Lec03: Writing Exploits

Taesoo KIm

Scoreboard

00

400

300

200

100

24

29

26

27

258

29

30

Sy

o1

02

03

03

Administrivia

Survey: how many hours did you spend? (<3h, 6h, 10h, 15h, >20h)
Please join Piazza

Two optional recitations on every Mon/Wed (check piazza)!

Lab03: stack overflow challenges are out!

Due : Sept 19th at midnight (2 weeks)

In-class CTF : Nov 22—Nov 23!

https://piazza.com/gatech/fall2019/cs6265/home

Survival Guide for CS6265

Work as a group/team (find the best ones around you!)
NOT each member tackles different problems
All members tackle the same problem (and discuss/help)
Ask questions wisely, concretely
Explain your assumption first (e.g., | expect A because ...)
Explain your problem second (e.g., Ais expected but B appears)
Take advantage of four TAs standing next you to help!
World-class hackers give a private tutoring for you!

But, remember! only when you ask ..

Thinking of Threat Model

Story: A group of students modified “bomb” and got “flags” ..
Why TAs think they are not correct flags?
How does our system validate flags?

How does a setuid binary work?

Thinking of Threat Model

Q0. can we get a flag like this?

cat /proc/flag

Q1. how is this flag different from what bomb prints out?
echo "phase2" > /proc/flag

cat /proc/flag

Q2. what about under a tracer?

strace -- cat /proc/flag

Q3. what about this and print flag?

gdb ./bomb

Q4. are they different? why?

diff <(cat /proc/flag) <(cat /proc/flag)

Q5. what about this?

diff <(cat /proc/flag) <(sleep 1; cat /proc/flag)

© H A H A H A H A s T

Best Write-ups for Lab02

env
shellcode32
shellcode64
shellcode-min
shellcode-poly

shellcode-ascii

viyer43, Aditi

Oxcoffeeda, Aditi
ochbaklo, Aditi
viyer43, vishiswoz
vishiswoz, ochbaklo

vishiswoz, meduka

Bomb Stats

Bombs exploded ?7? times in total?

In ?? phases?

Bomb Stats

Bombs exploded 6 times in total (6 x -5 = -30 pts)
In 2/3/4 phases
- Each phase is solved by : 40/37/33/33 people

- Each phase is exploded by: 00/01/01/01 people
- Each phase is exploded : 00/03/02/01 times

Discussion 0

How different is the bomb binary this time?

Discussion 1

How did you start exploring the “bomb” (no symbol)?

Discussion 2 (bomb201-readfirst)

What's going on the first phase?

Discussion 3 (bomb202-objdump)

What's going on the second phase?

Did you find the main() function (i.e., dispatcher?)

Discussion 3 (obfuscation)

Discussion 3 (when tracing)

Discussion 4 (bomb203-signal)

What's going on the third phase?

Discussion 5 (bomb204-minfuck)

What's going on the last phase? (nothing special!)

32/64 Shellcode

int $80 vs. syscall

$ man syscall

What’s about poly shellcode?

What's your general idea?

Discrepancy b/w 32 vs 64

2.2.1.2 More on REX Prefix Fields

REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries 40H to 4FH. These
opcodes represent valid instructions (INC or DEC) in [A-32 operating modes and in compatibility mode. In 64-bit
mode, the same opcodes represent the instruction prefix REX and are not treated as individual instructions.

The single-byte-opcode forms of the INC/DEC instructions are not available in 64-bit mode. INC/DEC functionality
15 still available using ModR/M torms of the same instructions (opcodes FF/) and FE/1).

See Table 2-4 for a summary of the REX prefix format. Figure 2-4 though Figure 2-7 show examples of REX prefix

fields in use. Some combinations of REX prefix fields are invalid. In such cases, the prefix is ignored. Some addi-
tional information follows:

Dispatching routine

Dispatching routine

DEFCON18 CTF Doublethink (8 Arch!)

- Ref. https://www.robertxiao.ca/hacking/defcon2018-assembly-polyglot/

PDP-8 JMP 140 |

LGP-30 <ignored> u 05, 11 |
Mix o <don'tcare> ADD| <don’tcare> MO
AMDG4 movdh, Oxa |addeax, <dontcare> L
101101100000101000000101001011220000110010010101101100000
PDP-1 'SAS <don'tcare> [AND <dontcare>[JMP 2554 |
Gy e -
ey I e, o] = e w

Nova ADD1,2 SZC | skippedbySZC | JSSR@ 0225 |

https://www.robertxiao.ca/hacking/defcon2018-assembly-polyglot/

Discussion 6 (shellcode ascii/min)

Wow, what are your tricks?

shellcode-min: 30 bytes? 20 bytes? 10 bytes? 5 bytes?

Discussion 6 (shellcode ascii/min)

Lab03: Stack Overflow (Two Weeks)

Finally! It's time to write real exploits (i.e., control hijacking)
TONS of interesting challenges!

e.g., lack-of-four, frobnicated, upside-down ..

Lab03: Stack Overflow!

.00 Phrack 49 Oo.
Volume Seven, Issue Forty-Nine
File 14 of 16

BugTraq, re0t, and Underground.Org
bring you

PIVE S0 0000000000000 0000080000 6¢00.04¢04
Smashing The Stack For Fun And Profit
XK AR HX OO K

by Aleph One
alephl@underground.org

“smash the stack™ [C programming] n. On many C implementations
it is possible to corrupt the execution stack by writing past
the end of an array declared auto in a routine. Code that does
this is said to smash the stack, and can cause return from the
routine to jump to a random address. This can produce some of
the most insidious data-dependent bugs known to mankind.

Variants include trash the stack, scribble the stack, mangle

the stack; the term mung the stack is not used, as this is

never done intentionally. See spam; see also alias bug,

fandango on core, memory leak, precedence lossage, overrun screw.

Today’s Tutorial

Example: hijacking crackmeOx00!
A template exploit code
In-class tutorial

Your first stack overflow!

Extending the exploit template (python)

DEMO: Ghidra/crackme0x00

Ghidra w/ crackme(0x00

Exploit writing

crackmeOx00

$ objdump -M intel-mnemonic -d crackme0x00

0804869d <start>:

804869d: 55 push
804869e: 89 e5 mov
80486a0: 83 ec 18 sub
80486a3: 83 ec Oc sub

|<=- -0x18-=>|+--- ebp
top v
[[buf .. 1 1[fpllral]
|<=--- 0x18+0xc ----- => |

ebp

ebp, esp

esp,0x18
esp, Oxc

crackmeOx00

$ objdump -M intel-mnemonic -d crackme0x00

80486c¢c6: 8d 45 €8 lea eax, [ebp-0x18]

80486¢c9: 50 push eax
80486ca: 68 31 88 04 08 push 0x8048831
80486cf: e8 ac fd ff ff call 8048480 <scanf@Eplt>

|<=- -0x18-=>|+--- ebp
top v
[[~~~~> 1 1[fpllral]

|<=--- 0Ox18+0xC ----- => |

crackmeOx00

How can we bypass the password check w/o putting the correct

password?

In-class Tutorial

Step 1: Navigate the binary with your Ghidra!
Step 2: Play with your first exploit!
Step 3: Using an exploit template!

$ ssh 1ab03@3.223.237.92
Password:

$ cd tutO3-stackovfl
$ cat README

References

Phrack #49-14

http://phrack.org/issues/49/14.html

