Lec06: DEP and ASLR

Taesoo KIm

Scoreboard

— meduka —— Oxcoffeeda —— kevinpark1217 —— leeelgin g —— chidambaram —— viyerd3 19

1,200

1,000

00

00

400

Aug 26 00:00 0g Sep 09 00:00 Sep 16 00:00 Sep 23 00:00

Administrivia

Due: Lab05 is out and its due on Oct 3 at midnight
Lab10: NSA Codebreaker Challenge — Due: Dec 06
In-class CTF (Nov 22/23): Please find your team mates (3-4 people)!

https://codebreaker.ltsnet.net/

NSA Codebreaker Challenges

NSA Codebreaker Challenge

Overview

The 2019 Codebreaker Challenge consists of a series of tasks that are worth a varying amount of
points based upon their difficulty. All tasks will become available immediately once the Challenge
goes live and can be solved in any order, though there may be some dependencies between tasks.
The point value associated with each task is based on relative difficulty and schools will be ranked
according to the total number of points accumulated by their students. It is still recommended to
solve tasks in order since the tasks flow with the storyline, but that is not a requirement. Solutions
may be submitted at any time for the duration of the Challenge. Good luck!

NSA Codebreaker Challenges

Background

DISCLAIMER - The following is a FICTITIOUS story meant for providing realistic context for the
Codebreaker Challenge and is not tied in any way to actual events.

Tech savvy terrorists have developed a new suite of communication tools to use for attack planning
purposes. Their most recent creation — TerrorTime — is a secure mobile chat application that runs
on Android devices. This program is of particular interest since recent intelligence suggests the
majority of their communications are happening via this app. Your mission is to reverse-engineer
and develop new exploitation capabilities to help discover and thwart future attacks before they
happen. There are 7 tasks of increasing difficulty that you will be working through as part of this
challenge. Ultimately, you will be developing capabilities that will enable the following:

1. Spoof TerrorTime messages
2. Masquerade (i.e., authenticate) as TerrorTime users without knowledge of their credentials
3. Decrypt TerrorTime chat messages

NSA Codebreaker Challenges

Lab10 (out of 200 pt)
Task1/2/3: 100
Task 4: 140
Task 5: 200 (super!)
Task 6: 250 (A)
Task 7: 300 (A+)

All subject to change depending on the quality/difficulty.

Design Choices for the Stack Canary

Where to put? (e.g., right above ra? fp? local vars?)

Which value should | use? (e.g., secrete? random?)

How often do we generate the canary? (e.g., per exec? per func?)
How to check its integrity? (e.g., xor? cmp?)

What to do after you find corrupted? (e.g., crash? report?)

Best Write-ups for Lab04

terminator subuavudai, viyer43
assassination viyer43, Aditi
mini-heartbleed yigincai, viyer43
pltgot mliu366, viyer43
ssp Oxcoffeeda, mliu366
fd Oxcoffeeda, yiqincai

Summary: Lab04

Insecure materialization of canary-based protection:
xor: known secret
stackshield: incorrect checks
weak-random: guessable

terminator: unprotected fp

Summary: Lab04

Abusing the canary implementation itself:
pltgot: hijacking ssp’s plt
ssp: overwriting a pointer to the program name
Fundamental limitations:
assassination: local variable — arbitrary write
fd: local variable — vtable

mini-heartbleed: leaked canary

Introducing DEP/ASLR

$ checksec target
[*] '/home/lab05/libbase/target!’

Arch: 1386-32-little
RELRO: Partial RELRO
Stack: No canary found <- lab04
NX: NX enabled <- lab05
PIE: PIE enabled <- lab05

Data Execution Prevention (DEP, aka X*W or NX)
Address Space Layout Randomization (ASLR, PIE)

ASLR

$ cat /proc/sys/kernel/randomize va space
2

$./check

stack : Oxff930aal
system(): Oxf7521c50
printf(): 0xf7536670

$./check

stack : Oxff930250
system(): Oxf755dc50
printf(): 0xf7572670

Today’s Tutorial

Learning a power class of bug, format string bug
A format string bug — an arbitrary read
A format string bug — an arbitrary write

A format string bug — an arbitrary execution

Format String: e.g., printf()

How does printf() know of #arguments passed?

How do we access the arguments in the function?

1) printf("hello: %d", 10);
2) printf("hello: %d/%d", 10, 20);
3) printf("hello: %d/%d", 10, 20, 30);

Format String: e.g., printf()

What does it happen if we miss one argument?

// buggy
3) printf("hello: %d/%d/%d", 10, 20);

Format String: e.g., printf()

What does printf() print out? guess?

printf("sd/sd/%d", 10, 20)

+----(n)----+

| \Y;
[ral[fmt][10][20][??]11[..]
(1) (2) (3)

About a “Variadic” Function

int sum up(int count,...) {
va list ap;
int 1, sum = 0;

va start (ap, count);
for (1 = 0; 1 < count; 1i++)
sum += va arg (ap, int);

va _end (ap);
return sum;

About a “Variadic” Function

va start (ap, count);

lea
mov

eax, [ebp+0xc] // Ql. 0Oxc?
DWORD PTR [ebp-0x18],eax

for (1 = 0, 1 < count; i++)
sum += va arg (ap, int);

mov
lea
mov
mov
add

eax,DWORD PTR [ebp-0x18]

edx, [eax+0x4] // Q2. +47
DWORD PTR [ebp-0x18],edx

eax,DWORD PTR [eax]

DWORD PTR [ebp-0x10],eax

In-class Tutorial

Enhanced crackme0x00
Step1: A format string bug — an arbitrary read
Step2: A format string bug — an arbitrary write

Step3: A format string bug — an arbitrary execution

Format String Specifiers

printf(fmt);

o°

o°
O 0 T

: pointer
: string
: int

: hex

o°

o
X

Tip 1.
S[nth]$p
(e.g., %1$p = first argument)

Arbitrary Read

If fmtbuf locats on the stack (perhaps, one of caller’s),

Then, we can essentially control its argument!

printf (fmtbuf)
printf("\xaa\xbb\xcc\xdd%3$s")

+---(3rd)---+
| Y
[ral[fmt][al]l[a2][\xaa\xbb\xcc\xdd%3$s]
(1) (2) (3)

(1) (2)(3)
=> printf("...%3%$s", , , Oxddccbbaa)

More Format Specifiers

printf("1234%n", &len) => len=4

%n: write #bytes
%shn (short), %hhn (byte)

Tip 2.
%10d: print an int on 1l0-space word
(e.g., " 10")

Write (sth) to an Arbitrary Location

Similar to the arbitrary read, we can control the arguments!

printf("\xaa\xbb\xcc\xdd%s3%$n")

+---(3rd)---+
| Y
[ra][fmt][al]l[a2] [\xaa\xbb\xcc\xdd%3$n]
(1) (2) (3)

(1) (2)(3)
=> printf("...%3¢n", , , Oxddccbbaa)
*Oxddccbbaa = 4 (#chars printed so far)

Arbitrary Write

In fact, we can control what to write (see more in the tutorial)!

printf("\xaa\xbb\xcc\xdd%6c%s3$n")

+---(3rd)---+
| Y
[ra][fmt][al][a2][\xaa\xbb\xcc\xdd%s6c%s3$n]
(1) (2) (3)

=> *OQxddccbbaa = strlen("\xaa\xbb\xcc\xdd...... ")y = 10

In-class Tutorial

Step1: A format string bug — an arbitrary read
Step2: A format string bug — an arbitrary write

Step3: A format string bug — an arbitrary execution

$ ssh 1ab05@3.95.14.86
Password: <password>

$ cd tutO5-fmtstr
$ cat README

References

* Bypassing ASLR
» Advanced return-into-lib(c) exploits

» Format string vulnerability

https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-slides.pdf
http://phrack.org/issues/58/4.html
https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf

