Lec03: Stack Overflow

Taesoo Kim

Administrivia

Survey: how many hours did you spend? (<3h,6h,10h, 15h,>20h)
Please join Ed

Optional recitations: Tue/Wed (@ Coda)

Lab03: stack overflow (finally!) challenges are out!

Due : Sep 21 at midnight (2 weeks)

https://edstem.org/us/courses/43826/discussion/

Survival Guide for CS6265

Work as a group/team (find the best ones around you!)
NOT each member tackles different problems
All members tackle the same problem (and discuss/help)
Ask questions wisely, concretely
Explain your assumption first (e.g., | expect A because ...)
Explain your problem second (e.g.,A is expected but B appears)

Take advantage of TAs standing next you to help!

Discussion (

How different is the bomb binary this time?

Discussion (

How different is the bomb binary this time?

64-bit (e.g., calling convention)

1 2 3 4 5 6
x86-64: func(%rdi, %rsi, %rdx, %rl@, %r8, %r9, (%xmmd-7)) -> %rax

int $80 vs. syscall? (man syscall)
Stripped binary - no symbols

Simple anti-debugging techniques

Discussion 1 (obfuscation)

A linear disassembler does not work

(gdb) x/5i 0x4017b0

0x401700: jmp 0x4017/b3 ------------- ?--+
0x4017b2: jmp Ox3£70a0 V
0x4017b7: dec DWORD PTR [rdi]

0x4017b9: (bad)

Ox4017ba: test BYTE PTR [rax],al

Discussion 1 (when running)

(gdb) x/5i 0x4017b3

0x4017b3:
0x4017b8:
0x4017cO:
0x4017cl:
0Ox4017c2:

jmp
nop
push
push
mov

0x401710

DWORD PTR [rax+rax*1+0x0]
rbp

rbx

rbp,rdi

Discussion 2 (bomb203: signal)

What's going on the third phase?

Messy control-flow with signal handling
SIGTRAP by int3

handle SIGTRAP nostop in gdb

Discussion 3 (bomb204: minfuck)

What's going on the last phase?

simplified brainfuck interpreter
Nothing special!

What about dynamically testing in gdb?

How about poly shellcode?

What's your general idea?

11

Discrepancy b/w 52 vs 64

2.2.1.2 More on REX Prefix Fields

REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries 40H to 4FH. These
opcodes represent valid instructions (INC or DEC) in IA-32 operating modes and in compatibility mode. In 64-bit
mode, the same opcodes represent the instruction prefix REX and are not treated as individual instructions.

The single-byte-opcode forms of the INC/DEC instructions are not available in 64-bit mode. INC/DEC functionality
15 still available using ModR/M forms of the same instructions (opcodes FF/O and FF/1).

See Table 2-4 tor a summary of the REX prefix format. Figure 2-4 though Figure 2-7 show examples of REX prefix

fields in use. Some combinations of REX prefix fields are invalid. In such cases, the prefix is ignored. Some addi-
tional information follows:

Dispatching routine

[dispatcher][x86 1[x86_64]

e.g., x40 0x90
- Xx86 inc eax
- x86_64 REX + nop

x86 : [¥ J[goto x86 shellcode]
x86-64: [nop][*][goto x86_64 shellcode]
arm : [nop][nop][*][goto arm shellcode]

MIPS : [nop][nop][nop][*][goto MIPS shellcode]

Ref. http://ref.x86asm.net/geek.html

12

http://ref.x86asm.net/geek.html

Dispatching routine

jz : Jump is taken if Zero Flag (ZF) is O.

// %86 XOr eax, eax
// x86_64 XOr eax, eax
xorl %eax, %eax

// %86 inc eax ; eax
// x86_64 REX + nop , eax
.byte 0x40

nop

jz x86_64

<x86 shellcode>

x86_64:
<x86_ 64 shellcode>

~

DEFCON18 CTF Doublethink (12 archs!) “

Ref. https.//www.robertxiao.ca/hacking/defcon2018-assembly-polyglot/

PDP-8
LGP-30
MIX
AMDG64

PDP-10

Nova

JMP 140 |
<ignored> u 05, 1 I

HLRZ <don’t care> | TRZE

ADD 1,2 SZC | skippedbySZC | JSR@ 0225

https://www.robertxiao.ca/hacking/defcon2018-assembly-polyglot/

Discussion 4 (shellcode min)

What's your general idea?

Discussion 4 (shellcode min)

What's your general idea?

Staging shellcode (env/stack)
Use existing “/proc/flag” in the binary
Leverage the context as much as possible (rax , rsi)?

fgets() vs., strlen()

16

Discussion 5 (shellcode ascii

Only use 0x20-0x7e (alphanumeric chars)

Basic idea: construct the real shellcode on the stack at runtime

lowe

<y

O LT MWW DN B

o0

10
11
12
13

movw
->

andw
andw

push

->

subw
subw
subw
push

$0, %ax

$0x454e , %ax
$0x3a31, %ax

$0xdead

%ax, $0x7e7e
%ax, $0x7ebe
%ax, $0x2467
%ax

. Ox66

. Ox66
. Ox66

. Ox68

. Ox66
. Ox66
. Ox66
. Ox66

Oxb8

Ox25
Ox25

Oxad

Ox2d
ox2d
Ix2d
Ox50

ox00

Ox4e
Ox31

Oxde

Ox/e

Oxé6e
Ox6/

Ox00 (not allowed)

Ox45
Ox3a

Ox00 0x00 (not

Ox/e

Ox/e
Ox24

>>> hex(Ax20000 - Ox7e7e - Ox7ebe - Ax2467)Y = Axdead

Lab03: Stack Overflow (Two Weeks)

Finally! It’s time to write real exploits (i.e.,control hijacking)
TONS of interesting challenges!

e.g., lack-of-four, frobnicated, upside-down ..

18

Lab03: Stack Overflow ('1996)!

.00 Phrack 49 0Oo.
Volume Seven, Issue Forty-Nine
File 14 of 16

BugTraq, r00t, and Underground.Org
bring you

XHKHIXIHOOOOOOOOOOKK
Smashing The Stack For Fun And Profit

FOOCKKKKHKHKHKHHKHKHKH KKK KKXKXXXXKKHKKKKKKKKK

by Aleph One
alephl@underground.org

“smash the stack®™ [C programming] n. On many C implementations
it is possible to corrupt the execution stack by writing past
the end of an array declared auto in a routine. Code that does
this is said to smash the stack, and can cause return from the
routine to jump to a random address. This can produce some of
the most insidious data-dependent bugs known to mankind.
Variants include trash the stack, scribble the stack, mangle
the stack; the term mung the stack is not used, as this is
never done intentionally. See spam; see also alias bug,

19

Today’s Tutorial

Example: hijacking crackmeOx00!
A template exploit code
In-class tutorial

Your first stack overflow!

Extending the exploit template (python)

20

DEMO: Ghidra/crackme0x00

Ghidra w/ crackmeOx00

Exploit writing

crackme0x00

$ objdump -M intel-mnemonic -d crackme@x00

0804869d <start>:

804869d:
804869%e:
80486a0:
80486a3:

top
[

|<=___

55 push
89 e5 mov
83 ec 18 sub
83 ec Oc sub

|<=- -0x18-=>|+--- ebp
Y,

[but .. 1 J[fp][ra]
Ox18+0xCc -----=>|

ebp
ebp,esp
esp,dx18
esp,dxc

22

crackme0x00

$ objdump -M intel-mnemonic -d crackme@x00

80486¢6H:
80486¢c9:
80486¢ca:
80486¢cft:

top
[

|<=___

8d 45 e8 Lea
50 push
68 31 88 04 08 push
e8 ac fd ff ff call

|<=- -0x18-=>|+--- ebp
Y
[~~~~> 1 1[fpllra]

Ox18+0xc -----=>|

eax, [ebp-0x18]

eax

Ox8048831

8048480 <scanf@gplt>

23

crackme0x00

How can we bypass the password check w/o putting the correct password?
Where to jmp? (i.e., where the IP should point t0?)

How to inject a shellcode (later)?

24

In-class Tutorial

Step 1: Navigate the binary with your Ghidra!
Step 2: Play with your first exploit!

Step 3: Using an exploit template!

$ ssh lab@3@54.88.195.85
Password: XXXXXXX

$ cd tut@3-stackovfl
$ cat README

25

References

Phrack #49-14

http://phrack.org/issues/49/14.html

