Lec05: Stack Protections
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Administrivia

Please submit your write-ups on time!
Please write down your collaborators' names on the write-ups

Due: Lab04 is out, and its due on Sept 27 at midnight



Best Write-ups for Lab03

argcO leitning, mliu366
lack-of-four yigincai, leitning
jmp-to-where Joseph_Rice, mliu366
unusual-main achang66, yiqincai
man-strncpy yigincai, meduka

upside-down yigincai, meduka



Lab03: Stack Overflow



Discussion: Lab03

What's the most "annoying" challenge?
What's the most "interesting" challenge?

What did you learn in general?



Discussion: Not Yet Motivated?



Discussion: Not Yet Motivated? H



Discussion: jmp-to-where

What's the bug?

What's special about this challenge?



Discussion: jmp-to-where

What's your lesson?



Discussion: unusal-main

What's the bug?

What's special about this challenge?



Discussion: man-strncpy

What's the bug?

What's special about this challenge?



Discussion: man-strncpy

What's your lesson?

How to prevent this?



Discussion: man-strncpy (safe usage)

char buf[BUFSIZ];
strncpy(buf, input, sizeof(buf) - 1);
buf[sizeof(buf) - 1] = '\0';



Discussion: alternative stricpy()

strlcpy(buf, s, sizeof(buf));



Discussion: upside-down
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Discussion: upside-down

More secure? less? in terms of security?

What if we are not using stack at all? (e.g., stackless python)
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Discussion: How to Prevent Stack
Overflow?

Two approaches:
Bug prevention
Exploitation mitigation
Protect "integrity" of ra, funcptr, etc (code pointers)
(e.g., exploitation mitigation — NX, canary)
Prevent the buffer overflow at the first place

(e.g., code analysis, better APIs)
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Today's Tutorial

In-class tutorial
Let's understand the implementation of the stack protector.

Let's exploit the (insecurely) protected crackme0Ox00 to get a flag!
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Reminder: crackme0x00

$ objdump-intel -d crackme0x00

8048448 :
804844b:
804844f:
8048456:

lea eax, [ebp-0x18]

mov DWORD PTR [esp+0x4],eax
mov DWORD PTR [esp],0x804858c
call 8048330 <scanf@Eplt>

|<=- Ox18-=>|+--- ebp

Vv

[~~~~> ] I[fpllral
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Reminder: Exploiting crackme0x00

|<=- 0x18-=>|+--- ebp
top v
[ [~~~~> 1 1[fpllral]
|<=--- Ox28 ------ => |
AAAABBBB. . ... GGGGHHHH



crackmeOx00 in C

int main(int argc, char *argvl[])

{

char buf[16];
printf("IOLI Crackme Level 0x00\n");
printf("“Password:");

scanf("%s", buf);

if (!strcmp(buf, "250382"))
printf("Password 0K :)\n");
else
printf("Invalid Password!\n");
return 0;
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23
By the way, how to fix crackme0x00's I
bug?

scanf("%15s", buf); // NOTE. 15 not 16
or
scanf("%as", &buf); // NOTE. char *buf, require a manual fre



DEMO: GCC's Stack Protector

makefile
compilation options

diff.sh



Core ldea of Stack Protector

Use a "canary" value as an indicator of the integrity of fp/ra

|<=- O0x14 ----------- =>|+--- ebp
top Y
[ [ I[canary][fpllrall
|<=--- Ox30 ------------------ => |

XOX0X0 XXXX
(corrupted?)
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Why is it called "Canary"?



Why is it called "Canary"?




Subtle Design Choices for the Stack
Canary

Where to put? (e.g., right above ra? fp? local vars?)

Which value should | use? (e.g., secrete? random? per exec? per
func?)

How to check its integrity? (e.g., Xxor? cmp?)

What to do after you find corrupted? (e.g., crash? report?)
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In-class Tutorial

Step 1: Understanding GCC's Stack Protector

Step 2: Let's exploit Oxdeadbeef canary!

$ ssh 1lab04@3.223.237.92
Password: <password>

$ cd tut05-ssp
$ cat README

AS
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Bypassing StackShield


https://www.coresecurity.com/system/files/publications/2016/05/StackguardPaper.pdf

