems in Video caching and Content
delivery

• In Security: worked on Firewalls for mobile traffic. Mobility adds a
whole new challenge!

• Interested in Distributed Systems, Scalable architecture and High
Performance Computing.

Introduction

•What is deduplication?

•Why do we need it?

•How is deduplication done on encrypted files?

Convergent Encryption

• Suitability for encryption

•Plaintext is hashed. (Custom hash. NOT SHA-1)

•Data is then encrypted with this key (Symmetric encryption).

•The encrypted data is then hashed (a standard hash function can be
used for this purpose). This hash is called the 'locator'.

•Hash of the encrypted data. (called Locator)

• Store locator and the key.

Cryptographic Overview

•Message Locked Encryption (MLE)

•Attacks

•Protection Mechanisms against these attacks

Algorithm – Client side

•Client wishes to store file (M).

•Uses RSA to communicate with the RSA to compute message derived
key - K

•Client encrypts M with this key to produce Cdata

•Client uses secret key to encrypt K to produce Ckey

•Both Cdata and Ckey are stored on the storage service.

Considerations

•Overhead

•Privacy

• Semantic Security

References

•Message Locked Encryption and Secure Deduplication - http://eprint.
iacr.org/2012/631.pdf

•DupLESS: Server-Aided Encryption for Deduplicated Storage -http:
//eprint.iacr.org/2013/429.pdf

•Protecting Data Using Server-Side Encryption with AWS-Managed
Encryption Keys - http://docs.aws.amazon.
com/AmazonS3/latest/dev/UsingServerSideEncryption.html

• File system encryption on SmartCloud Enterprise - http:
//thoughtsoncloud.com/2012/03/above-the-hypervisor-file-system-
encryption-on-smartcloud-enterprise/

Project Pre-Proposal

Garret Naegle

Background/Interests

• Got Bachelor’s degree in Software Engineering
at Mississippi State University

• Getting Master’s degree in Computer Science
now

• Main interest in reverse engineering and
malware anaylsis

Baseband Attacks on Mobile Devices

• Attacks mobile devices through use of cellular
base stations

• Most baseband processors have few attack
countermeasures (no ASLR, no DEP, etc)

• Is now dramatically cheaper to implement
than before

Example Attack

• Rogue base station sends messages
announcing availability and drowns out
legitimate station

• When connected, rogue station sends
message to overflow buffer and overwrite PC
and register

• Rogue station able to issue commands to
device

Motivation to Research Baseband
Attacks

• New/nontraditional attack vector

• Has potential to affect many people

• Difficult to detect without expensive hardware

Plans for Project

• Look into past attacks and how they were
executed

• Check if vulnerabilities exploited in past
attacks have been fixed

• Try to find new vulnerabilities that could be
exploited

Plans for Project

• Look into commands that can be issued to
baseband

• Find out if baseband companies are
implementing countermeasures to prevent
attacks

8803-BSS Final Project Pre-Proposal

Kevin Flansburg

Background & Interests

Background

I Mechanical Engineering for Undergrad
I Some Experience with Analog Circuit Design + PIC

Microcontrollers
I Pretty new to all of this

Interests

I Security in general
I Cloud Computing
I RF

Proposals - RF Security

1. Select one or two RF devices (car keys, etc.) and explore how
vulnerable their protocol is using a Software Defined Radio.

2. Propose changes to the protocol to improve security

Proposals - Timing Based User Authentication

I Explore the viability of using keypress timing to authenticate
users.

I Implement Javascript library to quickly add this authentication
to websites.

Proposals - Amazon Web Services Hypervisor Security

I Evaluate how secure data running in seperate VM’s on the
same hardware is.

I Ex. we can intentionally compile vulnerable code with various
security features (stack canaries, aslr) disabled. Can the Xen
hypervisor maintain protection of the physical memory in all
cases?

I Look for possible weaknesses and suggest solutions

Proposals - Entropy

I Look at ways to provide bulk entropy to systems running on
virtual machines.

I Perhaps additional hardware that the cloud provider can install
to produce bulk entropy to pass to virtual machines.

I Perhaps a service which produces mass entropy and then sends
it encrypted and signed to the client.

Proposals - Open to Looking at the Stack

I But have no idea what areas to explore

Taint Analysis for Android App Sets

Kangqi Ni

Background

● PhD candidate in Computer Science

● Research Area
○ Program Analysis
○ Compiler

Motivation

● Detect sensitive information leakage
○ “All or nothing” permission model
○ Advertisement libraries

● Apps can collude to leak data
○ Evades precise detection if only analyzed

individually

Motivating Example

● Phase 1.
○ data flows enabled individually by each app
○ conditions under which data flows become possible

● Phase 2.
○ enumerate the potential dangerous data flows enabled by set of apps as a whole

Terminology

● Taint analysis tracks the flow of sensitive data

● Definition. A source is an external resource (external to the app, not
necessarily external to the phone) from which data is read
○ E.g., Device ID, contacts, photos, current location, etc

● Definition. A sink is external resource to which data is written
○ E.g., Internet, outbound text messages, file system, etc

Plan

● Build upon existing Android static analyses
○ FlowDroid: finds intra-component information flow

PLDI, 2014

○ Epicc: identifies intent specifications
USENIX Security, 2013

○ DidFail: finds flows of sensitive data across app
boundaries
SOAP, 2014

Improvement

● Soundness
○ Implicit flows

● Precision
 Thank you!

Lorem Ipsum Dolor

ChromeDroid Meng Xu

1

Background
❖ First year Ph.D. student in computer science!

❖ Work with GTISC group!

❖ Current project: survey Android security issues and
proposed solutions!

❖ Interests!

❖ Android security!

❖ Malware mitigation techniques

2

Proposal

❖ App Runtime for Chrome (ARC)!

❖ Allows Android apps to run in Chrome!

❖ Officially designed for Chrome OS!

❖ ARCon Custom Runtime allows every major OS with
Chrome browser to run Android apps!

❖ Released on Sep-16, just a week ago

3

Proposal

❖ ARCon!

❖ Load Android kernel + dalvikvm!

❖ chromeos-apk!

❖ Script for app repackaging!

❖ Add some meta data to instruct app loading

4

Proposal

❖ Protected by Chrome security model!

❖ Extensive use on Google Native Client (NaCl)!

❖ Comparison with Android security framework!

❖ Chrome OS: Setuid + Seccomp sandbox!

❖ Android: Setuid + SELinux!

❖ Any weakness?

5

Proposal

❖ Inter-app communication!

❖ Website? Extensions? Other Apps?!

❖ How to enable it in a secure manner?

6

Proposal

❖ System app not working!!

❖ Non of the system app is working, even the simplest
Calculator.apk!

❖ Why? and how to enable them in a secure manner?

7

CS-8803 Fall ‘14 Project

Pre-Proposal
3rd Party JavaScript Library/Plugin Security Vulnerabilities

Mike Puckett

1

Background and Interests

• 1st Semester Master’s Student

• GTRI/CTISL 13+ months

• Build secure web-apps

• Java back-end, JavaScript front-end

• Working at a research institute (applied research) provides the opportunity and

freedom to work with many new and emerging technologies

2

Why JavaScript

• Relevant to me

• JavaScript is a misunderstood language

• JavaScript isn’t going away anytime soon

• Dart

• GWT

• JavaScript is used by 88.2% of all the websites[1]

• The rise of AJAX programming

3

JavaScript Libraries/Frameworks

• Developed to ease the burden of building complex web-apps

• Handle a number of responsibilities

• DOM manipulation

• Client side MVC frameworks

• DI frameworks

4

JavaScript Libraries/Frameworks

[2]
5

Vulnerabilities

• XSS

• Session hijacking

• Dependency on 3rd party developers

• Example

• JQuery XSS bug found in 2011

• http://bugs.jquery.com/ticket/9521

• Evernote.com, Skype.com

6

Project Ideas

• Still undecided on exactly what I will do for the project

• Possibilities

• Try to find vulnerabilities in popular libraries/frameworks and/or plugins

• Build a web-app analysis tool that detects uses of vulnerable libraries/frameworks
and/or plugins

• Develop a XSS defense library

7

Sources

1. http://w3techs.com/technologies/details/cp-javascript/all/all

2. https://wappalyzer.com/categories/javascript-frameworks

8

Kenton Miller
MSCS – INFORMATION SECURITY

Background
• BS in Computer Science

• Primarily .NET developer for past 3 years

• Some mobile experience (augmented reality apps)

• Currently focused on Network Security

Software Defined Radio (SDR)
• Gain information about a device from analyzing its radio noise

• Investigate encryption strength of low priority devices (e.g. a smart toaster)

• Potential for replay attacks

Radio noise analysis
• Inferring device activity

• Direct output – devices broadcasting intentionally
• Cell phones, etc

• Indirect output – devices generating radio just by virtue of being turned on

Encryption
• We assume our devices are suitably secure

• Some obvious things (LTE transmissions)

• Some not so obvious (remote key fob for cars, smart toaster)

• Aim to investigate the security strength of the not-so-obvious devices

Prerit Jain

Soham Desai

Prerit Jain:
 - M.S. ECE

 - Interests: Systems and Security

 - Internship: Storage Device Drivers Team, Apple

Soham Desai:
 - M.S. ECE (Major: Computer Systems & Software)

 - Interests: Systems, device drivers, architectural
 modelling

 - Internship: Client Security, Intel Labs

 Emulate upcoming Hardware Security
Extensions (Intel SGX) to the x86 ISA

 Using Machine Emulator – QEMU

 Make it Open Source for the developers !

 Background Study
1. SGX Architecture

2. QEMU Internals

 Implementation
Adding support for the Entire Stack

1. Machine emulation for the new Instructions

2. Kernel Module development.

3. Simple Use Case at the Application Level to showcase
functionality.

 Intel SGX -> Security Guard Extensions
1. Providing hardware based container and isolated execution

environment.

2. It allows a process to Instantiate a protected region in its
address space known as an Enclave

 QEMU -> Quick Emulator
1. Open Source Machine Emulator and Virtualizer.

2. QEMU can run OS/programs made for one machine (guest)
on a different machine (host) using dynamic translation.
(similar to just in time compilation)

QEMU

X86 Emulation

SGX Kernel
Module

Application
User Space

Linux Kernel

SGX Architectural
Implementation

ENCLU

ENCLS

Intel SGX

2 New Instructions

- ENCLU (For User Space)
- ENCLS (For Kernel)
Each has multiple leaf
Instructions which together
provide the complete SGX
functionality

QEMU

Interpreting the new Opcode

And Leaf functions and providing
The functionality expected from
Hardware.

 October:
1. ENCLU: Implementation of Complete API Set.

2. ENCLS : Implementation of Primary Leaf
Functions.

 November:
1. Kernel Module Development.
2. Unit Testing based on basic application usage

scenario.

Questions ???

CS 8803-BSS Proposal

Santosh Ananthakrishnan

September 24, 2014

Background

I Building systems to detect malicious infrastructure

I Mostly network security and applied crypto

I Starting out with system security / software exploitation

I Breaking stuff / CTFs (join /r/opentoallctfteam!)

CSAW-14 Exp 500

CSAW-14 Exp 500

Stack Layout (ekse)

Proposal

I Use static analysis to test if a program performs unsafe
math operations

I Implement this functionality as a checker for the Clang
Static Analyzer

Questions

I How to define ’unsafe’ math operations?

I What can be accomplished with just static analysis?

I What if we only have access to the binary?

I Related work / scope?

Prerit Jain

Soham Desai

Prerit Jain:
 - M.S. ECE

 - Interests: Systems and Security

 - Internship: Storage Device Drivers Team, Apple

Soham Desai:
 - M.S. ECE (Major: Computer Systems & Software)

 - Interests: Systems, device drivers, architectural
 modelling

 - Internship: Client Security, Intel Labs

 Emulate upcoming Hardware Security
Extensions (Intel SGX) to the x86 ISA

 Using Machine Emulator – QEMU

 Make it Open Source for the developers !

 Background Study
1. SGX Architecture

2. QEMU Internals

 Implementation
Adding support for the Entire Stack

1. Machine emulation for the new Instructions

2. Kernel Module development.

3. Simple Use Case at the Application Level to showcase
functionality.

 Intel SGX -> Security Guard Extensions
1. Providing hardware based container and isolated execution

environment.

2. It allows a process to Instantiate a protected region in its
address space known as an Enclave

 QEMU -> Quick Emulator
1. Open Source Machine Emulator and Virtualizer.

2. QEMU can run OS/programs made for one machine (guest)
on a different machine (host) using dynamic translation.
(similar to just in time compilation)

QEMU

X86 Emulation

SGX Kernel
Module

Application
User Space

Linux Kernel

SGX Architectural
Implementation

ENCLU

ENCLS

Intel SGX

2 New Instructions

- ENCLU (For User Space)
- ENCLS (For Kernel)
Each has multiple leaf
Instructions which together
provide the complete SGX
functionality

QEMU

Interpreting the new Opcode

And Leaf functions and providing
The functionality expected from
Hardware.

 October:
1. ENCLU: Implementation of Complete API Set.

2. ENCLS : Implementation of Primary Leaf
Functions.

 November:
1. Kernel Module Development.
2. Unit Testing based on basic application usage

scenario.

Questions ???

An Implementation of WASP*,
a Tainting‐based Technique against SQL Injection Attacks

Xiangyu Li

*William G.J. Halfond, Alessandro Orso, and Panagiotis Manolios Using Positive Tainting and Syntax‐Aware Evaluation
to Counter SQL Injection Attacks. In Proc. of the 14th International Symposium on the Foundations of Software Engineering.

Background and Interests

• 2nd year CS Ph.D. student.
• Research on program‐analysis based approaches to help with
software testing and debugging.

• Preferred programming languages: Java
• C for low level stuff

Technique Overview

• Basic approach
• Only allow developer‐trusted strings to form sensitive parts of a SQL query.

• Implementation
• Positive tainting: Identify and mark developer‐trusted strings. Propagate taint
markings at runtime.

• Syntax‐Aware Evaluation: Check that all keywords and operators in a query
were formed using marked strings.

Positive Tainting

• Mark string in the scope of the software as trusted strings.
• String literals in the code
• Strings from configuration files, etc. Specified by explicit rules.

• Strings coming from outside of the software scope are untrusted.
• Track and propagate trusting marks at character level.
• Implementation

• Instrument java.lang.String and related classes to record and propagated
tainting marks. Cannot track tainting marks on primitive values.

• Alternatively, extend the JVM. May incur high runtime overhead if not
implemented properly.

Syntax‐Aware Evaluation
• Cannot forbid the use of untrusted data in queries.

Check that all keywords and operators in a query were formed using marked strings.

INTRODUCTION - SUNNY
• From Singapore

• Graduated from Nanyang Technological University - Computer Science

• Typical System & Network Guy

• Interest: Malware, Web/Application Security

RACE TO ZER0
• An competition from Defcon 16 (2008)

• Participants are give a set of malwares to modify and the first team to evade detections

from all antivirus engines wins

WHAT’S NEW?
• Some AVs include Dynamic Analysis, in additional to Signature / Heuristic Detection

• Dynamic Analysis a.k.a behavior based detection – scanning & running of malware in

emulated sandbox environment

• So encrypted malicious code might still get detected

WHAT’S THE PROBLEM?
• Dynamic Analysis is Complex yet it has to be fast (resource limitation)

• Emulated sandbox environment can be detected

ORIGINAL CODE

DecryptCodeSection() is complicated

http://www.sevagas.com/?Code-segment-encryption

TO EVADE
Simply allocate 100 MB of

memory and free pass!

LEARNING OUTCOME
• How malware encrypt their malicious codes and decrypt at run time

• What are other effective yet simple way of evading antivirus detection

 Security for
Infrastructure as a

Service
Vinson Young

Personal Background

● 3rd year PhD student in ECE, minor in CS
● Computer architecture, network security,

signal processing, OS
● Master’s thesis in hardware implementation

of CFI

Security for IAAS

● Infrastructure as a Service
○ Multiple VM’s per hardware

● Amazon EC2, Rackspace

Performance / Storage

● Deduplication
○ Store identical pages into same region to save

space
○ Copy-On-Write

Security Vulnerability

● Information Leak
● Cross-VM Side Channel Attack

○ Measure write timings to deduplicated memory
○ Can tell what programs / blocks of other VM’s

sharing the same memory

Security Measures

● ASLR + PIE/PIC
○ (PIE reduces pages that can be deduplicated)

● Page Cache Flushing
● Memory Sanitization

New security measures
● Deduplicated LLC instead?

○ Security analysis
● Other methods to reduce leak

○ Delay writing of general case to make dedup timing
indistinguishable

● ASLR + PIE/PIC
○ Analysis on overhead of Deduplication on

ASLR+PIE
○ Design method that will work on ASLR without

weakening security beyond acceptable levels

Distributed Social Network
in Browsers

Yang Ji

Personal background

• 1st year Ph.D. student in GTISC of SCS

– BS and MS both in Computer and Network Security

– 5 years industry experience as a software engineer

• Research interests

– System security

– Web security

Introduction

• Problem:

– Personal data protection and privacy in social network is at
risk as the service provider (e.g., Facebook) has all the
users’ data.

• Solution:

– Switch to distributed architecture to avoid excessive data
concentration at the centralized server.

Existing Solution

• Diaspora* (100,000+ active users)

– Decentralizes the server to a bunch of regional pods.

– End users register at a pod and talks with it as if the
centralized server.

– Pods talk with other pods relaying messages.

– Bottom line: You need to trust the pods.

What if we even don’t trust the pods?

• Proposed idea:

– A pure peer-to-peer solution so that the data only
stay with users and their friends.

– A centralized server would be only for availability.

• The server is only in charge of user registration/login
and online/offline status lookup.

• No personal data is distributed by the server.

• Users’ friendship is unknown to the server.

“Web is the future…”

• Web Real Time Communication (WebRTC)

– It enables web browsers with Real-Time
Communications (RTC) capabilities via simple
JavaScript APIs.

– Published in Google I/O conference 2014.

Challenges

• Data synchronization

– Missed posts during the user’s offline period can
be restored from its online friends.

• Secret friend discovery

– The availability server should not know the
(potential) friendship.

SAZO	
Securing	 Home	 Networks	

Yogesh	 Mundada	

Background	 	

•  Grad	 student	 working	 with	 Nick	 Feamster	

•  Started	 working	 in	 Network	 Virtualiza@on.	

•  Now	 working	 in	 Security.	

•  Three	 vantage	 points:	 Server,	 Client	 &	 Home	
Router	

Threats	 in	 Home	 Networks	
Threats	

–  Highly	 powerful	 devices	 under	 non-‐expert	 administra@on	
–  Persistently	 Compromised	 Devices	

•  Online	 Stalking	
•  Spam	
•  Phishing	
•  Financial	 Records	 Manipula@on	
•  Personal	 Informa@on	 &	 Iden@ty	 TheQ	
•  Par@cipate	 in	 DDOS	

Current	 Solu@ons	
–  An@virus	 soQware	
–  Takedown	 requires	 a	 lot	 of	 coordinated	 effort	 across	 many	 different	

en@@es	

WiFi	 Router:	 Security	 Vantage	 Point	

•  Wireless	 Router:	
–  Checkpoint	
–  Iden@fy	 devices	
–  Iden@fy	 users	

•  Low	 capacity:	
–  CPU:	 Cannot	 process	 data	
–  RAM:	 Cannot	 piece	 together	 data	
–  Storage:	 Cannot	 store	 state	
–  Mostly	 proprietary	 soQware	
–  OpenWRT:	 	

•  Complex	 for	 normal	 users.	 	
•  Sta@c	 firewall	

SAZO:	 Components	

•  SAZO	 Wireless	 Router:	 Control	 &	 manipulate	
network	

•  SAZO	 Box:	 Analyze	 data	
•  SAZO	 Server:	 Collect	 data	 &	 push	 updates	
•  Traffic	 Inspec@on	 Server:	 	
– Malicious	 URL	 query	 API	
– Traffic	 Forwarding	 over	 VPN	
– Deep	 Packet	 Inspec@on	

Bot	

Internet	

Inspec@on	
Server	

SAZO-‐Box	

SAZO-‐Router	

DPI	 Traffic	

4.	 Mirror	 All	 Traffic	

5.	 Extract	 Metadata,	 maintain	
Per-‐device	 state	

SAZO-‐Server	

6.	 Report	 metadata	
7.	 Pull	 new	 classifica@on	 models	

Goals	

•  At	 server	 side:	
–  Data	 Analysis:	

§  Indicators	 for	 infec@ons	
§  Were	 updates	 applied	
§  Role	 of	 device-‐types	 in	 infec@on	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ~	 Which	 malware	 runs	 on	 what	 type	 of	 device	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ~	 User	 profile	 for	 ge_ng	 easily	 infected	 	

	 	 	 	 (high	 risk	 vs	 low	 risk	 users)	
	 	 	 -‐	 What	 sites	 they	 access	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 -‐	 How	 many	 hours	 they	 spend	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 -‐	 When	 do	 they	 spend	 @me	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 -‐	 0-‐pa@ent	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 -‐	 Was	 he	 using	 P2P	

•  Studying	 feasibility	 of	 VMI	 tool	 to	 iden@fy	
malware	

