Lec05: Stack Protections

Taesoo Kim

Scoreboard

1,000

00

600

400

200

24 25 26 2F 2@ 2 30 3 0 02 03 04 05 06 OF OB 0% 10 M 12 13 14 153 16 17T 18 18 20 2

Administrivia

Please submit your write-ups on time!
Please write down your collaborators' names on the write-ups

Due: Lab04 is out, and its due on Sept 27 at midnight

Best Write-ups for Lab03

argcO leitning, mliu366
lack-of-four yigincai, leitning
jmp-to-where Joseph_Rice, mliu366
unusual-main achang66, yiqincai
man-strncpy yigincai, meduka

upside-down yigincai, meduka

Lab03: Stack Overflow

Discussion: Lab03

What's the most "annoying" challenge?
What's the most "interesting" challenge?

What did you learn in general?

Discussion: Not Yet Motivated?

Discussion: Not Yet Motivated? H

Discussion: jmp-to-where

What's the bug?

What's special about this challenge?

Discussion: jmp-to-where

What's your lesson?

Discussion: unusal-main

What's the bug?

What's special about this challenge?

Discussion: man-strncpy

What's the bug?

What's special about this challenge?

Discussion: man-strncpy

What's your lesson?

How to prevent this?

Discussion: man-strncpy (safe usage)

char buf[BUFSIZ];
strncpy(buf, input, sizeof(buf) - 1);
buf[sizeof(buf) - 1] = '\0';

Discussion: alternative stricpy()

strlcpy(buf, s, sizeof(buf));

Discussion: upside-down

0x00000000 Ox00000000

~ | argl

| buf | | | ret

| [] | | fp

| [] | | | buf || 27
| fp || | [] ||

| ret vV | [] |

| argl | aY

| .. Y

OxFFFFFFFF OxXFFFFFFFF

Discussion: upside-down

More secure? less? in terms of security?

What if we are not using stack at all? (e.g., stackless python)

17

Discussion: How to Prevent Stack
Overflow?

Two approaches:
Bug prevention
Exploitation mitigation
Protect "integrity" of ra, funcptr, etc (code pointers)
(e.g., exploitation mitigation — NX, canary)
Prevent the buffer overflow at the first place

(e.g., code analysis, better APIs)

18

Today's Tutorial

In-class tutorial
Let's understand the implementation of the stack protector.

Let's exploit the (insecurely) protected crackme0Ox00 to get a flag!

19

Reminder: crackme0x00

$ objdump-intel -d crackme0x00

8048448 :
804844b:
804844f:
8048456:

lea eax, [ebp-0x18]

mov DWORD PTR [esp+0x4],eax
mov DWORD PTR [esp],0x804858c
call 8048330 <scanf@Eplt>

|<=- Ox18-=>|+--- ebp

Vv

[~~~~>] I[fpllral

20

Reminder: Exploiting crackme0x00

|<=- 0x18-=>|+--- ebp
top v
[[~~~~> 1 1[fpllral]
|<=--- Ox28 ------ => |
AAAABBBB. GGGGHHHH

crackmeOx00 in C

int main(int argc, char *argvl[])

{

char buf[16];
printf("IOLI Crackme Level 0x00\n");
printf("“Password:");

scanf("%s", buf);

if (!strcmp(buf, "250382"))
printf("Password 0K :)\n");
else
printf("Invalid Password!\n");
return 0;

22

23
By the way, how to fix crackme0x00's I
bug?

scanf("%15s", buf); // NOTE. 15 not 16
or
scanf("%as", &buf); // NOTE. char *buf, require a manual fre

DEMO: GCC's Stack Protector

makefile
compilation options

diff.sh

Core ldea of Stack Protector

Use a "canary" value as an indicator of the integrity of fp/ra

|<=- O0x14 ----------- =>|+--- ebp
top Y
[[I[canary][fpllrall
|<=--- Ox30 ------------------ => |

XOX0X0 XXXX
(corrupted?)

25

Why is it called "Canary"?

Why is it called "Canary"?

Subtle Design Choices for the Stack
Canary

Where to put? (e.g., right above ra? fp? local vars?)

Which value should | use? (e.g., secrete? random? per exec? per
func?)

How to check its integrity? (e.g., Xxor? cmp?)

What to do after you find corrupted? (e.g., crash? report?)

28

In-class Tutorial

Step 1: Understanding GCC's Stack Protector

Step 2: Let's exploit Oxdeadbeef canary!

$ ssh 1lab04@3.223.237.92
Password: <password>

$ cd tut05-ssp
$ cat README

AS

References

Bypassing StackShield

https://www.coresecurity.com/system/files/publications/2016/05/StackguardPaper.pdf

