
Advanced Micro Devices

AMD64 Technology

AMD64 Architecture
Programmer’s Manual

Volume 4:
128-Bit and 256-Bit
Media Instructions

Publication No. Revision Date
26568 3.11 December 2010

AMD64 Technology 26568—Rev. 3.11—December 2010

Trademarks

AMD, the AMD arrow logo, and combinations thereof, are registered trademarks of Advanced Micro Devices, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

© 2002 – 2010 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro
Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with
respect to the accuracy or completeness of the contents of this publication and
reserves the right to make changes to specifications and product descriptions at
any time without notice. The information contained herein may be of a preliminary
or advance nature and is subject to change without notice. No license, whether
express, implied, arising by estoppel or otherwise, to any intellectual property rights
is granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any
express or implied warranty, relating to its products including, but not limited to, the
implied warranty of merchantability, fitness for a particular purpose, or infringement
of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other appli-
cations intended to support or sustain life, or in any other application in which the
failure of AMD’s product could create a situation where personal injury, death, or
severe property or environmental damage may occur. AMD reserves the right to
discontinue or make changes to its products at any time without notice.

Contents i

26568—Rev. 3.11—December 2010 AMD64 Technology

Contents

Figures. xi

Tables . xiii

Revision History . xv

Preface. xvii
About This Book. xvii
Audience . xvii
Organization . xvii
Definitions . xviii
Related Documents . xxviii

1 Introduction .1
1.1 Syntax and Notation . 1
1.2 Extended Instruction Format . 2

Legacy Prefixes . 2
Three-Byte Extended Prefix . 2
Two-Byte Extended Prefix. 5
Opcode Byte . 6
ModRM, SIB, and Displacement. 7
Immediate Bytes . 7
Instruction Format Examples. 8

1.3 XSAVE/XRSTOR Instructions . 11
CPUID Enhancements . 11
Extended Control Registers . 11
Extended Save Area. 12
Instruction Functions . 12
YMM States and Supported Operating Modes . 13
YMM State Management. 13
Saving Processor State. 14
Restoring Processor State . 14
MXCSR State Management. 14
Mode-Specific XSAVE/XRSTOR State Management . 14

1.4 AES Instructions . 15
Coding Conventions . 15
AES Data Structures . 16
Algebraic Preliminaries . 16
AES Operations . 18
Initializing the Sbox and InvSBox Matrices . 21
Encryption and Decryption . 25
The Cipher Function . 27
The InvCipher Function. 30
An Alternative Decryption Procedure . 33
Computation of GFInv with Euclidean Greatest Common Divisor . 35

ii Contents

AMD64 Technology 26568—Rev. 3.11—December 2010

1.5 String Compare Instructions . 38
Source Data Format . 38
Aggregation . 39
Complementation. 40
Output Selection . 40
Valid/Invalid Override of Comparisons. 41

2 Instruction Reference .43
ADDPD, VADDPD . 44
ADDPS, VADDPS. 46
ADDSD, VADDSD . 48
ADDSS, VADDSS. 50
ADDSUBPD, VADDSUBPD . 52
ADDSUBPS, VADDSUBPS . 54
AESDEC, VAESDEC . 56
AESDECLAST, VAESDECLAST . 58
AESENC, VAESENC . 60
AESENCLAST, VAESENCLAST . 62
AESIMC, VAESIMC. 64
AESKEYGENASSIST, VAESKEYGENASSIST. 66
ANDNPD, VANDNPD . 68
ANDNPS, VANDNPS. 70
ANDPD, VANDPD . 72
ANDPS, VANDPS. 74
BLENDPD, VBLENDPD . 76
BLENDPS, VBLENDPS. 78
BLENDVPD, VBLENDVPD . 80
BLENDVPS, VBLENDVPS . 82
CMPPD, VCMPPD . 84
CMPPS, VCMPPS. 87
CMPSD, VCMPSD . 90
CMPSS, VCMPSS. 93
COMISD, VCOMISD . 96
COMISS, VCOMISS. 98
CVTDQ2PD, VCVTDQ2PD. 100
CVTDQ2PS, VCVTDQ2PS . 102
CVTPD2DQ, VCVTPD2DQ. 104
CVTPD2PS, VCVTPD2PS . 106
CVTPS2DQ, VCVTPS2DQ . 108
CVTPS2PD, VCVTPS2PD . 110
CVTSD2SI, VCVTSD2SI . 112
CVTSD2SS, VCVTSD2SS . 114
CVTSI2SD, VCVTSI2SD . 116
CVTSI2SS, VCVTSI2SS . 118
CVTSS2SD, VCVTSS2SD . 120
CVTSS2SI, VCVTSS2SI . 122
CVTTPD2DQ, VCVTTPD2DQ . 124
CVTTPS2DQ, VCVTTPS2DQ . 126

Contents iii

26568—Rev. 3.11—December 2010 AMD64 Technology

CVTTSD2SI, VCVTTSD2SI . 128
CVTTSS2SI, VCVTTSS2SI . 130
DIVPD, VDIVPD . 132
DIVPS, VDIVPS . 134
DIVSD, VDIVSD . 136
DIVSS, VDIVSS . 138
DPPD, VDPPD . 140
DPPS, VDPPS . 143
EXTRACTPS, VEXTRACTPS. 146
HADDPD, VHADDPD . 148
HADDPS, VHADDPS . 150
HSUBPD, VHSUBPD. 152
HSUBPS, VHSUBPS . 154
INSERTPS, VINSERTPS . 156
LDDQU, VLDDQU . 158
LDMXCSR, VLDMXCSR . 160
MASKMOVDQU, VMASKMOVDQU . 162
MAXPD, VMAXPD . 164
MAXPS, VMAXPS. 166
MAXSD, VMAXSD . 168
MAXSS, VMAXSS. 170
MINPD, VMINPD. 172
MINPS, VMINPS . 174
MINSD, VMINSD. 176
MINSS, VMINSS . 178
MOVAPD, VMOVAPD. 180
MOVAPS, VMOVAPS . 182
MOVD, VMOVD . 184
MOVDDUP, VMOVDDUP . 186
MOVDQA, VMOVDQA . 188
MOVDQU, VMOVDQU . 190
MOVHLPS, VMOVHLPS . 192
MOVHPD, VMOVHPD . 194
MOVHPS, VMOVHPS . 196
MOVLHPS, VMOVHLPS . 198
MOVLPD, VMOVLPD. 200
MOVLPS, VMOVLPS . 202
MOVMSKPD, VMOVMSKPD . 204
MOVMSKPS, VMOVMSKPS . 206
MOVNTDQ, VMOVNTDQ . 208
MOVNTDQA, VMOVNTDQA . 210
MOVNTPD, VMOVNTPD. 212
MOVNTPS, VMOVNTPS . 214
MOVQ, VMOVQ . 216
MOVSD, VMOVSD . 218
MOVSHDUP, VMOVSHDUP . 220
MOVSLDUP, VMOVSLDUP. 222

iv Contents

AMD64 Technology 26568—Rev. 3.11—December 2010

MOVSS, VMOVSS. 224
MOVUPD, VMOVUPD . 226
MOVUPS, VMOVUPS . 228
MPSADBW, VMPSADBW . 230
MULPD, VMULPD . 232
MULPS, VMULPS . 234
MULSD, VMULSD . 236
MULSS, VMULSS . 238
ORPD, VORPD . 240
ORPS, VORPS . 242
PABSB, VPABSB . 244
PABSD, VPABSD . 246
PABSW, VPABSW . 248
PACKSSDW, VPACKSSDW . 250
PACKSSWB, VPACKSSWB . 252
PACKUSDW, VPACKUSDW. 254
PACKUSWB, VPACKUSWB. 256
PADDB, VPADDB . 258
PADDD, VPADDD . 260
PADDQ, VPADDQ . 262
PADDSB, VPADDSB . 264
PADDSW, VPADDSW . 266
PADDUSB, VPADDUSB . 268
PADDUSW, VPADDUSW . 270
PADDW, VPADDW . 272
PALIGNR, VPALIGNR. 274
PAND, VPAND . 276
PANDN, VPANDN . 278
PAVGB, VPAVGB . 280
PAVGW, VPAVGW . 282
PBLENDVB, VPBLENDVB . 284
PBLENDW, VPBLENDW . 286
PCLMULQDQ, VPCLMULQDQ. 288
PCMPEQB, VPCMPEQB . 290
PCMPEQD, VPCMPEQD. 292
PCMPEQQ, VPCMPEQQ. 294
PCMPEQW, VPCMPEQW . 296
PCMPESTRI, VPCMPESTRI. 298
PCMPESTRM, VPCMPESTRM . 300
PCMPGTB, VPCMPGTB . 302
PCMPGTD, VPCMPGTD. 304
PCMPGTQ, VPCMPGTQ. 306
PCMPGTW, VPCMPGTW . 308
PCMPISTRI, VPCMPISTRI . 310
PCMPISTRM, VPCMPISTRM. 312
PEXTRB, VPEXTRB . 314
PEXTRD, VPEXTRD . 316

Contents v

26568—Rev. 3.11—December 2010 AMD64 Technology

PEXTRQ, VPEXTRQ . 318
PEXTRW, VPEXTRW . 320
PHADDD, VPHADDD . 322
PHADDSW, VPHADDSW . 324
PHADDW, VPHADDW . 326
PHMINPOSUW, VPHMINPOSUW . 328
PHSUBD, VPHSUBD. 330
PHSUBSW, VPHSUBSW . 332
PHSUBW, VPHSUBW . 334
PINSRB, VPINSRB . 336
PINSRD, VPINSRD . 338
PINSRQ, VPINSRQ . 340
PINSRW, VPINSRW . 342
PMADDUBSW, VPMADDUBSW. 344
PMADDWD, VPMADDWD . 346
PMAXSB, VPMAXSB . 348
PMAXSD, VPMAXSD . 350
PMAXSW, VPMAXSW . 352
PMAXUB, VPMAXUB . 354
PMAXUD, VPMAXUD . 356
PMAXUW, VPMAXUW . 358
PMINSB, VPMINSB. 360
PMINSD, VPMINSD . 362
PMINSW, VPMINSW. 364
PMINUB, VPMINUB . 366
PMINUD, VPMINUD. 368
PMINUW, VPMINUW . 370
PMOVMSKB, VPMOVMSKB. 372
PMOVSXBD, VPMOVSXBD . 374
PMOVSXBQ, VPMOVSXBQ . 376
PMOVSXBW, VPMOVSXBW. 378
PMOVSXDQ, VPMOVSXDQ . 380
PMOVSXWD, VPMOVSXWD . 382
PMOVSXWQ, VPMOVSXWQ . 384
PMOVZXBD, VPMOVZXBD . 386
PMOVZXBQ, VPMOVZXBQ . 388
PMOVZXBW, VPMOVZXBW . 390
PMOVZXDQ, VPMOVZXDQ . 392
PMOVZXWD, VPMOVZXWD . 394
PMOVZXWQ, VPMOVZXWQ . 396
PMULDQ, VPMULDQ. 398
PMULHRSW, VPMULHRSW . 400
PMULHUW, VPMULHUW . 402
PMULHW, VPMULHW . 404
PMULLD, VPMULLD . 406
PMULLW, VPMULLW. 408
PMULUDQ, VPMULUDQ. 410

vi Contents

AMD64 Technology 26568—Rev. 3.11—December 2010

POR, VPOR. 412
PSADBW, VPSADBW . 414
PSHUFB, VPSHUFB . 416
PSHUFD, VPSHUFD . 418
PSHUFHW, VPSHUFHW. 420
PSHUFLW, VPSHUFLW . 422
PSIGNB, VPSIGNB . 424
PSIGND, VPSIGND . 426
PSIGNW, VPSIGNW . 428
PSLLD, VPSLLD . 430
PSLLDQ, VPSLLDQ . 432
PSLLQ, VPSLLQ . 434
PSLLW, VPSLLW . 436
PSRAD, VPSRAD. 438
PSRAW, VPSRAW . 440
PSRLD, VPSRLD . 442
PSRLDQ, VPSRLDQ . 444
PSRLQ, VPSRLQ . 446
PSRLW, VPSRLW. 448
PSUBB, VPSUBB . 450
PSUBD, VPSUBD. 452
PSUBQ, VPSUBQ. 454
PSUBSB, VPSUBSB. 456
PSUBSW, VPSUBSW. 458
PSUBUSB, VPSUBUSB. 460
PSUBUSW, VPSUBUSW . 462
PSUBW, VPSUBW . 464
PTEST, VPTEST . 466
PUNPCKHBW, VPUNPCKHBW. 468
PUNPCKHDQ, VPUNPCKHDQ . 470
PUNPCKHQDQ, VPUNPCKHQDQ . 472
PUNPCKHWD, VPUNPCKHWD . 474
PUNPCKLBW, VPUNPCKLBW . 476
PUNPCKLDQ, VPUNPCKLDQ . 478
PUNPCKLQDQ, VPUNPCKLQDQ. 480
PUNPCKLWD, VPUNPCKLWD . 482
PXOR, VPXOR . 484
RCPPS, VRCPPS . 486
RCPSS, VRCPSS . 488
ROUNDPD, VROUNDPD . 490
ROUNDPS, VROUNDPS . 493
ROUNDSD, VROUNDSD . 496
ROUNDSS, VROUNDSS . 499
RSQRTPS, VRSQRTPS . 502
RSQRTSS, VRSQRTSS . 504
SHUFPD, VSHUFPD . 506
SHUFPS, VSHUFPS . 508

Contents vii

26568—Rev. 3.11—December 2010 AMD64 Technology

SQRTPD, VSQRTPD . 511
SQRTPS, VSQRTPS . 513
SQRTSD, VSQRTSD . 515
SQRTSS, VSQRTSS . 517
STMXCSR, VSTMXCSR . 519
SUBPD, VSUBPD. 521
SUBPS, VSUBPS . 523
SUBSD, VSUBSD. 525
SUBSS, VSUBSS . 527
UCOMISD, VUCOMISD . 529
UCOMISS, VUCOMISS. 531
UNPCKHPD, VUNPCKHPD . 533
UNPCKHPS, VUNPCKHPS. 535
UNPCKLPD, VUNPCKLPD . 537
UNPCKLPS, VUNPCKLPS . 539
VBROADCASTF128 . 541
VBROADCASTSD . 542
VBROADCASTSS . 543
VEXTRACTF128 . 544
VFMADDPD. 545
VFMADDPS . 547
VFMADDSD. 549
VFMADDSS . 551
VFMADDSUBPD . 553
VFMADDSUBPS . 555
VFMSUBADDPD . 557
VFMSUBADDPS . 559
VFMSUBPD . 561
VFMSUBPS . 563
VFMSUBSD . 565
VFMSUBSS . 567
VFNMADDPD . 569
VFNMADDPS. 571
VFNMADDSD . 573
VFNMADDSS. 575
VFNMSUBPD. 577
VFNMSUBPS . 579
VFNMSUBSD. 581
VFNMSUBSS . 583
VFRCZPD . 585
VFRCZPS . 587
VFRCZSD . 589
VFRCZSS . 591
VINSERTF128 . 593
VMASKMOVPD . 594
VMASKMOVPS . 596
VPCMOV . 598

viii Contents

AMD64 Technology 26568—Rev. 3.11—December 2010

VPCOMB . 600
VPCOMD . 602
VPCOMQ . 604
VPCOMUB . 606
VPCOMUD . 608
VPCOMUQ . 610
VPCOMUW . 612
VPCOMW . 614
VPERM2F128 . 616
VPERMIL2PD. 618
VPERMIL2PS . 621
VPERMILPD. 624
VPERMILPS . 626
VPHADDBD . 630
VPHADDBQ . 631
VPHADDBW . 632
VPHADDDQ. 633
VPHADDUBD . 634
VPHADDUBQ . 635
VPHADDUBW . 636
VPHADDUDQ . 637
VPHADDUWD . 638
VPHADDUWQ . 639
VPHADDWD . 640
VPHADDWQ . 641
VPHSUBBW . 642
VPHSUBDQ . 643
VPHSUBWD. 644
VPMACSDD . 645
VPMACSDQH . 647
VPMACSDQL. 649
VPMACSSDD. 651
VPMACSSDQH . 653
VPMACSSDQL . 655
VPMACSSWD . 657
VPMACSSWW . 659
VPMACSWD . 661
VPMACSWW . 663
VPMADCSSWD . 665
VPMADCSWD . 667
VPPERM . 669
VPROTB . 671
VPROTD . 673
VPROTQ . 675
VPROTW . 677
VPSHAB . 679
VPSHAD . 681

Contents ix

26568—Rev. 3.11—December 2010 AMD64 Technology

VPSHAQ . 683
VPSHAW. 685
VPSHLB . 687
VPSHLD . 689
VPSHLQ . 691
VPSHLW . 693
VTESTPD . 695
VTESTPS . 697
VZEROALL . 699
VZEROUPPER . 700
XORPD, VXORPD . 701
XORPS, VXORPS. 703
XGETBV . 705
XRSTOR . 706
XSAVE. 707
XSETBV . 708

3 Exception Summary .709

Index . 785

x Contents

AMD64 Technology 26568—Rev. 3.11—December 2010

Figures xi

26568—Rev. 3.11—December 2010 AMD64 Technology

Figures
Figure 1-1. Typical Descriptive Synopsis . 2

Figure 1-2. Instruction Byte Order . 2

Figure 1-3. Three-Byte Extended Prefix . 3

Figure 1-4. Two-byte Extended Prefix . 5

Figure 1-5. Opcode Byte Format . 6

Figure 1-6. ModRM Byte Format . 7

Figure 1-7. XFEATURE_ENABLED_MASK Register (XCR0) . 11

Figure 1-8. GFMatrix Representation of 16-byte Block . 16

Figure 1-9. GFMatrix to Operand Byte Mappings . 16

Figure 2-1. Typical Instruction Description . 43

xii Figures

AMD64 Technology 26568—Rev. 3.11—December 2010

Tables xiii

26568—Rev. 3.11—December 2010 AMD64 Technology

Tables
Table 1-1. VEX/XOP.mmmmm Encoding . 4
Table 1-2. VEX/XOP.vvvv Encoding . 4
Table 1-3. VEX/XOP.pp Encoding . 5
Table 1-4. Fixed Two-byte Prefix Field Values. 6
Table 1-5. Operand Element Size (OES) . 6
Table 1-6. Three-Operand Selection . 9
Table 1-7. Four-Operand Selection . 10
Table 1-8. XCR0 Processor State Components . 12
Table 1-9. Extended Save Area Format . 12
Table 1-10. XRSTOR Hardware-Specified Initial Values . 14
Table 1-11. SBox Definition . 23
Table 1-12. InvSBox Definition . 25
Table 1-13. Cipher Key, Round Sequence, and Round Key Length . 26
Table 1-14. Source Data Format . 38
Table 1-15. Comparison and Aggregation Method . 39
Table 1-16. Complementation . 40
Table 1-17. Indexed Comparison Output Selection . 40
Table 1-18. Masked Comparison Output Selection . 40
Table 1-19. End-of-String Comparison Override. 41
Table 3-1. Instructions By Exception Class . 709

xiv Tables

AMD64 Technology 26568—Rev. 3.11—December 2010

Revision History xv

26568—Rev. 3.11—December 2010 AMD64 Technology

Revision History

Date Revision Description

December
2010

3.11 Complete revision and reformat accommodating 128-bit and 256-bit media
instructions. Includes revised definitions of legacy SSE, SSE2, SSE3,
SSE4.1, SSE4.2, and SSSE3 instructions, as well as new definitions of
extended AES, AVX, CLMUL, FMA4, and XOP instructions. Introduction
includes supplemental information concerning encoding of extended
instructions, enhanced processor state management provided by the
XSAVE/XRSTOR instructions, cryptographic capabilities of the AES
instructions, and functionality of extended string comparison instructions.

September
2007

3.10 Added minor clarifications and corrected typographical and formatting
errors.

July 2007 3.09 Added the following instructions: EXTRQ on page 105, INSERTQ on
page 121, MOVNTSD on page 183, and MOVNTSS on page 185.
Added misaligned exception mask (MXCSR.MM) information.
Added imm8 values with corresponding mnemonics to CMPPD on page 25,
CMPPS on page 29, CMPSD on page 32, and CMPSS on page 35.
Reworded CPUID information in condition tables.
Added minor clarifications and corrected typographical and formatting
errors.

September
2006 3.08 Made minor corrections.

December
2005 3.07 Made minor editorial and formatting changes.

January 2005 3.06 Added documentation on SSE3 instructions. Corrected numerous minor
factual errors and typos.

September
2003 3.05 Made numerous small factual corrections.

April 2003 3.04 Made minor corrections.

xvi Revision History

AMD64 Technology 26568—Rev. 3.11—December 2010

Preface xvii

26568—Rev. 3.11—December 2010 AMD64 Technology

Preface

About This Book
This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual.
The complete set includes the following volumes.

Audience
This volume is intended for programmers who develop application or system software.

Organization
Volumes 3, 4, and 5 describe the AMD64 instruction set in detail, providing mnemonic syntax,
opcodes, functions, affected flags, and possible exceptions.

The AMD64 instruction set is divided into five subsets:

• General-purpose instructions
• System instructions
• 128-bit and 256-bit media instructions
• 64-bit media instructions
• x87 floating-point instructions

Several instructions belong to, and are described identically in, multiple instruction subsets.

This volume describes the 128-bit and 256-bit media instructions, including both legacy and extended
forms of the instructions. The index at the end cross-references topics within this volume. For other
topics relating to the AMD64 architecture, and for information on instructions in other subsets, see the
tables of contents and indexes of the other volumes.

Title Order No.

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit and 256-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

xviii Preface

AMD64 Technology 26568—Rev. 3.11—December 2010

Definitions
Many of the following definitions assume an in-depth knowledge of the legacy x86 architecture. See
“Related Documents” for descriptions of the legacy x86 architecture.

Terminology

128-bit media instructions
Instructions that use the 128-bit XMM registers.

256-bit media instructions
Instructions that use the 256-bit YMM registers.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode
A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

absolute
A displacement that references the base of a code segment rather than an instruction pointer.
See relative.

biased exponent
The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte
Eight bits.

clear, cleared
To write the value 0 to a bit or a range of bits. See set.

compatibility mode
A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

Preface xix

26568—Rev. 3.11—December 2010 AMD64 Technology

commit
To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct
Referencing a memory address included in the instruction syntax as an immediate operand. The
address may be an absolute or relative address. See indirect.

dirty data
Data in processor caches or internal buffers that is more recent than the copy held in main memory.

displacement
A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

effective address size
The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size
The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element
See vector.

exception
An abnormal condition that occurs as the result of instruction execution. Processor response to an
exception depends on the type of exception. For exceptions other than SIMD floating-point
exceptions and x87 floating-point exceptions, control is transferred to a handler (service routine)
by means of an exception vector. For floating-point exceptions defined by the IEEE 754 standard,
there are both masked and unmasked responses. When unmasked, the exception handler is called,
and when masked, a default response is provided instead of calling the handler.

extended instruction
An AVX, FMA, or XOP media instruction. See legacy instruction.

xx Preface

AMD64 Technology 26568—Rev. 3.11—December 2010

flush
An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

GDT
Global descriptor table.

GIF
Global interrupt flag.

IDT
Interrupt descriptor table.

indirect
Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. See direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy instruction
Any version of SSE media instruction. See extended instruction.

legacy x86
The legacy x86 architecture.

legacy mode
An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

long mode
An operating mode unique to the AMD64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

Preface xxi

26568—Rev. 3.11—December 2010 AMD64 Technology

lsb
Least-significant bit.

LSB
Least-significant byte.

main memory
Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask
(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs.

memory
Unless otherwise specified, main memory.

moffset
A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb
Most-significant bit.

MSB
Most-significant byte.

octword
Same as double quadword.

offset
Same as displacement.

overflow
The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed
See vector.

PAE
Physical-address extensions.

xxii Preface

AMD64 Technology 26568—Rev. 3.11—December 2010

physical memory
Actual memory, consisting of main memory and cache.

probe
A check for an address in processor caches or internal buffers. External probes originate outside
the processor, and internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, eight bytes, or 64 bits.

RAZ
Read as zero (0), regardless of what is written.

real-address mode, real mode
A short name for real-address mode, a submode of legacy mode.

relative
Referencing with a displacement (offset) from an instruction pointer rather than the base of a code
segment. See absolute.

reserved
Fields that may be used at some future time. Such fields may be further qualified as MBZ, RAZ,
SBZ or IGN (see definitions).
To preserve compatibility with future processors, software must observe the following constraints.
Software must not depend on the state of a reserved field, nor upon the ability of such fields to
return to a previously-written state.
When a reserved field is not marked with one of the above qualifiers, software must not change the
state of the reserved field; it must reload the field with the same values returned by a prior read.

REX
A legacy instruction prefix that specifies 64-bit operand size and provides access to additional
registers.

RIP-relative addressing
Addressing relative to the 64-bit relative instruction pointer.

set
To write the value 1 to a bit or a range of bits. See clear.

SIMD
Single instruction, multiple data. See vector.

Preface xxiii

26568—Rev. 3.11—December 2010 AMD64 Technology

SSE
Streaming SIMD extensions instruction set. There are several versions, including SSE, SSE2.
SSE3, SSE4.1, SSE4.2, and SSSE3. See legacy instructions.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TSS
Task-state segment.

underflow
The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector
(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most media instructions use vectors as operands. Also called packed or SIMD operands.
(2) An interrupt descriptor table index, used to access exception handlers. See exception.

virtual-8086 mode
A submode of legacy mode.

VEX prefix
Extended instruction identifier prefix, used by AVX, CLMUL, and FMA4 instructions.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

x86
See legacy x86.

XOP prefix
Extended instruction identifier prefix, used by XOP instructions.

xxiv Preface

AMD64 Technology 26568—Rev. 3.11—December 2010

Notation

Chapter 1, “Introduction” describes notation relating specifically to instruction encoding.

1011b
A binary value, in this example, a 4-bit value.

F0EAh
A hexadecimal value, in this example a 2-byte value.

[1,2)
A range that includes the left-most value (in this case, 1) but excludes the right-most value (in this
case, 2).

[7:4]
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

#GP(0)
A general-protection exception (#GP) with error code of 0.

[CR0–CR4]
A register range, from register CR0 through CR4, inclusive, with the low-order register first.

CR4.OXSAVE
The OXSAVE bit of the CR4 register.

CR0.PE = 1
The PE bit of the CR0 register has a value of 1.

DS:rSI
The content of a memory location whose segment address is in the DS register and whose offset
relative to that segment is in the rSI register.

EFER.LME = 0
The LME bit of the EFER register has a value of 0.

FF /0
FF is the first byte of an opcode, and a subopcode in the ModR/M byte has a value of 0.

Preface xxv

26568—Rev. 3.11—December 2010 AMD64 Technology

Registers

In the following list of registers, mnemonics refer either to the register itself or to the register content:

[AH–DH]
The high 8-bit AH, BH, CH, and DH registers. See [AL–DL].

[AL–DL]
The low 8-bit AL, BL, CL, and DL registers. See [AH–DH].

[AL-r15B]
The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and [r8B–r15B] registers, available in 64-bit
mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

[eAX–eSP]
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. See [rAX–rSP].

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. See rFLAGS.

EFLAGS
32-bit (extended) flags register.

eIP
16-bit or 32-bit instruction-pointer register. See rIP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

xxvi Preface

AMD64 Technology 26568—Rev. 3.11—December 2010

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8–R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

[r8–r15]
The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W registers, or the 32-bit R8D–R15D
registers, or the 64-bit R8–R15 registers.

r[AX–rSP]
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

Preface xxvii

26568—Rev. 3.11—December 2010 AMD64 Technology

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. See RFLAGS.

RFLAGS
64-bit flags register. See rFLAGS.

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. See RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

TPR
Task priority register (CR8).

TR
Task register.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with the least-significant byte at the lowest byte address, and illustrated with their
least significant byte at the right side. Strings are illustrated in reverse order, because the addresses of
string bytes increase from right to left.

xxviii Preface

AMD64 Technology 26568—Rev. 3.11—December 2010

Related Documents
• Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,

1995.
• Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood

Cliffs, NJ, 1991.
• AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia Technology, Sunnyvale, CA, 2000.
• AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.
• AMD, AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets, Sunnyvale, CA, 2000.
• Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New

York, 1995.
• Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,

1992.
• Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,

Macmillan Publishing Co., New York, 1994.
• Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,

Prentice-Hall, Englewood Cliffs, NJ, 1995.
• Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.
• Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest

McGraw-Hill, 1993.
• Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994.
• Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and

Technologies, Inc., San Jose, 1992.
• John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.
• Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,

1995.
• Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.
• Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,

TX, 1996.
• Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.
• Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,

NY, 1991.
• William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New

York, 1991.
• Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.
• John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,

San Mateo, CA, 1996.
• Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

Preface xxix

26568—Rev. 3.11—December 2010 AMD64 Technology

• Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

• IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

• IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

• IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

• Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

• Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.
• Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel

Pentium, Oxford University Press, New York, 1999.
• Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &

Sons, New York, 1987.
• NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.
• NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.
• Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium III,

www.x86.org/articles/sse_pt1/ simd1.htm, June, 2000.
• Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,

Redmond, WA, 1993.
• PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
• PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.
• Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,

New York, 1993.
• Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite

class, 1992.
• Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.
• SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson

Corporation, 1995.

xxx Preface

AMD64 Technology 26568—Rev. 3.11—December 2010

• Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
• John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.
• Web sites and newsgroups:

- www.amd.com
- news.comp.arch
- news.comp.lang.asm.x86
- news.intel.microprocessors
- news.microsoft

Introduction 1

26568—Rev. 3.11—December 2010 AMD64 Technology

1 Introduction

This chapter provides an overview of the legacy and extended 128-bit and 256-bit media instructions,
with supplemental information about new capabilities. Chapter 2, “Instruction Reference” contains
detailed descriptions of each instruction, organized in alphabetic order by mnemonic.

Processors capable of performing the same operation simultaneously on multiple data streams are
classified as single-instruction, multiple-data (SIMD). Media instructions utilize the SIMD
capabilities of the AMD64 architecture. Most of the instructions perform simultaneous operations on
sets of packed elements called vectors, although a subset operates on scalar values. There are
instructions for both integer and floating-point operations.

Legacy instructions include members of the various sets of Streaming SIMD (SSE) instructions;
extended instructions include the AVX, CLMUL, FMA4, and XOP instruction sets. When there are
both legacy and extended forms of an instruction, the two forms are described together.

The instructions can be used in legacy mode or long (64-bit) mode. CPUID function 8000_0001h[LM]
indicates the availability of long mode.

Compilation for execution in 64-bit mode offers the following advantages:

• Access to sixteen 128-bit XMM registers
• Access to sixteen 256-bit YMM registers
• Access to sixteen 64-bit general-purpose registers
• Access to the 64-bit virtual address space and the RIP-relative addressing mode

Hardware support for the various sets of media instructions is indicated by CPUID functions.
The CPUID functions that pertain to each instruction are shown in the instruction description.

1.1 Syntax and Notation
The descriptive synopsis of opcode syntax for legacy instructions follows the conventions described in
Volume 3: General Purpose and System Instructions.

For further information, see:

• “128-Bit Media and Scientific Programming” in Volume 1.
• “Summary of Registers and Data Types” in Volume 3.
• “Notation” in Volume 3.
• “Instruction Prefixes” in Volume 3

The syntax of the extended instruction sets requires an expanded synopsis. The expanded synopsis
includes a mnemonic summary and a summary of prefix fields. Figure 1-1 shows the descriptive
synopsis of a typical XOP instruction. The synopses of other extended instructions have the same
format, differing only in regard to the instruction set prefix.

Extended
 Prefix Opcode

Displacement ImmediateLegacy
Prefix ModRM SIB

2 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

Figure 1-1. Typical Descriptive Synopsis

1.2 Extended Instruction Format
Figure 1-2 shows the instruction element order of extended instructions. Each element is described in
the following sections. The descriptions are overviews; reference is made to pertinent portions of the
AMD64 Architecture Programmer’s Manual.

Figure 1-2. Instruction Byte Order

1.2.1 Legacy Prefixes
Optional legacy prefixes include operand-size override, address-size override, segment override, Lock
and REP prefixes. For additional information, see section 1.2, “Instruction Prefixes” in the AMD64
Architecture Programmer’s Manual Volume 3: General Purpose and System Instructions,
order# 24594.

1.2.2 Three-Byte Extended Prefix
All extended instructions can be encoded using a three-byte prefix. XOP instructions use only the
three-byte prefix, but VEX-encoded instructions that comply with the constraints described in
Section 1.2.3, “Two-Byte Extended Prefix” can also utilize a two-byte prefix. Figure 1-3 shows the
format of the three-byte prefix.

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPCMOV ymm1, ymm2, ymm3/mem256, ymm4 8F RXB.08 0.src.1.00 A2 /r ib

assembly language representation instruction set
prefix

3-bit field representing R, X, B bit values

W bit
vvvv field

L bit
pp field

opcode
register/memory type specifier

immediate operand
5-bit encoding for opcode prefix

Introduction 3

26568—Rev. 3.11—December 2010 AMD64 Technology

Figure 1-3. Three-Byte Extended Prefix

1.2.2.1 Prefix Byte 0

The value in this byte indicates the extended instruction type. AVX, CLMUL, and FMA4 instructions
use the VEX prefix; XOP instructions use the XOP prefix.

• Byte 0 of the VEX prefix must be C4h for three-byte prefixes or C5h for two-byte prefixes.
• Byte 0 of the XOP prefix must be 8Fh, and all XOP instructions use a three-byte prefix.

1.2.2.2 Prefix Byte 1

Bit [7] — R

The bit-inverted equivalent of the REX.R bit. A one-bit extension of the ModRM.reg field in 64-bit
mode, permitting access to 16 YMM/XMM and GPR registers. In 32-bit protected and compatibility
modes, the value must be 1.

Bit [6]] — X

The bit-inverted equivalent of the REX.X bit. A one-bit extension of the SIB.index field in 64-bit
mode, permitting access to 16 YMM/XMM and GPR registers. In 32-bit protected and compatibility
modes, this value must be 1.

Byte 0 Byte 1 Byte 2
7 0 7 5 4 0 7 6 3 2 1 0

Instruction set prefix R X B mmmmm W vvvv L pp

Prefix Byte Bit Mnemonic Description
0 [7:0] VEX, XOP Value specific to the extended instruction set
1 [7] R Inverted one-bit extension of ModRM.reg field

[6] X Inverted one-bit extension of SIB index field
[5] B Inverted one-bit extension, ModRM r/m field or

SIB base field
[4:0] mmmmm Opcode map select

2 [7] W Default operand size override for a general
purpose register to 64-bit size in 64-bit mode;

operand configuration specifier for certain
XMM/YMM-based operations.

[6:3] vvvv Source or destination register selector, in ones’
complement format.

[2] L Vector length specifier
[1:0] pp Implied 66, F2, or F3 opcode extension.

4 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

Bit [5] — B

The bit-inverted equivalent of the REX.B bit, available only in the 3-byte prefix format. A one-bit
extension of either the ModRM.r/m field, to specify a GPR or XMM register, or of the SIB base field,
to specify a GPR. This permits access to 16 GPR and 16 YMM/XMM registers. In 32-bit protected and
compatibility modes, this bit is ignored.

Bits [4:0] — mmmmm

A five-bit field encoding an implied one- or two-byte opcode prefix, as shown in Table 1-3.

The XOP.mmmmm field must have a value greater than or equal to 8; if the value is less than 8 these
two bytes are interpreted as a form of the POP instruction rather than as an XOP prefix.

1.2.2.3 Prefix Byte 2

Bit [7] — W

Function is instruction-specific. The bit is often used to configure source operand order.

Bits [6:3] — vvvv

Encodes an XMM or YMM register in inverted ones’ complement form, as shown in Table 1-2

Values 0000h to 0111h are not valid in 32-bit modes. The selected registers are typically first sources,
but for the VPSLLDQ, VPSRLDQ, VPSRLW, VPSRLD, VPSRLQ, VPSRAW, VPSRAD, VPSLLW,
VPSLLD, and VPSLLQ shift instructions, a destination is selected.

Table 1-1. VEX/XOP.mmmmm Encoding
Binary Value Implied Prefix

00000 Reserved
00001 Implied 0Fh prefix
00010 Implied 0F38h prefix
00011 Implied 0F3Ah prefix

00100 - 11111 Reserved

Table 1-2. VEX/XOP.vvvv Encoding
Binary Value Register Binary Value Register

0000 XMM15/YMM15 1000 XMM07/YMM07
0001 XMM14/YMM14 1001 XMM06/YMM06
0010 XMM13/YMM13 1010 XMM05/YMM05
0011 XMM12/YMM12 1011 XMM04/YMM04
0100 XMM11/YMM11 1100 XMM03/YMM03
0101 XMM10/YMM10 1101 XMM02/YMM02
0110 XMM09/YMM09 1110 XMM01/YMM01
0111 XMM08/YMM08 1111 XMM00/YMM00

Introduction 5

26568—Rev. 3.11—December 2010 AMD64 Technology

Bit [2] — L

L = 0 specifies 128-bit vector length (XMM registers/128-bit memory locations) or use of scalar
operands. L=1 specifies 256-bit vector length (YMM registers/256-bit memory locations).

Bits [1:0] — pp

Specifies an implied 66h, F2h, or F3h opcode extension, as shown in Table 1-3. These prefixes are not
allowed with extended instructions.

1.2.3 Two-Byte Extended Prefix
All extended instructions can be encoded using the three-byte prefix, but certain VEX-encoded
instructions can also utilize a compact, two-byte prefix. XOP instructions do not use the two-byte
prefix. The format of the two-byte prefix is shown in Figure 1-3.

Figure 1-4. Two-byte Extended Prefix

When the two-byte prefix is used, specific fields of the three-byte prefix are automatically replaced by
predetermined values, as shown in Table 1-4.

Table 1-3. VEX/XOP.pp Encoding
Binary Value Implied Prefix

00 None
01 66h
10 F3h
11 F2h

Byte 0 Byte 1
7 0 7 6 3 2 1 0

W vvvv L pp

Prefix Byte Bit Mnemonic Description
0 [7:0] VEX Value specific to the extended instruction set
1 [7] R Default operand size override for a general

purpose register to 64-bit size in 64-bit mode;
operand configuration specifier for certain

XMM/YMM-based operations.
[6:3] vvvv Source or destination register selector, in ones’

complement format.
[2] L Vector length specifier

[1:0] pp Implied 66, F2, or F3 opcode extension.

6 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

Because the replacement values are used, all two-byte forms can also be encoded as three-byte forms.
Other field definitions within the two bytes are the same as for the three-byte prefix.

An instruction that satisfies the constraints can be expressed as an instruction with a two-byte prefix.
In the two-byte form, the fixed value of the mmmmm field is 00001b, which decodes to an implied
0Fh leading the opcode byte; all extended instructions of that form can be expressed with a two-byte
prefix, providing the other constraints are met. Instructions that use the other legal forms of mmmm,
0010h (0F 38h leading the opcode byte) and 00011 (0F 3Ah leading the opcode byte), cannot be
expressed with a two-byte prefix. Note that these implied opcode prefixes are distinct from the implied
opcode extensions defined by the pp field; any pp field value can be used.

1.2.4 Opcode Byte
Figure 1-5 shows the format of the opcode byte. For most instructions, operand element size (OES) is
specified by the two least-significant opcode bits, as shown in Table 1-5.

Figure 1-5. Opcode Byte Format

Table 1-4. Fixed Two-byte Prefix Field Values
VEX Field Value

X 1
B 1
W 0

mmmmm 00001

7 2 1 0
Opcode OES

Table 1-5. Operand Element Size (OES)
Binary Value Integer, Operation Floating-Point,

Operation
00 Byte PS
01 Word PD
10 Doubleword SS
11 Quadword SD

Introduction 7

26568—Rev. 3.11—December 2010 AMD64 Technology

1.2.5 ModRM, SIB, and Displacement
The ModRM byte is used in certain instruction encodings to define a register or memory reference or
to provide additional opcode bits with which to define the instruction’s function. Figure 1-6 shows the
format of the byte.

Figure 1-6. ModRM Byte Format

The following summarizes the field functions for extended instructions.

• ModRM.r/m generally specifies a memory operand, as determined by ModRM.mod, but for some
instructions that do not address memory, it specifies a source or destination register operand.

• ModRM.reg generally encodes a source or destination register operand, but is sometimes treated
as an opcode extension.

• ModRM.mod, the SIB byte, and the displacement specify the type of memory access and
addressing mode.

In some instructions, the ModRM byte is followed by a scale-index-base (SIB) byte, which defines
memory addressing for the complex-addressing modes described in “Effective Addresses” in
Volume 1. The SIB byte has three fields (scale, index, and base) that define the scale factor, index-
register number, and base-register number for complex addressing modes.

A displacement, or offset, is a signed value that is added to the base of a code segment for absolute
addressing or to an instruction pointer for relative addressing. Displacement values can be one to four
bytes in length. When a displacement is required, the displacement bytes follow the opcode, ModRM,
or SIB byte in the instruction encoding.

1.2.6 Immediate Bytes
An immediate is a value, typically an operand, encoded directly into an instruction. Depending on the
opcode and the operating mode, the size of an immediate operand can be 1, 2, 4, or 8 bytes. Legacy and
extended media instructions typically use an immediate byte operand (imm8).

The immediate byte is generally shown in the instruction synopsis as an “ib” suffix. For four-byte
FMA4 instructions, the suffix “is4” is used to indicate the presence of the immediate byte used to
select the fourth source operand. See Section 1.2.7.4, “Four-Operand Instructions” and “Immediate
Operand Size” in Volume 1 for more information.

7 6 5 3 2 0
mod reg r/m

8 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

1.2.7 Instruction Format Examples
The following sections provide examples of two-, three-, and four-operand extended instructions.
These instructions generally perform nondestructive-source operations, meaning a single register is
not used as both a source and a destination, so source content is preserved. Most legacy instructions
perform destructive-source operations, in which a single register is both source and destination, so
source content is lost.

1.2.7.1 XMM Register Destinations

The following general properties apply to XMM/YMM register destination operands.

• For legacy instructions that use XMM registers as a destination: When a result is written to a
destination XMM register, bits [255:128] of the corresponding YMM register are not affected.

• For extended instructions that use XMM registers as a destination: When a result is written to a
destination XMM register, bits [255:128] of the corresponding YMM register are cleared.

1.2.7.2 Two Operand Instructions

Two-operand instructions use ModRM-based operand assignment. For most instructions, the first
operand is the destination, selected by the ModRM.reg field, and the second operand is either a register
or a memory source, selected by the ModRM.r/m field.

VCVTDQ2PD is an example of a two-operand AVX instruction.

The destination register is selected by ModRM.reg. The size of the destination register is determined
by VEX.L. The source is either an XMM register or a memory location specified by ModRM.r/m
Because this instruction converts packed doubleword integers to double-precision floating-point
values, the source data size is smaller than the destination data size.

VEX.vvvv is not used and must be set to 1111b.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCVTDQ2PD xmm1, xmm2/mem64 C4 RXB.01 0.1111.0.10 E6 /r
VCVTDQ2PD ymm1, xmm2/mem128 C4 RXB.01 0.1111.1.10 E6 /r

Introduction 9

26568—Rev. 3.11—December 2010 AMD64 Technology

1.2.7.3 Three-Operand Instructions

These extended instructions have two source operands and a destination operand.

VPROTB is an example of a three-operand XOP instruction.

There are versions of the instruction for variable-count rotation and for fixed-count rotation.

VPROTB dest, src, variable-count

VPROTB dest, src, fixed-count

For both versions of the instruction, the destination (dest) operand is an XMM register specified by
MODRM.reg.

The variable-count version of the instruction rotates each byte of the source as specified by the
corresponding byte element variable-count.

Selection of src and variable-count is controlled by XOP.W.

• When XOP.W = 0, src is either an XMM register or a 128-bit memory location specified by
MODRM.rm, and variable-count is an XMM register specified by XOP.vvvv.

• When XOP.W = 1, src is an XMM register specified by XOP.vvvv and variable-count is either an
XMM register or a 128-bit memory location specified by MODRM.rm.

Table 1-6 summarizes the effect of the XOP.W bit on operand selection.

Table 1-6. Three-Operand Selection

The fixed-count version of the instruction rotates each byte of src as specified by the immediate byte
operand fixed-count. For this version, src is either an XMM register or a 128-bit memory location
specified by MODRM.r/m. Because XOP.vvvv is not used to specify the source register, it must be set
to 1111b or execution of the instruction will cause an Invalid Opcode (#UD) exception.

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPROTB xmm1, xmm2/mem128, xmm3 8F RXB.09 0.src.0.00 90 /r
VPROTB xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 90 /r
VPROTB xmm1, xmm2/mem128, imm8 8F RXB.08 0.1111.0.00 90 /r ib

XOP.W dest src variable-count
0 ModRM.reg ModRM.r/m XOP.vvvv
1 ModRM.reg XOP.vvvv ModRM.r/m

10 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

1.2.7.4 Four-Operand Instructions

Some extended instructions have three source operands and a destination operand. This is
accomplished by using the VEX/XOP.vvvv field, the ModRM.reg and ModRM.r/m fields, and bits
[7:4] of an immediate byte to select the operands. The opcode suffix “is4” is used to identify the
immediate byte, and the selected operands are shown in the synopsis.

VFMSUBPD is an example of an four-operand FMA4 instruction.

VFMSUBPD dest, src1, src2, src3 dest = src1* src2 - src3

The first operand, the destination (dest), is an XMM register or a YMM register (as determined by
VEX.L) selected by MODRM.reg. The following three operands (src1, src2, src3) are sources.

The src1 operand is an XMM or YMM register specified by VEX.vvvv.

VEX.W determines the configuration of the src2 and src3 operands.

• When VEX.W = 0, src2 is either a register or a memory location specified by ModRM.r/m, and
src3 is a register specified by bits [7:4] of the immediate byte.

• When VEX.W = 1, src2 is a register specified by bits [7:4] of the immediate byte and src3 is either
a register or a memory location specified by ModRM.r/m.

Table 1-6 summarizes the effect of the VEX.W bit on operand selection.

Table 1-7. Four-Operand Selection

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFMSUBPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src.0.01 6D /r is4
VFMSUBPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src.1.01 6D /r is4
VFMSUBPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src.0.01 6D /r is4
VFMSUBPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src.1.01 6D /r is4

VEX.W dest src1 src2 src3
0 ModRM.reg VEX.vvvv ModRM.r/m is4[7:4]
1 ModRM.reg VEX.vvvv is4[7:4] ModRM.r/m

Introduction 11

26568—Rev. 3.11—December 2010 AMD64 Technology

1.3 XSAVE/XRSTOR Instructions
The XSAVE, XRSTOR, XGETBV, and XSETBV instructions and associated data structures extend
the FXSAVE/FXRSTOR memory image used to manage processor states and provide additional
functionality. These instructions do not obviate the FXSAVE/FXRSTOR instructions. For more
information about FXSAVE/FXRSTOR, refer to the AMD64 Architecture Programmer’s Manual
Volume 3: General Purpose and System Instructions.

The CPUID instruction is used to identify features supported in processor hardware. Extended control
registers are used to enable and disable the handling of processor states associated with supported
hardware features and to communicate to an application whether an operating system supports a
particular feature that has a processor state specific to it.

1.3.1 CPUID Enhancements
• CPUID Fn0000_00001_ECX[XSAVE] indicates that the processor supports XSAVE/XRSTOR

instructions and at least one XCR.
• CPUID Fn0000_00001_ECX[OSXSAVE] indicates whether the operating system has enabled

extensible state management and supports processor extended state management.
• CPUID leaf function 0DH enumerates the list of processor states (including legacy x87 FPU states,

SSE states, and processor extended states), the offset, and the size of the save area for each
processor extended state.

1.3.2 Extended Control Registers

Currently, the only defined extended control register (XCR) is XFEATURE_ENABLED_MASK
(XCR0), shown in Figure 1-7. XCR0 specifies the processor states enabled on a particular device,
including x87 floating point states, SIMD states, and extended states developed for the AMD64
architecture.

Figure 1-7. XFEATURE_ENABLED_MASK Register (XCR0)

Table 1-8 shows the processor state components currently supported by the AMD64 architecture.

63 0
X Processor State Extension Space

Bits Mnemonic Description
[63] Reserved for XCR0 bit vector expansion

[62:0] Processor State Extension Space

12 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

1.3.3 Extended Save Area

The XSAVE/XRSTOR save area extends the legacy 512-byte FXSAVE/FXRSTOR memory image to
provide a compatible register state management environment as well as an upward migration path. The
save area is architecturally defined to be extendable and enumerated by the sub-leaves of the
CPUID.0DH leaf. Figure 1-9 shows the format of the XSAVE/XRSTOR area.

The register fields of the first 512 bytes of the XSAVE/XRSTOR area are the same as those of the
FXSAVE/FXRSTOR area, but the 512-byte area is organized as x87 FPU states, MXCSR (including
MXCSR_MASK), and XMM registers. The layout of the save area is fixed and may contain non-
contiguous individual save areas because a processor does not support certain extended states or
because system software does not support certain processor extended states. The save area is not
compacted when features are not saved or are not supported by the processor or by system software.

1.3.4 Instruction Functions

CR4.OSXSAVE and XCR0 can be read at all privilege levels but written only at ring 0.

• XGETBV reads XCR0.
• XSETBV writes XCR0, ring 0 only.
• XRSTOR restores states specified by bitwise AND of a mask operand in EDX:EAX with XCR0.
• XSAVE saves states specified by bitwise AND of a mask operand in EDX:EAX with XCR0.

Table 1-8. XCR0 Processor State Components
Bit Meaning

0 When set, indicates XSAVE/XRSTOR support for x87 state management.
This bit must be set

1 When set, indicates XSAVE/XRSTOR support for SSE state management.
This bit must be set to enable AVX extensions.

2 When set, indicates XSAVE/XRSTOR support for YMM state management.
This bit must be set to enable AVX extensions.

62 When set, indicates support for Lightweight Profiling (LWP) extensions are
enabled and XSAVE/XRSTOR support LWP state management.

Table 1-9. Extended Save Area Format
Save Area Offset (Byte) Size (Bytes)

FPU/SSE Save Area 0 512
Header 512 64

Reserved, (Ext_Save_Area_2) CPUID.(EAX=0DH, ECX=2):EBX CPUID.(EAX=0DH, ECX=2):EAX
Reserved, (Ext_Save_Area_3) CPUID.(EAX=0DH, ECX=3):EBX CPUID.(EAX=0DH, ECX=3):EAX
Reserved, (Ext_Save_Area_4) CPUID.(EAX=0DH, ECX=4):EBX CPUID.(EAX=0DH, ECX=4):EAX

Reserved, (…) … …
Note: Bytes [464:511] are available for software use. XRSTOR ignores bits [464:511] of an XSAVE image.

Introduction 13

26568—Rev. 3.11—December 2010 AMD64 Technology

1.3.5 YMM States and Supported Operating Modes

Extended instructions operate on YMM states by means of extended (XOP/VEX) prefix encoding.
When a processor supports YMM states, the states exist in all operating modes, but interfaces to access
the YMM states may vary by mode. Processor support for extended prefix encoding is independent of
processor support of YMM states.

Instructions that use extended prefix encoding are generally supported in long and protected modes,
but are not supported in real or virtual 8086 modes, or when entering SMM mode. Bits [255:128] of
the YMM register state are maintained across transitions into and out of these modes. The
XSAVE/XRSTOR instructions function in all operating modes; XRSTOR can modify YMM register
state in any operating mode, using state information from the XSAVE/XRSTOR area.

1.3.6 YMM State Management

Operating systems must use the XSAVE/XRSTOR instructions for YMM state management. The
instructions also provide an interface to manage XMM/MXCSR states and x87 FPU states in
conjunction with processor extended states.An operating system must enable YMM state management
to support extended instructions. Attempting to execute an extended instruction without enabling
YMM state management causes a #UD exception.

1.3.6.1 Enabling YMM State

To enable YMM state support, the operating system must perform the following steps.
• Verify support for XSAVE/XRSTOR instructions and XCR0

by checking CPUID Fn0000_00001_ECX[XSAVE].
• Verify CPUID.(EAX = 0DH, ECX = 0):EAX.SSE[bit 1] = 1,

because the lower 128-bits of an YMM register are aliased to an XMM register.
• Determine buffer size requirement for the XSAVE area.
• Set CR4.OSXSAVE to enable the use of XSETBV/XGETBV to write/read XCR0.
• Provide a mask in EDX:EAX that allows XSETBV to enable processor state components

managed by XSAVE/XRSTOR instructions.
- To enable x87 FPU, SSE, and YMM state management, the mask is EDX = 0H, EAX = 7H.
- EDX:EAX[2:1] = 11b must be used to enable YMM state.

Attempting to execute XSETBV with EDX:EAX[2:1] = 10b causes a #GP(0) exception.

14 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

1.3.7 Saving Processor State

The XSTATE header starts at byte offset 512 in the save area. XSTATE_BV is the first 64-bit field in
the header. The order of bit vectors in XSTATE_BV matches the order of bit vectors in XCR0. The
XSAVE instruction sets bits in the XSTATE_BV vector field when it writes the corresponding
processor extended state to a save area in memory. XSAVE modifies only bits for processor states
specified by bitwise AND of the XSAVE bit mask operand in EDX:EAX with XCR0. If software
modifies the save area image of a particular processor state component directly, it must also set the
corresponding bit of XSTATE_BV. If the bit is not set, directly modified state information in a save
area image may be ignored by XRSTOR.

1.3.8 Restoring Processor State
When XRSTOR is executed, processor state components are updated only if the corresponding bits in
the mask operand (EDX:EAX) and XCR0 are both set. For each updated component, when the
corresponding bit in the XSTATE_BV field in the save area header is set, the component is loaded
from the save area in memory. When the XSTATE_BV bit is cleared, the state is set to the hardware-
specified initial values shown in Table 1-10.

1.3.9 MXCSR State Management
The MXCSR has no hardware-specified initial state; it is read from the save area in memory whenever
either XMM or YMM_HI are updated.

1.3.10 Mode-Specific XSAVE/XRSTOR State Management
Some state is conditionally saved or updated, depending on processor state:

• The x87 error pointers are not saved or restored if the state saved or loaded from memory doesn't
have a pending #MF.

• XMM8 - XMM15 are not saved or restored in !64-bit mode.
• YMM_HI8-YMM_HI15 are not saved or restored in !64-bit mode.

Table 1-10. XRSTOR Hardware-Specified Initial Values
Component Initial Value

x87 FCW = 037Fh
FSW = 0000h
FTW = FFFFh

x87 Error Pointers = 0
ST0 - ST7 = 0

 XMM XMM0 - XMM15 = 0, if 64-bit mode
XMM0 - XMM7 = 0, if !64-bit mode

YMM_HI YMM_HI0 -Y MM_HI15 = 0, if 64-bit mode
YMM_HI0-YMM_HI7 = 0, if !64-bit mode

LWP LWP disabled

Introduction 15

26568—Rev. 3.11—December 2010 AMD64 Technology

1.4 AES Instructions
This section provides an overview of AMD64 instructions that support AES software implementation.

The U.S. National Institute of Standards and Technology has adopted the Rijndael algorithm,
a block cipher that processes 16-byte data blocks using a shared key of variable length, as the
Advanced Encryption Standard (AES). The standard is defined in Federal Information Processing
Standards Publication 197 (FIPS 197), Specification for the Advanced Encryption Standard (AES).
There are three versions of the algorithm, based on key widths of 16 (AES-128), 24 (AES-192), and 32
(AES-256) bytes.

The following AMD64 instructions support AES implementation:

• AESDEC/VAESDEC and AESDECLAST/VAESDECLAST
Perform one round of AES decryption

• AESENC/VAESENC and AESENCLAST/VAESENCLAST
Perform one round of AES encryption

• AESIMC/VAESIMC
Perform the AES InvMixColumn transformation

• AESKEYGENASSIST/VAESKEYGENASSIST
Assist AES round key generation

• PCLMULQDQ, VPCLMULQDQ
Perform carry-less multiplication

See Chapter 2, “Instruction Reference” for detailed descriptions of the instructions.

1.4.1 Coding Conventions
This overview uses descriptive code that has the following basic characteristics.

• Syntax and notation based on the C language
• Four numerical data types:

- bool: The numbers 0 and 1, the values of the Boolean constants false and true
- nat: The infinite set of all natural numbers, including bool as a subtype
- int: The infinite set of all integers, including nat as a subtype
- rat: The infinite set of all rational numbers, including int as a subtype

• Standard logical and arithmetic operators
• Enumeration (enum) types, arrays, structures (struct), and union types
• Global and local variable and constant declarations, initializations, and assignments
• Standard control constructs (if, then, else, for, while, switch, break, and continue)
• Function subroutines
• Macro definitions (#define)

16 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

1.4.2 AES Data Structures
The AES instructions operate on 16-byte blocks of text called the state. Each block is represented as a
4 × 4 matrix of bytes which is assigned the Galois field matrix data type (GFMatrix). In the AMD64
implementation, the matrices are formatted as 16-byte vectors in XMM registers or 128-bit memory
locations. This overview represents each matrix as a sequence of 16 bytes in little-endian format (least
significant byte on the right and most significant byte on the left).

Figure 1-8 shows a state block in 4 × 4 matrix representation.

Figure 1-8. GFMatrix Representation of 16-byte Block

Figure 1-9 shows the AMD64 AES format, with the corresponding mapping of FIPS 197 AES
“words” to operand bytes.

Figure 1-9. GFMatrix to Operand Byte Mappings

1.4.3 Algebraic Preliminaries
AES operations are based on the Galois field GF = GF(28), of order 256, constructed by adjoining a
root of the irreducible polynomial

to the field of two elements, ℤ2. Equivalently, GF is the quotient field ℤ2[X]/p(X) and thus may be
viewed as the set of all polynomials of degree less than 8 in ℤ2[X] with the operations of addition and
multiplication modulo p(X). These operations may be implemented efficiently by exploiting the
mapping from ℤ2[X] to the natural numbers given by

anXn + … + a1X+a0 → 2nan + … + 2a1 + a0 → an … a1a0b

GFMatrix =

X3,0
X3,1
X3,2
X3,3

X2,0
X2,1
X2,2
X2,3

X1,0
X1,1
X1,2
X1,3

X0,0
X0,1
X0,2
X0,3

0715 81623243140 323948 47555663647172798087889596103104111112119120127

X3,0X3,1X3,2X3,3 X2,0X2,1X2,2X2,3 X1,0X1,1X1,2X1,3 X0,0X0,1X0,2X0,3

⎨ ⎩⎧⎨ ⎩⎧ ⎨ ⎩⎧ ⎨ ⎩⎧

AES Word 0AES Word 1AES Word 2AES Word 3

XMM Register or 128-bit Memory Operand

p X() X8 X4 X3 X 1+ + + +=

Introduction 17

26568—Rev. 3.11—December 2010 AMD64 Technology

For example:

1 → 01h
X → 02h
X2 → 04h

X4 + X3 + 1 → 19h

p(X)→ 11Bh

Thus, each element of GF is identified with a unique byte. This overview uses the data type GF256 as
an alias of nat, to identify variables that are to be thought of as elements of GF.

The operations of addition and multiplication in GF are denoted by ⊕ and ⊙, respectively. Since ℤ2 is
of characteristic 2, addition is simply the “exclusive or” operation:

x ⊕ y = x^ y

In particular, every element of GF is its own additive inverse.

Multiplication in GF may be computed as a sequence of additions and multiplications by 2. Note that
this operation may be viewed as multiplication in ℤ2[X] followed by a possible reduction modulo p(X).
Since 2 corresponds to the polynomial X and 11B corresponds to p(X), for any x ∈ GF,

Now, if y = b7…b1b0b, then

x ⊙ y = 2 ⊙ (…(2 ⊙ (2 ⊙ (b7 ⊙ x) ⊕ b6 ⊙x) ⊕ b5 ⊙ x) …b0.

This computation is performed by the GFMul() function.

1.4.3.1 Multiplication in the Field GF

The GFMul() function operates on GF256 elements in SRC1 and SRC2 and returns a GF256 matrix
in the destination.
GF256 GFMul(GF256 x, GF256 y) {
 nat sum = 0;
 for (int i=7; i>=0; i--) {
 // Multiply sum by 2. This amounts to a shift followed
 // by reduction mod 0x11B:
 sum <<= 1;
 if (sum > 0xFF) {sum = sum ^ 0x11B;}
 // Add y[i]*x:
 if (y[i]) {sum = sum ^ x;}
 }
 return sum;
}

⎧
⎨
⎩

2 ⊙ x = x << 1

(x << 1) ⊕ 11Bh

if x < 80h

if x ≥ 80h

18 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

Because the multiplicative group GF* is of order 255, the inverse of an element x of GF may be
computed by repeated multiplication as x--1 = x254. A more efficient computation, however, is
performed by the GFInv() function as an application of Euclid’s greatest common divisor algorithm.
See Section 1.4.10, “Computation of GFInv with Euclidean Greatest Common Divisor” for an
analysis of this computation and the GFInv() function.

The AES algorithms operate on the vector space GF4, of dimension 4 over GF, which is represented by
the array type GFWord. FIPS 197 refers to an object of this type as a word. This overview uses the
term GF word in order to avoid confusion with the AMD64 notion of a 16-bit word.

A GFMatrix is an array of four GF words, which are viewed as the rows of a 4 × 4 matrix over GF.

The field operation symbols ⊕ and ⊙ are used to denote addition and multiplication of matrices over
GF as well. The GFMatrixMul() function computes the product A ⊙ B of 4 × 4 matrices.

1.4.3.2 Multiplication of 4x4 Matrices Over GF
, GFMatrix GFMatrixMul(GFMatrix a, GFMatrix b) {
 GFMatrix c;
 for (nat i=0; i<4; i++) {
 for (nat j=0; j<4; j++) {
 c[i][j] = 0;
 for (nat k=0; k<4; k++) {
 c[i][j] = c[i][j] ^ GFMul(a[i][k], b[k][j]);
 }
 }
 }
 return c;
}

1.4.4 AES Operations
The AES encryption and decryption procedures may be specified as follows, in terms of a set of basic
operations that are defined later in this section. See the alphabetic instruction reference for detailed
descriptions of the instructions that are used to implement the procedures.

Call the Encrypt or Decrypt procedure, which pass the same expanded key to the functions

TextBlock Cipher(TextBlock in, ExpandedKey w, nat Nk)

and

TextBlock InvCipher(TextBlock in, ExpandedKey w, nat Nk)

In both cases, the input text is converted by

GFMatrix Text2Matrix(TextBlock A)

to a matrix, which becomes the initial state of the process. This state is transformed through the
sequence of Nr + 1 rounds and ultimately converted back to a linear array by

TextBlock Matrix2Text(GFMatrix M).

In each round i, the round key Ki is extracted from the expanded key w and added to the state by

Introduction 19

26568—Rev. 3.11—December 2010 AMD64 Technology

GFMatrix AddRoundKey(GFMatrix state, ExpandedKey w, nat round).

Note that AddRoundKey does not explicitly construct Ki , but operates directly on the bytes of w.

The rounds of Cipher are numbered 0,…Nr . Let X be the initial state an an execution, i.e., the input in
matrix format, let Si be the state produced by round i, and let Y = SNr be the final state. Let Σ, R , and C
denote the operations performed by SubBytes, ShiftRows, MixColumns, respectively. Then

The initial round is a simple addition:

Each of the next Nr + 1 rounds is a composition of four operations:

The MixColumns transformation is omitted from the final round:

Composing these expressions yields

Note that the rounds of InvCipher are numbered in reverse order, Nr ,…,0. If Ʃ’ and Y’ are the initial
and final states and S’i is the state following round i , then

Composing these expressions yields

In order to show that InvCipher is the inverse of Cipher, it is only necessary to combine these
expanded expressions by replacing X’ with Y and cancel inverse operations to yield Y’ = X.

for

for

20 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

1.4.4.1 Sequence of Operations
• Use predefined SBox and InvSBox matrices or initialize the matrices using the ComputeSBox

and ComputeInvSBox functions.
• Call the Encrypt or Decrypt procedure.
• For the Encrypt procedure:
1. Load the input TextBlock and CipherKey.
2. Expand the cipher key using the KeyExpansion function.
3. Call the Cipher function to perform the number of rounds determined by the cipher key length.
4. Perform round entry operations.

a. Convert input text block to state matrix using the Text2Matrix function.
b. Combine state and round key bytes by bitwise XOR using the AddRoundKey function.

5. Perform round iteration operations.
a. Replace each state byte with another by non-linear substitution using the SubBytes function.
b. Shift each row of the state cyclically using the ShiftRows function.
c. Combine the four bytes in each column of the state using the MixColumns function.
d. Perform AddRoundKey.

6. Perform round exit operations.
a. Perform SubBytes.
b. Perform ShiftRows.
c. Perform AddRoundKey.
d. Convert state matrix to output text block using the Matrix2Text function and return TextBlock.

• For the Decrypt procedure:
1. Load the input TextBlock and CipherKey.
2. Expand the cipher key using the KeyExpansion function.
3. Call the InvCipher function to perform the number of rounds determined by the cipher key

length.
4. Perform round entry operations.

a. Convert input text block to state matrix using the Text2Matrix function.
b. Combine state and round key bytes by bitwise XOR using the AddRoundKey function.

5. Perform round iteration operations.
a. Shift each row of the state cyclically using the InvShiftRows function.
b. Replace each state byte with another by non-linear substitution using the InvSubBytes function.
c. Perform AddRoundKey.
d. Combine the four bytes in each column of the state using the InvMixColumns function.

6. Perform round exit operations.
a. Perform InvShiftRows.
b. Perform InvSubBytes (InvSubWord).
c. Perform AddRoundKey.
d. Convert state matrix to output text block using the Matrix2Text function and return TextBlock.

Introduction 21

26568—Rev. 3.11—December 2010 AMD64 Technology

1.4.5 Initializing the Sbox and InvSBox Matrices
The AES makes use of a bijective mapping σ : GF → GF, which is encoded, along with its inverse
mapping, in the 16 × 16 arrays SBox (for encryption) and InvSBox (for decryption), as follows:

for all x ∈ G,

σ(x) = SBox[x[7:4], x[3:0]]

and

σ−1(x) = InvSBox[x[7:4], x[3:0]]

While the FIPS 197 standard defines the contents of the SBox[] and InvSbox [] matrices, the
matrices may also be initialized algebraically (and algorithmically) by means of the ComputeSBox()
and ComputeInvSBox() functions, discussed below.

The bijective mappings for encryption and decryption are computed by the SubByte() and
InvSubByte () functions, respectively:

SubByte() computation:
GF256 SubByte(GF256 x) {
 return SBox[x[7:4]][x[3:0]];
}

InvSubByte () computation:
GF256 InvSubByte(GF256 x) {
 return InvSBox[x[7:4]][x[3:0]];
}

1.4.5.1 Computation of SBox and InvSBox

Computation of SBox and InvSBox elements has a direct relationship to the cryptographic properties
of the AES, but not to the algorithms that use the tables. Readers who prefer to view σ as a primitive
operation may skip the remainder of this section.

The algorithmic definition of the bijective mapping σ is based on the consideration of GF as an
8-dimensional vector space over the subfield ℤ2. Let ϕ be a linear operator on this vector space and let
M = [aij] be the matrix representation of ϕ with respect to the ordered basis {1, 2, 4, 10, 20, 40, 80}.
Then ϕ may be encoded concisely as an array of bytes A of dimension 8, each entry of which is the
concatenation of the corresponding row of M:

A[i] = ai8ai7…ai0

This expression may be represented algorithmically by means of the ApplyLinearOp() function,
which applies a linear operator to an element of GF. The ApplyLinear Op() function is used in the
initialization of both the sBox[] and InvSBox[] matrices.

22 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

// The following function takes the array A representing a linear operator phi and
// an element x of G and returns phi(x):

GF256 ApplyLinearOp(GF256 A[8], GF256 x) {
 GF256 result = 0;
 for (nat i=0; i<8; i++) {
 bool sum = 0;
 for (nat j=0; j<8; j++) {
 sum = sum ^ (A[i][j] & x[j]);
 }
 result[i] = sum;
 }
 return result;
}

The definition of σ involves the linear operator ϕ with matrix

In this case,

A = {F1, E3, C7, 8F, 1F, 3E, 7C, F8}.

Initialization of SBox[]

The mapping σ : G → G is defined by

σ(x) = ϕ (x–1) ⊕ 63

This computation is performed by ComputeSBox().

ComputeSBox()

GF256[16][16] ComputeSBox() {
 GF256 result[16][16];
 GF256 A[8] = {0xF1, 0xE3, 0xC7, 0x8F, 0x1F, 0x3E, 0x7C, 0xF8};
 for (nat i=0; i<16; i++) {
 for (nat j=0; j<16; j++) {
 GF256 x = (i << 4) | j;
 result[i][j] = ApplyLinearOp(A, GFInv(x)) ^ 0x63;
 }
 }
 return result;
}

const GF256 SBox[16][16] = ComputeSBox();

Introduction 23

26568—Rev. 3.11—December 2010 AMD64 Technology

Table 1-11 shows the resulting SBox[], as defined in FIPS 197.

Table 1-11. SBox Definition
S[3:0]

S[7:4]

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 a5

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

24 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

1.4.5.2 Initialization of InvSBox[]

A straightforward calculation confirms that the matrix M is nonsingular with inverse.

Thus, ϕ is invertible and ϕ–1 is encoded as the array

B = {A4, 49, 92, 25, 4A, 94, 29, 52}.

If y = σ(x), then

and σ is a permutation of GF with

σ-1(y) = (ϕ-1(y) ⊕ 5)–1

This computation is performed by ComputeInvSBox().

ComputeInvSBox()

GF256[16][16] ComputeInvSBox() {
 GF256 result[16][16];
 GF256 B[8] = {0xA4, 0x49, 0x92, 0x25, 0x4A, 0x94, 0x29, 0x52};
 for (nat i=0; i<16; i++) {
 for (nat j=0; j<16; j++) {
 GF256 y = (i << 4) | j;
 result[i][j] = GFInv(ApplyLinearOp(B, y) ^ 0x5);
 }
 }
 return result;
}

const GF256 InvSBox[16][16] = ComputeInvSBox();

Table 1-12 shows the resulting InvSBox[], as defined in the FIPS 197.

M–1 =

0
1
0
1
0
0
1
0

0
0
1
0
1
0
0
1

1
0
0
1
0
1
0
0

1
0
1
0
0
1
0
0

0
1
0
0
1
0
1
0

0
0
1
0
0
1
0
1

1
0
0
1
0
0
1
0

0
1
0
0
1
0
0
1

(ϕ-1((y) ⊕ 5) –1= (ϕ-1(y ⊕ ϕ(5))–1

= (ϕ-1(y ⊕ 63))–1

= (ϕ-1(ϕ(x–1) ⊕ 63 ⊕ 63))–1

= x,

= (ϕ-1(ϕ(x–1)))–1

Introduction 25

26568—Rev. 3.11—December 2010 AMD64 Technology

1.4.6 Encryption and Decryption
The AMD64 architecture implements the AES algorithm by means of an iterative function called a
round for both encryption and the inverse operation, decryption.

The top-level encryption and decryption procedures Encrypt() and Decrypt() set up the rounds and
invoke the functions that perform them. Each of the procedures takes two 128-bit binary arguments:

• input data — a 16-byte block of text stored in a source 128-bit XMM register
• cipher key — a 16-, 24-, or 32-byte cipher key stored in either a second 128-bit XMM register or

128-bit memory location

1.4.6.1 The Encrypt() and Decrypt() Procedures

TextBlock Encrypt(TextBlock in, CipherKey key, nat Nk) {
 return Cipher(in, ExpandKey(key, Nk), Nk);
}

TextBlock Decrypt(TextBlock in, CipherKey key, nat Nk) {
 return InvCipher(in, ExpandKey(key, Nk), Nk);
}

Table 1-12. InvSBox Definition
S[3:0]

S[7:4]

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

26 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

The array types TextBlock and CipherKey are introduced to accommodate the text and key
parameters. The 16-, 24-, or 32-byte cipher keys correspond to AES-128, AES-192, or AES-256 key
sizes. The cipher key is logically partitioned into Nk = 4, 6, or 8 AES 32-bit words. Nk is passed as a
parameter to determine the AES version to be executed, and the number of rounds to be performed.

Both the Encrypt() and Decrypt() procedures invoke the ExpandKey() function to expand the
cipher key for use in round key generation. When key expansion is complete, either the Cipher() or
InvCipher() functions are invoked.

The Cipher() and InvCipher() functions are the key components of the encryption and decryption
process. See Section 1.4.7, “The Cipher Function” and Section 1.4.8, “The InvCipher Function” for
detailed information.

1.4.6.2 Round Sequences and Key Expansion

Encryption and decryption are performed in a sequence of rounds indexed by 0, …, Nr, where Nr is
determined by the number Nk of GF words in the cipher key. A key matrix called a round key is
generated for each round. The number of GF words required to form Nr + 1 round keys is equal to ,
4(Nr + 1). Table 1-13 shows the relationship between cipher key length, round sequence length, and
round key length.

Expanded keys are generated from the cipher key by the ExpandKey() function, where the array type
ExpandedKey is defined to accommodate 60 words (the maximum required) corresponding to Nk = 8.

The ExpandKey() Function

ExpandedKey ExpandKey(CipherKey key, nat Nk) {
 assert((Nk == 4) || (Nk == 6) || (Nk == 8));
 nat Nr = Nk + 6;
 ExpandedKey w;

 // Copy key into first Nk rows of w:
 for (nat i=0; i<Nk; i++) {
 for (nat j=0; j<4; j++) {
 w[i][j] = key[4*i+j];
 }
 }

Table 1-13. Cipher Key, Round Sequence, and Round Key Length
Nk Nr 4(Nr + 1)

4 10 44
6 12 52
8 14 60

Introduction 27

26568—Rev. 3.11—December 2010 AMD64 Technology

 // Write next row of w:
 for (nat i=Nk; i<4*(Nr+1); i++) {

 // Encode preceding row:
 GFWord tmp = w[i-1];
 if (mod(i, Nk) == 0) {
 tmp = SubWord(RotWord(tmp));
 tmp[0] = tmp[0] ^ RCON[i/Nk];
 }
 else if ((Nk == 8) && (mod(i, Nk) == 4)) {
 tmp = SubWord(tmp);
 }

 // XOR tmp with w[i-Nk]:
 for (nat j=0; j<4; j++) {
 w[i][j] = w[i-Nk][j] ^ tmp[j];
 }
 }
 return w;
}

ExpandKey() begins by copying the input cipher key into the first Nk GF words of the expanded key
w. The remaining 4(Nr + 1) – Nk GF words are computed iteratively. For each i ≥ Nk, w[i] is derived
from the two GF words w[i – 1] and w[i – Nk]. In most cases, w[i] is simply the sum w[i – 1] ⊕ w[i –
Nk]. There are two exceptions:

• If i is divisible by Nk, then before adding it to w[i – Nk], w[i – 1] is first rotated by one position to
the left by RotWord(), then transformed by the substitution SubWord(), and an element of the
array RCON is added to it.

RCON[11] = {00h, 01h, 02h, 04h, 08h, 10h, 20h, 40h, 80h, 1Bh, 36h}

• In the case Nk = 8, if i is divisible by 4 but not 8, then w[i – 1] is transformed by the substitution
SubWord().

The ith round keyKi comprises the four GF words w[4i], …, w[4i + 3]. More precisely, let Wi be the
matrix

W= {w[4i], w[4i + 1], w[4i + 2], w[4i + 3]}

Then Ki = Wi
t, the transpose of Wi. Thus, the entries of the array w are the columns of the round keys.

1.4.7 The Cipher Function
This function performs encryption. It converts the input text to matrix form, generates the round key
from the expanded key matrix, and iterates through the transforming functions the number of times
determined by encryption key size to produce a 128-bit binary cipher matrix. As a final step, it
converts the matrix to an output text block.

28 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

TextBlock Cipher(TextBlock in, ExpandedKey w, nat Nk) {
 assert((Nk == 4) || (Nk == 6) || (Nk == 8));
 nat Nr = Nk + 6;
 GFMatrix state = Text2Matrix(in);
 state = AddRoundKey(state, w, 0);
 for (nat round=1; round<Nr; round++) {
 state = SubBytes(state);
 state = ShiftRows(state);
 state = MixColumns(state);
 state = AddRoundKey(state, w, round);
 }
 state = SubBytes(state);
 state = ShiftRows(state);
 state = AddRoundKey(state, w, Nr);
 return Matrix2Text(state);
}

1.4.7.1 Text to Matrix Conversion

Prior to processing, the input text block must be converted to matrix form. The Text2Matrix()
function stores a TextBlock in a GFMatrix in column-major order as follows.
GFMatrix Text2Matrix(TextBlock A) {
 GFMatrix result;
 for (nat j=0; j<4; j++) {
 for (nat i=0; i<4; i++) {
 result[i][j] = A[4*j+i];
 }
 }
 return result;
}

1.4.7.2 Cipher Transformations

The Cipher function employs the following transformations.

SubBytes() — Applies a non-linear substitution table (SBox) to each byte of the state.
SubWord() — Uses a non-linear substitution table (SBox) to produce a four-byte AES output
word from the four bytes of an AES input word.
ShiftRows() — Cyclically shifts the last three rows of the state by various offsets.
RotWord() — Rotates an AES (4-byte) word to the right.
MixColumns() — Mixes data in all the state columns independently to produce new columns.
AddRoundKey() — Extracts a 128-bit round key from the expanded key matrix and adds it to the
128-bit state using an XOR operation.

Inverses of SubBytes(), SubWord(), ShiftRows() and MixColumns() are used in decryption. See
Section 1.4.8, “The InvCipher Function” for more information.

Introduction 29

26568—Rev. 3.11—December 2010 AMD64 Technology

The SubBytes() Function

Performs a byte substitution operation using the invertible substitution table (SBox) to convert input
text to an intermediate encryption state.
GFMatrix SubBytes(GFMatrix M) {
 GFMatrix result;
 for (nat i=0; i<4; i++) {
 result[i] = SubWord(M[i]);
 }
 return result;
}

The SubWord() Function

Applies SubBytes to each element of a vector or a matrix:
GFWord SubWord(GFWord x) {
 GFWord result;
 for (nat i=0; i<4; i++) {
 result[i] = SubByte(x[i]);
 }
 return result;
}

The ShiftRows() Function

Cyclically shifts the last three rows of the state by various offsets.
GFMatrix ShiftRows(GFMatrix M) {
 GFMatrix result;
 for (nat i=0; i<4; i++) {
 result[i] = RotateLeft(M[i], -i);
 }
 return result;

The RotWord() Function

Performs byte-wise cyclic permutation of a 32-bit AES word.
GFWord RotWord(GFWord x)
{ return RotateLeft(x, 1); }

The MixColumns() Function

Performs a byte-oriented column-by-column matrix multiplication

M → C ⊙ M , where C is the predefined fixed matrix

The function is implemented as follows:

C =

2
1
1
3

3
2
1
1

1
3
2
1

1
1
3
2

30 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

GFMatrix MixColumns(GFMatrix M) {
 GFMatrix C = {
 {0x02,0x03,0x01,0x01},
 {0x01,0x02,0x03,0x01},
 {0x01,0x01,0x02,0x03},
 {0x03,0x01,0x01,0x02}
 };
 return GFMatrixMul(C, M);
}

The AddRoundKey() Function

Extracts the round key from the expanded key and adds it to the state using a bitwise XOR operation.
GFMatrix AddRoundKey(GFMatrix state, ExpandedKey w, nat round) {
 GFMatrix result = state;
 for (nat i=0; i<4; i++) {
 for (nat j=0; j<4; j++) {
 result[i][j] = result[i][j] ^ w[4*round+j][i];
 }
 }
 return result;
}

1.4.7.3 Matrix to Text Conversion

After processing, the output matrix must be converted to a text block. The Matrix2Text() function
converts a GFMatrix in column-major order to a TextBlock as follows.
TextBlock Matrix2Text(GFMatrix M) {
 TextBlock result;
 for (nat j=0; j<4; j++) {
 for (nat i=0; i<4; i++) {
 result[4*j+i] = M[i][j];
 }
 }
 return result;
}

1.4.8 The InvCipher Function
This function performs decryption. It iterates through the round function the number of times
determined by encryption key size and produces a 128-bit block of text as output.
TextBlock InvCipher(TextBlock in, ExpandedKey w, nat Nk) {
 assert((Nk == 4) || (Nk == 6) || (Nk == 8));
 nat Nr = Nk + 6;
 GFMatrix state = Text2Matrix(in);
 state = AddRoundKey(state, w, Nr);
 for (nat round=Nr-1; round>0; round--) {
 state = InvShiftRows(state);
 state = InvSubBytes(state);
 state = AddRoundKey(state, w, round);
 state = InvMixColumns(state);
 }

Introduction 31

26568—Rev. 3.11—December 2010 AMD64 Technology

 state = InvShiftRows(state);
 state = InvSubBytes(state);
 state = AddRoundKey(state, w, 0);
 return Matrix2Text(state);
}

1.4.8.1 Text to Matrix Conversion

Prior to processing, the input text block must be converted to matrix form. The Text2Matrix()
function stores a TextBlock in a GFMatrix in column-major order as follows.
GFMatrix Text2Matrix(TextBlock A) {
 GFMatrix result;
 for (nat j=0; j<4; j++) {
 for (nat i=0; i<4; i++) {
 result[i][j] = A[4*j+i];
 }
 }
 return result;
}

1.4.8.2 InvCypher Transformations

The following functions are used in decryption:

InvShiftRows() — The inverse of ShiftRows().
InvSubBytes() — The inverse of SubBytes().
InvSubWord() — The inverse of SubWord().
InvMixColumns() — The inverse of MixColumns().
AddRoundKey() — Is its own inverse.

Decryption is the inverse of encryption and is accomplished by means of the inverses of the,
SubBytes(), SubWord(), ShiftRows() and MixColumns() transformations used in encryption.

SubWord(), SubBytes(), and ShiftRows() are injective. This is also the case with MixColumns().
A simple computation shows that C is invertible with

The InvShiftRows() Function

The inverse of ShiftRows().
GFMatrix InvShiftRows(GFMatrix M) {
 GFMatrix result;
 for (nat i=0; i<4; i++) {
 result[i] = RotateLeft(M[i], -i);
 }
 return result;

C–1 =

E
9
D
B

B
E
9
D

D
B
E
9

9
D
B
E

32 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

The InvSubBytes() Function

The inverse of SubBytes().
GFMatrix InvSubBytes(GFMatrix M) {
 GFMatrix result;
 for (nat i=0; i<4; i++) {
 result[i] = InvSubWord(M[i]);
 }
 return result;
}

The InvSubWord() Function

The inverse of SubWord(), InvSubBytes() applied to each element of a vector or a matrix.
GFWord InvSubWord(GFWord x) {
 GFWord result;
 for (nat i=0; i<4; i++) {
 result[i] = InvSubByte(x[i]);
 }
 return result;
}

The InvMixColumns() Function

The inverse of the MixColumns() function. Multiplies by the inverse of the predefined fixed matrix,
C, C–1, as discussed previously.
GFMatrix InvMixColumns(GFMatrix M) {
 GFMatrix D = {
 {0x0e,0x0b,0x0d,0x09},
 {0x09,0x0e,0x0b,0x0d},
 {0x0d,0x09,0x0e,0x0b},
 {0x0b,0x0d,0x09,0x0e}
 };
 return GFMatrixMul(D, M);
}

The AddRoundKey() Function

Extracts the round key from the expanded key and adds it to the state using a bitwise XOR operation.
GFMatrix AddRoundKey(GFMatrix state, ExpandedKey w, nat round) {
 GFMatrix result = state;
 for (nat i=0; i<4; i++) {
 for (nat j=0; j<4; j++) {
 result[i][j] = result[i][j] ^ w[4*round+j][i];
 }
 }
 return result;
}

Introduction 33

26568—Rev. 3.11—December 2010 AMD64 Technology

1.4.8.3 Matrix to Text Conversion

After processing, the output matrix must be converted to a text block. The Matrix2Text() function
converts a GFMatrix in column-major order to a TextBlock as follows.
TextBlock Matrix2Text(GFMatrix M) {
 TextBlock result;
 for (nat j=0; j<4; j++) {
 for (nat i=0; i<4; i++) {
 result[4*j+i] = M[i][j];
 }
 }
 return result;
}

1.4.9 An Alternative Decryption Procedure
This section outlines an alternative decrypting procedure,

TextBlock EqDecrypt(TextBlock in, CipherKey key, nat Nk):

TextBlock EqDecrypt(TextBlock in, CipherKey key, nat Nk) {
 return EqInvCipher(in, MixRoundKeys(ExpandKey(key, Nk), Nk), Nk);
}

The procedure is based on a variation of InvCipher,

TextBlock EqInvCipher(TextBlock in, ExpandedKey w, nat Nk):

TextBlock EqInvCipher(TextBlock in, ExpandedKey dw, nat Nk) {
 assert((Nk == 4) || (Nk == 6) || (Nk == 8));
 nat Nr = Nk + 6;
 GFMatrix state = Text2Matrix(in);
 state = AddRoundKey(state, dw, Nr);
 for (nat round=Nr-1; round>0; round--) {
 state = InvSubBytes(state);
 state = InvShiftRows(state);
 state = InvMixColumns(state);
 state = AddRoundKey(state, dw, round);
 }
 state = InvSubBytes(state);
 state = InvShiftRows(state);
 state = AddRoundKey(state, dw, 0);
 return Matrix2Text(state);
}

The variant structure more closely resembles that of Cipher. This requires a modification of the
expanded key generated by ExpandKey,

34 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

ExpandedKey MixRoundKeys(ExpandedKey w, nat Nk):

ExpandedKey MixRoundKeys(ExpandedKey w, nat Nk) {
 assert((Nk == 4) || (Nk == 6) || (Nk == 8));
 nat Nr = Nk + 6;
 ExpandedKey result;
 GFMatrix roundKey;
 for (nat round=0; round<Nr+1; round++) {
 for (nat i=0; i<4; i++) {
 roundKey[i] = w[4*round+i];
 }
 if ((round > 0) && (round < Nr)) {
 roundKey = InvMixRows(roundKey);
 }
 for (nat i=0; i<4; i++) {
 result[4*round+i] = roundKey[i];
 }
 }
 return result;
}

The transformation MixRoundKeys leaves K0 and KNr unchanged, but for i = 1,…,Nr – 1, it replaces Wi with the matrix product Wi ⊙ Q, where

The effect of this is to replace Ki with

for i = 1,…,Nr – 1.

The equivalence of EqDecrypt and Decrypt follows from two properties of the basic operations: C is a linear transformation and therefore, so is C–1; Ʃ and R commute, and hence so do Ʃ–1 and R–1, for if

then

Introduction 35

26568—Rev. 3.11—December 2010 AMD64 Technology

Now let X’’ and Y’’ be the initial and final states of an execution of EqDecrypt and let S’’i be the state
following round i . Suppose X’’ = X’. Appealing to the definitions of EqDecrypt and EqInvCipher, we
have

and for i = Nr – 1,…,1, by induction,

Finally,

1.4.10 Computation of GFInv with Euclidean Greatest Common Divisor
Note that the operations performed by GFInv() are in the ring ℤ2[X] rather than the quotient field GF.

The initial values of the variables x1 and x2 are the inputs x and 11b, the latter representing the
polynomial p(X). The variables a1 and a2 are initialized to 1 and 0.

=

=

=

=

=

=

=

=

=

36 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

On each iteration of the loop, a multiple of the lesser of x1 and x2 is added to the other. If x1 ≤ x2, then
the values of x2 and a2 are adjusted as follows:

x2 → x2 ⊕ 2s ⊙ x1

a2 → a2 ⊕ 2s ⊙ a1

where s is the difference in the exponents (i.e., degrees) of x1 and x2 . In the remaining case, x1 and a1
are similarly adjusted. This step is repeated until either x1 = 0 or x2 = 0.

We make the following observations:

• On each iteration, the value added to xi has the same exponent as xi, and hence the sum has lesser
exponent. Therefore, termination is guaranteed.

• Since p(X) is irreducible and x is of smaller degree than p(X), the initial values of x1 and x2 have no
non-trivial common factor. This property is clearly preserved by each step.

• Initially,

x1 ⊕ a1 ⊙ x = x ⊕ x = 0

and

x2 ⊕ a2 ⊙ x = 11b ⊕ 0 = 11b

are both divisible by 11b. This property is also invariant, since, for example, the above assignments
result in

x2 ⊕ a2 ⊙ x → (x2 ⊕ 2s ⊙ x1) ⊕ (a2 ⊕ 2s ⊙ a1) ⊙ x = (x2 ⊕ a2 ⊙ x) ⊕ 2s ⊙ (x1 ⊕ a1 ⊙ x).

Now suppose that the loop terminates with x2 = 0. Then x1 has no non-trivial factor and, hence, x1 = 1.
Thus, 1 ⊕ a1 ⊙ x is divisible by 11b. Since the final result y is derived by reducing a1 modulo 11b, it
follows that 1 ⊕ y ⊙ x is also divisible by 11b and, hence, in the quotient field GF, 1 + y ⊙ x = 0,
which implies y ⊙ x = 1.

The computation of the multiplicative inverse utilizing Euclid’s algorithm is as follows:

Introduction 37

26568—Rev. 3.11—December 2010 AMD64 Technology

// Computation of multiplicative inverse based on Euclid's algorithm:

GF256 GFInv(GF256 x) {
 if (x == 0) {
 return 0;
 }
 // Initialization:
 nat x1 = x;
 nat x2 = 0x11B; // the irreducible polynomial p(X)
 nat a1 = 1;
 nat a2 = 0;
 nat shift; // difference in exponents
 while ((x1 != 0) && (x2!= 0)) {

 // Termination is guaranteed, since either x1 or x2 decreases on each iteration.
 // We have the following loop invariants, viewing natural numbers as elements of
 // the polynomial ring Z2[X]:
 // (1) x1 and x2 have no common divisor other than 1.
 // (2) x1 ^ GFMul(a1, x) and x2 ^ GFMul(a2, x) are both divisible by p(X).

 if (x1 <= x2) {
 shift = expo(x2) - expo(x1);
 x2 = x2 ^ (x1 << shift);
 a2 = a2 ^ (a1 << shift);
 }
 else {
 shift = expo(x1) - expo(x2);
 x1 = x1 ^ (x2 << shift);
 a1 = a1 ^ (a2 << shift);
 }
 }
 nat y;

 // Since either x1 or x2 is 0, it follows from (1) above that the other is 1.

 if (x1 == 1) { // x2 == 0
 y = a1;
 }
 else if (x2 == 1) { // x1 == 0
 y = a2;
 }
 else {
 assert(false);
 }

 // Now it follows from (2) that GFMul(y, x) ^ 1 is divisible by 0x11b.
 // We need only reduce y modulo 0x11b:

 nat e = expo(y);
 while (e >= 8) {
 y = y ^ (0x11B << (e - 8));
 e = expo(y);
 }
 return y;
}

38 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

1.5 String Compare Instructions
The (V)PCMPESTRI, (V)PCMPESTRM, (V)PCMPISTRI, and (V)PCMPISTRM instructions
perform arithmetic comparisons of byte or word elements in two source operands using positive
Boolean logic. All possible comparisons are performed, 64 for words, 256 for bytes. Individual
comparison results are aggregated and processed to produce final results.

Instruction operation affects the arithmetic status flags (ZF, CF, SF, OF, AF, PF), but the flags are
defined to provide additional information.

The instructions have a defined base function and additional functionality controlled by bit fields in an
immediate byte operand. The base function determines whether the source strings have implicitly (I)
or explicitly (E) defined lengths, and whether the result is an index (I) or a mask (M).

Some immediate operand functions are specific to a particular instruction and others pertain to two or
more instructions. This description covers functions that are common to all of the instructions.
Individual functional differences are covered in the specific instruction descriptions.

Bit fields of the immediate operand control the following functions:

Source data format — data element length, signed or unsigned
Aggregation — comparison type and intermediate result aggregation
Complementation — intermediate result processing
Output selection — type of processing performed to produce final result

1.5.1 Source Data Format
Bits [1:0] of the immediate byte operand determine source data format, as shown in Table 1-14.

Table 1-14. Source Data Format
Imm8[1:0] Source Content

00b 16 packed unsigned bytes
01b 8 packed unsigned words
10b 16 packed signed bytes
11b 8 packed signed words

Introduction 39

26568—Rev. 3.11—December 2010 AMD64 Technology

1.5.2 Aggregation
Bits [3:2] of the immediate byte operand determine comparison type and aggregation method, as
shown in Table 1-15. Aggregation results are stored in IntRes1. See Section 1.5.5, “Valid/Invalid
Override of Comparisons” for more information about the override function.

1.5.2.1 Equal Any Aggregation Method
Finds characters in a set.

UpperBound = imm8[0] ? 7:15;
IntRes1 = 0;
For j = 0 to UpperBound, j++
For i = 0 to UpperBound, i++
IntRes1[j] OR= overrideIfDataInvalid(BoolRes[j,i])

1.5.2.2 Ranges Aggregation Method
Finds characters in ranges.

UpperBound = imm8[0]?7:15;
IntRes1 = 0;
For j = 0 to UpperBound, j++
For i = 0 to UpperBound, i+=2
IntRes1[j] OR= (overrideIfDataInvalid(BoolRes[j,i])

AND overrideIfDataInvalid(BoolRes[j,i+1]))

1.5.2.3 Equal Each Aggregation Method
Performs string compare.

UpperBound = imm8[0]?7:15;
IntRes1 = 0;
For i = 0 to UpperBound, i++
IntRes1[i] = overrideIfDataInvalid(BoolRes[i,i])

1.5.2.4 Equal Ordered Aggregation Method
Performs a substring search

UpperBound = imm8[0]?7:15;
IntRes1 = imm8[0] ? 0xFF : 0xFFFF
For j = 0 to UpperBound, j++
For i = 0 to UpperBound-j, k=j to UpperBound, k++, i++
IntRes1[j] AND= overrideIfDataInvalid(BoolRes[k,i])

Table 1-15. Comparison and Aggregation Method
Imm8[3:2] Comparison Method

00b Equal Equal any
01b Greater than or equal for even-indexed elements of reg

and corresponding elements of reg/mem.
Less than or equal for odd-indexed elements of reg and

corresponding elements of reg/mem.

Ranges

10b Equal Equal each
11b Equal Equal ordered

40 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

1.5.3 Complementation
Bit [4] of the immediate operand determines whether a ones’-complement is performed on IntRes1; bit
[5] of the immediate operand determines whether a complementation mask is used (see Table 1-16).
The mask allows complementation only when an IntRes1 bit corresponds to a valid reg/mem source
element. The basic functional definition of each instruction determines the validity of elements.

After complementation, the data is stored in a second intermediate result, IntRes2.

1.5.4 Output Selection
For (V)PCMPESTRI and (V)PCMPISTRI, bit [6] of the immediate operand determines whether the
index of the lowest set bit or the highest set bit of IntRes2 is written to the destination, as shown in
Table 1-17.

For (V)PCMPESTRM and (V)PCMPISTRM, bit [6] of the immediate operand determines whether
the mask is a 16-bit or 8-bit mask or an expanded 128-bit byte/word mask, as shown in Table 1-18.
Mask size is determined by imm8[1]. The mask is expanded by copying each bit of IntRes2 to all bits
of the element of the same index.

Table 1-16. Complementation
Imm8[5:4] Description

00b IntRes2 = IntRes1
01b IntRes2 = -1 XOR IntRes1
10b IntRes2 = IntRes1
11b IntRes2[i] = IntRes1[i] if reg/mem[i] invalid, else =~IntRes1[i]

Table 1-17. Indexed Comparison Output Selection
Imm8[6] Description

0b Return the index of the least significant set bit in IntRes2.
1b Return the index of the most significant set bit in IntRes2.

Table 1-18. Masked Comparison Output Selection
Imm8[6] Description

0b Return IntRes2 as the mask with zero extension to 128 bits.
1b Return expanded IntRes2 mask.

Introduction 41

26568—Rev. 3.11—December 2010 AMD64 Technology

1.5.5 Valid/Invalid Override of Comparisons
The string comparison instructions allow for occurrence of an end-of-string (EOS) within the source
data. Source data elements that are determined to be past the EOS are considered invalid.
Aggregation method determines how invalid data within a comparison pair are handled. In most
cases, the comparison result for each element pair BoolRes[i,j] is forced true or false if one or more
elements of the pair are invalid. Table 1-19 summarizes override operation.

Bit [7] of the immediate byte operand is reserved.

Table 1-19. End-of-String Comparison Override
xmm1,

byte/word
xmm2/m128,

byte/word
Imm8[3:2] =00b,

(equal any)
Imm8[3:2] =01b,

(ranges)
Imm8[3:2] =10b,

(equal each)
Imm8[3:2] = 11b,
(equal ordered)

Invalid Invalid Force false Force false Force true Force true
Invalid Valid Force false Force false Force false Force true
Valid Invalid Force false Force false Force false Force false
Valid Valid Do not force Do not force Do not force Do not force

42 Introduction

AMD64 Technology 26568—Rev. 3.11—December 2010

Instruction Reference 43

26568—Rev. 3.11—December 2010 AMD64 Technology

2 Instruction Reference

Instructions are listed by mnemonic, in alphabetic order. Each entry describes instruction function,
syntax, opcodes, affected flags and exceptions related to the instruction.

Figure 2-1 shows the conventions used in the descriptions. Items that do not pertain to a particular
instruction, such as a synopsis of the 256-bit form, may be omitted.

Figure 2-1. Typical Instruction Description

Brief functional description

INST

Description of legacy version of instruction.

VINST

Description of extended version of instruction.

XMM Encoding

Description of 128-bit extended instruction.

YMM Encoding

Description of 256-bit extended instruction.

Information about CPUID functions related to the instruction set.

Synopsis diagrams for legacy and extended versions of the instruction.

Related Instructions

Instructions that perform similar or related functions.

rFLAGS Affected

Rflags diagram.

MXCSR Flags Affected

MXCSR diagram.

Exceptions

Exception summary table.

INST
VINST

Instruction
Mnemonic Expansion

Mnemonic Opcode Description
INST xmm1, xmm2/mem128 FF FF /r Brief summary of legacy operation.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VINST xmm1, xmm2/mem128, xmm3 C4 RXB.11 0.src.0.00 FF /r
V���� ymm1, ymm2/mem256, ymm3 C4 RXB.11 0.src.0.00 FF /r

Instruction Reference ADDPD, VADDPD 44

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds each packed double-precision floating-point value of the first source operand to the
corresponding value of the second source operand and writes the result of each addition into the
corresponding quadword of the destination.

There are legacy and extended forms of the instruction:

ADDPD
Adds two pairs of values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VADDPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Adds two pairs of values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

Adds four pairs of values.

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ADDPD is an SSE2 instruction and VADDPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)ADDPS, (V)ADDSD, (V)ADDSS

ADDPD
VADDPD

Add
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
ADDPD xmm1, xmm2/mem128 66 0F 58 /r Adds two packed double-precision floating-point

values in xmm1 to corresponding values in xmm2
or mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VADDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 58 /r
VADDPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 58 /r

Instruction Reference ADDPD, VADDPD 45

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ADDPS, VADDPS 46

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds each packed single-precision floating-point value of the first source operand to the
corresponding value of the second source operand and writes the result of each addition into the
corresponding elements of the destination.

There are legacy and extended forms of the instruction:

ADDPS
Adds four pairs of values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VADDPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Adds four pairs of values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

Adds eight pairs of values.

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ADDPS is an SSE2 instruction and VADDPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)ADDPD, (V)ADDSD, (V)ADDSS

ADDPS
VADDPS

Add
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
ADDPS xmm1, xmm2/mem128 0F 58 /r Adds four packed single-precision floating-point values in

xmm1 to corresponding values in xmm2 or mem128. Writes
results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VADDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 58 /r
VADDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 58 /r

Instruction Reference ADDPS, VADDPS 47

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ADDSD, VADDSD 48

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds the double-precision floating-point value in the low-order quadword of the first source operand
to the corresponding value in the low-order quadword of the second source operand and writes the
result into the low-order quadword of the destination.

There are legacy and extended forms of the instruction:

ADDSD
The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location. The first source register is also the destination register. Bits [127:64] of
the destination and bits [255:128] of the corresponding YMM register are not affected.

VADDSD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the first source
operand are copied to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

ADDSD is an SSE2 instruction and VADDSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)ADDPD, (V)ADDPS, (V)ADDSS

ADDSD
VADDSD

Add
Scalar Double-Precision Floating-Point

Mnemonic Opcode Description
ADDSD xmm1, xmm2/mem64 F2 0F 58 /r Adds low-order double-precision floating-point values in

xmm1 to corresponding values in xmm2 or mem64.
Writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VADDSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 58 /r

Instruction Reference ADDSD, VADDSD 49

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ADDSS, VADDSS 50

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds the single-precision floating-point value in the low-order doubleword of the first source operand
to the corresponding value in the low-order doubleword of the second source operand and writes the
result into the low-order doubleword of the destination.

There are legacy and extended forms of the instruction:

ADDSS
The first source operand is an XMM register and the second source operand is either an XMM register
or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination register and bits [255:128] of the corresponding YMM register are not affected.

VADDSS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the first source
register are copied to bits [127:32] of the of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

ADDSS is an SSE instruction and VADDSS is an AVX instruction. Support for these instructions is
i nd i ca t ed by CPUID f ea tu r e i den t i f i e r s CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)ADDPD, (V)ADDPS, (V)ADDSD

ADDSS
VADDSS

Add
Scalar Single-Precision Floating-Point

Mnemonic Opcode Description
ADDSS xmm1, xmm2/mem32 F3 0F 58 /r Adds a single-precision floating-point value in the low-order

doubleword of xmm1 to a corresponding value in xmm2 or
mem32. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VADDSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 58 /r

Instruction Reference ADDSS, VADDSS 51

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ADDSUBPD, VADDSUBPD 52

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds the odd-numbered packed double-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the sum to the corresponding odd-
numbered element of the destination; subtracts the even-numbered packed double-precision floating-
point values of the second source operand from the corresponding values of the first source operand
and writes the differences to the corresponding even-numbered element of the destination.

There are legacy and extended forms of the instruction:

ADDSUBPD
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VADDSUBPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ADDSUBPD is an SSE2 instruction and VADDSUBPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)ADDSUBPS

ADDSUBPD
VADDSUBPD

Alternating Addition and Subtraction
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
ADDSUBPD xmm1, xmm2/mem128 66 0F D0 /r Adds a value in the upper 64 bits of xmm1 to the

corresponding value in xmm2 and writes the result to
the upper 64 bits of xmm1; subtracts the value in the
lower 64 bits of xmm1 from the corresponding value
in xmm2 and writes the result to the lower 64 bits of
xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VADDSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D0 /r
VADDSUBPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 D0 /r

Instruction Reference ADDSUBPD, VADDSUBPD 53

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ADDSUBPS, VADDSUBPS 54

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds the second and fourth single-precision floating-point values of the first source operand to the
corresponding values of the second source operand and writes the sums to the second and fourth
elements of the destination. Subtracts the first and third single-precision floating-point values of the
second source operand from the corresponding values of the first source operand and writes the
differences to the first and third elements of the destination.

There are legacy and extended forms of the instruction:

ADDSUBPS
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VADDSUBPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ADDSUBPS is an SSE instruction and VADDSUBPS is an AVX instruction. Support for these
instructions is indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)ADDSUBPD

ADDSUBPS
VADDSUBPS

Alternating Addition and Subtraction
Packed Single-Precision Floating Point

Mnemonic Opcode Description
ADDSUBPS xmm1, xmm2/mem128 F2 0F D0 /r Adds the second and fourth packed single-precision

values in xmm2 or mem128 to the corresponding
values in xmm1 and writes results to the
corresponding positions of xmm1. Subtracts the first
and third packed single-precision values in xmm2 or
mem128 from the corresponding values in xmm1 and
writes results to the corresponding positions of xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VADDSUBPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 D0 /r
VADDSUBPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 D0 /r

Instruction Reference ADDSUBPS, VADDSUBPS 55

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference AESDEC, VAESDEC 56

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs a single round of AES decryption. Transforms a state value specified by the first source
operand using a round key value specified by the second source operand, and writes the result to the
destination.

See Section 1.4, “AES Instructions” for more information about the operation of the AES instructions.

Decryption consists of 1, …, Nr – 1 iterations of sequences of operations called rounds, terminated by
a unique final round, Nr. The AESDEC and VAESDEC instructions perform all the rounds except the
last; the AESDECLAST and VAESDECLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.

There are legacy and extended forms of the instruction:

AESDEC

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESDEC

The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESDEC is an AES instruction and VAESDEC is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_ECX[AES] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions

(V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST

AESDEC
VAESDEC

AES
Decryption Round

Mnemonic Opcode Description
AESDEC xmm1, xmm2/mem128 66 0F 38 DE /r Performs one decryption round on a state value

in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VAESDEC xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DE /r

Instruction Reference AESDEC, VAESDEC 57

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference AESDECLAST, VAESDECLAST 58

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs the final round of AES decryption. Completes transformation of a state value specified by
the first source operand using a round key value specified by the second source operand, and writes the
result to the destination.

See Section 1.4, “AES Instructions” for more information about the operation of the AES instructions.

Decryption consists of 1, …, Nr – 1 iterations of sequences of operations called rounds, terminated by
a unique final round, Nr.The AESDEC and VAESDEC instructions perform all the rounds before the
final round; the AESDECLAST and VAESDECLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register

AESDECLAST

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESDECLAST

The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESDECLAST is an AES instruction and VAESDECLAST is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[AES] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions

(V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST

AESDECLAST
VAESDECLAST

AES
Last Decryption Round

Mnemonic Opcode Description
AESDECLAST xmm1, xmm2/mem128 66 0F 38 DF/r Performs the last decryption round on a state

value in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VAESDECLAST xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DF /r

Instruction Reference AESDECLAST, VAESDECLAST 59

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference AESENC, VAESENC 60

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs a single round of AES encryption. Transforms a state value specified by the first source
operand using a round key value specified by the second source operand, and writes the result to the
destination.

See Section 1.4, “AES Instructions” for more information about the operation of the AES instructions.

Encryption consists of 1, …, Nr – 1 iterations of sequences of operations called rounds, terminated by
a unique final round, Nr. The AESENC and VAESENC instructions perform all the rounds before the
final round; the AESENCLAST and VAESENCLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register

There are legacy and extended forms of the instruction:

AESENC
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESENC

The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESENC is an AES instruction and VAESENC is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_ECX[AES] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions

(V)AESDEC, (V)AESDECLAST, (V)AESIMC, (V)AESKEYGENASSIST

AESENC
VAESENC

AES
Encryption Round

Mnemonic Opcode Description
AESENC xmm1, xmm2/mem128 66 0F 38 DC /r Performs one encryption round on a state value

in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VAESENC xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DC /r

Instruction Reference AESENC, VAESENC 61

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference AESENCLAST, VAESENCLAST 62

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs the final round of AES encryption. Completes transformation of a state value specified by
the first source operand using a round key value specified by the second source operand, and writes the
result to the destination.

See Section 1.4, “AES Instructions” for more information about the operation of the AES instructions.

Encryption consists of 1, …, Nr – 1 iterations of sequences of operations called rounds, terminated by
a unique final round, Nr. The AESENC and VAESENC instructions perform all the rounds before the
final round; the AESENCLAST and VAESENCLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.

AESENCLAST
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESENCLAST

The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESENCLAST is an AES instruction and VAESENCLAST is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[AES] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions

(V)AESDEC, (V)AESDECLAST, (V)AESIMC, (V)AESKEYGENASSIST

AESENCLAST
VAESENCLAST

 AES
Last Encryption Round

Mnemonic Opcode Description
AESENCLAST xmm1, xmm2/mem128 66 0F 38 DD /r Performs the last encryption round on a

state value in xmm1 using the key value in xmm2
or mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VAESENCLAST xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DD /r

Instruction Reference AESENCLAST, VAESENCLAST 63

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference AESIMC, VAESIMC 64

26568—Rev. 3.11—December 2010 AMD64 Technology

Applies the AES InvMixColumns() transformation to expanded round keys in preparation for
decryption. Transforms an expanded key specified by the second source operand and writes the result
to a destination register.

See Section 1.4, “AES Instructions” for more information about the operation of the AES instructions.

The 128-bit round key vector is interpreted as 16-byte column-major entries in a 4-by-4 matrix of
bytes.The transformed result is written to the destination in column-major order.

AESIMC and VAESIMC are not used to transform the first and last round key in a decryption
sequence.

There are two forms of these instructions:

AESIMC
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESIMC

The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESIMC is an AES instruction and VAESIMC is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_ECX[AES] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESKEYGENASSIST

AESIMC
VAESIMC

AES
InvMixColumn Transformation

Mnemonic Opcode Description
AESIMC xmm1, xmm2/mem128 66 0F 38 DB /r Performs AES InvMixColumn transformation on

a round key in the xmm2 or mem128 and stores
the result in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VAESIMC xmm1, xmm2/mem128 C4 RXB.00010 X.src.0.01 DB /r

Instruction Reference AESIMC, VAESIMC 65

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference AESKEYGENASSIST, VAESKEYGENASSIST 66

26568—Rev. 3.11—December 2010 AMD64 Technology

Expands a round key for encryption. Transforms a 128-bit round key operand using an 8-bit round
constant and writes the result to a destination register.

See Section 1.4, “AES Instructions” for more information about the operation of the AES instructions.

The round key is provided by the second source operand and the round constant is specified by an
immediate operand. The 128-bit round key vector is interpreted as 16-byte column-major entries in a
4-by-4 matrix of bytes. The transformed result is written to the destination in column-major order.

There are legacy and extended forms of the instruction:

AESKEYGENASSIST
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESKEYGENASSIST

The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESKEYGENASSIST is an AES instruction and VAESKEYGENASSIST is an AVX instruction.
Support for these instructions is indicated by CPUID Fn0000_00001_ECX[AES] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST,(V)AESIMC

AESKEYGENASSIST
VAESKEYGENASSIST

AES
Assist Round Key Generation

Mnemonic Opcode Description
AESKEYGENASSIST xmm1, xmm2/mem128, imm8 66 0F 3A DF /r ib Expands a round key in xmm2 or

mem128 using an immediate
round constant. Writes the result
to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

AESKEYGENASSIST xmm1, xmm2 /mem128, imm8 C4 RXB.00011 X.src.0.01 DF /r ib

Instruction Reference AESKEYGENASSIST, VAESKEYGENASSIST 67

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ANDNPD, VANDNPD 68

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs a bitwise AND of two packed double-precision floating-point values in the second source
operand with the ones’-complement of the two corresponding packed double-precision floating-point
values in the first source operand and writes the result into the destination.

There are legacy and extended forms of the instruction:

ANDNPD
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VANDNPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ANDNPD is an SSE2 instruction and VANDNPD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

ANDNPD
VANDNPD

AND NOT
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
ANDNPD xmm1, xmm2/mem128 66 0F 55 /r Performs bitwise AND of two packed double-precision

floating-point values in xmm2 or mem128 with the ones’-
complement of two packed double-precision floating-
point values in xmm1. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VANDNPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 55 /r
VANDNPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 55 /r

Instruction Reference ANDNPD, VANDNPD 69

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ANDNPS, VANDNPS 70

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs a bitwise AND of four packed single-precision floating-point values in the second source
operand with the ones’-complement of the four corresponding packed single-precision floating-point
values in the first source operand, and writes the result in the destination.

There are legacy and extended forms of the instruction:

ANDNPS
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VANDNPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ANDNPS is an SSE instruction and VANDNPS is an AVX instruction. Support for these instructions
i s ind ica ted by CPUID fea ture ident i f ie rs CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)ANDNPD, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

ANDNPS
VANDNPS

AND NOT
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
ANDNPS xmm1, xmm2/mem128 0F 55 /r Performs bitwise AND of four packed double-precision

floating-point values in xmm2 or mem128 with the ones’-
complement of four packed double-precision floating-point
values in xmm1. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VANDNPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 55 /r
VANDNPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 55 /r

Instruction Reference ANDNPS, VANDNPS 71

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ANDPD, VANDPD 72

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs bitwise AND of two packed double-precision floating-point values in the first source
operand with the corresponding two packed double-precision floating-point values in the second
source operand and writes the results into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:

ANDPD
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VANDPD
The extended form of the instruction has both 128-bit and 256-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ANDPD is an SSE2 instruction and VANDPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

ANDPD
VANDPD

AND
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
ANDPD xmm1, xmm2/mem128 66 0F 54 /r Performs bitwise AND of two packed double-precision

floating-point values in xmm1 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VANDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 54 /r
VANDPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 54 /r

Instruction Reference ANDPD, VANDPD 73

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ANDPS, VANDPS 74

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs bitwise AND of the four packed single-precision floating-point values in the first source
operand with the corresponding four packed single-precision floating-point values in the second
source operand, and writes the result into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:

ANDPS
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VANDPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ANDPS is an SSE instruction and VANDPS is an AVX instruction. Support for these instructions is
i nd i ca t ed by CPUID f ea tu r e i den t i f i e r s CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPD, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

ANDPS
VANDPS

AND
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
ANDPS xmm1, xmm2/mem128 0F 54 /r Performs bitwise AND of four packed double-precision

floating-point values in xmm1 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VANDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 54 /r
VANDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 54 /r

Instruction Reference ANDPS, VANDPS 75

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference BLENDPD, VBLENDPD 76

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies packed double-precision floating-point values from either of two sources to a destination, as
specified by an 8-bit mask operand.

Each mask bit specifies a 64-bit element in a source location and a corresponding 64-bit element in the
destination register. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination register. When a mask bit = 1, the specified element of the
second source is copied to the corresponding position in the destination register.

There are legacy and extended forms of the instruction:

BLENDPD
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. Only mask bits [1:0] are used.

VBLENDPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. Only mask bits [1:0] are used.
YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register. Only mask bits [3:0] are used.

BLENDPD is an SSE4.1 instruction and VBLENDPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)BLENDPS, (B)BLENDVPD, (V)BLENDVPS

BLENDPD
VBLENDPD

 Blend
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
BLENDPD xmm1, xmm2/mem128, imm8 66 0F 3A 0D /r ib Copies values from xmm1 or

xmm2/mem128 to xmm1, as
specified by imm8.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VBLENDPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 0D /r ib
VBLENDPD ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00011 X.src.1.01 0D /r ib

Instruction Reference BLENDPD, VBLENDPD 77

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference BLENDPS, VBLENDPS 78

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies packed single-precision floating-point values from either of two sources to a destination, as
specified by an 8-bit mask operand.

Each mask bit specifies a 32-bit element in a source location and a corresponding 32-bit element in the
destination register. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination register. When a mask bit = 1, the specified element of the
second source is copied to the corresponding position in the destination register.

There are legacy and extended forms of the instruction:

BLENDPS
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. Only mask bits [3:0] are used.

VBLENDPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.Only mask bits [3:0] are used.
YMM Encoding

The first operand is a YMM register and the second operand is either another YMM register or a
256-bit memory location. The destination is a third YMM register. Only mask bits [3:0] are used.

BLENDPS is an SSE4.1 instruction and VBLENDPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)BLENDPD, (V)BLENDVPD, (V)BLENDVPS

BLENDPS
VBLENDPS

 Blend
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
BLENDPS xmm1, xmm2/mem128, imm8 66 0F 3A 0C /r ib Copies values from xmm1 or

xmm2/mem128 to xmm1, as
specified by imm8.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VBLENDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00011 X.src.0.01 0C /r ib
VBLENDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00011 X.src.1.01 0C /r ib

Instruction Reference BLENDPS, VBLENDPS 79

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference BLENDVPD, VBLENDVPD 80

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies packed double-precision floating-point values from either of two sources to a destination, as
specified by a mask operand.

Each mask bit specifies a 64-bit element of a source location and a corresponding 64-bit element of the
destination. The position of a mask bit corresponds to the position of the most significant bit of a
copied value. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination. When a mask bit = 1, the specified element of the second
source is copied to the corresponding position in the destination.

There are legacy and extended forms of the instruction:

BLENDVPD
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. The mask is defined by bits 127
and 63 of the implicit register XMM0.

VBLENDVPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. The mask is defined by bits 127 and 63
of a fourth XMM register.
YMM Encoding

The first operand is a YMM register and the second operand is either another YMM register or a
256-bit memory location. The destination is a third YMM register. The mask is defined by bits 255,
191, 127, and 63 of a fourth YMM register.

BLENDVPD is an SSE4.1 instruction and VBLENDVPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

BLENDVPD
VBLENDVPD

 Variable Blend
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
BLENDVPD xmm1, xmm2/mem128 66 0F 38 15 /r Copies values from xmm1 or xmm2/mem128 to

xmm1, as specified by the MSB of corresponding
elements of xmm0.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VBLENDVPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 X.src.0.01 4B /r
VBLENDVPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 X.src.1.01 4B /r

Instruction Reference BLENDVPD, VBLENDVPD 81

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)BLENDPD, (V)BLENDPS, (V)BLENDVPS

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference BLENDVPS, VBLENDVPS 82

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies packed single-precision floating-point values from either of two sources to a destination, as
specified by a mask operand.

Each mask bit specifies a 32-bit element of a source location and a corresponding 32-bit element of the
destination register. The position of a mask bits corresponds to the position of the most significant bit
of a copied value. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination. When a mask bit = 1, the specified element of the second
source is copied to the corresponding position in the destination.

There are legacy and extended forms of the instruction:

BLENDVPS
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. The mask is defined by bits 127,
95, 63, and 31 of the implicit register XMM0.

VBLENDVPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. The mask is defined by bits 127, 95, 63,
and 31 of a fourth XMM register.
YMM Encoding

The first operand is a YMM register and the second operand is either another YMM register or a
256-bit memory location. The destination is a third YMM register. The mask is defined by bits 255,
223, 191, 159, 127, 95, 63, and 31 of a fourth YMM register.

BLENDVPS is an SSE4.1 instruction and VBLENDVPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

BLENDVPS
VBLENDVPS

 Variable Blend
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
BLENDVPS xmm1, xmm2/mem128 66 0F 38 14 /r Copies packed single-precision

floating-point values from xmm1 or
xmm2/mem128 to xmm1, as
specified by bits in xmm0.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VBLENDVPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 X.src.0.01 4A /r
VBLENDVPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 X.src.1.01 4A /r

Instruction Reference BLENDVPS, VBLENDVPS 83

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)BLENDPD, (V)BLENDPS, (V)BLENDVPD

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CMPPD, VCMPPD 84

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each of the two packed double-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the result of each comparison to the
corresponding 64-bit element of the destination. When a comparison is TRUE, all 64 bits of the
destination element are set; when a comparison is FALSE, all 64 bits of the destination element are
cleared. The type of comparison is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.

There are legacy and extended forms of the instruction:

CMPPD
The first source operand is an XMM register and the second source operand is either another XMM
register or a128-bit memory location.The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. Comparison type is specified by
bits [2:0] of an immediate byte operand.

VCMPPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. Comparison type is specified by bits
[4:0] of an immediate byte operand.
YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination operand is a YMM register. Comparison type is specified
by bits [4:0] of an immediate byte operand.

Immediate Operand Encoding
CMPPD uses bits [2:0] of the 8-bit immediate operand and VCMPPD uses bits [4:0] of the 8-bit
immediate operand. Although VCMPPD supports 20h encoding values, the comparison types echo
those of CMPPD on 4-bit boundaries. The following table shows the immediate operand value for
CMPPD and each of the VCMPPD echoes.

CMPPD
VCMPPD

Compare
Packed Double-Precision Floating-Point

Instruction Reference CMPPD, VCMPPD 85

26568—Rev. 3.11—December 2010 AMD64 Technology

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
with the directly supported comparison operations.

The following alias mnemonics for (V)CMPPD with appropriate value of imm8 are supported.

CMPPD is an SSE2 instruction and VCMPPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Immediate Operand
Value

Compare Operation Result If NaN Operand QNaN Operand Causes
Invalid Operation

Exception
00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes

Greater than
(swapped operands)

FALSE Yes

02h, 0Ah, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal
(swapped operands)

FALSE Yes

03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, 0Dh, 15h, 1Dh Not less than TRUE Yes

Not greater than
(swapped operands)

TRUE Yes

06h, 0Eh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal

(swapped operands)
TRUE Yes

07h, 0Fh, 17h, 1Fh Ordered FALSE No

Mnemonic Implied Value of imm8
(V)CMPEQPD 00h, 08h, 10h, 18h
(V)CMPLTPD 01h, 09h, 11h, 19h
(V)CMPLEPD 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDPD 03h, 0Bh, 13h, 1Bh
(V)CMPNEQPD 04h, 0Ch, 14h, 1Ch
(V)CMPNLTPD 05h, 0Dh, 15h, 1Dh
(V)CMPNLEPD 06h, 0Eh, 16h, 1Eh
(V)CMPORDPD 07h, 0Fh, 17h, 1Fh

Mnemonic Opcode Description
CMPPD xmm1, xmm2/mem128, imm8 66 0F C2 /r ib Compares two pairs of values in xmm1 to

corresponding values in xmm2 or mem128.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Instruction Reference CMPPD, VCMPPD 86

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCMPPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00001 X.src.0.01 C2 /r ib
VCMPPD ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00001 X.src.1.01 C2 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CMPPS, VCMPPS 87

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each of the four packed single-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the result of each comparison to the
corresponding 32-bit element of the destination. When a comparison is TRUE, all 32 bits of the
destination element are set; when a comparison is FALSE, all 32 bits of the destination element are
cleared. The type of comparison is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.

There are legacy and extended forms of the instruction:

CMPPS
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. Comparison type is specified by
bits [2:0] of an immediate byte operand.

VCMPPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. Comparison type is specified by bits
[4:0] of an immediate byte operand.
YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination operand is a YMM register. Comparison type is specified
by bits [4:0] of an immediate byte operand.

Immediate Operand Encoding
CMPPS uses bits [2:0] of the 8-bit immediate operand and VCMPPS uses bits [4:0] of the 8-bit
immediate operand. Although VCMPPS supports 20h encoding values, the comparison types echo
those of CMPPS on 4-bit boundaries. The following table shows the immediate operand value for
CMPPS and each of the VCMPPDS echoes.

CMPPS
VCMPPS

Compare
Packed Single-Precision Floating-Point

Instruction Reference CMPPS, VCMPPS 88

26568—Rev. 3.11—December 2010 AMD64 Technology

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown in
with the directly supported comparison operations.

The following alias mnemonics for (V)CMPPS with appropriate value of imm8 are supported.

CMPPS is an SSE instruction and VCMPPS is an AVX instruction. Support for these instructions is
i nd i ca t ed by CPUID f ea tu r e i den t i f i e r s CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Immediate Operand
Value

Compare Operation Result If NaN Operand QNaN Operand Causes
Invalid Operation

Exception
00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes

Greater than
(swapped operands)

FALSE Yes

02h, 0Ah, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal
(swapped operands)

FALSE Yes

03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, 0Dh, 15h, 1Dh Not less than TRUE Yes

Not greater than
(swapped operands)

TRUE Yes

06h, 0Eh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal

(swapped operands)
TRUE Yes

07h, 0Fh, 17h, 1Fh Ordered FALSE No

Mnemonic Implied Value of imm8
(V)CMPEQPS 00h, 08h, 10h, 18h
(V)CMPLTPS 01h, 09h, 11h, 19h
(V)CMPLEPS 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDPS 03h, 0Bh, 13h, 1Bh
(V)CMPNEQPS 04h, 0Ch, 14h, 1Ch
(V)CMPNLTPS 05h, 0Dh, 15h, 1Dh
(V)CMPNLEPS 06h, 0Eh, 16h, 1Eh
(V)CMPORDPS 07h, 0Fh, 17h, 1Fh

Mnemonic Opcode Description
CMPPS xmm1, xmm2/mem128, imm8 0F C2 /r ib Compares four pairs of values in xmm1 to

corresponding values in xmm2 or mem128.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Instruction Reference CMPPS, VCMPPS 89

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)CMPPD, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCMPPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00001 X.src.0.00 C2 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CMPSD, VCMPSD 90

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares a double-precision floating-point value in the low-order 64 bits of the first source operand
with a double-precision floating-point value in the low-order 64 bits of the second source operand and
writes the result to the low-order 64 bits of the destination. When a comparison is TRUE, all 64 bits of
the destination element are set; when a comparison is FALSE, all 64 bits of the destination element are
cleared. Comparison type is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only when the comparison type is not
Equal, Unequal, Ordered, or Unordered. SNaN operands always generate an IE.

There are legacy and extended forms of the instruction:

CMPSD
The first source operand is an XMM register. The second source operand is either another XMM
register or a 64-bit memory location. The first source register is also the destination. Bits [127:64] of
the destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected. Comparison type is specified by bits [2:0] of an immediate byte operand.

This CMPSD instruction must not be confused with the same-mnemonic CMPSD (compare strings by
doubleword) instruction in the general-purpose instruction set. Assemblers can distinguish the
instructions by the number and type of operands.

VCMPSD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the
destination are copied from bits [127:64] of the first source. Bits [255:128] of the YMM register that
corresponds to the destination are cleared. Comparison type is specified by bits [4:0] of an immediate
byte operand.

Immediate Operand Encoding
CMPSD uses bits [2:0] of the 8-bit immediate operand and VCMPSD uses bits [4:0] of the 8-bit
immediate operand. Although VCMPSD supports 20h encoding values, the comparison types echo
those of CMPSD on 4-bit boundaries. The following table shows the immediate operand value for
CMPSD and each of the VCMPSD echoes.

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown

CMPSD
VCMPSD

Compare
Scalar Double-Precision Floating-Point

Instruction Reference CMPSD, VCMPSD 91

26568—Rev. 3.11—December 2010 AMD64 Technology

with the directly supported comparison operations. When operands are swapped, the first source
XMM register is overwritten by the result

The following alias mnemonics for (V)CMPSD with appropriate value of imm8 are supported.

CMPSD is an SSE2 instruction and VCMPSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Immediate Operand
Value

Compare Operation Result If NaN Operand QNaN Operand Causes
Invalid Operation

Exception
00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes

Greater than
(swapped operands)

FALSE Yes

02h, 0Ah, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal
(swapped operands)

FALSE Yes

03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, 0Dh, 15h, 1Dh Not less than TRUE Yes

Not greater than
(swapped operands)

TRUE Yes

06h, 0Eh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal

(swapped operands)
TRUE Yes

07h, 0Fh, 17h, 1Fh Ordered FALSE No

Mnemonic Implied Value of imm8
(V)CMPEQSD 00h, 08h, 10h, 18h
(V)CMPLTSD 01h, 09h, 11h, 19h
(V)CMPLESD 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDSD 03h, 0Bh, 13h, 1Bh
(V)CMPNEQSD 04h, 0Ch, 14h, 1Ch
(V)CMPNLTSD 05h, 0Dh, 15h, 1Dh
(V)CMPNLESD 06h, 0Eh, 16h, 1Eh
(V)CMPORDSD 07h, 0Fh, 17h, 1Fh

Mnemonic Opcode Description
CMPSD xmm1, xmm2/mem64, imm8 F2 0F C2 /r ib Compares double-precision floating-point

values in the low-order 64 bits of xmm1 with
corresponding values in xmm2 or mem64.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Instruction Reference CMPSD, VCMPSD 92

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCMPSD xmm1, xmm2, xmm3/mem64, imm8 C4 RXB.00001 X.src.X.11 C2 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CMPSS, VCMPSS 93

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares a single-precision floating-point value in the low-order 32 bits of the first source operand
with a single-precision floating-point value in the low-order 32 bits of the second source operand and
writes the result to the low-order 32 bits of the destination. When a comparison is TRUE, all 32 bits of
the destination element are set; when a comparison is FALSE, all 32 bits of the destination element are
cleared. Comparison type is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.

There are legacy and extended forms of the instruction:

CMPSS
The first source operand is an XMM register. The second source operand is either another XMM
register or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of
the destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected. Comparison type is specified by bits [2:0] of an immediate byte operand.

VCMPSS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the
destination are copied from bits [127L32] of the first source. Bits [255:128] of the YMM register that
corresponds to the destination are cleared. Comparison type is specified by bits [4:0] of an immediate
byte operand.

Immediate Operand Encoding
CMPSS uses bits [2:0] of the 8-bit immediate operand and VCMPSS uses bits [4:0] of the 8-bit
immediate operand. Although VCMPSS supports 20h encoding values, the comparison types echo
those of CMPSS on 4-bit boundaries. The following table shows the immediate operand value for
CMPSS and each of the VCMPSS echoes.

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
below with the directly supported comparison operations. When operands are swapped, the first
source XMM register is overwritten by the result.

CMPSS
VCMPSS

Compare
Scalar Single-Precision Floating-Point

Instruction Reference CMPSS, VCMPSS 94

26568—Rev. 3.11—December 2010 AMD64 Technology

The following alias mnemonics for (V)CMPSS with appropriate value of imm8 are supported.

CMPSS is an SSE instruction and VCMPSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Immediate Operand
Value

Compare Operation Result If NaN Operand QNaN Operand Causes
Invalid Operation

Exception
00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes

Greater than
(swapped operands)

FALSE Yes

02h, 0Ah, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal
(swapped operands)

FALSE Yes

03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, 0Dh, 15h, 1Dh Not less than TRUE Yes

Not greater than
(swapped operands)

TRUE Yes

06h, 0Eh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal

(swapped operands)
TRUE Yes

07h, 0Fh, 17h, 1Fh Ordered FALSE No

Mnemonic Implied Value of imm8
(V)CMPEQSS 00h, 08h, 10h, 18h
(V)CMPLTSS 01h, 09h, 11h, 19h
(V)CMPLESS 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDSS 03h, 0Bh, 13h, 1Bh
(V)CMPNEQSS 04h, 0Ch, 14h, 1Ch
(V)CMPNLTSS 05h, 0Dh, 15h, 1Dh
(V)CMPNLESS 06h, 0Eh, 16h, 1Eh
(V)CMPORDSS 07h, 0Fh, 17h, 1Fh

Mnemonic Opcode Description
CMPSS xmm1, xmm2/mem32, imm8 F3 0F C2 /r ib Compares single-precision floating-point

values in the low-order 32 bits of xmm1 with
corresponding values in xmm2 or mem32.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Instruction Reference CMPSS, VCMPSS 95

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCMPSS xmm1, xmm2, xmm3/mem32, imm8 C4 RXB.00001 X.src.X.10 C2 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference COMISD, VCOMISD 96

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares a double-precision floating-point value in the low-order 64 bits of an operand with a
double-precision floating-point value in the low-order 64 bits of another operand or a 64-bit memory
location and sets rFLAGS.ZF, PF, and CF to show the result of the comparison:

The result is unordered if one or both of the operand values is a NaN. The rFLAGS.OF, AF, and SF bits
are cleared. If an #XF SIMD floating-point exception occurs the rFLAGS bits are not updated.

There are legacy and extended forms of the instruction:

COMISD
The first source operand is an XMM register and the second source operand is another XMM register
or a 64-bit memory location.

VCOMISD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location.

COMISD is an SSE2 instruction and VCOMISD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISS, (V)UCOMISD, (V)UCOMISS

COMISD
VCOMISD

Compare Ordered
Scalar Double-Precision Floating-Point

Comparison ZF PF CF
NaN input 1 1 1

operand 1 > operand 2 0 0 0
operand 1 < operand 2 0 0 1
operand 1 = operand 2 1 0 0

Mnemonic Opcode Description
COMISD xmm1, xmm2/mem64 66 0F 2F /r Compares double-precision floating-point values in xmm1

with corresponding values in xmm2 or mem64 and sets
rFLAGS.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCOMISD xmm1, xmm2 /mem64 C4 RXB.00001 X.src.X.01 2F /r

Instruction Reference COMISD, VCOMISD 97

26568—Rev. 3.11—December 2010 AMD64 Technology

rFLAGS Affected

MXCSR Flags Affected

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
0 0 M 0 M M

21 20 19 18 17 16 14 13 : 12 11 10 9 8 7 6 4 2 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Bits 31:22, 15, 5, 3, and 1 are reserved. For #XF, rFLAGS bits are not updated.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference COMISS, VCOMISS 98

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares a double-precision floating-point value in the low-order 32 bits of an operand with a
double-precision floating-point value in the low-order 32 bits of another operand or a 32-bit memory
location and sets rFLAGS.ZF, PF, and CF to show the result of the comparison:

The result is unordered if one or both of the operand values is a NaN. The rFLAGS.OF, AF, and SF bits
are cleared. If an #XF SIMD floating-point exception occurs the rFLAGS bits are not updated.

There are legacy and extended forms of the instruction:

COMISS
The first source operand is an XMM register and the second source operand is another XMM register
or a 32-bit memory location.

VCOMISS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 32-bit memory location.

COMISS is an SSE instruction and VCOMISS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)UCOMISD, (V)UCOMISS

COMISS
VCOMISS

Compare
Ordered Scalar Single-Precision Floating-Point

Comparison ZF PF CF
NaN input 1 1 1

operand 1 > operand 2 0 0 0
operand 1 < operand 2 0 0 1
operand 1 = operand 2 1 0 0

Mnemonic Opcode Description
COMISS xmm1, xmm2/mem32 0F 2F /r Compares single-precision floating-point values in xmm1

with corresponding values in xmm2 or mem32 and sets
rFLAGS.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCOMISS xmm1, xmm2 /mem32 C4 RXB.00001 X.src.X.00 2F /r

Instruction Reference COMISS, VCOMISS 99

26568—Rev. 3.11—December 2010 AMD64 Technology

rFLAGS Affected

MXCSR Flags Affected

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
0 0 M 0 M M

21 20 19 18 17 16 14 13 : 12 11 10 9 8 7 6 4 2 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Bits 31:22, 15, 5, 3, and 1 are reserved. For #XF, rFLAGS bits are not updated.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTDQ2PD, VCVTDQ2PD 100

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts packed 32-bit signed integer values to packed double-precision floating-point values and
writes the converted values to the destination.

There are legacy and extended forms of the instruction:

CVTDQ2PD
Converts two packed 32-bit signed integer values in the low-order 64 bits of an XMM register or in a
64-bit memory location to two packed double-precision floating-point values and writes the converted
values to an XMM register. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.

VCVTDQ2PD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Converts two packed 32-bit signed integer values in the low-order 64 bits of an XMM register or in a
64-bit memory location to two packed double-precision floating-point values and writes the converted
values to an XMM register. Bits [255:128] of the YMM register that corresponds to the destination are
cleared.
YMM Encoding

Converts four packed 32-bit signed integer values in the low-order 128 bits of a YMM register or a
256-bit memory location to four packed double-precision floating-point values and writes the
converted values to a YMM register.

CVTDQ2PD is an SSE2 instruction and VCVTDQ2PD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTPD2DQ,
(V)CVTTSD2SI

CVTDQ2PD
VCVTDQ2PD

Convert Packed Doubleword Integers
to Packed Double-Precision Floating-Point

Mnemonic Opcode Description
CVTDQ2PD xmm1, xmm2/mem64 F3 0F E6 /r Converts packed doubleword signed integers in xmm2

or mem64 to double-precision floating-point values in
xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCVTDQ2PD xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.10 E6 /r
VCVTDQ2PD ymm1, xmm2/mem128 C4 RXB.00001 X.1111.1.10 E6 /r

Instruction Reference CVTDQ2PD, VCVTDQ2PD 101

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTDQ2PS, VCVTDQ2PS 102

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts packed 32-bit signed integer values to packed single-precision floating-point values and
writes the converted values to the destination. When the result is an inexact value, it is rounded as
specified by MXCSR.RC.

There are legacy and extended forms of the instruction:

CVTDQ2PS
Converts four packed 32-bit signed integer values in an XMM register or a 128-bit memory location to
four packed single-precision floating-point values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VCVTDQ2PS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Converts four packed 32-bit signed integer values in an XMM register or a 128-bit memory location to
four packed double-precision floating-point values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Converts eight packed 32-bit signed integer values in a YMM register or a 256-bit memory location to
eight packed double-precision floating-point values and writes the converted values to a YMM
register.

The CVTDQ2PS is an SSE2 instruction and the VCVTDQ2PS instruction is an AVX instruction.
Support for these instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ, (V)CVTTSS2SI

CVTDQ2PS
VCVTDQ2PS

Convert Packed Doubleword Integers
to Packed Single-Precision Floating-Point

Mnemonic Opcode Description
CVTDQ2PS xmm1, xmm2/mem128 0F 5B /r Converts packed doubleword integer values in xmm2 or

mem128 to packed single-precision floating-point
values in xmm2.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCVTDQ2PS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 5B /r
VCVTDQ2PS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 5B /r

Instruction Reference CVTDQ2PS, VCVTDQ2PS 103

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTPD2DQ, VCVTPD2DQ 104

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts packed double-precision floating-point values to packed signed doubleword integers and
writes the converted values to the destination.

When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-point
value is a NaN, infinity, or the result of the conversion is larger than the maximum signed doubleword
(–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value (8000_0000h) when the
invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:

CVTPD2DQ
Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed signed doubleword integers and writes the converted values to the two low-
order doublewords of the destination XMM register. Bits [127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VCVTPD2DQ
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two signed doubleword values and writes the converted values to the lower two
doubleword elements of the destination XMM register. Bits [127:64] of the destination are cleared.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four signed doubleword values and writes the converted values to an XMM register. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

CVTPD2DQ is an SSE2 instruction and VCVTPD2DQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481)

CVTPD2DQ
VCVTPD2DQ

Convert Packed Double-Precision Floating-Point
to Packed Doubleword Integer

Mnemonic Opcode Description
CVTPD2DQ xmm1, xmm2/mem128 F2 0F E6 /r Converts two packed double-precision floating-point

values in xmm2 or mem128 to packed doubleword
integers in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCVTPD2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.11 E6 /r
VCVTPD2DQ xmm1, ymm2/mem256 C4 RXB.00001 X.1111.1.11 E6 /r

Instruction Reference CVTPD2DQ, VCVTPD2DQ 105

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)CVTDQ2PD, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTPD2DQ,
(V)CVTTSD2SI

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTPD2PS, VCVTPD2PS 106

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts packed double-precision floating-point values to packed single-precision floating-point
values and writes the converted values to the low-order doubleword elements of the destination. When
the result is an inexact value, it is rounded as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:

CVTPD2PS
Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed single-precision floating-point values and writes the converted values to an
XMM register. Bits [127:64] of the destination are cleared. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VCVTPD2PS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed single-precision floating-point values and writes the converted values to an
XMM register. Bits [127:64] of the destination are cleared. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.
YMM Encoding

Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four packed single-precision floating-point values and writes the converted values to a
YMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

CVTPD2PS is an SSE2 instruction and VCVTPD2PS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)CVTPS2PD, (V)CVTSD2SS, (V)CVTSS2SD

CVTPD2PS
VCVTPD2PS

Convert Packed Double-Precision Floating-Point
to Packed Single-Precision Floating-Point

Mnemonic Opcode Description
CVTPD2PS xmm1, xmm2/mem128 66 0F 5A /r Converts packed double-precision floating-point

values in xmm2 or mem128 to packed single-
precision floating-point values in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCVTPD2PS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 5A /r
VCVTPD2PS xmm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 5A /r

Instruction Reference CVTPD2PS, VCVTPD2PS 107

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTPS2DQ, VCVTPS2DQ 108

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts packed single-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.

When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-point
value is a NaN, infinity, or the result of the conversion is larger than the maximum signed doubleword
(–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value (8000_0000h) when the
invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:

CVTPS2DQ
Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VCVTPS2DQ
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Converts eight packed single-precision floating-point values in a YMM register or a 256-bit memory
location to eight packed signed doubleword integer values and writes the converted values to a YMM
register.

CVTPS2DQ is an SSE2 instruction and VCVTPS2DQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)CVTDQ2PS, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ, (V)CVTTSS2SI

CVTPS2DQ
VCVTPS2DQ

Convert Packed Single-Precision Floating-Point
to Packed Doubleword Integers

Mnemonic Opcode Description
CVTPS2DQ xmm1, xmm2/mem128 66 0F 5B /r Converts four packed single-precision floating-point

values in xmm2 or mem128 to four packed
doubleword integers in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCVTPS2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 5B /r
VCVTPS2DQ ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 5B /r

Instruction Reference CVTPS2DQ, VCVTPS2DQ 109

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTPS2PD, VCVTPS2PD 110

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts packed single-precision floating-point values to packed double-precision floating-point
values and writes the converted values to the destination.

There are legacy and extended forms of the instruction:

CVTPS2PD
Converts two packed single-precision floating-point values in the two low order doubleword elements
of an XMM register or a 64-bit memory location to two double-precision floating-point values and
writes the converted values to an XMM register. Bits [255:128] of the YMM register that corresponds
to the destination are not affected.

VCVTPS2PD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Converts two packed single-precision floating-point values in the two low order doubleword elements
of an XMM register or a 64-bit memory location to two double-precision floating-point values and
writes the converted values to an XMM register. Bits [255:128] of the YMM register that corresponds
to the destination are cleared.
YMM Encoding

Converts four packed single-precision floating-point values in a YMM register or a 128-bit memory
location to four double-precision floating-point values and writes the converted values to a YMM
register.

CVTPS2PD is an SSE2 instruction and VCVTPS2PD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)CVTPD2PS, (V)CVTSD2SS, (V)CVTSS2SD

CVTPS2PD
VCVTPS2PD

Convert Packed Single-Precision Floating-Point
to Packed Double-Precision Floating-Point

Mnemonic Opcode Description
CVTPS2PD xmm1, xmm2/mem64 0F 5A /r Converts packed single-precision floating-point values

in xmm2 or mem64 to packed double-precision floating-
point values in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCVTPS2PD xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.00 5A /r
VCVTPS2PD ymm1, ymm2/mem128 C4 RXB.00001 X.1111.1.00 5A /r

Instruction Reference CVTPS2PD, VCVTPS2PD 111

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTSD2SI, VCVTSD2SI 112

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts a scalar double-precision floating-point value to a 32-bit or 64-bit signed integer value and
writes the converted value to a general-purpose register.

When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-point
value is a NaN, infinity, or the result of the conversion is larger than the maximum signed doubleword
(–231 to +231 – 1) or quadword value (–263 to +263 – 1), the instruction returns the indefinite integer
value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-bit integers) when the invalid-
operation exception (IE) is masked.

There are legacy and extended forms of the instruction:

CVTSD2SI
• When REX.W = 0, converts a scalar double-precision floating-point value in the low-order 64 bits

of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

• When REX.W = 1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

VCVTSD2SI
The extended form of the instruction has 128-bit encoding.
• When VEX.W = 0, converts a scalar double-precision floating-point value in the low-order 64 bits

of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

• When VEX.W = 1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

CVTSD2SI is an SSE2 instruction and VCVTSD2SI is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

CVTSD2SI
VCVTSD2SI

Convert Scalar Double-Precision Floating-Point
to Signed Doubleword or Quadword Integer

Mnemonic Opcode Description
CVTSD2SI reg32, xmm1/mem64 F2 (W0) 0F 2D /r Converts a packed double-precision floating-point value

in xmm1 or mem64 to a doubleword integer in reg32.
CVTSD2SI reg64, xmm1/mem64 F2 (W1) 0F 2D /r Converts a packed double-precision floating-point value

in xmm1 or mem64 to a quadword integer in reg64.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTSD2SI reg32, xmm2/mem64 C4 RXB.00001 0.1111.X.11 2D /r
VCVTSD2SI reg64, xmm2/mem64 C4 RXB.00001 1.1111.X.11 2D /r

Instruction Reference CVTSD2SI, VCVTSD2SI 113

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSI2SD, (V)CVTTPD2DQ,
(V)CVTTSD2SI

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTSD2SS, VCVTSD2SS 114

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts a scalar double-precision floating-point value to a scalar single-precision floating-point
value and writes the converted value to the low-order 32 bits of the destination. When the result is an
inexact value, it is rounded as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:

CVTSD2SS
Converts a scalar double-precision floating-point value in the low-order 64 bits of a source XMM
register or a 64-bit memory location to a scalar single-precision floating-point value and writes the
converted value to the low-order 32 bits of a destination XMM register. Bits [127:32] of the
destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.

VCVTSD2SS
The extended form of the instruction has 128-bit encoding.

Converts a scalar double-precision floating-point value in the low-order 64 bits of a source XMM
register or a 64-bit memory location to a scalar single-precision floating-point value and writes the
converted value to the low-order 64 bits of a destination XMM register. Bits [127:32] of the
destination are copied from the first source XMM register. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

CVTSD2SS is an SSE2 instruction and VCVTSD2SS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)CVTPD2PS, (V)CVTPS2PD, (V)CVTSS2SD

CVTSD2SS
VCVTSD2SS

Convert Scalar Double-Precision Floating-Point
to Scalar Single-Precision Floating-Point

Mnemonic Opcode Description
CVTSD2SS xmm1, xmm2/mem64 F2 0F 5A /r Converts a scalar double-precision floating-point

value in xmm2 or mem64 to a scalar single-precision
floating-point value in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCVTSD2SS xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5A /r

Instruction Reference CVTSD2SS, VCVTSD2SS 115

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTSI2SD, VCVTSI2SD 116

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts a signed integer value to a double-precision floating-point value and writes the converted
value to a destination register. When the result of the conversion is an inexact value, the value is
rounded as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:

CVTSI2SD
• When REX.W = 0, converts a signed doubleword integer value from a 32-bit source general-

purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 64 bits of an XMM register. Bits [127:64] of the destination
XMM register and bits [255:128] of the corresponding YMM register are not affected.

• When REX.W = 1, converts a a signed quadword integer value from a 64-bit source general-
purpose register or a 64-bit memory location to a 64-bit double-precision floating-point value and
writes the converted value to the low-order 64 bits of an XMM register. Bits [127:64] of the
destination XMM register and bits [255:128] of the corresponding YMM register are not affected.

VCVTSI2SD
The extended form of the instruction has 128-bit encoding.
• When VEX.W = 0, converts a signed doubleword integer value from a 32-bit source general-

purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 64 bits of the destination XMM register. Bits [127:64] of the
first source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

• When VEX.W = 1, converts a signed quadword integer value from a 64-bit source general-purpose
register or a 64-bit memory location to a double-precision floating-point value and writes the
converted value to the low-order 64 bits of the destination XMM register. Bits [127:64] of the first
source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

CVTSI2SD is an SSE2 instruction and VCVTSI2SD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

CVTSI2SD
VCVTSI2SD

Convert Signed Doubleword or Quadword Integer
to Scalar Double-Precision Floating-Point

Mnemonic Opcode Description
CVTSI2SD xmm1, reg32/mem32 F2 (W0) 0F 2A /r Converts a doubleword integer in reg32 or mem32 to a

double-precision floating-point value in xmm1.
CVTSI2SD xmm1, reg64/mem64 F2 (W1) 0F 2A /r Converts a quadword integer in reg64 or mem64 to a

double-precision floating-point value in xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTSI2SD xmm1, xmm2, reg32/mem32 C4 RXB.00001 0.src.X.11 2A /r
VCVTSI2SD ymm1, xmm2, reg64/mem64 C4 RXB.00001 1.src.X.11 2A /r

Instruction Reference CVTSI2SD, VCVTSI2SD 117

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTTPD2DQ,
(V)CVTTSD2SI

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTSI2SS, VCVTSI2SS 118

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts a signed integer value to a single-precision floating-point value and writes the converted
value to an XMM register. When the result of the conversion is an inexact value, the value is rounded
as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:

CVTSI2SS
• When REX.W = 0, converts a signed doubleword integer value from a 32-bit source general-

purpose register or a 32-bit memory location to a single-precision floating-point value and writes
the converted value to the low-order 32 bits of an XMM register. Bits [127:32] of the destination
XMM register and bits [255:128] of the corresponding YMM register are not affected.

• When REX.W = 1, converts a a signed quadword integer value from a 64-bit source general-
purpose register or a 64-bit memory location to a 64-bit double-precision floating-point value and
writes the converted value to the low-order 64 bits of an XMM register. Bits [127:32] of the
destination XMM register and bits [255:128] of the corresponding YMM register are not affected.

VCVTSI2SS
The extended form of the instruction has 128-bit encoding.
• When VEX.W = 0, converts a signed doubleword integer value from a 32-bit source general-

purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 32 bits of the destination XMM register. Bits [127:32] of the
first source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

• When VEX.W = 1, converts a signed quadword integer value from a 64-bit source general-purpose
register or a 64-bit memory location to a double-precision floating-point value and writes the
converted value to the low-order 32 bits of the destination XMM register. Bits [127:32] of the first
source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

CVTSI2SS is an SSE instruction and VCVTSI2SS is an AVX instruction. Support for these
instructions is indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

CVTSI2SS
VCVTSI2SS

Convert Signed Doubleword or Quadword Integer
to Scalar Single-Precision Floating-Point

Mnemonic Opcode Description
CVTSI2SS xmm1, reg32/mem32 F3 (W0) 0F 2A /r Converts a doubleword integer in reg32 or mem32 to a

single-precision floating-point value in xmm1.
CVTSI2SS xmm1, reg64/mem64 F3 (W1) 0F 2A /r Converts a quadword integer in reg64 or mem64 to a

single-precision floating-point value in xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTSI2SS xmm1, xmm2, reg32/mem32 C4 RXB.00001 0.src.X.10 2A /r
VCVTSI2SS xmm1, xmm2, reg64/mem64 C4 RXB.00001 1.src.X.10 2A /r

Instruction Reference CVTSI2SS, VCVTSI2SS 119

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSS2SI, (V)CVTTPS2DQ, (V)CVTTSS2SI

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTSS2SD, VCVTSS2SD 120

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts a scalar single-precision floating-point value to a scalar double-precision floating-point
value and writes the converted value to the low-order 64 bits of the destination.

There are legacy and extended forms of the instruction:

CVTSS2SD
Converts a scalar single-precision floating-point value in the low-order 32 bits of a source XMM
register or a 32-bit memory location to a scalar double-precision floating-point value and writes the
converted value to the low-order 64 bits of a destination XMM register. Bits [127:64] of the
destination and bits [255:128] of the corresponding YMM register are not affected.

VCVTSS2SD
The extended form of the instruction has 128-bit encoding.

Converts a scalar single-precision floating-point value in the low-order 32 bits of a source XMM
register or a 32-bit memory location to a scalar double-precision floating-point value and writes the
converted value to the low-order 64 bits of a destination XMM register. Bits [127:64] of the
destination are copied from a second source XMM register. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

CVTSD2SD is an SSE2 instruction and VCVTSD2SD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)CVTPD2PS, (V)CVTPS2PD, (V)CVTSD2SS

CVTSS2SD
VCVTSS2SD

Convert Scalar Single-Precision Floating-Point
to Scalar Double-Precision Floating-Point

Mnemonic Opcode Description
CVTSS2SD xmm1, xmm2/mem32 F3 0F 5A /r Converts a scalar single-precision floating-point value

in xmm2 or mem32 to a scalar double-precision
floating-point value in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCVTSS2SD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.10 5A /r

Instruction Reference CVTSS2SD, VCVTSS2SD 121

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTSS2SI, VCVTSS2SI 122

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts a single-precision floating-point value to a signed integer value and writes the converted
value to a general-purpose register.
When the result of the conversion is an inexact value, the value is rounded as specified by
MXCSR.RC. When the floating-point value is a NaN, infinity, or the result of the conversion is larger
than the maximum signed doubleword (–231 to +231 – 1) or quadword value (–263 to +263 – 1), the
indefinite integer value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-bit integers)
is returned when the invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:
CVTSS2SI
• When REX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an

XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register.

• When REX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register.

VCVTSS2SI
The extended form of the instruction has 128-bit encoding.
• When VEX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an

XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register.

• When VEX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register.

CVTSS2SI is an SSE instruction and VCVTSS2SI is an AVX instruction. Support for these
instructions is indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

CVTSS2SI
VCVTSS2SI

Convert Scalar Single-Precision Floating-Point
to Signed Doubleword or Quadword Integer

Mnemonic Opcode Description
CVTSS2SI reg32, xmm1/mem32 F3 (W0) 0F 2D /r Converts a single-precision floating-point value in

xmm1 or mem32 to a 32-bit integer value in reg32
CVTSS2SI reg64, xmm1//mem64 F3 (W1) 0F 2D /r Converts a single-precision floating-point value in

xmm1 or mem64 to a 64-bit integer value in reg64

Instruction Reference CVTSS2SI, VCVTSS2SI 123

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTTPS2DQ, (V)CVTTSS2SI

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCVTSS2SI reg32, xmm1/mem32 C4 RXB.00001 0.1111.X.10 2D /r
VCVTSS2SI reg64, xmm1/mem64 C4 RXB.00001 1.1111.X.10 2D /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTTPD2DQ, VCVTTPD2DQ 124

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts packed double-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.

When the result is an inexact value, it is truncated (rounded toward zero). When the floating-point
value is a NaN, infinity, or the result of the conversion is larger than the maximum signed doubleword
(–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value (8000_0000h) when the
invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:

CVTTPD2DQ
Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed signed doubleword integers and writes the converted values to the two low-
order doublewords of the destination XMM register. Bits [127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VCVTTPD2DQ
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two signed doubleword values and writes the converted values to the lower two
doubleword elements of the destination XMM register. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.
YMM Encoding

Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four signed doubleword integer values and writes the converted values to an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

CVTTPD2DQ is an SSE2 instruction and VCVTTPD2DQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

CVTTPD2DQ
VCVTTPD2DQ

Convert Packed Double-Precision Floating-Point
to Packed Doubleword Integer, Truncated

Mnemonic Opcode Description
CVTTPD2DQ xmm1, xmm2/mem128 66 0F E6 /r Converts two packed double-precision floating-point

values in xmm2 or mem128 to packed doubleword
integers in xmm1. Truncates inexact result.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCVTTPD2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 E6 /r
VCVTTPD2DQ xmm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 E6 /r

Instruction Reference CVTTPD2DQ, VCVTTPD2DQ 125

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTSD2SI

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTTPS2DQ, VCVTTPS2DQ 126

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts packed single-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.

When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point value is a NaN, infinity, or the result of the conversion is larger than the
maximum signed doubleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer
value (8000_0000h) when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:

CVTTPS2DQ
Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. The high-order 128-bits of the corresponding YMM register are not affected.

VCVTTPS2DQ
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Converts eight packed single-precision floating-point values in a YMM register or a 256-bit memory
location to eight packed signed doubleword integer values and writes the converted values to a YMM
register.

CVTTPS2DQ is an SSE2 instruction and VCVTTPS2DQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTSS2SI

CVTTPS2DQ
VCVTTPS2DQ

Convert Packed Single-Precision Floating-Point
to Packed Doubleword Integers, Truncated

Mnemonic Opcode Description
CVTTPS2DQ xmm1, xmm2/mem128 F3 0F 5B /r Converts four packed single-precision floating-point

values in xmm2 or mem128 to four packed
doubleword integers in xmm1. Truncates inexact
result.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCVTTPS2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 5B /r
VCVTTPS2DQ ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 5B /r

Instruction Reference CVTTPS2DQ, VCVTTPS2DQ 127

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTTSD2SI, VCVTTSD2SI 128

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts a scalar double-precision floating-point value to a signed integer value and writes the
converted value to a general-purpose register.
When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point value is a NaN, infinity, or the result of the conversion is larger than the
maximum signed doubleword (–231 to +231 – 1) or quadword value (–263 to +263 – 1), the instruction
returns the indefinite integer value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-
bit integers) when the invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:
CVTTSD2SI
• When REX.W = 0, converts a scalar double-precision floating-point value in the low-order 64 bits

of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

• When REX.W = 1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

VCVTTSD2SI
The extended form of the instruction has 128-bit encoding.
• When VEX.W = 0, converts a scalar double-precision floating-point value in the low-order 64 bits

of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

• When VEX.W = 1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

CVTTSD2SI is an SSE2 instruction and VCVTTSD2SI is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

CVTTSD2SI
VCVTTSD2SI

Convert Scalar Double-Precision Floating-Point
to Signed Double- or Quadword Integer, Truncated

Mnemonic Opcode Description
CVTTSD2SI reg32, xmm1/mem64 F2 (W0) 0F 2C /r Converts a packed double-precision floating-point

value in xmm1 or mem64 to a doubleword integer in
reg32. Truncates inexact result.

CVTTSD2SI reg64, xmm1/mem64 F2 (W1) 0F 2C /r Converts a packed double-precision floating-point
value in xmm1 or mem64 to a quadword integer in
reg64.Truncates inexact result.

Instruction Reference CVTTSD2SI, VCVTTSD2SI 129

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI , (V)CVTSI2SD,
(V)CVTTPD2DQ
MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCVTTSD2SI reg32, xmm2/mem64 C4 RXB.00001 0.1111.X.11 2C /r
VCVTTSD2SI reg64, xmm2/mem64 C4 RXB.00001 1.1111.X.11 2C /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTTSS2SI, VCVTTSS2SI 130

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts a single-precision floating-point value to a signed integer value and writes the converted
value to a general-purpose register.

When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point value is a NaN, infinity, or the result of the conversion is larger than the
maximum signed doubleword (–231 to +231 – 1) or quadword value (–263 to +263 – 1), the indefinite
integer value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-bit integers) is returned
when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:

CVTTSS2SI
• When REX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an

XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are not affected.

• When REX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are not affected.

VCVTTSS2SI
The extended form of the instruction has 128-bit encoding.
• When VEX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an

XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are cleared.

• When VEX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are cleared.

CVTTSS2SI is an SSE instruction and VCVTTSS2SI is an AVX instruction. Support for these
instructions is indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

CVTTSS2SI
VCVTTSS2SI

Convert Scalar Single-Precision Floating-Point
to Signed Double or Quadword Integer, Truncated

Mnemonic Opcode Description
CVTTSS2SI reg32, xmm1/mem32 F3 (W0) 0F 2C /r Converts a single-precision floating-point value in

xmm1 or mem32 to a 32-bit integer value in reg32.
Truncates inexact result.

CVTTSS2SI reg64, xmm1/mem64 F3 (W1) 0F 2C /r Converts a single-precision floating-point value in
xmm1 or mem64 to a 64-bit integer value in reg64.
Truncates inexact result.

Instruction Reference CVTTSS2SI, VCVTTSS2SI 131

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VCVTTSS2SI reg32, xmm1/mem32 C4 RXB.00001 0.1111.X.10 2C /r
VCVTTSS2SI reg64, xmm1/mem64 C4 RXB.00001 1.1111.X.10 2C /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference DIVPD, VDIVPD 132

26568—Rev. 3.11—December 2010 AMD64 Technology

Divides each of the packed double-precision floating-point values of the first source operand by the
corresponding packed double-precision floating-point values of the second source operand and writes
the quotients to the destination.

There are legacy and extended forms of the instruction:

DIVPD
Divides two packed double-precision floating-point values in the first source XMM register by the
corresponding packed double-precision floating-point values in either a second source XMM register
or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VDIVPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Divides two packed double-precision floating-point values in the first source XMM register by the
corresponding packed double-precision floating-point values in either a second source XMM register
or a 128-bit memory location and writes the two results a destination XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.
YMM Encoding

Divides four packed double-precision floating-point values in the first source YMM register by the
corresponding packed double-precision floating-point values in either a second source YMM register
or a 256-bit memory location and writes the two results a destination YMM register.

DIVPD is an SSE2 instruction and VDIVPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)DIVPS, (V)DIVSD, (V)DIVSS

DIVPD
VDIVPD

Divide
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
DIVPD xmm1, xmm2/mem128 66 0F 5E /r Divides packed double-precision floating-point values in

xmm1 by the packed double-precision floating-point
values in xmm2 or mem128. Writes quotients to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VDIVPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5E /r
VDIVPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5E /r

Instruction Reference DIVPD, VDIVPD 133

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference DIVPS, VDIVPS 134

26568—Rev. 3.11—December 2010 AMD64 Technology

Divides each of the packed single-precision floating-point values of the first source operand by the
corresponding packed single-precision floating-point values of the second source operand and writes
the quotients to the destination.

There are legacy and extended forms of the instruction:

DIVPS
Divides four packed single-precision floating-point values in the first source XMM register by the
corresponding packed single-precision floating-point values in either a second source XMM register
or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VDIVPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Divides four packed single-precision floating-point values in the first source XMM register by the
corresponding packed single-precision floating-point values in either a second source XMM register
or a 128-bit memory location and writes two results to a third destination XMM register. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Divides eight packed single-precision floating-point values in the first source YMM register by the
corresponding packed single-precision floating-point values in either a second source YMM register
or a 256-bit memory location and writes the two results a destination YMM register.

DIVPS is an SSE instruction and VDIVPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)DIVPD, (V)DIVSD, (V)DIVSS

DIVPS
VDIVPS

Divide
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
DIVPS xmm1, xmm2/mem128 0F 5E /r Divides packed single-precision floating-point values in

xmm1 by the corresponding values in xmm2 or mem128.
Writes quotients to xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VDIVPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5E /r
VDIVPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5E /r

Instruction Reference DIVPS, VDIVPS 135

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference DIVSD, VDIVSD 136

26568—Rev. 3.11—December 2010 AMD64 Technology

Divides the double-precision floating-point value in the low-order quadword of the first source
operand by the double-precision floating-point value in the low-order quadword of the second source
operand and writes the quotient to the low-order quadword of the destination.

There are legacy and extended forms of the instruction:

DIVSD
The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location. The first source register is also the destination register. Bits [127:64] of
the destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VDIVSD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location. Bits [127:64] of the first source operand are copied to bits [127:64] of the
destination. The destination is a third XMM register. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

DIVSD is an SSE2 instruction and VDIVSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)DIVPD, (V)DIVPS, (V)DIVSS

DIVSD
VDIVSD

Divide
Scalar Double-Precision Floating-Point

Mnemonic Opcode Description
DIVSD xmm1, xmm2/mem64 F2 0F 5E /r Divides the double-precision floating-point value in the low-

order 64 bits of xmm1by the corresponding value in xmm2
or mem64. Writes quotient to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VDIVSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5E /r

Instruction Reference DIVSD, VDIVSD 137

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference DIVSS, VDIVSS 138

26568—Rev. 3.11—December 2010 AMD64 Technology

Divides the single-precision floating-point value in the low-order doubleword of the first source
operand by the single-precision floating-point value in the low-order doubleword of the second source
operand and writes the quotient to the low-order doubleword of the destination.

There are legacy and extended forms of the instruction:

DIVSS
The first source operand is an XMM register and the second source operand is either an XMM register
or a 32-bit memory location. The first source register is also the destination register. Bits [127:32] of
the destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VDIVSS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location. The destination is a third XMM register. Bits [127:32] of the first source
operand are copied to bits [127:32] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

DIVSS is an SSE instruction and VDIVSS is an AVX instruction. Support for these instructions is
i nd i ca t ed by CPUID f ea tu r e i den t i f i e r s CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)DIVPD, (V)DIVPS, (V)DIVSD

DIVSS
VDIVSS

Divide Scalar Single-Precision Floating-Point

Mnemonic Opcode Description
DIVSS xmm1, xmm2/mem32 F3 0F 5E /r Divides a single-precision floating-point value in the low-

order doubleword of xmm1 by a corresponding value in
xmm2 or mem32. Writes the quotient to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VDIVSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5E /r

Instruction Reference DIVSS, VDIVSS 139

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference DPPD, VDPPD 140

26568—Rev. 3.11—December 2010 AMD64 Technology

Computes the dot-product of the input operands. An immediate operand specifies both the input values
and the destination locations to which the products are written.

Selectively multiplies packed double-precision values in a source operand by the corresponding values
in another source operand, writes the results to a temporary location, adds the results, writes the sum to
a second temporary location and selectively writes the sum to a destination.

Mask bits [5:4] of an 8-bit immediate operand perform multiplicative selection. Bit 5 selects bits
[127:64] of the source operands; bit 4 selects bits [63:0] of the source operands. When a mask bit = 1,
the corresponding packed double-precision floating point values are multiplied and the product is
written to the corresponding position of a 128-bit temporary location. When a mask bit = 0, the
corresponding position of the temporary location is cleared.

After the two 64-bit values in the first temporary location are added and written to the 64-bit second
temporary location, mask bits [1:0] of the same 8-bit immediate operand perform write selection. Bit 1
selects bits [127:64] of the destination; bit 0 selects bits [63:0] of the destination. When a mask bit = 1,
the 64-bit value of the second temporary location is written to the corresponding position of the
destination. When a mask bit = 0, the corresponding position of the destination is cleared.

When the operation produces a NaN, its value is determined as follows.

For each addition occurring in either the second or third step, for the purpose of NaN propagation, the
addend of lower bit index is considered to be the first of the two operands. For example, when both
multiplications produce NaNs, the one that corresponds to bits [64:0] is written to all indicated fields
of the destination, regardless of how those NaNs were generated from the sources. When the high-
order multiplication produces NaNs and the low-order multiplication produces infinities of opposite
signs, the real indefinite QNaN (produced as the sum of the infinities) is written to the destination.

NaNs in source operands or in computational results result in at least one NaN in the destination. For
the 256-bit version, NaNs are propagated within the two independent dot product operations only to
their respective 128-bit results.

DPPD
VDPPD

Dot Product
Packed Double-Precision Floating-Point

Source Operands (in either order) NaN Result1

QNaN Any non-NaN floating-point value
(or single-operand instruction)

Value of QNaN

SNaN Any non-NaN floating-point value
(or single-operand instruction)

Value of SNaN,
converted to a QNaN2

QNaN QNaN First operand
QNaN SNaN First operand

(converted to QNaN if SNaN
SNaN SNaN First operand

converted to a QNaN2

Note: 1. A NaN result produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.

Instruction Reference DPPD, VDPPD 141

26568—Rev. 3.11—December 2010 AMD64 Technology

There are legacy and extended forms of the instruction:
DPPD

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.
VDPPD

The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

DPPD is an SSE4.1 instruction and VDPPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)DPPS

Mnemonic Opcode Description
DPPD xmm1, xmm2/mem128, imm8 66 0F 3A 41 /r ib Selectively multiplies packed double-precision

floating-point values in xmm2 or mem128 by
corresponding values in xmm1, adds interim
products, selectively writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VDPPD xmm1, xmm2, xmm3/mem128 C4 RXB.00011 X.1111.0.01 41 /r ib

Instruction Reference DPPD, VDPPD 142

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions are determined separately for each add-multiply operation.
Unmasked exceptions do not affect the destination

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference DPPS, VDPPS 143

26568—Rev. 3.11—December 2010 AMD64 Technology

Computes the dot-product of the input operands. An immediate operand specifies both the input values
and the destination locations to which the products are written.

Selectively multiplies packed single-precision values in a source operand by corresponding values in
another source operand, writes results to a temporary location, adds pairs of results, writes the sums to
additional temporary locations, and selectively writes a cumulative sum to a destination.

Mask bits [7:4] of an 8-bit immediate operand perform multiplicative selection. Each bit selects a 32-
bit segment of the source operands; bit 7 selects bits [127:96], bit 6 selects bits [95:64], bit 5 selects
bits [63:32], and bit 4 selects bits [31:0]. When a mask bit = 1, the corresponding packed single-
precision floating point values are multiplied and the product is written to the corresponding position
of a 128-bit temporary location. When a mask bit = 0, the corresponding position of the temporary
location is cleared.

After multiplication, three pairs of 32-bit values are added and written to temporary locations.
Bits [63:32] and [31:0] of temporary location 1 are added and written to 32-bit temporary location 2;
bits [127:96] and [95:64] of temporary location 1 are added and written to 32-bit temporary location 3;
then the contents of temporary locations 2 and 3 are added and written to 32-bit temporary location 4.

After addition, mask bits [3:0] of the same 8-bit immediate operand perform write selection. Each bit
selects a 32-bit segment of the source operands; bit 3 selects bits [127:96], bit 2 selects bits [95:64], bit
1 selects bits [63:32], and bit 0 selects bits [31:0] of the destination. When a mask bit = 1, the 64-bit
value of the fourth temporary location is written to the corresponding position of the destination.
When a mask bit = 0, the corresponding position of the destination is cleared.

For the 256-bit extended encoding, this process is performed on the upper and lower 128 bits of the
affected YMM registers.

When the operation produces a NaN, its value is determined as follows.

DPPS
VDPPS

Dot Product
Packed Single-Precision Floating-Point

Source Operands (in either order) NaN Result1

QNaN Any non-NaN floating-point value
(or single-operand instruction)

Value of QNaN

SNaN Any non-NaN floating-point value
(or single-operand instruction)

Value of SNaN,
converted to a QNaN2

QNaN QNaN First operand
QNaN SNaN First operand

(converted to QNaN if SNaN
SNaN SNaN First operand

converted to a QNaN2

Note: 1. A NaN result produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.

Instruction Reference DPPS, VDPPS 144

26568—Rev. 3.11—December 2010 AMD64 Technology

For each addition occurring in either the second or third step, for the purpose of NaN propagation, the
addend of lower bit index is considered to be the first of the two operands. For example, when all four
multiplications produce NaNs, the one that corresponds to bits [31:0] is written to all indicated fields
of the destination, regardless of how those NaNs were generated from the sources. When the two
highest-order multiplication produce NaNs and the two lowest-low-order multiplications produce
infinities of opposite signs, the real indefinite QNaN (produced as the sum of the infinities) is written
to the destination.

NaNs in source operands or in computational results result in at least one NaN in the destination. For
the 256-bit version, NaNs are propagated within the two independent dot product operations only to
their respective 128-bit results.There are legacy and extended forms of the instruction:

DPPS
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VDPPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

DPPS is an SSE4.1 instruction and VDPPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)DPPD

Mnemonic Opcode Description
DPPS xmm1, xmm2/mem128, imm8 66 0F 3A 40 /r ib Selectively multiplies packed single-precision

floating-point values in xmm2 or mem128 by
corresponding values in xmm1, adds interim
products, selectively writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VDPPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 40 /r ib
VDPPS ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00011 X.src.1.01 40 /r ib

Instruction Reference DPPS, VDPPS 145

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions are determined separately for each add-multiply operation.
Unmasked exceptions do not affect the destination

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference EXTRACTPS, VEXTRACTPS 146

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies one of four packed single-precision floating-point values from a source XMM register to a
general purpose register or a 32-bit memory location.

Bits [1:0] of an immediate byte operand specify the location of the 32-bit value that is copied. 00b
corresponds to the low word of the source register and 11b corresponds to the high word of the source
register. Bits [7:2] of the immediate operand are ignored.

There are legacy and extended forms of the instruction:

EXTRACTPS
The source operand is an XMM register. The destination can be a general purpose register or a 32-bit
memory location. A 32-bit single-precision value extracted to a general purpose register is zero-
extended to 64-bits.

VEXTRACTPS
The extended form of the instruction has 128-bit encoding.
XMM Encoding

The source operand is an XMM register. The destination can be a general purpose register or a 32-bit
memory location.

EXTRACTPS is an SSE4.1 instruction and VEXTRACTPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)INSERTPS

EXTRACTPS
VEXTRACTPS

Extract
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
EXTRACTPS reg32/mem32, xmm1
imm8

66 0F 3A 17 /r ib Extract the single-precision floating-point
element of xmm1 specified by imm8 to
reg32/mem32.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VEXTRACTPS reg32/mem32, xmm1, imm8 C4 RXB.00011 X.1111.0.01 17 /r ib

Instruction Reference EXTRACTPS, VEXTRACTPS 147

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference HADDPD, VHADDPD 148

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds adjacent pairs of double-precision floating-point values in two source operands and writes the
sums to a destination.

There are legacy and extended forms of the instruction:

HADDPD
Adds the packed double-precision values in bits [127:64] and bits [63:0] of the first source XMM
register and writes the sum to bits [63:0] of the destination; adds the corresponding doublewords of the
second source XMM register or a 128-bit memory location and writes the sum to bits [127:64] of the
destination. The first source register is also the destination. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VHADDPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Adds the packed double-precision values in bits [127:64] and bits [63:0] of the first source XMM
register and writes the sum to bits [63:0] of the destination XMM register; adds the corresponding
doublewords of the second source XMM register or a 128-bit memory location and writes the sum to
bits [127:64] of the destination. Bits [255:128] of the YMM register that corresponds to the destination
are cleared.
YMM Encoding

Adds the packed double-precision values in bits [127:64] and bits [63:0] of the of the first source
YMM register and writes the sum to bits [63:0] of the destination YMM register; adds the
corresponding doublewords of the second source YMM register or a 256-bit memory location and
writes the sum to bits [127:64] of the destination. Performs the same process for the upper 128 bits of
the sources and destination.

HADDPD is an SSE3 instruction and VHADDPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)HADDPS, (V)HSUBPD, (V)HSUBPS

HADDPD
VHADDPD

Horizontal Add
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
HADDPD xmm1, xmm2/mem128 66 0F 7C /r Adds adjacent pairs of double-precision values in xmm1

and xmm2 or mem128. Writes the sums to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VHADDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 7C /r
VHADDPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 7C /r

Instruction Reference HADDPD, VHADDPD 149

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference HADDPS, VHADDPS 150

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds adjacent pairs of single-precision floating-point values in two source operands and writes the
sums to a destination.

There are legacy and extended forms of the instruction:

HADDPS
Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source XMM
register and writes the sum to bits [31:0] of the destination; adds the packed single-precision values in
bits [127:96] and bits [95:64] of the first source register and writes the sum to bits [63:32] of the
destination. Adds the corresponding values in the second source XMM register or a 128-bit memory
location and writes the sum to bits [95:64] and [127:96] of the destination. The first source register is
also the destination. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VHADDPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source XMM
register and writes the sum to bits [31:0] of the destination XMM register; adds the packed single-
precision values in bits [127:96] and bits [95:64] of the first source register and writes the sum to bits
[63:32] of the destination. Adds the corresponding values in the second source XMM register or a
128-bit memory location and writes the sum to bits [95:64] and [127:96] of the destination. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source YMM
register and writes the sum to bits [31:0] of the destination YMM register; adds the packed single-
precision values in bits [127:96] and bits [95:64] of the first source register and writes the sum to bits
[63:32] of the destination. Adds the corresponding values in the second source YMM register or a
256-bit memory location and writes the sums to bits [95:64] and [127:96] of the destination. Performs
the same process for the upper 128 bits of the sources and destination.

HADDPS is an SSE3 instruction and VHADDPS is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

HADDPS
VHADDPS

Horizontal Add
Packed Single-Precision

Mnemonic Opcode Description
HADDPS xmm1, xmm2/mem128 F2 0F 7C /r Adds adjacent pairs of single-precision values in xmm1

and xmm2 or mem128. Writes the sums to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VHADDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 7C /r
VHADDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 7C /r

Instruction Reference HADDPS, VHADDPS 151

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)HADDPD, (V)HSUBPD, (V)HSUBPS
MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference HSUBPD, VHSUBPD 152

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts adjacent pairs of double-precision floating-point values in two source operands and writes
the sums to a destination.

There are legacy and extended forms of the instruction:

HSUBPD
The first source register is also the destination.

Subtracts the packed double-precision value in bits [127:64] from the value in bits [63:0] of the first
source XMM register and writes the difference to bits [63:0] of the destination; subtracts the
corresponding values of the second source XMM register or a 128-bit memory location and writes the
difference to bits [127:64] of the destination. Bits [255:128] of the YMM register that corresponds to
the destination are not affected.

VHSUBPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Subtracts the packed double-precision values in bits [127:64] from the value in bits [63:0] of the first
source XMM register and writes the difference to bits [63:0] of the destination XMM register;
subtracts the corresponding values of the second source XMM register or a 128-bit memory location
and writes the difference to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.
YMM Encoding

Subtracts the packed double-precision values in bits [127:64] from the value in bits [63:0] of the of the
first source YMM register and writes the difference to bits [63:0] of the destination YMM register;
subtracts the corresponding values of the second source YMM register or a 256-bit memory location
and writes the difference to bits [127:64] of the destination. Performs the same process for the upper
128 bits of the sources and destination.

HSUBPD is an SSE3 instruction and VHSUBPD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

HSUBPD
VHSUBPD

Horizontal Subtract
Packed Double-Precision

Mnemonic Opcode Description
HSUBPD xmm1, xmm2/mem128 66 0F 7D /r Subtracts adjacent pairs of double-precision floating-

point values in xmm1 and xmm2 or mem128. Writes the
differences to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VHSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 7D /r
VHSUBPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 7D /r

Instruction Reference HSUBPD, VHSUBPD 153

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)HSUBPS, (V)HADDPD, (V)HADDPS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference HSUBPS; VHSUBPS 154

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts adjacent pairs of single-precision floating-point values in two source operands and writes the
differences to a destination.
There are legacy and extended forms of the instruction:
HSUBPS
Subtracts the packed single-precision values in bits [63:32] from the values in bits [31:0] of the first
source XMM register and writes the difference to bits [31:0] of the destination; subtracts the packed
single-precision values in bits [127:96] from the value in bits [95:64] of the first source register and
writes the difference to bits [63:32] of the destination. Subtracts the corresponding values of the
second source XMM register or a 128-bit memory location and writes the differences to bits [95:64]
and [127:96] of the destination. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VHSUBPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding
Subtracts the packed single-precision values in bits [63:32] from the value in bits [31:0] of the first
source XMM register and writes the difference to bits [31:0] of the destination XMM register;
subtracts the packed single-precision values in bits [127:96] from the value bits [95:64] of the first
source register and writes the sum to bits [63:32] of the destination. Subtracts the corresponding values
of the second source XMM register or a 128-bit memory location and writes the differences to bits
[95:64] and [127:96] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.
YMM Encoding
Subtracts the packed single-precision values in bits [63:32] from the value in bits [31:0] of the first
source YMM register and writes the difference to bits [31:0] of the destination YMM register;
subtracts the packed single-precision values in bits [127:96] from the value in bits [95:64] of the first
source register and writes the difference to bits [63:32] of the destination. Subtracts the corresponding
values of the second source YMM register or a 256-bit memory location and writes the differences to
bits [95:64] and [127:96] of the destination. Performs the same process for the upper 128 bits of the
sources and destination.
HSUBPS is an SSE3 instruction and VHSUBPS is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

HSUBPS
VHSUBPS

Horizontal Subtract Packed Single

Mnemonic Opcode Description
HSUBPS xmm1, xmm2/mem128 F2 0F 7D /r Subtracts adjacent pairs of values in xmm1 and xmm2

or mem128. Writes differences to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VHSUBPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 7D /r
VHSUBPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 7D /r

Instruction Reference HSUBPS; VHSUBPS 155

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)HSUBPD, (V)HADDPD, (V)HADDPS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference INSERTPS, VINSERTPS 156

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies a selected single-precision floating-point value from a source operand to a selected location in
a destination register and optionally clears selected elements of the destination. The legacy and
extended forms of the instruction treat the remaining elements of the destination in different ways.

Selections are specified by three fields of an immediate 8-bit operand:

COUNT_S — The binary value of the field specifies a 32-bit element of a source register, counting
upward from the low-order doubleword. COUNT_S is used only for register source; when the source
is a memory operand, COUNT_S = 0.

COUNT_D — The binary value of the field specifies a 32-bit destination element, counting upward
from the low-order doubleword.

ZMASK — Set a bit to clear a 32-bit element of the destination.

There are legacy and extended forms of the instruction:

INSERTPS
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

When the source operand is a register, the instruction copies the 32-bit element of the source specified
by Count_S to the location in the destination specified by Count_D, and clears destination elements as
specified by ZMask. Elements of the destination that are not cleared are not affected.

When the source operand is a memory location, the instruction copies a 32-bit value from memory, to
the location in the destination specified by Count_D, and clears destination elements as specified by
ZMask. Elements of the destination that are not cleared are not affected.

VINSERTPS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 32-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

When the second source operand is a register, the instruction copies the 32-bit element of the source
specified by Count_S to the location in the destination specified by Count_D. The other elements of
the destination are either copied from the first source operand or cleared as specified by ZMask.

When the second source operand is a memory location, the instruction copies a 32-bit value from the
source to the location in the destination specified by Count_D. The other elements of the destination
are either copied from the first source operand or cleared as specified by ZMask.

INSERTPS
VINSERTPS

Insert
Packed Single-Precision Floating-Point

7 6 5 4 3 2 1 0
COUNT_S COUNT_D ZMASK

Instruction Reference INSERTPS, VINSERTPS 157

26568—Rev. 3.11—December 2010 AMD64 Technology

INSERTPS is an SSE4.1 instruction and VINSERTPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)EXTRACTPS

Mnemonic Opcode Description
INSERTPS xmm1, xmm2/mem32, imm8 66 0F 3A 21 /r ib Insert a selected single-precision

floating-point value from xmm2 or
from mem32 at a selected location in
xmm1 and clear selected elements of
xmm1. Selections specified by imm8.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VINSERTPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 21 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference LDDQU, VLDDQU 158

26568—Rev. 3.11—December 2010 AMD64 Technology

Loads unaligned double quadwords from a memory location to a destination register.

Like the (V)MOVUPD instructions, (V)LDDQU loads a 128-bit or 256-bit operand from an unaligned
memory location. However, to improve performance when the memory operand is actually
misaligned, (V)LDDQU may read an aligned 16 or 32 bytes to get the first part of the operand, and an
aligned 16 or 32 bytes to get the second part of the operand. This behavior is implementation-specific,
and (V)LDDQU may only read the exact 16 or 32 bytes needed for the memory operand. If the
memory operand is in a memory range where reading extra bytes can cause performance or functional
issues, use (V)MOVUPD instead of (V)LDDQU.

Memory operands that are not aligned on 16-byte or 32-byte boundaries do not cause general-
protection exceptions.

There are legacy and extended forms of the instruction:

LDDQU
The source operand is an unaligned 128-bit memory location. The destination operand is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination register are not
affected.

VLDDQU
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The source operand is an unaligned 128-bit memory location. The destination operand is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination register are cleared.
YMM Encoding

The source operand is an unaligned 256-bit memory location. The destination operand is a YMM
register.

LDDQU is an SSE3 instruction and VLDDQU is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

LDDQU
VLDDQU

Load
Unaligned Double Quadword

Mnemonic Opcode Description
LDDQU xmm1, mem128 F2 0F F0 /r Loads a 128-bit value from an unaligned mem128 to

xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VLDDQU xmm1, mem128 C4 RXB.00001 X.1111.0.11 F0 /r
VLDDQU ymm1, mem256 C4 RXB.00001 X.1111.1.11 F0 /r

Instruction Reference LDDQU, VLDDQU 159

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MOVDQU

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference LDMXCSR, VLDMXCSR 160

26568—Rev. 3.11—December 2010 AMD64 Technology

Loads the MXCSR register with a 32-bit value from memory.

For both legacy LDMXCSR and extended VLDMXCSR forms of the instruction, the source operand
is a 32-bit memory location and the destination operand is the MXCSR.

If an MXCSR load clears a SIMD floating-point exception mask bit and sets the corresponding
exception flag bit, a SIMD floating-point exception is not generated immediately. An exception is
generated only when the next instruction that operates on an XMM or YMM register operand and
causes that particular SIMD floating-point exception to be reported executes.

A general protection exception occurs if the instruction attempts to load non-zero values into reserved
MXCSR bits. Software can use MXCSR_MASK to determine which bits are reserved. For details, see
“128-Bit, 64-Bit, and x87 Programming” in Volume 2.

The MXCSR register is described in “Registers” in Volume 1.

LDMXCSR is an SSE instruction and VLDMXCSR is an AVX instruction. Support for these
instructions is indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)STMXCSR

LDMXCSR
VLDMXCSR

Load
MXCSR Control/Status Register

Mnemonic Opcode Description
LDMXCSR mem32 0F AE /2 Loads MXCSR register with 32-bit value from memory.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VLDMXCSR mem32 C4 RXB.00001 X.1111.0.00 AE /2

Instruction Reference LDMXCSR, VLDMXCSR 161

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M M M M M M M M M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Null data segment used to reference memory.
S S X Attempt to load non-zero values into reserved MXCSR bits

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MASKMOVDQU, VMASKMOVDQU 162

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves bytes from the first source operand to a memory location specified by the DS:rDI register.
Bytes are selected by mask bits in the second source operand. The memory location may be unaligned.

The mask consists of the most significant bit of each byte of the second source register.
When a mask bit = 1, the corresponding byte of the first source register is written to the destination;
when a mask bit = 0, the corresponding byte is not written.

An all-zero mask value results in the following behavior:
• No data is written to memory.
• Code and data breakpoints are not guaranteed to be signaled in all implementations.
• Exceptions associated with memory addressing and page faults are not guaranteed to be signaled in

all implementations.

The instruction implicitly uses weakly-ordered, write-combining buffering for the data, as described in
“Buffering and Combining Memory Writes” in Volume 2. For data that is shared by multiple
processors, this instruction should be used together with a fence instruction in order to ensure data
coherency (see “Cache and TLB Management” in Volume 2).

There are legacy and extended forms of the instruction:

MASKMOVDQU
The first source operand is an XMM register and the second source operand is another XMM register.
The destination is a 128-bit memory location.

VMASKMOVDQU
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is another XMM register.
The destination is a 128-bit memory location.

MASKMOVDQU is an SSE2 instruction and VMASKMOVDQU is an AVX instruction. Support for
t h e s e i n s t r u c t i o n s i s i n d i c a t ed by CPUID Fn0000_00001_EDX[SSE2] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)MASKMOVPD, (V)MASKMOVPS

MASKMOVDQU
VMASKMOVDQU

Masked Move
Double Quadword Unaligned

Mnemonic Opcode Description
MASKMOVDQU xmm1, xmm2 66 0F F7 /r Move bytes selected by a mask value in xmm2 from

xmm1 to the memory location specified by DS:rDI.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMASKMOVDQU xmm1, xmm2 C4 RXB.00001 X.1111.0.01 F7 /r

Instruction Reference MASKMOVDQU, VMASKMOVDQU 163

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MAXPD, VMAXPD 164

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each packed double-precision floating-point value of the first source operand to the
corresponding value of the second source operand and writes the numerically greater value into the
corresponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:

MAXPD
Compares two pairs of packed double-precision floating-point values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VMAXPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Compares two pairs of packed double-precision floating-point values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

Compares four pairs of packed double-precision floating-point values.

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a YMM register.

MAXPD is an SSE2 instruction and VMAXPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

MAXPD
VMAXPD

Maximum
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
MAXPD xmm1, xmm2/mem128 66 0F 5F /r Compares two pairs of packed double-precision values in

xmm1 and xmm2 or mem128 and writes the greater value
to the corresponding position in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VMAXPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5F /r
VMAXPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5F /r

Instruction Reference MAXPD, VMAXPD 165

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MAXPS, VMAXPS 166

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each packed single-precision floating-point value of the first source operand to the
corresponding value of the second source operand and writes the numerically greater value into the
corresponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:

MAXPS
Compares four pairs of packed single-precision floating-point values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VMAXPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Compares four pairs of packed single-precision floating-point values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

Compares eight pairs of packed single-precision floating-point values.

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a YMM register.

MAXPS is an SSE instruction and VMAXPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

MAXPS
VMAXPS

Maximum
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
MAXPS xmm1, xmm2/mem128 0F 5F /r Compares four pairs of packed single-precision values in

xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VMAXPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5F /r
VMAXPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5F /r

Instruction Reference MAXPS, VMAXPS 167

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MAXPD, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MAXSD, VMAXSD 168

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares the scalar double-precision floating-point value in the low-order 64 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically greater
value into the low-order 64 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:

MAXSD
The first source operand is an XMM register. The second source operand is either another XMM
register or a 64-bit memory location. The first source register is also the destination. When the second
source is a 64-bit memory location, the upper 64 bits of the first source register are copied to the
destination. Bits [127:64] of the destination are not affected. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VMAXSD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 64-bit memory location. The destination is an XMM register. When the second source is a
64-bit memory location, the upper 64 bits of the first source register are copied to the destination. Bits
[127:64] of the destination are copied from bits [127:64] of the first source. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

MAXSD is an SSE2 instruction and VMAXSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MAXSD
VMAXSD

Maximum
Scalar Double-Precision Floating-Point

Mnemonic Opcode Description
MAXSD xmm1, xmm2/mem64 F2 0F 5F /r Compares a pair of scalar double-precision values in the

low-order 64 bits of xmm1 and xmm2 or mem64 and
writes the greater value to the low-order 64 bits of xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VMAXSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5F /r

Instruction Reference MAXSD, VMAXSD 169

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MAXSS, VMAXSS 170

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares the scalar single-precision floating-point value in the low-order 32 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically greater
value into the low-order 32 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:

MAXSS
The first source operand is an XMM register. The second source operand is either another XMM
register or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of
the destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VMAXSS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 32-bit memory location. The destination is an XMM register. Bits [127:32] of the
destination are copied from the first source operand. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MAXSS is an SSE instruction and VMAXSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MAXSS
VMAXSS

Maximum
Scalar Single-Precision Floating-Point

Mnemonic Opcode Description
MAXSS xmm1, xmm2/mem32 F3 0F 5F /r Compares a pair of scalar single-precision values in the

low-order 32 bits of xmm1 and xmm2 or mem32 and
writes the greater value to the low-order 32 bits of xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VMAXSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5F /r

Instruction Reference MAXSS, VMAXSS 171

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MINPD, VMINPD 172

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each packed double-precision floating-point value of the first source operand to the
corresponding value of the second source operand and writes the numerically lesser value into the
corresponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:

MINPD
Compares two pairs of packed double-precision floating-point values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VMINPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Compares two pairs of packed double-precision floating-point values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

Compares four pairs of packed double-precision floating-point values.

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a YMM register.

MINPD is an SSE2 instruction and VMINPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

MINPD
VMINPD

Minimum
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
MINPD xmm1, xmm2/mem128 66 0F 5D /r Compares two pairs of packed double-precision values in

xmm1 and xmm2 or mem128 and writes the lesser value
to the corresponding position in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VMINPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5D /r
VMINPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5D /r

Instruction Reference MINPD, VMINPD 173

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MINPS, VMINPS 174

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each packed single-precision floating-point value of the first source operand to the
corresponding value of the second source operand and writes the numerically lesser value into the
corresponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:

MINPS
Compares four pairs of packed single-precision floating-point values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VMINPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Compares four pairs of packed single-precision floating-point values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

Compares eight pairs of packed single-precision floating-point values.

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a YMM register.

MINPS is an SSE instruction and VMINPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

MINPS
VMINPS

Minimum
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
MINPS xmm1, xmm2/mem128 0F 5D /r Compares four pairs of packed single-precision values in

xmm1 and xmm2 or mem128 and writes the lesser values
to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VMINPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5D /r
VMINPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5D /r

Instruction Reference MINPS, VMINPS 175

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINSD, (V)MINSS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MINSD, VMINSD 176

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares the scalar double-precision floating-point value in the low-order 64 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically lesser value
into the low-order 64 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:

MINSD
The first source operand is an XMM register. The second source operand is either another XMM
register or a 64-bit memory location. The first source register is also the destination. Bits [127:64] of
the destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VMINSD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 64-bit memory location. The destination is an XMM register. Bits [127:64] of the
destination are copied from the first source operand. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MINSD is an SSE2 instruction and VMINSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSS

MINSD
VMINSD

Minimum
Scalar Double-Precision Floating-Point

Mnemonic Opcode Description
MINSD xmm1, xmm2/mem64 F2 0F 5D /r Compares a pair of scalar double-precision values in the

low-order 64 bits of xmm1 and xmm2 or mem64 and
writes the lesser value to the low-order 64 bits of xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VMINSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5D /r

Instruction Reference MINSD, VMINSD 177

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MINSS, VMINSS 178

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares the scalar single-precision floating-point value in the low-order 32 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically lesser value
into the low-order 32 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:

MINSS
The first source operand is an XMM register. The second source operand is either another XMM
register or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of
the destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VMINSS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 32-bit memory location. The destination is an XMM register. Bits [127:32] of the
destination are copied from the first source operand. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MINSS is an SSE instruction and VMINSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD

MINSS
VMINSS

Minimum
Scalar Single-Precision Floating-Point

Mnemonic Opcode Description
MINSS xmm1, xmm2/mem32 F3 0F 5D /r Compares a pair of scalar single-precision values in the

low-order 32 bits of xmm1 and xmm2 or mem32 and
writes the lesser value to the low-order 32 bits of xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VMINSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5D /r

Instruction Reference MINSS, VMINSS 179

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVAPD, VMOVAPD 180

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves packed double-precision floating-point values. Values can be moved from a register or memory
location to a register; or from a register to a register or memory location.

A memory operand that is not aligned causes a general-protection exception.

There are legacy and extended forms of the instruction:

MOVAPD
Moves two double-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.
• The source operand is an XMM register. The destination operand is either an XMM register or a

128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVAPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Moves two double-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.
• The source operand is an XMM register. The destination operand is either an XMM register or a

128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves four double-precision floating-point values. There are encodings for each type of move.
• The source operand is either a YMM register or a 256-bit memory location. The destination

operand is a YMM register.
• The source operand is a YMM register. The destination operand is either a YMM register or a

256-bit memory location.

MOVAPD is an SSE2 instruction and VMOVAPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

MOVAPD
VMOVAPD

Move Aligned
Packed Double-Precision Floating-Point

Instruction Reference MOVAPD, VMOVAPD 181

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

Mnemonic Opcode Description
MOVAPD xmm1, xmm2/mem128 66 0F 28 /r Moves two packed double-precision floating-point

values from xmm2 or mem128 to xmm1.
MOVAPD xmm1/mem128, xmm2 66 0F 29 /r Moves two packed double-precision floating-point

values from xmm1 or mem128 to xmm2.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVAPD xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 28 /r
VMOVAPD xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.01 29 /r
VMOVAPD ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 28 /r
VMOVAPD ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.01 29 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on 16-byte boundary while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVAPS, VMOVAPS 182

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves packed single-precision floating-point values. Values can be moved from a register or memory
location to a register; or from a register to a register or memory location.

A memory operand that is not aligned causes a general-protection exception.

There are legacy and extended forms of the instruction:

MOVAPS
Moves four single-precision floating-point values.

There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.
• The source operand is an XMM register. The destination operand is either an XMM register or a

128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVAPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Moves four single-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.
• The source operand is an XMM register. The destination operand is either an XMM register or a

128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves eight single-precision floating-point values. There are encodings for each type of move.
• The source operand is either a YMM register or a 256-bit memory location. The destination

operand is a YMM register.
• The source operand is a YMM register. The destination operand is either a YMM register or a

256-bit memory location.

MOVAPS is an SSE instruction and VMOVAPS is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

MOVAPS
VMOVAPS

Move Aligned
Packed Single-Precision Floating-Point

Instruction Reference MOVAPS, VMOVAPS 183

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

Mnemonic Opcode Description
MOVAPS xmm1, xmm2/mem128 0F 28 /r Moves four packed single-precision floating-point

values from xmm2 or mem128 to xmm1.
MOVAPS xmm1/mem128, xmm2 0F 29 /r Moves four packed single-precision floating-point

values from xmm1 or mem128 to xmm2.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVAPS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 28 /r
VMOVAPS xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.00 29 /r
VMOVAPS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 28 /r
VMOVAPS ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.00 29 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on 16-byte boundary while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVD, VMOVD 184

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves 32-bit and 64-bit values. A value can be moved from a general-purpose register or memory
location to the corresponding low-order bits of an XMM register, with zero-extension to 128 bits; or
from the low-order bits of an XMM register to a general-purpose register or memory location.

The quadword form of this instruction is distinct from the differently-encoded (V)MOVQ instruction.

There are legacy and extended forms of the instruction:

MOVD
There are two encodings for 32-bit moves, characterized by REX.W = 0.
• The source operand is either a 32-bit general-purpose register or a 32-bit memory location. The

destination is an XMM register. The 32-bit value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is either a 32-bit general-purpose register

or a 32-bit memory location.

There are two encodings for 64-bit moves, characterized by REX.W = 0.
• The source operand is either a 64-bit general-purpose register or a 64-bit memory location. The

destination is an XMM register. The 64-bit value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is either a 64-bit general-purpose register

or a 64-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVD
The extended form of the instruction has 128-bit encoding.

There are two encodings for 32-bit moves, characterized by VEX.W = 0.
• The source operand is either a 32-bit general-purpose register or a 32-bit memory location. The

destination is an XMM register. The 32-bit value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is either a 32-bit general-purpose register

or a 32-bit memory location.

There are two encodings for 64-bit moves, characterized by VEX.W = 1.
• The source operand is either a 64-bit general-purpose register or a 64-bit memory location. The

destination is an XMM register. The 64-bit value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is either a 64-bit general-purpose register

or a 64-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVD is an SSE2 instruction and VMOVD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

MOVD
VMOVD

Move
Doubleword or Quadword

Instruction Reference MOVD, VMOVD 185

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MOVDQA, (V)MOVDQU, (V)MOVQ

Mnemonic Opcode Description
MOVD xmm, reg32/mem32 66 (W0) 0F 6E /r Move a 32-bit value from reg32/mem32 to xmm.
MOVQ xmm, reg64/mem64 66 (W1) 0F 6E /r Move a 64-bit value from reg64/mem64 to xmm.
MOVD reg32/mem32, xmm 66 (W0) 0F 7E /r Move a 32-bit value from xmm to reg32/mem32
MOVQ reg64/mem64, xmm 66 (W1) 0F 7E /r Move a 64-bit value from xmm to reg64/mem64.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVD xmm, reg32/mem32 C4 RXB.00001 0.1111.0.01 6E /r
VMOVQ xmm, reg64/mem64 C4 RXB.00001 1.1111.0.01 6E /r
VMOVD reg32/mem32, xmm C4 RXB.00001 0.1111.1.01 7E /r
VMOVQ reg64/mem64, xmm C4 RXB.00001 1.1111.1.01 7E /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVDDUP, VMOVDDUP 186

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves and duplicates double-precision floating-point values.

There are legacy and extended forms of the instruction:

MOVDDUP
Moves and duplicates one quadword value.

The source operand is either the low 64 bits of an XMM register or the address of the least-significant
byte of 64 bits of data in memory. The destination is another XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VMOVDDUP
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Moves and duplicates one quadword value.

The source operand is either the low 64 bits of an XMM register or the address of the least-significant
byte of 64 bits of data in memory. The destination is another XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves and duplicates two even-indexed quadword values.

The source operand is either a YMM register or the address of the least-significant byte of 256 bits of
data in memory. The destination is another YMM register.Bits [63:0] of the source are written to bits
[127:64] and [63:0] of the destination; bits [191:128] of the source are written to bits [255:192] and
[191:128] of the destination.

MOVDDUP is an SSE3 instruction and VMOVDDUP is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)MOVSHDUP, (V)MOVSLDUP

MOVDDUP
VMOVDDUP

Move and Duplicate
Double-Precision Floating-Point

Mnemonic Opcode Description
MOVDDUP xmm1, xmm2/mem64 F2 0F 12 /r Moves two copies of the low 64 bits of xmm2 or

mem64 to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
MOVDDUP xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.11 12 /r
MOVDDUP ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.11 12 /r

Instruction Reference MOVDDUP, VMOVDDUP 187

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVDQA, VMOVDQA 188

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves aligned packed integer values. Values can be moved from a register or a memory location to
another register, or from a register to another register or a memory location.

A memory operand that is not aligned causes a general-protection exception.

There are legacy and extended forms of the instruction:

MOVDQA
Moves two aligned quadwords (128-bit move). There are two encodings.
• The source operand is an XMM register. The destination is either another XMM register or a

128-bit memory location.
• The source operand is either an XMM register or a 128-bit memory location. The destination is an

XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

The extended form of the instruction has both 128-bit and 256-bit encoding.

VMOVDQA
XMM Encoding

Moves two aligned quadwords (128-bit move). There are two encodings.
• The source operand is an XMM register. The destination is either another XMM register or a

128-bit memory location.
• The source operand is either an XMM register or a 128-bit memory location. The destination is an

XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves four aligned quadwords (256-bit move). There are two encodings.
• The source operand is a YMM register. The destination is either another YMM register or a 256-bit

memory location.
• The source operand is either a YMM register or a 256-bit memory location. The destination is a

YMM register.

MOVDQA is an SSE2 instruction and VMOVDQA is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

MOVDQA
VMOVDQA

Move Aligned
Double Quadword

Instruction Reference MOVDQA, VMOVDQA 189

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MOVD, (V)MOVDQU, (V)MOVQ

Mnemonic Opcode Description
MOVDQA xmm1, xmm2/mem128 66 0F 6F /r Moves aligned packed integer values from xmm2

ormem128 to xmm1.
MOVDQA xmm1/mem128, xmm2 66 0F 7F /r Moves aligned packed integer values from xmm1 or

mem128 to xmm2.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVDQA xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 6F /r
VMOVDQA xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.01 6F /r
VMOVDQA ymm1, xmm2/mem256 C4 RXB.00001 X.1111.1.01 7F /r
VMOVDQA ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.01 7F /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on 16-byte boundary while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVDQU, VMOVDQU 190

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves unaligned packed integer values. Values can be moved from a register or a memory location to
another register, or from a register to another register or a memory location.

There are legacy and extended forms of the instruction:

MOVDQU
Moves two unaligned quadwords (128-bit move). There are two encodings.
• The source operand is an XMM register. The destination is either another XMM register or a

128-bit memory location.
• The source operand is either an XMM register or a 128-bit memory location. The destination is an

XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

The extended form of the instruction has both 128-bit and 256-bit encoding.

VMOVDQU
XMM Encoding

Moves two unaligned quadwords (128-bit move). There are two encodings.
• The source operand is an XMM register. The destination is either another XMM register or a

128-bit memory location.
• The source operand is either an XMM register or a 128-bit memory location. The destination is an

XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves four unaligned quadwords (256-bit move). There are two encodings.
• The source operand is a YMM register. The destination is either another YMM register or a 256-bit

memory location.
• The source operand is either a YMM register or a 256-bit memory location. The destination is a

YMM register.

MOVDQU is an SSE2 instruction and VMOVDQU is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

MOVDQU
VMOVDQU

Move
Unaligned Double Quadword

Instruction Reference MOVDQU, VMOVDQU 191

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MOVD, (V)MOVDQA, (V)MOVQ

Mnemonic Opcode Description
MOVDQU xmm1, xmm2/mem128 F3 0F 6F /r Moves unaligned packed integer values from xmm2 or

mem128 to xmm1.
MOVDQU xmm1/mem128, xmm2 F3 0F 7F /r Moves unaligned packed integer values from xmm1 or

mem128 to xmm2.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVDQU xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 6F /r
VMOVDQU xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.10 6F /r
VMOVDQU ymm1, xmm2/mem256 C4 RXB.00001 X.1111.1.10 7F /r
VMOVDQU ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.10 7F /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVHLPS, VMOVHLPS 192

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves two packed single-precision floating-point values from the high quadword of an XMM register
to the low quadword of another XMM register.

There are legacy and extended forms of the instruction:

MOVHLPS
The source operand is bits [127:64] of an XMM register. The destination is bits [63:0] of another
XMM register. Bits [127:64] of the destination are not affected. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.

VMOVHLPS
The extended form of the instruction has 128-bit encoding.

The source operands are bits [127:64] of two XMM registers. The destination is a third XMM register.
Bits [127:64] of the first source are moved to bits [127:64] of the destination; bits [127:64] of the
second source are moved to bits [63:0] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MOVHLPS is an SSE instruction and VMOVHLPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)MOVAPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

MOVHLPS
VMOVHLPS

Move High to Low
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
MOVHLPS xmm1, xmm2 0F 12 /r Moves two packed single-precision floating-point

values from xmm2[127:64] to xmm1[63:0].
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVHLPS xmm1, xmm2, xmm3 C4 RXB.00001 X.src.0.00 12 /r

Instruction Reference MOVHLPS, VMOVHLPS 193

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVHPD, VMOVHPD 194

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves a packed double-precision floating-point value. Values can be moved from a 64-bit memory
location to the high-order quadword of an XMM register, or from the high-order quadword of an
XMM register to a 64-bit memory location.

There are legacy and extended forms of the instruction:

MOVHPD
There are two encodings.
• The source operand is a 64-bit memory location. The destination is bits [127:64] of an XMM

register.
• The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory

location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVHPD
The extended form of the instruction has two 128-bit encodings.
• There are two source operands. The first source is an XMM register. The second source is a 64-bit

memory location. The destination is an XMM register. Bits [63:0] of the source register are written
to bits [63:0] of the destination; bits [63:0] of the source memory location are written to bits
[127:64] of the destination.

• The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVHPD is an SSE2 instruction and VMOVHPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)MOVAPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

MOVHPD
VMOVHPD

Move High
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
MOVHPD xmm1, mem64 66 0F 16 /r Moves a packed double-precision floating-point value from

mem64 to xmm1[127:64].
MOVHPD mem64, xmm1 66 0F 17 /r Moves a packed double-precision floating-point value from

xmm1[127:64] to mem64.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVHPD xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.01 16 /r
VMOVHPD mem64, xmm1 C4 RXB.00001 X.1111.0.01 17 /r

Instruction Reference MOVHPD, VMOVHPD 195

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVHPS, VMOVHPS 196

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves two packed single-precision floating-point value. Values can be moved from a 64-bit memory
location to the high-order quadword of an XMM register, or from the high-order quadword of an
XMM register to a 64-bit memory location.

There are legacy and extended forms of the instruction:

MOVHPS
There are two encodings.
• The source operand is a 64-bit memory location. The destination is bits [127:64] of an XMM

register.
• The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory

location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVHPS
The extended form of the instruction has two 128-bit encodings.
• There are two source operands. The first source is an XMM register. The second source is a 64-bit

memory location. The destination is an XMM register. Bits [63:0] of the source register are written
to bits [63:0] of the destination; bits [63:0] of the source memory location are written to bits
[127:64] of the destination.

• The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVHPS is an SSE instruction and VMOVHPS is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

MOVHPS
VMOVHPS

Move High
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
MOVHPS xmm1, mem64 0F 16 /r Moves two packed double-precision floating-point value from

mem64 to xmm1[127:64].
MOVHPS mem64, xmm1 0F 17 /r Moves two packed double-precision floating-point value from

xmm1[127:64] to mem64.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVHPS xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.00 16 /r
VMOVHPS mem64, xmm1 C4 RXB.00001 X.1111.0.00 17 /r

Instruction Reference MOVHPS, VMOVHPS 197

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MOVAPS, (V)MOVHLPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination encoding only).
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVLHPS; VMOVLHPS 198

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves two packed single-precision floating-point values from the low quadword of an XMM register
to the high quadword of another XMM register.

There are legacy and extended forms of the instruction:

MOVLHPS
The source operand is bits [63:0] of an XMM register. The destination is bits [127:64] of another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVLHPS
The extended form of the instruction has 128-bit encoding.

The source operands are bits [63:0] of two XMM registers. The destination is a third XMM register.
Bits [63:0] of the first source are moved to bits [63:0] of the destination; bits [63:0] of the second
source are moved to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MOVLHPS is an SSE instruction and VMOVLHPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

MOVLHPS
VMOVHLPS

Move Low to High
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
MOVLHPS xmm1, xmm2 0F 16 /r Moves two packed single-precision floating-point

values from xmm2[63:0] to xmm1[127:64].
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVLHPS xmm1, xmm2, xmm3 C4 RXB.00001 X.src.0.00 16 /r

Instruction Reference MOVLHPS; VMOVLHPS 199

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination encoding only).
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVLPD, VMOVLPD 200

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves a packed double-precision floating-point value. Values can be moved from a 64-bit memory
location to the low-order quadword of an XMM register, or from the low-order quadword of an XMM
register to a 64-bit memory location.

There are legacy and extended forms of the instruction:

MOVLPD
There are two encodings.
• The source operand is a 64-bit memory location. The destination is bits [63:0] of an XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
• The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.

VMOVLPD

The extended form of the instruction has two 128-bit encodings.
• There are two source operands. The first source is an XMM register. The second source is a 64-bit

memory location. The destination is an XMM register. Bits [127:64] of the source register are
written to bits [127:64] of the destination; bits [63:0] of the source memory location are written to
bits [63:0] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

• The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.

MOVLPD is an SSE2 instruction and VMOVLPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)MOVAPD, (V)MOVHPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

MOVLPD
VMOVLPD

Move Low
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
MOVLPD xmm1, mem64 66 0F 12 /r Moves a packed double-precision floating-point value from

mem64 to xmm1[63:0].
MOVHPD mem64, xmm1 66 0F 13 /r Moves a packed double-precision floating-point value from

xmm1[63:0] to mem64.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVLPD xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.01 12 /r
VMOVLPD mem64, xmm1 C4 RXB.00001 X.1111.0.01 13 /r

Instruction Reference MOVLPD, VMOVLPD 201

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination encoding only).
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVLPS, VMOVLPS 202

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves two packed single-precision floating-point values. Values can be moved from a 64-bit memory
location to the low-order quadword of an XMM register, or from the low-order quadword of an XMM
register to a 64-bit memory location.

There are legacy and extended forms of the instruction:

MOVLPS
There are two encodings.
• The source operand is a 64-bit memory location. The destination is bits [63:0] of an XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
• The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.

VMOVLPS
The extended form of the instruction has two 128-bit encodings.
• There are two source operands. The first source is an XMM register. The second source is a 64-bit

memory location. The destination is an XMM register. Bits [127:64] of the source register are
written to bits [127:64] of the destination; bits [63:0] of the source memory location are written to
bits [63:0] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

• The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.

MOVLPS is an SSE instruction and VMOVLPS is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

MOVLPS
VMOVLPS

Move Low Packed Single-Precision
Floating-Point

Mnemonic Opcode Description
MOVLPS xmm1, mem64 0F 12 /r Moves two packed single-precision floating-point value from

mem64 to xmm1[63:0].
MOVLPS mem64, xmm1 0F 13 /r Moves two packed single-precision floating-point value from

xmm1[63:0] to mem64.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVLPS xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.00 12 /r
VMOVLPS mem64, xmm1 C4 RXB.00001 X.1111.0.00 13 /r

Instruction Reference MOVLPS, VMOVLPS 203

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination encoding only).
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVMSKPD, VMOVMSKPD 204

26568—Rev. 3.11—December 2010 AMD64 Technology

Extracts the sign bits of packed double-precision floating-point values from an XMM register, zero-
extends the value, and writes it to the low-order bits of a general-purpose register.

There are legacy and extended forms of the instruction:

MOVMSKPD
Extracts two mask bits.

The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general
purpose register. Writes the extracted bits to positions [1:0] of the destination and clears the remaining
bits. Bits [255:128] of the YMM register that corresponds to the source are not affected.

MOVMSKPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Extracts two mask bits.

The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general
purpose register. Writes the extracted bits to positions [1:0] of the destination and clears the remaining
bits. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Extracts four mask bits.

The source operand is a YMM register. The destination can be either a 64-bit or a 32-bit general
purpose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.

MOVMSKPD is an SSE2 instruction and VMOVMSKPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)MOVMSKPS, (V)PMOVMSKB

MOVMSKPD
VMOVMSKPD

Extract Sign Mask
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
MOVMSKPD reg, xmm 66 0F 50 /r Move zero-extended sign bits of packed double-precision

values from xmm to a general-purpose register.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVMSKPD reg, xmm C4 RXB.00001 X.1111.0.01 50 /r
VMOVMSKPD reg, ymm C4 RXB.00001 X.1111.1.01 50 /r

Instruction Reference MOVMSKPD, VMOVMSKPD 205

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVMSKPS, VMOVMSKPS 206

26568—Rev. 3.11—December 2010 AMD64 Technology

Extracts the sign bits of packed single-precision floating-point values from an XMM register, zero-
extends the value, and writes it to the low-order bits of a general-purpose register.

There are legacy and extended forms of the instruction:

MOVMSKPS
Extracts four mask bits.

The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general
purpose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.

MOVMSKPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Extracts four mask bits.

The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general
purpose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.
YMM Encoding

Extracts eight mask bits.

The source operand is a YMM register. The destination can be either a 64-bit or a 32-bit general
purpose register. Writes the extracted bits to positions [7:0] of the destination and clears the remaining
bits.

MOVMSKPS is an SSE instruction and VMOVMSKPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)MOVMSKPD, (V)PMOVMSKB

MOVMSKPS
VMOVMSKPS

Extract Sign Mask
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
MOVMSKPS reg, xmm 0F 50 /r Move zero-extended sign bits of packed single-precision

values from xmm to a general-purpose register.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVMSKPS reg, xmm C4 RXB.00001 X.1111.0.00 50 /r
VMOVMSKPS reg, ymm C4 RXB.00001 X.1111.1.00 50 /r

Instruction Reference MOVMSKPS, VMOVMSKPS 207

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVNTDQ, VMOVNTDQ 208

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves double quadword values from a register to a memory location.

Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the store as a write-combining (WC) memory write, which minimizes cache pollution.
The method of minimization depends on the hardware implementation of the instruction. For further
information, see “Memory Optimization” in Volume 1.

The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ with
respect to other stores.

There are legacy and extended forms of the instruction:

MOVNTDQ
Moves one 128-bit value.

The source operand is an XMM register. The destination is a 128-bit memory location.

MOVNTDQ
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Moves one 128-bit value.

The source operand is an XMM register. The destination is a 128-bit memory location.
YMM Encoding

Moves two 128-bit values.

The source operand is a YMM register. The destination is a 256-bit memory location.

MOVNTDQ is an SSE2 instruction and VMOVNTDQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

MOVNTDQ
VMOVNTDQ

Move Non-Temporal
Double Quadword

Mnemonic Opcode Description
MOVNTDQ mem128, xmm 66 0F E7 /r Moves a 128-bit value from xmm to mem128, minimizing

cache pollution.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVNTDQ mem128, xmm C4 RXB.00001 X.1111.0.01 E7 /r
VMOVNTDQ mem256, ymm C4 RXB.00001 X.1111.1.01 E7 /r

Instruction Reference MOVNTDQ, VMOVNTDQ 209

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on 16-byte boundary while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVNTDQA, VMOVNTDQA 210

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves aligned double quadword values from a register to a memory location.

Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the store as a write-combining (WC) memory write, which minimizes cache pollution.
The method of minimization depends on the hardware implementation of the instruction. For further
information, see “Memory Optimization” in Volume 1.

The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an MFENCE instruction to force strong memory ordering of MOVNTDQ with respect to
other stores.

There are legacy and extended forms of the instruction:

MOVNTDQA
Moves one 128-bit value.

The source operand is an XMM register. The destination is a 128-bit memory location.

MOVNTDQ
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Moves one 128-bit value.

The source operand is an XMM register. The destination is a 128-bit memory location.

MOVNTDQA is an SSE4.1 instruction and VMOVNTDQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)MOVNTDQ, (V)MOVNTPD, (V)MOVNTPS

MOVNTDQA
VMOVNTDQA

Move Non-Temporal
Double Quadword Aligned

Mnemonic Opcode Description
MOVNTDQA mem128, xmm 66 0F 38 2A /r Moves an aligned 128-bit value from xmm to mem128,

minimizing cache pollution.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVNTDQA mem128, xmm C4 RXB.00010 X.1111.0.01 2A /r

Instruction Reference MOVNTDQA, VMOVNTDQA 211

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions
Exception

Mode
Cause of Exception

Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L field = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVNTPD, VMOVNTPD 212

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves packed double-precision floating-point values from a register to a memory location.

Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the store as a write-combining (WC) memory write, which minimizes cache pollution.
The method of minimization depends on the hardware implementation of the instruction. For further
information, see “Memory Optimization” in Volume 1.

The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ with
respect to other stores.

There are legacy and extended forms of the instruction:

MOVNTPD
Moves two values.

The source operand is an XMM register. The destination is a 128-bit memory location.

MOVNTPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Moves two values.

The source operand is an XMM register. The destination is a 128-bit memory location.
YMM Encoding

Moves four values.

The source operand is a YMM register. The destination is a 256-bit memory location.

MOVNTPD is an SSE2 instruction and VMOVNTPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
MOVNTDQ, MOVNTI, MOVNTPS, MOVNTQ

MOVNTPD
VMOVNTPD

Move Non-Temporal
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
MOVNTPD mem128, xmm 66 0F 2B /r Moves two packed double-precision floating-point values

from xmm to mem128, minimizing cache pollution.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVNTPD mem128, xmm C4 RXB.00001 X.1111.0.01 2B /r
VMOVNTPD mem256, ymm C4 RXB.00001 X.1111.1.01 2B /r

Instruction Reference MOVNTPD, VMOVNTPD 213

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on 16-byte boundary while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVNTPS, VMOVNTPS 214

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves packed single-precision floating-point values from a register to a memory location.

Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the store as a write-combining (WC) memory write, which minimizes cache pollution.
The method of minimization depends on the hardware implementation of the instruction. For further
information, see “Memory Optimization” in Volume 1.

The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ with
respect to other stores.

There are legacy and extended forms of the instruction:

MOVNTPS
Moves four values.

The source operand is an XMM register. The destination is a 128-bit memory location.

MOVNTPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Moves four values.

The source operand is an XMM register. The destination is a 128-bit memory location.
YMM Encoding

Moves eight values.

The source operand is a YMM register. The destination is a 256-bit memory location.

MOVNTPS is an SSE instruction and VMOVNTPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)MOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTQ

MOVNTPS
VMOVNTPS

Move Non-Temporal
PackedSingle-Precision Floating-Point

Mnemonic Opcode Description
MOVNTPS mem128, xmm 0F 2B /r Moves four packed double-precision floating-point values

from xmm to mem128, minimizing cache pollution.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVNTPS mem128, xmm C4 RXB.00001 X.1111.0.00 2B /r
VMOVNTPS mem256, ymm C4 RXB.00001 X.1111.1.00 2B /r

Instruction Reference MOVNTPS, VMOVNTPS 215

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on 16-byte boundary while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVQ, VMOVQ 216

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves 64-bit values. The source is either the low-order quadword of an XMM register or a 64-bit
memory location. The destination is either the low-order quadword of an XMM register or a 64-bit
memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.

There are legacy and extended forms of the instruction:

MOVQ
There are two encodings.
• The source operand is either an XMM register or a 64-bit memory location. The destination is an

XMM register. The 64-bit value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is either an XMM register or a 64-bit

memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVQ
The extended form of the instruction has three 128-bit encodings.
• The source operand is an XMM register. The destination is an XMM register. The 64-bit value is

zero-extended to 128 bits.
• The source operand is a 64-bit memory location. The destination is an XMM register. The 64-bit

value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is either an XMM register or a 64-bit

memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVQ is an SSE2 instruction and VMOVQ is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

MOVQ
VMOVQ

Move
Quadword

Mnemonic Opcode Description
MOVQ xmm1, xmm2/mem64 F3 0F 7E /r Move a zero-extended 64-bit value from xmm2 or mem64

to xmm1.
MOVQ xmm1/mem64, xmm2 66 0F D6 /r Move a 64-bit value from xmm2 to xmm1 or mem64.

Zero-extends for register destination.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVQ xmm1, xmm2 C4 RXB.00001 X.1111.0.10 7E /r
VMOVQ xmm1, mem64 C4 RXB.00001 X.1111.0.10 7E /r
VMOVQ xmm1/mem64, xmm2 C4 RXB.00001 X.1111.1.01 D6 /r

Instruction Reference MOVQ, VMOVQ 217

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MOVD, (V)MOVDQA, (V)MOVDQU

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVSD, VMOVSD 218

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves scalar double-precision floating point values. The source is either a low-order quadword of an
XMM register or a 64-bit memory location. The destination is either a low-order quadword of an
XMM register or a 64-bit memory location.

There are legacy and extended forms of the instruction:

MOVSD
There are three encodings.
• The source operand is an XMM register. The destination is an XMM register. Bits [127:64] of the

destination are not affected.
• The source operand is a 64-bit memory location. The destination is an XMM register. The 64-bit

value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is either an XMM register or a 64-bit

memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVSD
The extended form of the instruction has four 128-bit encodings. Two of the encodings are
functionally equivalent.
• The source operand is a 64-bit memory location. The destination is an XMM register. The 64-bit

value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is a 64-bit memory location.
• Two functionally-equivalent encodings:

There are two source XMM registers. The destination is an XMM register. Bits [127:64] of the first
source register are copied to bits [127:64] of the destination; the 64-bit value in bits [63:0] of the
second source register is written to bits [63:0] of the destination.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVSD is an SSE2 instruction and VMOVSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

This instruction must not be confused with the MOVSD (move string doubleword) instruction of the
general-purpose instruction set. Assemblers can distinguish the instructions by the number and type of
operands.

MOVSD
VMOVSD

Move
Scalar Double-Precision Floating-Point

Instruction Reference MOVSD, VMOVSD 219

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MOVAPD, (V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVUPD

Mnemonic Opcode Description
MOVSD xmm1, xmm2 F2 0F 10 /r Moves a zero-extended 64-bit value from xmm2 to xmm1.
MOVSD xmm1, mem64 F2 0F 10 /r Moves a zero-extended 64-bit value from mem64 to xmm1.
MOVSD xmm2/mem64, xmm1 F2 0F 11 /r Moves a 64-bit value from xmm1 to xmm2 or mem64.

Zero-extends for register destination.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVSD xmm1, mem64 C4 RXB.00001 X.1111.0.11 10 /r
VMOVSD mem64, xmm1 C4 RXB.00001 X.1111.0.11 11 /r
VMOVSD xmm, xmm2, xmm3 C4 RXB.00001 X.src.1.11 10 /r
VMOVSD xmm, xmm2, xmm3 C4 RXB.00001 X.src.1.11 11 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination enoding only).
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVSHDUP; VMOVSHDUP 220

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves and duplicates odd-indexed single-precision floating-point values.

There are legacy and extended forms of the instruction:

MOVSHDUP
Moves and duplicates two odd-indexed single-precision floating-point values.

The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [127:96] of the source are duplicated and written to bits [127:96] and [95:64] of the
destination. Bits [63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVSHDUP
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Moves and duplicates two odd-indexed single-precision floating-point values.

The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [127:96] of the source are duplicated and written to bits [127:96] and [95:64] of the
destination. Bits [63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves and duplicates four odd-indexed single-precision floating-point values.

The source operand is a YMM register or a 256-bit memory location. The destination is a YMM
register. Bits [255:224] of the source are duplicated and written to bits [255:224] and [223:192] of the
destination. Bits [191:160] of the source are duplicated and written to bits [191:160] and [159:128] of
the destination. Bits [127:96] of the source are duplicated and written to bits [127:96] and [95:64] of
the destination. Bits [63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination.

MOVSHDUP is an SSE3 instruction and VMOVSHDUP is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

MOVSHDUP
VMOVSHDUP

Move High and Duplicate
Single-Precision

Instruction Reference MOVSHDUP; VMOVSHDUP 221

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MOVDDUP, (V)MOVSLDUP

Mnemonic Opcode Description
MOVSHDUP xmm1, xmm2/mem128 F3 0F 16 /r Moves and duplicates two odd-indexed single-

precision floating-point values in xmm2 or mem128.
Writes to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VMOVSHDUP xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 16 /r
VMOVSHDUP ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 16 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVSLDUP, VMOVSLDUP 222

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves and duplicates even-indexed single-precision floating-point values.

There are legacy and extended forms of the instruction:

MOVSLDUP
Moves and duplicates two even-indexed single-precision floating-point values.

The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [95:64] of the source are duplicated and written to bits [127:96] and [95:64] of the
destination. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVSLDUP
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Moves and duplicates two even-indexed single-precision floating-point values.

The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [95:64] of the source are duplicated and written to bits [127:96] and [95:64] of the
destination. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves and duplicates four even-indexed single-precision floating-point values.

The source operand is a YMM register or a 256-bit memory location. The destination is a YMM
register. Bits [223:192] of the source are duplicated and written to bits [255:224] and [223:192] of the
destination. Bits [159:128] of the source are duplicated and written to bits [191:160] and [159:128] of
the destination. Bits [95:64] of the source are duplicated and written to bits [127:96] and [95:64] of the
destination. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination.

MOVSLDUP is an SSE3 instruction and VMOVSLDUP is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

MOVSLDUP
VMOVSLDUP

Move Low and Duplicate
Single-Precision

Instruction Reference MOVSLDUP, VMOVSLDUP 223

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MOVDDUP, (V)MOVSHDUP

Mnemonic Opcode Description
MOVSLDUP xmm1, xmm2/mem128 F3 0F 12 /r Moves and duplicates two even-indexed single-

precision floating-point values in xmm2 or mem128.
Writes to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VMOVSLDUP xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 12 /r
VMOVSLDUP ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 12 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVSS, VMOVSS 224

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves scalar single-precision floating point values. The source is either a low-order doubleword of an
XMM register or a 32-bit memory location. The destination is either a low-order doubleword of an
XMM register or a 32-bit memory location.

There are legacy and extended forms of the instruction:

MOVSS
There are three encodings.
• The source operand is an XMM register. The destination is an XMM register. Bits [127:32] of the

destination are not affected.
• The source operand is a 32-bit memory location. The destination is an XMM register. The 32-bit

value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is either an XMM register or a 32-bit

memory location. When the destination is a register, the 32-bit value is zero-extended to 128 bits.

Bits [255:128] of the YMM register that corresponds to the source are not affected.

VMOVSS
The extended form of the instruction has four 128-bit encodings. Two of the encodings are
functionally equivalent.
• The source operand is a 32-bit memory location. The destination is an XMM register. The 32-bit

value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is a 32-bit memory location.
• Two functionally-equivalent encodings:

There are two source XMM registers. The destination is an XMM register. Bits [127:64] of the first
source register are copied to bits [127:64] of the destination; the 32-bit value in bits [31:0] of the
second source register is written to bits [31:0] of the destination.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVSS is an SSE instruction and VMOVSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

MOVSS
VMOVSS

Move
Scalar Single-Precision Floating-Point

Instruction Reference MOVSS, VMOVSS 225

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS,
(V)MOVUPS

Mnemonic Opcode Description
MOVSS xmm1, xmm2 F3 0F 10 /r Moves a 32-bit value from xmm2 to xmm1.
MOVSS xmm1, mem32 F3 0F 10 /r Moves a zero-extended 32-bit value from mem32 to xmm1.
MOVSS xmm2/mem32, xmm1 F3 0F 11 /r Moves a 32-bit value from xmm1 to xmm2 or mem32.

Zero-extended for register destination.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVSS xmm1, mem32 C4 RXB.00001 X.1111.0.10 10 /r
VMOVSS mem32, xmm1 C4 RXB.00001 X.1111.0.10 11 /r
VMOVSS xmm, xmm2, xmm3 C4 RXB.00001 X.src.1.10 10 /r
VMOVSS xmm, xmm2, xmm3 C4 RXB.00001 X.src.1.10 11 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination enoding only).
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVUPD, VMOVUPD 226

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves packed double-precision floating-point values. Values can be moved from a register or memory
location to a register; or from a register to a register or memory location.

A memory operand that is not aligned does not cause a general-protection exception.

There are legacy and extended forms of the instruction:

MOVUPD
Moves two double-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.
• The source operand is an XMM register. The destination operand is either an XMM register or a

128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVUPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Moves two double-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.
• The source operand is an XMM register. The destination operand is either an XMM register or a

128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves four double-precision floating-point values. There are encodings for each type of move.
• The source operand is either a YMM register or a 256-bit memory location. The destination

operand is a YMM register.
• The source operand is a YMM register. The destination operand is either a YMM register or a

256-bit memory location.

MOVUPD is an SSE2 instruction and VMOVUPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

MOVUPD
VMOVUPD

Move Unaligned
Packed Double-Precision Floating-Point

Instruction Reference MOVUPD, VMOVUPD 227

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MOVAPD, (V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD

Mnemonic Opcode Description
MOVUPD xmm1, xmm2/mem128 66 0F 10 /r Moves two packed double-precision floating-point

values from xmm2 or mem128 to xmm1.
MOVUPD xmm1/mem128, xmm2 66 0F 11 /r Moves two packed double-precision floating-point

values from xmm1 or mem128 to xmm2.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVUPD xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 10 /r
VMOVUPD xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.01 11 /r
VMOVUPD ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 10 /r
VMOVUPD ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.01 11 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVUPS, VMOVUPS 228

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves packed single-precision floating-point values. Values can be moved from a register or memory
location to a register; or from a register to a register or memory location.

A memory operand that is not aligned does not cause a general-protection exception.

There are legacy and extended forms of the instruction:

MOVUPS
Moves four single-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.
• The source operand is an XMM register. The destination operand is either an XMM register or a

128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVUPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Moves four single-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.
• The source operand is an XMM register. The destination operand is either an XMM register or a

128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves eight single-precision floating-point values. There are encodings for each type of move.
• The source operand is either a YMM register or a 256-bit memory location. The destination

operand is a YMM register.
• The source operand is a YMM register. The destination operand is either a YMM register or a

256-bit memory location.

MOVUPS is an SSE instruction and VMOVUPS is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

MOVUPS
VMOVUPS

Move Unaligned
Packed Single-Precision Floating-Point

Instruction Reference MOVUPS, VMOVUPS 229

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS,
(V)MOVSS

Mnemonic Opcode Description
MOVUPS xmm1, xmm2/mem128 0F 10 /r Moves four packed single-precision floating-point

values from xmm2 or unaligned mem128 to xmm1.
MOVUPS xmm1/mem128, xmm2 0F 11 /r Moves four packed single-precision floating-point

values from xmm1 or unaligned mem128 to xmm2.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVUPS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 10 /r
VMOVUPS xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.00 11 /r
VMOVUPS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 10 /r
VMOVUPS ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.00 11 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MPSADBW, VMPSADBW 230

26568—Rev. 3.11—December 2010 AMD64 Technology

Calculates the sum of absolute differences of each member of four sequential groups of four unsigned
byte integers in the first source register and each of four unsigned byte integers in a second source
register, and writes the 16-bit integer sums to the destination.

Bit fields in an 8-bit immediate operand are used to calculate offsets that select sequences of bytes in
the two source registers. The binary value of each bit field is multiplied by 32 to produce a 32-bit
offset. Bit 2 of the immediate operand determines the offset for the first source register; 11 bytes
beginning at the offset position are used. Bits [1:0] of the immediate operand determine the offset for
the second source register; four bytes beginning at the offset position are used.

The selected bytes are repositioned in the source registers. Bytes [10:0] of the first source occupy bits
[87:0] of the first source register; bytes [3:0] of the second source occupy bits [31:0] of the second
source register.

Operation is iterative and repeats eight times. Each repetition increments the starting byte position in
the first source by one and calculates the sum of differences with the four integers of the second
source. Results are written to eight consecutive words in the destination, starting with the low word. In
the first iteration, bytes [0:4] of the second source are subtracted from bytes [0:4] of the first source
and the sum of the differences is written to bits [15:0] of the destination; in the second iteration, bytes
[0:4] of the second source are subtracted from bytes [1:5] of the first source and the sum of the
differences is written to bits [31:16] of the destination. The process continues until bytes [0:4] of the
second source are subtracted from bytes [7:10] of the first source and the sum of the differences is
written to bits [127:112] of the destination.

There are legacy and extended forms of the instruction:

MPSADBW
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VMPSADBW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

MPSADBW is an SSE4.1 instruction and VMPSADBW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

MPSADBW
VMPSADBW

Multiple Sum of Absolute Differences

Instruction Reference MPSADBW, VMPSADBW 231

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)PSADBW, (V)PABSB, (V)PABSD, (V)PABSW

Mnemonic Opcode Description
MPSADBW xmm1, xmm2/mem128, imm8 66 0F 3A 42 /r ib Sums absolute difference of groups of

four 8-bit integer in xmm1 and xmm2
or mem128. Writes results to xmm1.
Starting source offsets are determined
by imm8 bit fields.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VMPSADBW xmm1, xmm2, xmm3/mem128 C4 RXB.00011 X.src.0.01 42 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MULPD, VMULPD 232

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed double-precision floating-point value of the first source operand by the
corresponding packed double-precision floating-point value of the second source operand and writes
the product of each multiplication into the corresponding quadword of the destination.

There are legacy and extended forms of the instruction:

MULPD
Multiplies two double-precision floating-point values in the first source XMM register by the
corresponding double precision floating-point values in either a second XMM register or a 128-bit
memory location. The first source register is also the destination. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.

VMULPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Multiplies two double-precision floating-point values in the first source XMM register by the
corresponding double-precision floating-point values in either a second source XMM register or a
128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM register
that corresponds to the destination are cleared.
YMM Encoding

Multiplies four double-precision floating-point values in the first source YMM register by the
corresponding double precision floating-point values in either a second source YMM register or a
256-bit memory location. The destination is a third YMM register.

MULPD is an SSE2 instruction and VMULPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)MULPS, (V)MULSD, (V)MULSS

MULPD
VMULPD

Multiply
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
MULPD xmm1, xmm2/mem128 66 0F 59 /r Multiplies two packed double-precision floating-

point values in xmm1 by corresponding values in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VMULPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 59 /r
VMULPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 59 /r

Instruction Reference MULPD, VMULPD 233

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MULPS, VMULPS 234

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed single-precision floating-point value of the first source operand by the
corresponding packed single-precision floating-point value of the second source operand and writes
the product of each multiplication into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:

MULPS
Multiplies four single-precision floating-point values in the first source XMM register by the
corresponding single-precision floating-point values of either a second source XMM register or a
128-bit memory location. The first source register is also the destination. Bits [255:128] of the YMM
register that corresponds to the destination are not affected.

VMULPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Multiplies four single-precision floating-point values in the first source XMM register by the
corresponding single-precision floating-point values of either a second source XMM register or a
128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM register
that corresponds to the destination are cleared.
YMM Encoding

Multiplies eight single-precision floating-point values in the first source YMM register by the
corresponding single-precision floating-point values of either a second source YMM register or a
256-bit memory location. Writes the results to a third YMM register.

MULPS is an SSE2 instruction and VMULPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)MULPD, (V)MULSD, (V)MULSS

MULPS
VMULPS

Multiply
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
MULPS xmm1, xmm2/mem128 0F 59 /r Multiplies four packed single-precision floating-point values

in xmm1 by corresponding values in xmm2 or mem128.
Writes the products to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VMULPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 59 /r
VMULPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 59 /r

Instruction Reference MULPS, VMULPS 235

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MULSD, VMULSD 236

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the double-precision floating-point value in the low-order quadword of the first source
operand by the double-precision floating-point value in the low-order quadword of the second source
operand and writes the product into the low-order quadword of the destination.

There are legacy and extended forms of the instruction:

MULSD
The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location. The first source register is also the destination register. Bits [127:64] of
the destination and bits [255:128] of the corresponding YMM register are not affected.

VMULSD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the first source
operand are copied to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MULSD is an SSE2 instruction and VMULSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)MULPD, (V)MULPS, (V)MULSS

MULSD
VMULSD

Multiply
Scalar Double-Precision Floating-Point

Mnemonic Opcode Description
MULSD xmm1, xmm2/mem64 F2 0F 59 /r Multiplies low-order double-precision floating-point values

in xmm1 by corresponding values in xmm2 or mem64.
Writes the products to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VMULSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 59 /r

Instruction Reference MULSD, VMULSD 237

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MULSS, VMULSS 238

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the single-precision floating-point value in the low-order doubleword of the first source
operand by the single-precision floating-point value in the low-order doubleword of the second source
operand and writes the product into the low-order doubleword of the destination.

There are legacy and extended forms of the instruction:

MULSS
The first source operand is an XMM register and the second source operand is either an XMM register
or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination register and bits [255:128] of the corresponding YMM register are not affected.

VMULSS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the first source
register are copied to bits [127:32] of the of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MULSS is an SSE instruction and VMULSS is an AVX instruction. Support for these instructions is
i nd i ca t ed by CPUID f ea tu r e i den t i f i e r s CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)MULPD, (V)MULPS, (V)MULSD

MULSS
VMULSS

Multiply Scalar Single-Precision Floating-Point

Mnemonic Opcode Description
MULSS xmm1, xmm2/mem32 F3 0F 59 /r Multiplies a single-precision floating-point value in the low-

order doubleword of xmm1 by a corresponding value in
xmm2 or mem32. Writes the product to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VMULSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 59 /r

Instruction Reference MULSS, VMULSS 239

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ORPD, VORPD 240

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs bitwise OR of two packed double-precision floating-point values in the first source operand
with the corresponding two packed double-precision floating-point values in the second source
operand and writes the results into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:

ORPD
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VORPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ORPD is an SSE2 instruction and VORPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPS, (V)XORPD, (V)XORPS

ORPD
VORPD

OR
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
ORPD xmm1, xmm2/mem128 66 0F 56 /r Performs bitwise OR of two packed double-precision

floating-point values in xmm1 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VORPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 56 /r
VORPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 56 /r

Instruction Reference ORPD, VORPD 241

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ORPS, VORPS 242

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs bitwise OR of the four packed single-precision floating-point values in the first source
operand with the corresponding four packed single-precision floating-point values in the second
source operand, and writes the result into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:

ORPS
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VORPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ORPS is an SSE instruction and VORPS is an AVX instruction. Support for these instructions is
i nd i ca t ed by CPUID f ea tu r e i den t i f i e r s CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)XORPD, (V)XORPS

ORPS
VORPS

OR
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
ORPS xmm1, xmm2/mem128 0F 56 /r Performs bitwise OR of four packed double-precision floating-

point values in xmm1 with corresponding values in xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VORPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 56 /r
VORPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 56 /r

Instruction Reference ORPS, VORPS 243

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PABSB, VPABSB 244

26568—Rev. 3.11—December 2010 AMD64 Technology

Computes the absolute value of 16 packed 8-bit signed integers in the source operand and writes 8-bit
unsigned results to the destination.

There are legacy and extended forms of the instruction:

PABSB
The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPABSB
The extended form of the instruction has 128-bit encoding.

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PABSB is an SSSE3 instruction and VPABSB is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PABSW, (V)PABSD

PABSB
VPABSB

Packed Absolute Value
Signed Byte

Mnemonic Opcode Description
PABSB xmm1, xmm2/mem128 0F 38 1C /r Computes the absolute value of each packed 8-bit signed

integer value in xmm2/mem128 and writes the 8-bit unsigned
results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPABSB xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 1C /r

Instruction Reference PABSB, VPABSB 245

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PABSD, VPABSD 246

26568—Rev. 3.11—December 2010 AMD64 Technology

Computes the absolute value of two packed 32-bit signed integers in the source operand and writes
32-bit unsigned results to the destination.

There are legacy and extended forms of the instruction:

PABSD
The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPABSD
The extended form of the instruction has 128-bit encoding.

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PABSD is an SSSE3 instruction and VPABSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PABSB, (V)PABSW

PABSD
VPABSD

Packed Absolute Value
Signed Doubleword

Mnemonic Opcode Description
PABSD xmm1, xmm2/mem128 0F 38 1E /r Computes the absolute value of each packed 32-bit signed

integer value in xmm2/mem128 and writes the 32-bit
unsigned results to xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPABSD xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 1E /r

Instruction Reference PABSD, VPABSD 247

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PABSW, VPABSW 248

26568—Rev. 3.11—December 2010 AMD64 Technology

Computes the absolute values of four packed 16-bit signed integers in the source operand and writes
16-bit unsigned results to the destination.

There are legacy and extended forms of the instruction:

PABSW
The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPABSW
The extended form of the instruction has 128-bit encoding.

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PABSW is an SSSE3 instruction and VPABSW is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PABSB, (V)PABSD

PABSW
VPABSW

Packed Absolute Value
Signed Word

Mnemonic Opcode Description
PABSW xmm1, xmm2/mem128 0F 38 1D /r Computes the absolute value of each packed 16-bit signed

integer value in xmm2/mem128 and writes the 16-bit
unsigned results to xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPABSW xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 1D /r

Instruction Reference PABSW, VPABSW 249

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PACKSSDW, VPACKSSDW 250

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts four 32-bit signed integers from the first source operand and four 32-bit signed integers from
the second source operand into eight 16-bit signed integers and packs the results into the destination.

Positive source value greater than 7FFFh are saturated to 7FFFh; negative source values less than
8000h are saturated to 8000h.

Converted values from the first source operand are packed into the low-order words of the destination;
converted values from the second source operand are packed into the high-order words of the
destination.

There are legacy and extended forms of the instruction:

PACKSSDW
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPACKSSDW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PACKSSDW is an SSE2 instruction and VPACKSSDW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PACKSSWB, (V)PACKUSDW, (V)PACKUSWB

PACKSSDW
VPACKSSDW

Pack with Signed Saturation
Doubleword to Word

Mnemonic Opcode Description
PACKSSDW xmm1, xmm2/mem128 66 0F 6B /r Converts 32-bit signed integers in xmm1 and xmm2

or mem128 into 16-bit signed integers with
saturation. Writes packed results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPACKSSDW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 0.src1.0.01 6B /r

Instruction Reference PACKSSDW, VPACKSSDW 251

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PACKSSWB, VPACKSSWB 252

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts eight 16-bit signed integers from the first source operand and eight 16-bit signed integers
from the second source operand into sixteen 8-bit signed integers and packs the results into the
destination.

Positive source values greater than 7Fh are saturated to 7Fh; negative source values less than 80h are
saturated to 80h.

Converted values from the first source operand are packed into the low-order bytes of the destination;
converted values from the second source operand are packed into the high-order bytes of the
destination.

There are legacy and extended forms of the instruction:

PACKSSWB
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPACKSSWB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PACKSSWB is an SSE2 instruction and VPACKSSWB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PACKSSDW, (V)PACKUSDW, (V)PACKUSWB

PACKSSWB
VPACKSSWB

Pack with Signed Saturation
Word to Byte

Mnemonic Opcode Description
PACKSSWB xmm1, xmm2/mem128 66 0F 63 /r Converts 16-bit signed integers in xmm1 and xmm2

or mem128 into 8-bit signed integers with saturation.
Writes packed results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPACKSSWB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 63 /r

Instruction Reference PACKSSWB, VPACKSSWB 253

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PACKUSDW, VPACKUSDW 254

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts four 32-bit signed integers from the first source operand and four 32-bit signed integers from
the second source operand into eight 16-bit unsigned integers and packs the results into the
destination.

Source values greater than FFFFh are saturated to FFFFh; source values less than 0000h are saturated
to 0000h.

Packs converted values from the first source operand into the low-order words of the destination;
packs converted values from the second source operand into the high-order words of the destination.

There are legacy and extended forms of the instruction:

PACKUSDW
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPACKUSDW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PACKUSDW is an SSE4.1 instruction and VPACKUSDW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PACKSSDW, (V)PACKSSWB, (V)PACKUSWB

PACKUSDW
VPACKUSDW

Pack with Unsigned Saturation
Doubleword to Word

Mnemonic Opcode Description
PACKUSDW xmm1, xmm2/mem128 66 0F 38 2B /r Converts 32-bit signed integers in xmm1 and xmm2

or mem128 into 16-bit unsigned integers with
saturation. Writes packed results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPACKUSDW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 2B /r

Instruction Reference PACKUSDW, VPACKUSDW 255

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PACKUSWB, VPACKUSWB 256

26568—Rev. 3.11—December 2010 AMD64 Technology

Converts eight 16-bit signed integers from the first source operand and eight 16-bit signed integers
from the second source operand into sixteen 8-bit unsigned integers and packs the results into the
destination.

When a source value is greater than 7Fh it is saturated to FFh; when source value is less than 00h, it is
saturated to 00h.

Packs converted values from the first source operand into the low-order bytes of the destination; packs
converted values from the second source operand into the high-order bytes of the destination.

There are legacy and extended forms of the instruction:

PACKUSWB
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPACKUSWB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PACKUSWB is an SSE2 instruction and VPACKUSWB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PACKSSDW, (V)PACKSSWB, (V)PACKUSDW

PACKUSWB
VPACKUSWB

Pack with Unsigned Saturation
Word to Byte

Mnemonic Opcode Description
PACKUSWB xmm1, xmm2/mem128 66 0F 67 /r Converts 16-bit signed integers in xmm1 and xmm2

or mem128 into 8-bit signed integers with saturation.
Writes packed results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPACKUSWB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 67 /r

Instruction Reference PACKUSWB, VPACKUSWB 257

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PADDB, VPADDB 258

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds 16 packed 8-bit integer values in the first source operand to corresponding values in the second
source operand and writes the integer sums to the corresponding bytes of the destination.

This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:

PADDB
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDB is an SSE2 instruction and VPADDB is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

PADDB
VPADDB

Packed Add
Bytes

Mnemonic Opcode Description
PADDB xmm1, xmm2/mem128 66 0F FC /r Adds packed byte integer values in xmm1 and xmm2 or

mem128 Writes the sums to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPADDB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 FC /r

Instruction Reference PADDB, VPADDB 259

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PADDD, VPADDD 260

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds four packed 32-bit integer value in the first source operand to corresponding values in the second
source operand and writes integer sums to the corresponding doublewords of the destination.

This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 32 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:

PADDD
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDD is an SSE2 instruction and VPADDD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PADDB, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

PADDD
VPADDD

Packed Add
Doublewords

Mnemonic Opcode Description
PADDD xmm1, xmm2/mem128 66 0F FE /r Adds packed doubleword integer values in xmm1 and

xmm2 or mem128 Writes the sums to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPADDD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 FE /r

Instruction Reference PADDD, VPADDD 261

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PADDQ, VPADDQ 262

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds two packed 64-bit integer values in the first source operand to corresponding values in the
second source operand and writes the integer sums to the corresponding quadwords of the destination.

This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 64 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:

PADDQ
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDQ
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDQ is an SSE2 instruction and VPADDQ is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

PADDQ
VPADDQ

Packed Add
Quadwords

Mnemonic Opcode Description
PADDQ xmm1, xmm2/mem128 66 0F D4 /r Adds packed quadword integer values in xmm1 and

xmm2 or mem128 Writes the sums to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPADDQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D4 /r

Instruction Reference PADDQ, VPADDQ 263

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PADDSB, VPADDSB 264

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds 16 packed 8-bit signed integer values in the first source operand to the corresponding values in
the second source operand and writes the signed integer sums to corresponding bytes of the
destination.

Positive sums greater than 7Fh are saturated to FFh; negative sums less than 80h are saturated to 80h.

There are legacy and extended forms of the instruction:

PADDSB
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDSB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDSB is an SSE2 instruction and VPADDSB is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

PADDSB
VPADDSB

Packed Add with Signed Saturation
Bytes

Mnemonic Opcode Description
PADDSB xmm1, xmm2/mem128 66 0F EC /r Adds packed signed 8-bit integer values in xmm1 and

xmm2 or mem128 with signed saturation. Writes the
sums to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPADDSB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 EC /r

Instruction Reference PADDSB, VPADDSB 265

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PADDSW, VPADDSW 266

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds eight packed 16-bit signed integer value in the first source operand to the corresponding values
in the second source operand and writes the signed integer sums to the corresponding words of the
destination.

Positive sums greater than 7FFFh are saturated to 7FFFh; negative sums less than 8000h are saturated
to 8000h.

There are legacy and extended forms of the instruction:

PADDSW
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDSW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDSW is an SSE2 instruction and VPADDSW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDUSB, (V)PADDUSW, (V)PADDW

PADDSW
VPADDSW

Packed Add with Signed Saturation
Words

Mnemonic Opcode Description
PADDSW xmm1, xmm2/mem128 66 0F ED /r Adds packed signed 16-bit integer values in xmm1 and

xmm2 or mem128 with signed saturation. Writes the
sums to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPADDSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 ED /r

Instruction Reference PADDSW, VPADDSW 267

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PADDUSB, VPADDUSB 268

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds 16 packed 8-bit unsigned integer values in the first source operand to the corresponding values in
the second source operand and writes the unsigned integer sums to the corresponding bytes of the
destination.

Sums greater than 7Fh are saturated to 7Fh; Sums less than 00h are saturated to 00h.

There are legacy and extended forms of the instruction:

PADDUSB
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDUSB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDUSB is an SSE2 instruction and VPADDUSB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSW, (V)PADDW

PADDUSB
VPADDUSB

Packed Add with Unsigned Saturation
Bytes

Mnemonic Opcode Description
PADDUSB xmm1, xmm2/mem128 66 0F DC /r Adds packed unsigned 8-bit integer values in xmm1

and xmm2 or mem128 with unsigned saturation.
Writes the sums to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPADDUSB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DC /r

Instruction Reference PADDUSB, VPADDUSB 269

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PADDUSW, VPADDUSW 270

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds eight packed 16-bit unsigned integer value in the first source operand to the corresponding
values in the second source operand and writes the unsigned integer sums to the corresponding words
of the destination.

Sums greater than FFFFh are saturated to FFFFh; sums less than 0000h are saturated to 0000h.

There are legacy and extended forms of the instruction:

PADDUSW
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDUSW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDUSW is an SSE2 instruction and VPADDUSW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDW

PADDUSW
VPADDUSW

Packed Add with Unsigned Saturation
Words

Mnemonic Opcode Description
PADDUSW xmm1, xmm2/mem128 66 0F DD /r Adds packed unsigned 16-bit integer values in xmm1

and xmm2 or mem128 with unsigned saturation.
Writes the sums to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPADDUSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DD /r

Instruction Reference PADDUSW, VPADDUSW 271

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PADDW, VPADDW 272

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds eight packed 16-bit integer value in the first source operand to the corresponding values in the
second source operand and writes the integer sums to the corresponding word of the destination.

This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 16 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:

PADDW
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDW is an SSE2 instruction and VPADDW is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW

PADDW
VPADDW

Packed Add
Words

Mnemonic Opcode Description
PADDW xmm1, xmm2/mem128 66 0F FD /r Adds packed 16-bit integer values in xmm1 and xmm2

or mem128. Writes the sums to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPADDW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 FD /r

Instruction Reference PADDW, VPADDW 273

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PALIGNR, VPALIGNR 274

26568—Rev. 3.11—December 2010 AMD64 Technology

Concatenates [source1:source2] in a temporary 256-bit location and right-shifts the concatenated
value the number of bytes specified by the unsigned immediate operand. Writes the shifted result to the
destination.

The binary value of the immediate operand determineS the byte shift value. For byte shifts greater than
16 bytes, the upper bytes of the destination are zero-filled; when the byte shift is greater than 32 bytes,
the destination is zeroed.

There are two forms of the instruction.

PALIGNR
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPALIGNR
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PALIGNR is an SSSE3 instruction and VPALIGNR is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
None

PALIGNR
VPALIGNR

Packed Align Right

Mnemonic Opcode Description
PALIGNR xmm1, xmm2/mem128, imm8 66 0F 3A 0F /r ib Right-shifts xmm1:xmm2/mem128 imm8

bytes. Writes shifted result to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPALIGNR xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 0F /r ib

Instruction Reference PALIGNR, VPALIGNR 275

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PAND, VPAND 276

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs a bitwise AND of the packed values in the first and second source operands and writes the
result to the destination.

There are legacy and extended forms of the instruction:

PAND
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPAND
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PAND is an SSE2 instruction and VPAND is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PANDN, (V)POR, (V)PXOR

PAND
VPAND

Packed AND

Mnemonic Opcode Description
PAND xmm1, xmm2/mem128 66 0F DB /r Performs bitwise AND of values in xmm1 and xmm2 or

mem128. Writes the result to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPAND xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DB /r

Instruction Reference PAND, VPAND 277

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PANDN, VPANDN 278

26568—Rev. 3.11—December 2010 AMD64 Technology

Generates the ones’ complement of the value in the first source operand and performs a bitwise AND
of the complement and the value in the second source operand. Writes the result to the destination.

There are legacy and extended forms of the instruction:

PANDN
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPANDN
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PANDN is an SSE2 instruction and VPANDN is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PAND, (V)POR, (V)PXOR

PANDN
VPANDN

Packed AND NOT

Mnemonic Opcode Description
PANDN xmm1, xmm2/mem128 66 0F DF /r Generates ones’ complement of xmm1, then performs

bitwise AND with value in xmm2 or mem128. Writes the
result to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPANDN xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DF /r

Instruction Reference PANDN, VPANDN 279

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PAVGB, VPAVGB 280

26568—Rev. 3.11—December 2010 AMD64 Technology

Computes the rounded averages of 16 packed unsigned 8-bit integer values in the first source operand
and the corresponding values of the second source operand. Writes each average to the corresponding
byte of the destination.

An average is computed by adding pairs of operands, adding 1 to a 9-bit temporary sum, and right-
shifting the temporary sum by one bit position.

There are legacy and extended forms of the instruction:

PAVGB
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPAVGB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PAVGB is an SSE2 instruction and VPAVGB is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
PAVGW

PAVGB
VPAVGB

Packed Average
Unsigned Bytes

Mnemonic Opcode Description
PAVGB xmm1, xmm2/mem128 66 0F E0 /r Averages pairs of packed 8-bit unsigned integer values

in xmm1 and xmm2 or mem128. Writes the averages to
xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPAVGB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 E0 /r

Instruction Reference PAVGB, VPAVGB 281

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PAVGW, VPAVGW 282

26568—Rev. 3.11—December 2010 AMD64 Technology

Computes the rounded average of packed unsigned 16-bit integer values in the first source operand
and the corresponding values of the second source operand. Writes each average to the corresponding
word of the destination.

An average is computed by adding pairs of operands, adding 1 to a 17-bit temporary sum, and right-
shifting the temporary sum by one bit position.

There are legacy and extended forms of the instruction:

PAVGW
The first source operand is an XMM register and the second source operand is another XMM register
or 128-bit memory location. The destination is the same XMM register as the first source operand; the
upper 128-bits of the corresponding YMM register are not affected.

VPAVGW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PAVGW is an SSE2 instruction and VPAVGW is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PAVGB

PAVGW
VPAVGW

Packed Average
Unsigned Words

Mnemonic Opcode Description
PAVGW xmm1, xmm2/mem128 66 0F E3 /r Averages pairs of packed 16-bit unsigned integer values

in xmm1 and xmm2 or mem128. Writes the averages to
xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPAVGW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 E3 /r

Instruction Reference PAVGW, VPAVGW 283

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PBLENDVB, VPBLENDVB 284

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies packed bytes from either of two sources to a destination, as specified by a mask operand.

The mask is defined by the msb of each byte of the mask operand. The position of a mask bit
corresponds to the position of the most significant bit of a copied value.
• When a mask bit = 0, the specified element of the first source is copied to the corresponding

position in the destination.
• When a mask bit = 1, the specified element of the second source is copied to the corresponding

position in the destination.

There are legacy and extended forms of the instruction:

PBLENDVB
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. The mask operand is the implicit
register XMM0.

VPBLENDVB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. The mask operand is a fourth XMM
register selected byte bits [7:4] of an immediate byte.

PBLENDVB is an SSE4.1 instruction and VPBLENDVB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)BLENDVPD, (V)BLENDVPS

PBLENDVB
VPBLENDVB

Variable Blend
Packed Bytes

Mnemonic Opcode Description
PBLENDVB xmm1, xmm2/mem128 66 0F 38 10 /r Selects byte values from xmm1 or xmm2/mem128,

depending on the value of corresponding mask bits
in XMM0. Writes the selected values to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPBLENDVB xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 4C /r is4

Instruction Reference PBLENDVB, VPBLENDVB 285

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PBLENDW, VPBLENDW 286

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies packed words from either of two sources to a destination, as specified by an immediate 8-bit
mask operand.

Each mask bit corresponds to a source word value, in ascending order. Mask bit [0] corresponds to
source bits [15:0], mask bit [7] corresponds to source bits [127:112].
• When a mask bit = 0, the specified element of the first source is copied to the corresponding

position in the destination.
• When a mask bit = 1, the specified element of the second source is copied to the corresponding

position in the destination.

There are legacy and extended forms of the instruction:

PBLENDW
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPBLENDW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PBLENDW is an SSE4.1 instruction and VPBLENDW is an AVX instruction. Support for these
instructions is indicated by CPUID feature identifiers (see the CPUID Specification, order# 25481).

Related Instructions
(V)BLENDPD

PBLENDW
VPBLENDW

Blend
Packed Words

Mnemonic Opcode Description
PBLENDW xmm1, xmm2/mem128, imm8 66 0F 3A 0E /r ib Selects word values from xmm1 or

xmm2/mem128, as specified by imm8.
Writes the selected values to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPBLENDW xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 0E /r /ib

Instruction Reference PBLENDW, VPBLENDW 287

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCLMULQDQ, VPCLMULQDQ 288

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs a carry-less multiplication of a selected quadword element of the first source operand by a
selected quadword element of the second source operand and writes the product to the destination.

Carry-less multiplication, also known as binary polynomial multiplication, is the mathematical
operation of computing the product of two operands without generating or propagating carries. It is an
essential component of cryptographic processing, and typically requires a large number of cycles.

The instruction provides an efficient means of performing the operation and is particularly useful in
implementing the Galois counter mode used in the Advanced Encryption Standard (AES). See
Section 1.4, “AES Instructions” for additional information.

Bits 4 and 0 of an 8-bit immediate byte operand specify which quadword of each source operand to
multiply, as follows.

Alias mnemonics are provided for the various immediate byte combinations.

There are legacy and extended forms of the instruction:

PCLMULQDQ
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCLMULQDQ
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCLMULQDQ is a CLMUL instruction and VPCLMULQDQ is both a CLMUL instruction and an
AV X in s t ruc t i on . Suppo r t f o r t he se i n s t r u c t i o n s i s i n d i c a t e d b y C P U I D
Fn0000_00001_ECX[PCLMULQDQ] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

PCLMULQDQ
VPCLMULQDQ

Carry-less Multiply
Quadwords

Mnemonic Imm[0] Imm[4] Quadword Operands Selected
(V)PCLMULLQLQDQ 0 0 SRC1[63:0], SRC2[63:0]
(V)PCLMULHQLQDQ 1 0 SRC1[127:64], SRC2[63:0]
(V)PCLMULLQHQDQ 0 1 SRC1[63:0], SRC2[127:64]
(V)PCLMULHQHQDQ 1 1 SRC1[127:64], SRC2[127:64]

Instruction Reference PCLMULQDQ, VPCLMULQDQ 289

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)PMULDQ, (V)PMULUDQ

Mnemonic Opcode Description
PCLMULQDQ xmm1, xmm2/mem128, imm8 66 0F 3A 44 /r ib Performs carry-less multiplication of a

selected quadword element of xmm1 by a
selected quadword element of xmm2 or
mem128. Elements are selected by bits 4
and 0 of imm8. Writes the product to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPCLMULQDQ xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 44 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPEQB, VPCMPEQB 290

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares 16 packed byte values in the first source operand to corresponding values in the second
source operand and writes a comparison result to the corresponding byte of the destination.

When values are equal, the result is FFh; when values are not equal, the result is 00h.

There are legacy and extended forms of the instruction:

PCMPEQB
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPEQB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPEQB is an SSE2 instruction and VPCMPEQB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

PCMPEQB
VPCMPEQB

Packed Compare Equal
Bytes

Mnemonic Opcode Description
PCMPEQB xmm1, xmm2/mem128 66 0F 74 /r Compares packed bytes in xmm1 to packed bytes in

xmm2 or mem128. Writes results to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPCMPEQB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 74 /r

Instruction Reference PCMPEQB, VPCMPEQB 291

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPEQD, VPCMPEQD 292

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares four packed doubleword values in the first source operand to corresponding values in the
second source operand and writes a comparison result to the corresponding doubleword of the
destination.

When values are equal, the result is FFFFFFFFh; when values are not equal, the result is 00000000h.

There are legacy and extended forms of the instruction:

PCMPEQD
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPEQD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPEQD is an SSE2 instruction and VPCMPEQD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PCMPEQB, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

PCMPEQD
VPCMPEQD

Packed Compare Equal
Doublewords

Mnemonic Opcode Description
PCMPEQD xmm1, xmm2/mem128 66 0F 76 /r Compares packed doublewords in xmm1 to packed

doublewords in xmm2 or mem128. Writes results to
xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPCMPEQD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 76 /r

Instruction Reference PCMPEQD, VPCMPEQD 293

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPEQQ, VPCMPEQQ 294

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares two packed quadword values in the first source operand to corresponding values in the
second source operand and writes a comparison result to the corresponding quadword of the
destination.

When values are equal, the result is FFFFFFFFFFFFFFFFh; when values are not equal, the result is
0000000000000000h.

There are legacy and extended forms of the instruction:

PCMPEQQ
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPEQQ
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPEQQ is an SSE4.1 instruction and VPCMPEQQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PCMPEQB, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

PCMPEQQ
VPCMPEQQ

Packed Compare Equal
Quadwords

Mnemonic Opcode Description
PCMPEQQ xmm1, xmm2/mem128 66 0F 38 29 /r Compares packed quadwords in xmm1 to packed

quadwords in xmm2 or mem128. Writes results to
xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPCMPEQQ xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 29 /r

Instruction Reference PCMPEQQ, VPCMPEQQ 295

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPEQW, VPCMPEQW 296

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares four packed word values in the first source operand to corresponding values in the second
source operand and writes a comparison result to the corresponding word of the destination.

When values are equal, the result is FFFFh; when values are not equal, the result is 0000h.

There are legacy and extended forms of the instruction:

PCMPEQW
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPEQW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPEQW is an SSE2 instruction and VPCMPEQW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

PCMPEQW
VPCMPEQW

Packed Compare Equal
Words

Mnemonic Opcode Description
PCMPEQW xmm1, xmm2/mem128 66 0F 75 /r Compares packed words in xmm1 to packed words in

xmm2 or mem128. Writes results to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPCMPEQW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 75 /r

Instruction Reference PCMPEQW, VPCMPEQW 297

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPESTRI, VPCMPESTRI 298

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares character string data in the first and second source operands. Aggregation and comparison
operations are carried out as determined by values of the fields of the immediate operand. Writes an
index to the ECX register.

See Section 1.5, “String Compare Instructions” for information about immediate byte definition,
compare encoding and control functions.

Each string has two associated data items: The actual characters in the two source operands, and length
data in two implicit registers.

The absolute value of the data in the EAX/RAX register represents the length of the character string in
the first source operand; the absolute value of the data in the EDX/RDX register represents the length
of the character string in the second source operand.

The Data Size bit of the immediate operand specifies length parameters. When Data Size = 0, length
values represent bytes, and saturate to 16 if greater than 16 or less than –16; when Data Size = 1, length
values represent words, and saturate to 8 if greater than 8 or less than –8;

The values of the Mode and Byte fields of the immediate operand determine how the aggregation and
comparison operations are carried out.

The rFLAGS are set to indicate the following conditions:

There are legacy and extended forms of the instruction:

PCMPESTRI
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. A result index is written to the ECX register.

VPCMPESTRI
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. A result index is written to the ECX register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

PCMPESTRI
VPCMPESTRI

Packed Compare
Explicit Length Strings Return Index

Flag Condition
CF Cleared if intermediate result is zero; otherwise set.
PF cleared.
AF cleared.
ZF 1 if the absolute value of EDX is less than 16 (8); otherwise cleared.
SF Set if the absolute value of EAX is less than 16 (8); otherwise cleared.
OF Equal to the value of InterimResult2[0].

Instruction Reference PCMPESTRI, VPCMPESTRI 299

26568—Rev. 3.11—December 2010 AMD64 Technology

PCMPESTRI is an SSE4.2 instruction and VPCMPESTRI is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE42] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PCMPESTRM, (V)PCMPISTRI, (V)PCMPISTRM

rFLAGS Affected

Mnemonic Opcode Description
PCMPESTRI xmm1, xmm2/mem128, imm8 66 0F 3A 61 /r ib Compares packed string data in xmm1 and

xmm2 or mem128. Writes a result index to
the ECX register.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPCMPESTRI xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.1111.0.01 61 /r ib

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
M M M M M M

21 20 19 18 17 16 14 13 : 12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag that is set or cleared is M (modified). Unaffected flags are blank.

Undefined flags are U.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPESTRM, VPCMPESTRM 300

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares character string data in the first and second source operands. Aggregation and comparison
operations are carried out as determined by values of the fields of the immediate operand. Writes a
mask value to the implicit XMM0 register.

See Section 1.5, “String Compare Instructions” for information about immediate byte definition,
compare encoding and control functions.

Each string has two associated data items: The actual characters in the two source operands, and length
data in two implicit registers.

The absolute value of the data in the EAX/RAX register represents the length of the character string in
the first source operand; the absolute value of the data in the EDX/RDX register represents the length
of the character string in the second source operand.

The Data Size bit of the immediate operand specifies length parameters. When Data Size = 0, length
values represent bytes, and saturate to 16 if greater than 16 or less than –16; when Data Size = 1, length
values represent words, and saturate to 8 if greater than 8 or less than –8;

The rFLAGS are set to indicate the following conditions:

There are legacy and extended forms of the instruction:

PCMPESTRM
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. A mask result is written to the XMM0 register.

VPCMPESTRM
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. A mask result is written to the XMM0 register.

PCMPESTRM is an SSE4.2 instruction and VPCMPESTRM is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE42] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

PCMPESTRM
VPCMPESTRM

Packed Compare
Explicit Length Strings Return Mask

Flag Condition
CF Cleared if intermediate result is zero; otherwise set.
PF cleared.
AF cleared.
ZF 1 if the absolute value of EDX is less than 16 (8); otherwise cleared.
SF Set if the absolute value of EAX is less than 16 (8); otherwise cleared.
OF Equal to the value of InterimResult2[0].

Instruction Reference PCMPESTRM, VPCMPESTRM 301

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)PCMPESTRI, (V)PCMPISTRI, (V)PCMPISTRM

rFLAGS Affected

Mnemonic Opcode Description
PCMPESTRMxmm1, xmm2/mem128, imm8 66 0F 3A 60 /r ib Compares packed string data in xmm1 and

xmm2 or mem128. Writes a mask value to
the XMM0 register.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPCMPESTRM xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.1111.0.01 60 /r ib

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
M M M M M M

21 20 19 18 17 16 14 13 : 12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set or cleared to 0 is M (modified). Unaffected flags are blank.

Undefined flags are U.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPGTB, VPCMPGTB 302

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares 16 packed signed byte values in the first source operand to corresponding values in the
second source operand and writes a comparison result to the corresponding byte of the destination.

When a value in the first operand is greater than a value in the second source operand, the result is FFh;
when a value in the first operand is less than or equal to a value in the second operand, the result is 00h.

There are legacy and extended forms of the instruction:

PCMPGTB
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPGTB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPGTB is an SSE2 instruction and VPCMPGTB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTD, (V)PCMPGTW

PCMPGTB
VPCMPGTB

Packed Compare Greater Than
Signed Bytes

Mnemonic Opcode Description
PCMPGTB xmm1, xmm2/mem128 66 0F 66 /r Compares packed bytes in xmm1 to packed bytes in

xmm2 or mem128. Writes results to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPCMPGTB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 66 /r

Instruction Reference PCMPGTB, VPCMPGTB 303

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPGTD, VPCMPGTD 304

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares four packed signed doubleword values in the first source operand to corresponding values
in the second source operand and writes a comparison result to the corresponding doubleword of the
destination.

When a value in the first operand is greater than a value in the second operand, the result is
FFFFFFFFh; when a value in the first operand is less than or equal to a value in the second operand,
the result is 00000000h.

There are legacy and extended forms of the instruction:

PCMPGTD
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPGTD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPGTD is an SSE2 instruction and VPCMPGTD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTW

PCMPGTD
VPCMPGTD

Packed Compare Greater Than
Signed Doublewords

Mnemonic Opcode Description
PCMPGTD xmm1, xmm2/mem128 66 0F 66 /r Compares packed bytes in xmm1 to packed bytes in

xmm2 or mem128. Writes results to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPCMPGTD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 66 /r

Instruction Reference PCMPGTD, VPCMPGTD 305

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPGTQ;VPCMPGTQ 306

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares two packed signed quadword values in the first source operand to corresponding values in
the second source operand and writes a comparison result to the corresponding quadword of the
destination.

When a value in the first operand is greater than a value in the second operand, the result is
FFFFFFFFFFFFFFFFh; when a value in the first operand is less than or equal to a value in the second
operand, the result is 0000000000000000h.

There are legacy and extended forms of the instruction:

PCMPGTQ
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPGTQ
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPGTQ is an SSE4.2 instruction and VPCMPGTQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE42] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTW

PCMPGTQ
VPCMPGTQ

Packed Compare Greater Than
Signed Quadwords

Mnemonic Opcode Description
PCMPGTQ xmm1, xmm2/mem128 66 0F 38 37 /r Compares packed bytes in xmm1 to packed bytes in

xmm2 or mem128. Writes results to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPCMPGTQ xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 37 /r

Instruction Reference PCMPGTQ;VPCMPGTQ 307

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPGTW, VPCMPGTW 308

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares two packed signed word values in the first operand to corresponding values in the second
source operand and writes a comparison result to the corresponding word of the destination.

When a value in the first operand is greater than a value in the second operand, the result is FFFFh;
when a value in the first operand is less than or equal to a value in the second operand, the result is
0000h.

There are legacy and extended forms of the instruction:

PCMPGTW
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPGTW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPGTW is an SSE2 instruction and VPCMPGTW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD

PCMPGTW
VPCMPGTW

Packed Compare Greater Than Signed Words

Mnemonic Opcode Description
PCMPGTW xmm1, xmm2/mem128 66 0F 65 /r Compares packed bytes in xmm1 to packed bytes in

xmm2 or mem128. Writes results to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPCMPGTW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 65 /r

Instruction Reference PCMPGTW, VPCMPGTW 309

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPISTRI, VPCMPISTRI 310

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares character string data in the first and second source operands. Aggregation and comparison
operations are carried out as determined by values of the fields of the immediate operand. Writes an
index to the ECX register.

See Section 1.5, “String Compare Instructions” for information about immediate byte definition,
compare encoding and control functions.

Each input byte or word is augmented with a valid/invalid tag. A byte or word is considered valid
when it has an index lower than that of the least significant null byte/word (the least significant null
byte/word is also invalid).

Aggregation and comparison operations are performed and an index is returned in ECX. If no bits are
set in InterimResult2[0], ECX is set to 16 for word strings or 8 for byte strings.

The rFLAGS are set to indicate the following conditions:

There are legacy and extended forms of the instruction:

PCMPISTRI
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. A result index is written to the ECX register.

VPCMPISTRI
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. A result index is written to the ECX register.

PCMPISTRI is an SSE4.2 instruction and VPCMPISTRI is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE42] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

PCMPISTRI
VPCMPISTRI

Packed Compare
Implicit Length Strings Return Index

Flag Condition
CF Cleared if intermediate result is zero; otherwise set.
PF cleared.
AF cleared.
ZF 1 if the absolute value of EDX is less than 16 (8); otherwise cleared.
SF Set if the absolute value of EAX is less than 16 (8); otherwise cleared.
OF Equal to the value of InterimResult2[0].

Mnemonic Opcode Description
PCMPISTRI xmm1, xmm2/mem128, imm8 66 0F 3A 63 /r ib Compares packed string data in xmm1 and

xmm2 or mem128. Writes a result index to
the ECX register.

Instruction Reference PCMPISTRI, VPCMPISTRI 311

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)PCMPESTRI, (V)PCMPESTRM, (V)PCMPISTRM

rFLAGS Affected

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPCMPISTRI xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.1111.0.01 63 /r ib

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
M M M M M M

21 20 19 18 17 16 14 13 : 12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag that is set or cleared is M (modified). Unaffected flags are blank.

Undefined flags are U.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPISTRM, VPCMPISTRM 312

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares character string data in the first and second source operands. Aggregation and comparison
operations are carried out as determined by values of the fields of the immediate operand. Writes a
result or mask value to the XMM0 register.

See Section 1.5, “String Compare Instructions” for information about immediate byte definition,
compare encoding and control functions.

Each input byte or word is augmented with a valid/invalid tag. A byte or word is considered valid
when it has an index lower than that of the least significant null byte/word (the least significant null
byte/word is also invalid).

Aggregation and comparison operations are performed. Depending on the values of fields in the
immediate byte, InterimResult2 is either zero-extended to 128 bits or expanded into a byte/word-
mask, and then written to XMM0.
The rFLAGS are set to indicate the following conditions:

There are legacy and extended forms of the instruction:

PCMPISTRM
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. A mask result is written to the XMM0 register.

VPCMPISTRM
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. A mask result is written to the XMM0 register.

PCMPISTRM is an SSE4.2 instruction and VPCMPISTRM is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE42] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

PCMPISTRM
VPCMPISTRM

Packed Compare Implicit Length
Strings Return Mask

Flag Condition
CF Cleared if intermediate result is zero; otherwise set.
PF cleared.
AF cleared.
ZF 1 if the absolute value of EDX is less than 16 (8); otherwise cleared.
SF Set if the absolute value of EAX is less than 16 (8); otherwise cleared.
OF Equal to the value of InterimResult2[0].

Instruction Reference PCMPISTRM, VPCMPISTRM 313

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)PCMPESTRI, (V)PCMPESTRM, (V)PCMPISTRI

rFLAGS Affected

Mnemonic Opcode Description
PCMPISTRM xmm1, xmm2/mem128, imm8 66 0F 3A 62 /r ib Compares packed string data in xmm1 and

xmm2 or mem128. Writes a result or mask
to the XMM0 register.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPCMPISTRM xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.1111.0.01 62 /r ib

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
M M M M M M

21 20 19 18 17 16 14 13 : 12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag that is set or cleared is M (modified). Unaffected flags are blank.

Undefined flags are U.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PEXTRB, VPEXTRB 314

26568—Rev. 3.11—December 2010 AMD64 Technology

Extracts a byte from a source register and writes it to an 8-bit memory location or to the low-order byte
of a general-purpose register, with zero-extension to 32 or 64 bits. Bits [3:0] of an immediate byte
operand select the byte to be extracted:

There are legacy and extended forms of the instruction:

PEXTRB
The source operand is an XMM register and the destination is either an 8-bit memory location or the
low-order byte of a general-purpose register. When the destination is a general-purpose register, the
extracted byte is zero-extended to 32 or 64 bits.

VPEXTRB
The extended form of the instruction has 128-bit encoding.

The source operand is an XMM register and the destination is either an 8-bit memory location or the
low-order byte of a general-purpose register. When the destination is a general-purpose register, the
extracted byte is zero-extended to 32 or 64 bits.

PEXTRB
VPEXTRB

Extract
Packed Byte

Value of imm8 [3:0] Source Bits Extracted
0000 [7:0]
0001 [15:8]
0010 [23:16]
0011 [31:24]
0100 [39:32]
0101 [47:40]
0110 [55:48]
0111 [63:56]
1000 [71:64]
1001 [79:72]
1010 [87:80]
1011 [95:88]
1100 [103:96]
1101 [111:104]
1110 [119:112]
1111 [127:120]

Instruction Reference PEXTRB, VPEXTRB 315

26568—Rev. 3.11—December 2010 AMD64 Technology

PEXTRB is an SSE4.1 instruction and VPEXTRB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

Mnemonic Opcode Description
PEXTRB reg/m8, xmm, imm8 66 0F 3A 14 /r ib Extracts an 8-bit value specified by imm8 from xmm

and writes it to m8 or the low-order byte of a general-
purpose register, with zero-extension.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPEXTRB reg/mem8, xmm, imm8 C4 RXB.00011 X.1111.0.01 14 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PEXTRD, VPEXTRD 316

26568—Rev. 3.11—December 2010 AMD64 Technology

Extracts a doubleword from a source register and writes it to an 32-bit memory location or a 32-bit
general-purpose register. Bits [1:0] of an immediate byte operand select the doubleword to be
extracted:

There are legacy and extended forms of the instruction:

PEXTRD
The encoding is the same as PEXTRQ, with REX.W = 0.

The source operand is an XMM register and the destination is either an 32-bit memory location or a
32-bit general-purpose register.

VPEXTRD
The extended form of the instruction has 128-bit encoding.

The encoding is the same as VPEXTRQ, with VEX.W = 0.

The source operand is an XMM register and the destination is either an 32-bit memory location or a
32-bit general-purpose register.

PEXTRD is an SSE4.1 instruction and VPEXTRD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PEXTRB, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

PEXTRD
VPEXTRD

Extract
Packed Doubleword

Value of imm8 [1:0] Source Bits Extracted
00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

Mnemonic Opcode Description
PEXTRD reg32/mem32, xmm, imm8 66 (W0) 0F 3A 16 /r ib Extracts a 32-bit value specified by imm8 from

xmm and writes it to mem32 or reg32.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPEXTRD reg32/mem32, xmm, imm8 C4 RXB.00011 0.1111.0.01 16 /r ib

Instruction Reference PEXTRD, VPEXTRD 317

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PEXTRQ, VPEXTRQ 318

26568—Rev. 3.11—December 2010 AMD64 Technology

Extracts a quadword from a source register and writes it to an 64-bit memory location or to a 64-bit
general-purpose register. Bit [0] of an immediate byte operand selects the quadword to be extracted:

There are legacy and extended forms of the instruction:

PEXTRQ
The encoding is the same as PEXTRD, with REX.W = 1.

The source operand is an XMM register and the destination is either an 64-bit memory location or a
64-bit general-purpose register.

VPEXTRQ
The extended form of the instruction has 128-bit encoding.

The encoding is the same as VPEXTRD, with VEX.W = 1.

The source operand is an XMM register and the destination is either an 64-bit memory location or a
64-bit general-purpose register.

PEXTRQ is an SSE4.1 instruction and VPEXTRQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

(V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

PEXTRQ
VPEXTRQ

Extract
Packed Quadword

Value of imm8 [0] Source Bits Extracted
0 [63:0]
1 [127:64]

Mnemonic Opcode Description
PEXTRQ reg64/mem64, xmm, imm8 66 (W1) 0F 3A 16 /r ib Extracts a 64-bit value specified by imm8 from

xmm and writes it to mem64 or reg64.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPEXTRQ reg64/mem64, xmm, imm8 C4 RXB.00011 1.1111.0.01 16 /r ib

Instruction Reference PEXTRQ, VPEXTRQ 319

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PEXTRW, VPEXTRW 320

26568—Rev. 3.11—December 2010 AMD64 Technology

Extracts a word from a source register and writes it to a 16-bit memory location or to the low-order
word of a general-purpose register, with zero-extension to 32 or 64 bits. Bits [3:0] of an immediate
byte operand select the word to be extracted:

There are legacy and extended forms of the instruction:

PEXTRW
The legacy form of the instruction has SSE2 and SSE4.1 encodings.

The source operand is an XMM register and the destination is the low-order word of a general-purpose
register. The extracted word is zero-extended to 32 or 64 bits.

The source operand is an XMM register and the destination is either an 16-bit memory location or the
low-order word of a general-purpose register. When the destination is a general-purpose register, the
extracted word is zero-extended to 32 or 64 bits.

VPEXTRW
The extended form of the instruction has two 128-bit encodings that correspond to the two legacy
encodings.

The source operand is an XMM register and the destination is the low-order word of a general-purpose
register. The extracted word is zero-extended to 32 or 64 bits.

The source operand is an XMM register and the destination is either an 16-bit memory location or the
low-order word of a general-purpose register. When the destination is a general-purpose register, the
extracted word is zero-extended to 32 or 64 bits.

PEXTRW
VPEXTRW

Extract Packed Word

Value of imm8 [2:0] Source Bits Extracted
000 [15:0]
001 [31:16]
010 [47:32
011 [63:48]
100 [79:64]
101 [95:80]
110 [111:96]
111 [127:112]

Instruction Reference PEXTRW, VPEXTRW 321

26568—Rev. 3.11—December 2010 AMD64 Technology

PEXTRW is either an SSE2 or an SSE4.1 instruction. VPEXTRW is an AVX instruction. Support for
these instructions is indicated by CPUID Fn0000_00001_EDX[SSE2], Fn0000_00001_ECX[SSE41]
and Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

Mnemonic Opcode Description
PEXTRW reg, xmm, imm8 66 0F C5 /r ib Extracts a 16-bit value specified by imm8 from xmm

and writes it to the low-order byte of a general-
purpose register, with zero-extension.

PEXTRW reg/m16, xmm, imm8 66 0F 3A 15 /r ib Extracts a 16-bit value specified by imm8 from xmm
and writes it to m16 or the low-order byte of a
general-purpose register, with zero-extension.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPEXTRW reg, xmm, imm8 C4 RXB.00001 X.1111.0.01 C5 /r ib
VPEXTRW reg/mem16, xmm, imm8 C4 RXB.00011 X.1111.0.01 15 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHADDD, VPHADDD 322

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds adjacent pairs of 32-bit signed integers in two source operands and packs the sums into a
destination. If a sum overflows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is
set) and only the low-order 32 bits of the sum are written in the destination.

There are legacy and extended forms of the instruction:

PHADDD
The first source register is also the destination register.

Adds the 32-bit signed integer values in bits [63:32] and bits [31:0] of the first source XMM register
and packs the sum into bits [31:0] of the destination; adds the 32-bit signed integer values in bits
[127:96] and bits [95:64] of the first source register and packs the sum into bits [63:32] of the
destination. Adds the corresponding values in the second source XMM register or a 128-bit memory
location and packs the sums into bits [95:64] and [127:96] of the destination. Bits [255:128] of the
YMM register that corresponds to the destination not affected.

VPHADDD
The extended form of the instruction has 128-bit encoding.

Adds the 32-bit signed integer values in bits [63:32] and bits [31:0] of the first source XMM register
and packs the sum into bits [31:0] of the destination XMM register; adds the 32-bit signed integer
values in bits [127:96] and bits [95:64] of the first source register and packs the sum into bits [63:32] of
the destination. Adds the corresponding values in the second source XMM register or a 128-bit
memory location and packs the sums into bits [95:64] and [127:96] of the destination. Bits [255:128]
of the YMM register that corresponds to the destination are cleared.

PHADDD is an SSSE3 instruction and VPHADDD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PHADDW, (V)PHADDSW

PHADDD
VPHADDD

Packed Horizontal Add
Doubleword

Mnemonic Opcode Description
PHADDD xmm1, xmm2/mem128 66 0F 38 02 /r Adds adjacent pairs of signed integers in xmm1 and

xmm2 or mem128. Writes packed sums to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPHADDD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 02 /r

Instruction Reference PHADDD, VPHADDD 323

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHADDSW, VPHADDSW 324

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds adjacent pairs of 16-bit signed integers in two source operands, with saturation, and packs the
sums into a destination.

Positive sums greater than 7FFFh are saturated to 7FFFh; negative sums less than 8000h are saturated
to 8000h.

There are legacy and extended forms of the instruction:

PHADDSW
The first source register is also the destination.

Adds four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting with
bits [31:16] and [15:0] and packs each saturated 16-bit sum into the low quadword of the destination
sequentially, starting with bits [15:0]. Adds the corresponding adjacent pairs of values in the second
source XMM register or a 128-bit memory location and packs each saturated 16-bit sum into the high
quadword of the destination, starting with bits [79:64]. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VPHADDSW
The extended form of the instruction has 128-bit encoding.

Adds four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting with
bits [31:16] and [15:0] and packs each saturated 16-bit sum into the low quadword of the destination
sequentially, starting with bits [15:0]. Adds the corresponding adjacent pairs of values in the second
source XMM register or a 128-bit memory location and packs each saturated 16-bit sum into the high
quadword of the destination, starting with bits [79:64]. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

PHADDSW is an SSSE3 instruction and VPHADDSW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PHADDD, (V)PHADDW

PHADDSW
VPHADDSW

Packed Horizontal Add with Saturation
Word

Mnemonic Opcode Description
PHADDSW xmm1, xmm2/mem128 66 0F 38 03 /r Adds adjacent pairs of signed integers in xmm1 and

xmm2 or mem128, with saturation. Writes packed
sums to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPHADDSW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 03 /r

Instruction Reference PHADDSW, VPHADDSW 325

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHADDW, VPHADDW 326

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds adjacent pairs of 16-bit signed integers in two source operands and packs the sums into a
destination. If a sum overflows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is
set) and only the low-order 32 bits of the sum are written in the destination.

There are legacy and extended forms of the instruction:

PHADDW
The first source register is also the destination.

Adds four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting with
bits [31:16] and [15:0] and packs each 16-bit sum into the low quadword of the destination
sequentially, starting with bits [15:0]. Adds the corresponding adjacent pairs of values in the second
source XMM register or a 128-bit memory location and packs each 16-bit sum into the high quadword
of the destination, starting with bits [79:64]. Bits [255:128] of the YMM register that corresponds to
the destination are not affected.

VPHADDW
The extended form of the instruction has 128-bit encoding.

Adds four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting with
bits [31:16] and [15:0] and packs each 16-bit sum into the low quadword of the destination
sequentially, starting with bits [15:0]. Adds the corresponding adjacent pairs of values in the second
source XMM register or a 128-bit memory location and packs each 16-bit sum into the high quadword
of the destination, starting with bits [79:64]. Bits [255:128] of the YMM register that corresponds to
the destination are cleared.

PHADDSW is an SSSE3 instruction and VPHADDSW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PHADDD, (V)PHADDSW

PHADDW
VPHADDW

Packed Horizontal Add
Word

Mnemonic Opcode Description
PHADDW xmm1, xmm2/mem128 66 0F 38 01 /r Adds adjacent pairs of signed integers in xmm1 and

xmm2 or mem128. Writes packed sums to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPHADDW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 01 /r

Instruction Reference PHADDW, VPHADDW 327

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHMINPOSUW, VPHMINPOSUW 328

26568—Rev. 3.11—December 2010 AMD64 Technology

Finds the minimum unsigned 16-bit value in the source operand and copies it to the low order word
element of the destination. Writes the source position index of the value to bits [18:16] of the
destination and clears bits[127:19] of the destination.

There are legacy and extended forms of the instruction:

PHMINPOSUW
The source operand is an XMM register or 128-bit memory location. The destination is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPHMINPOSUW
The extended form of the instruction has 128-bit encoding.

The source operand is an XMM register or 128-bit memory location. The destination is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PHMINPOSUW is an SSE4.1 instruction and VPHMINPOSUW is an AVX instruction. Support for
t he se i n s t ruc t i ons i s i nd i ca t ed by CPUID Fn0000_00001_ECX[SSE41] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUD, (V)PMINUW

PHMINPOSUW
VPHMINPOSUW

 Horizontal Minimum and Position

Mnemonic Opcode Description
PHMINPOSUW xmm1, xmm2/mem128 66 0F 38 41 /r Finds the minimum unsigned word element in

xmm2 or mem128, copies it to xmm1[15:0]; writes
its position index to xmm1[18:16], and clears
xmm1[127:19].

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPHMINPOSUW xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 41 /r

Instruction Reference PHMINPOSUW, VPHMINPOSUW 329

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHSUBD, VPHSUBD 330

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts adjacent pairs of 32-bit signed integers in two source operands and packs the differences into
a destination. The higher-order doubleword of each pair is subtracted from the lower-order
doubleword.

There are legacy and extended forms of the instruction:

PHSUBD
The first source register is also the destination.

Subtracts the 32-bit signed integer value in bits [63:32] of the first source XMM register from the
value in bits [31:0] of the first source XMM register and packs the difference into bits [31:0] of the
destination; subtracts the 32-bit signed integer value in bits [127:96] from the value in bits [95:64] and
packs the difference into bits [63:32] of the destination. Subtracts the corresponding values in the
second source XMM register or a 128-bit memory location and packs the differences into bits [95:64]
and [127:96] of the destination. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VPHSUBD
The extended form of the instruction has 128-bit encoding.

Subtracts the 32-bit signed integer value in bits [63:32] of the first source XMM register from the
value in bits [31:0] of the first source XMM register and packs the difference into bits [31:0] of the
destination XMM register; subtracts the 32-bit signed integer values in bits [127:96] from the value in
bits [95:64] and packs the difference into bits [63:32] of the destination. Subtracts the corresponding
values in the second source XMM register or a 128-bit memory location and packs the differences into
bits [95:64] and [127:96] of the destination. Bits [255:128] of the YMM register that corresponds to
the destination are cleared.

PHSUBD is an SSSE3 instruction and VPHSUBD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PHSUBW, (V)PHSUBSW

PHSUBD
VPHSUBD

Packed Horizontal Subtract
Doubleword

Mnemonic Opcode Description
PHSUBD xmm1, xmm2/mem128 66 0F 38 06 /r Adds adjacent pairs of signed integers in xmm1 and

xmm2 or mem128. Writes packed sums to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPHSUBD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 06 /r

Instruction Reference PHSUBD, VPHSUBD 331

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHSUBSW, VPHSUBSW 332

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts adjacent pairs of 16-bit signed integers in two source operands, with saturation, and packs
the differences into a destination. The higher-order word of each pair is subtracted from the lower-
order word.

Positive differences greater than 7FFFh are saturated to 7FFFh; negative differences less than 8000h
are saturated to 8000h.

There are legacy and extended forms of the instruction:

PHSUBSW
The first source register is also the destination.

Subtracts four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with the value in bits [15:0] minus the value in bits [31:16], and packs four saturated 16-bit differences
into bits [63:0] of the destination, starting with bits [15:0]. Subtracts the four corresponding adjacent
pairs of values in the second source XMM register or a 128-bit memory location and packs four
saturated 16-bit differences into bits [127:64] of the destination, starting with bits [79:64]. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

VPHSUBSW
The extended form of the instruction has 128-bit encoding.

Subtracts four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with the value in bits [15:0] minus the value in bits [31:16], and packs four saturated 16-bit differences
into bits [63:0] of the destination XMM register, starting with bits [15:0]. Subtracts the four
corresponding adjacent pairs of values in the second source XMM register or a 128-bit memory
location and packs four saturated 16-bit differences into bits [127:64] of the destination, starting with
bits [79:64]. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PHSUBSW is an SSSE3 instruction and VPHSUBSW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PHSUBD, (V)PHSUBW

PHSUBSW
VPHSUBSW

Packed Horizontal Subtract with Saturation
Word

Mnemonic Opcode Description
PHSUBSW xmm1, xmm2/mem128 66 0F 38 07 /r Subtracts adjacent pairs of signed integers in xmm1

and xmm2 or mem128, with saturation. Writes packed
differences to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPHSUBSW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 07 /r

Instruction Reference PHSUBSW, VPHSUBSW 333

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHSUBW, VPHSUBW 334

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts adjacent pairs of 16-bit signed integers in two source operands and packs the differences into
a destination. The higher-order word of each pair is subtracted from the lower-order word.

There are legacy and extended forms of the instruction:

PHSUBW
The first source register is also the destination register.

Subtracts four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with the value in bits [15:0] minus the value in bits [31:16], and packs four 16-bit differences into bits
[63:0] of the destination, starting with bits [15:0]. Subtracts the four corresponding adjacent pairs of
values in the second source XMM register or a 128-bit memory location and packs four 16-bit
differences into bits [127:64] of the destination, starting with bits [79:64]. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

VPHSUBW
The extended form of the instruction has 128-bit encoding.

Subtracts four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with the value in bits [15:0] minus the value in bits [31:16], and packs four 16-bit differences into bits
[63:0] of the destination XMM register, starting with bits [15:0]. Subtracts the four corresponding
adjacent pairs of values in the second source XMM register or a 128-bit memory location and packs
four 16-bit differences into bits [127:64] of the destination, starting with bits [79:64]. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

PHSUBW is an SSSE3 instruction and VPHSUBW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PHSUBD, (V)PHSUBW

PHSUBW
VPHSUBW

Packed Horizontal Subtract
Word

Mnemonic Opcode Description
PHSUBW xmm1, xmm2/mem128 66 0F 38 05 /r Adds adjacent pairs of signed integers in xmm1 and

xmm2 or mem128. Writes packed sums to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPHSUBW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 05 /r

Instruction Reference PHSUBW, VPHSUBW 335

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PINSRB, VPINSRB 336

26568—Rev. 3.11—December 2010 AMD64 Technology

Inserts a byte from an 8-bit memory location or the low-order byte of a 32-bit general-purpose register
into a destination register. Bits [3:0] of an immediate byte operand select the location where the byte is
to be inserted:

There are legacy and extended forms of the instruction:

PINSRB
The source operand is either an 8-bit memory location or the low-order byte of a 32-bit general-
purpose register and the destination an XMM register. The other bytes of the destination are not
affected. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPINSRB
The extended form of the instruction has 128-bit encoding.

There are two source operands. The first source operand is either an 8-bit memory location or the low-
order byte of a 32-bit general-purpose register and the second source operand is an XMM register. The
destination is a second XMM register. All the bytes of the second source other than the byte that
corresponds to the location of the inserted byte are copied to the destination. Bits [255:128] of the
YMM register that corresponds to destination are cleared.

PINSRB
VPINSRB

Packed Insert
Byte

Value of imm8 [3:0] Insertion Location
0000 [7:0]
0001 [15:8]
0010 [23:16]
0011 [31:24]
0100 [39:32]
0101 [47:40]
0110 [55:48]
0111 [63:56]
1000 [71:64]
1001 [79:72]
1010 [87:80]
1011 [95:88]
1100 [103:96]
1101 [111:104]
1110 [119:112]
1111 [127:120]

Instruction Reference PINSRB, VPINSRB 337

26568—Rev. 3.11—December 2010 AMD64 Technology

PINSRB is an SSE4.1 instruction and VPINSRB is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRD, (V)PINSRQ, (V)PINSRW

Mnemonic Opcode Description
PINSRB xmm, reg32/mem8, imm8 66 0F 3A 20 /r ib Inserts an 8-bit value selected by imm8 from the

low-order byte of reg32 or from mem8 into xmm.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPINSRB xmm, reg/mem8, xmm, imm8 C4 RXB.00011 X.1111.0.01 20 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PINSRD, VPINSRD 338

26568—Rev. 3.11—December 2010 AMD64 Technology

Inserts a doubleword from a 32-bit memory location or a 32-bit general-purpose register into a
destination register. Bits [1:0] of an immediate byte operand select the location where the doubleword
is to be inserted:

There are legacy and extended forms of the instruction:

PINSRD
The encoding is the same as PINSRQ, with REX.W = 0.

The source operand is either a 32-bit memory location or a 32-bit general-purpose register and the
destination an XMM register. The other doublewords of the destination are not affected. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VPINSRD
The extended form of the instruction has 128-bit encoding.

The encoding is the same as VPINSRQ, with VEX.W = 0.

There are two source operands. The first source operand is either a 32-bit memory location or a 32-bit
general-purpose register and the second source operand is an XMM register. The destination is a
second XMM register. All the doublewords of the second source other than the doubleword that
corresponds to the location of the inserted doubleword are copied to the destination. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

PINSRD is an SSE4.1 instruction and VPINSRD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRB, (V)PINSRQ, (V)PINSRW

PINSRD
VPINSRD

Packed Insert
Doubleword

Value of imm8 [1:0] Insertion Location
00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

Mnemonic Opcode Description
PINSRD xmm, reg32/mem32, imm8 66 (W0) 0F 3A 22 /r ib Inserts a 32-bit value selected by imm8 from

reg32 or mem32 into xmm.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPINSRD xmm, reg32/mem32, xmm, imm8 C4 RXB.00011 0.1111.0.01 22 /r ib

Instruction Reference PINSRD, VPINSRD 339

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PINSRQ, VPINSRQ 340

26568—Rev. 3.11—December 2010 AMD64 Technology

Inserts a quadword from a 64-bit memory location or a 64-bit general-purpose register into a
destination register. Bit [0] of an immediate byte operand selects the location where the doubleword is
to be inserted:

There are legacy and extended forms of the instruction:

PINSRQ
The encoding is the same as PINSRD, with REX.W = 1.

The source operand is either a 64-bit memory location or a 64-bit general-purpose register and the
destination an XMM register. The other quadwords of the destination are not affected. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPINSRQ
The extended form of the instruction has 128-bit encoding.

The encoding is the same as VPINSRD, with VEX.W = 1.

There are two source operands. The first source operand is either a 64-bit memory location or a 64-bit
general-purpose register and the second source operand is an XMM register. The destination is a
second XMM register. All the quadwords of the second source other than the quadword that
corresponds to the location of the inserted quadword are copied to the destination. Bits [255:128] of
the YMM register that corresponds to the destination XMM registers are cleared.

PINSRQ is an SSE4.1 instruction and VPINSRQ is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRB, (V)PINSRD, (V)PINSRW

PINSRQ
VPINSRQ

Packed Insert
Quadword

Value of imm8 [0] Insertion Location
0 [63:0]
1 [127:64]

Mnemonic Opcode Description
PINSRQ xmm, reg64/mem64, imm8 66 (W1) 0F 3A 22 /r ib Inserts a 64-bit value selected by imm8 from

reg64 or mem64 into xmm.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPINSRQ xmm, reg64/mem64, xmm, imm8 C4 RXB.00011 1.1111.0.01 22 /r ib

Instruction Reference PINSRQ, VPINSRQ 341

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PINSRW, VPINSRW 342

26568—Rev. 3.11—December 2010 AMD64 Technology

Inserts a word from a 16-bit memory location or the low-order word of a 32-bit general-purpose
register into a destination register. Bits [2:0] of an immediate byte operand select the location where
the byte is to be inserted:

There are legacy and extended forms of the instruction:

PINSRW
The source operand is either a 16-bit memory location or the low-order word of a 32-bit general-
purpose register and the destination an XMM register. The other words of the destination are not
affected. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPINSRW
The extended form of the instruction has 128-bit encoding.

There are two source operands. The first source operand is either a 16-bit memory location or the low-
order word of a 32-bit general-purpose register and the second source operand is an XMM register.
The destination is a second XMM register. All the words of the second source other than the word that
corresponds to the location of the inserted word are copied to the destination. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PINSRW is an SSE instruction and VPINSRW is an AVX instruction. Support for these instructions is
indicated by CPUID CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

PINSRW
VPINSRW

Packed Insert Word

Value of imm8 [2:0] Insertion Location
000 [15:0]
001 [31:16]
010 [47:32
011 [63:48]
100 [79:64]
101 [95:80]
110 [111:96]
111 [127:112]

Mnemonic Opcode Description
PINSRW xmm, reg32/mem16, imm8 66 0F C4 /r ib Inserts a 16-bit value selected by imm8 from the

low-order word of reg32 or from mem16 into xmm.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPINSRW xmm, reg/mem8, xmm, imm8 C4 RXB.00001 X.1111.0.01 C4 /r ib

Instruction Reference PINSRW, VPINSRW 343

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRB, (V)PINSRD, (V)PINSRQ

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMADDUBSW, VPMADDUBSW 344

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies and adds eight sets of two packed 8-bit unsigned values from the first source register and
two packed 8-bit signed values from the second source register, with signed saturation; writes eight
16-bit sums to the destination.

Source registers 1 and 2 consist of bytes [a0 a1 a2 ...] and [b0 b1 b2 ...] and the destination register
consists of words [w0 w1 w2 ...]. Operation is summarized as follows.
• The product of the values in bits [7:0] of the source registers (a0b0) is added to the product of the

values in bits [15:8] of the source registers (a1b1). The saturated sum w0 = (a0b0 + a1b1) is written
to bits [15:0] of the destination.

• The product of the values in bits [23:16] of the source registers (a2b2) is added to the product of the
values in bits [31:24] of the source registers (a3b3). The saturated sum w1 = (a2b2 + a3b3) is
written to bits [31:16] of the destination.

• The product of the values in bits [39:32] of the source registers (a4b4) is added to the product of the
values in bits [47:40] of the source registers (a5b5). The saturated sum w2 = (a4b4 + a5b5) is
written to bits [47:32] of the destination.

• The product of the values in bits [55:48] of the source registers (a6b6) is added to the product of the
values in bits [63:56] of the source registers (a7b7). The saturated sum w3 = (a6b6 + a7b7) is
written to bits [63:48] of the destination.

• The product of the values in bits [71:64] of the source registers (a8b8) is added to the product of the
values in bits [79:72] of the source registers (a9b9). The saturated sum w4 = (a8b8 + a9b9) is
written to bits [79:64] of the destination.

• The product of the values in bits [87:80] of the source registers (a10b10) is added to the product of
the values in bits [95:88] of the source registers (a11b11). The saturated sum
w5 = (a10b10 + a11b11) is written to bits [95:80] of the destination.

• The product of the values in bits [103:96] of the source registers (a12b12) is added to the product of
the values in bits [111:104] of the source registers (a13b13). The saturated sum
w6 = (a12b12 + a13b13) is written to bits [111:96] of the destination.

• The product of the values in bits [119:112] of the source registers (a14b14) is added to the product
of the values in bits [127:120] of the source registers (a15b15). The saturated sum
w7 = (a14b14 + a15b15) is written to bits [127:112] of the destination.

There are legacy and extended forms of the instruction:

PMADDUBSW
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

PMADDUBSW
VPMADDUBSW

Packed Multiply and Add
Unsigned Byte to Signed Word

Instruction Reference PMADDUBSW, VPMADDUBSW 345

26568—Rev. 3.11—December 2010 AMD64 Technology

VPMADDUBSW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMADDUBSW is an SSSE3 instruction and VPMADDUBSW is an AVX instruction. Support for
t he se i n s t ruc t i ons i s i nd i ca t ed by CPUID Fn0000_00001_ECX[SSSE3] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)PMADDWD

Mnemonic Opcode Description
PMADDUBSW xmm1, xmm2/mem128 66 0F 38 04 /r Multiplies packed 8-bit unsigned values in xmm1

and packed 8-bit signed values xmm2 or
mem128, adds the products, and writes saturated
sums to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMADDUBSW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 04 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMADDWD, VPMADDWD 346

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies and adds four sets of four packed 16-bit signed values from two source registers; writes four
32-bit sums to the destination.

Source registers 1 and 2 consist of words [a0 a1 a2 ...] and [b0 b1 b2 ...] and the destination register
consists of doublewords [w0 w1 w2 ...]. Operation is summarized as follows.
• The product of the values in bits [15:0] of the source registers (a0b0) is added to the product of the

values in bits [31:16] of the source registers (a1b1). The sum d0 = (a0b0 + a1b1) is written to bits
[31:0] of the destination.

• The product of the values in bits [47:33] of the source registers (a2b2) is added to the product of the
values in bits [63:48] of the source registers (a3b3). The sum d1 = (a2b2 + a3b3) is written to bits
[63:32] of the destination.

• The product of the values in bits [79:64] of the source registers (a4b4) is added to the product of the
values in bits [95:80] of the source registers (a5b5). The sum d2 = (a4b4 + a5b5) is written to bits
[95:64] of the destination.

• The product of the values in bits [111:96] of the source registers (a6b6) is added to the product of
the values in bits [127:112] of the source registers (a7b7). The sum d3 = (a6b6 + a7b7) is written to
bits [127:96] of the destination.

When all four of the signed 16-bit source operands in a set have the value 8000h, the 32-bit overflow
wraps around to 8000_0000h. There are no other overflow cases.

There are legacy and extended forms of the instruction:

PMADDWD
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMADDWD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMADDWD is an SSE2 instruction and VPMADDWD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

PMADDWD
VPMADDWD

Packed Multiply and Add
Word to Doubleword

Instruction Reference PMADDWD, VPMADDWD 347

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)PMADDUBSW, (V)PMULHUW, (V)PMULHW, (V)PMULLW, (V)PMULUDQ

Mnemonic Opcode Description
PMADDWD xmm1, xmm2/mem128 66 0F F5 /r Multiplies packed 16-bit signed values in xmm1 and

xmm2 or mem128, adds the products, and writes the
sums to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMADDWD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F5 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMAXSB, VPMAXSB 348

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each packed 8-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMAXSB
Compares16 pairs of 8-bit signed integer values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPMAXSB
The extended form of the instruction has 128-bit encoding.

Compares 16 pairs of 8-bit signed integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXSB is an SSE4.1 instruction and VPMAXSB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMAXSD, (V)PMAXSW, (V)PMAXUB, (V)PMAXUD, (V)PMAXUW

PMAXSB
VPMAXSB

Packed Maximum
Signed Bytes

Mnemonic Opcode Description
PMAXSB xmm1, xmm2/mem128 66 0F 38 3C /r Compares 16 pairs of packed 8-bit values in xmm1 and

xmm2 or mem128 and writes the greater values to the
corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMAXSB xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3C /r

Instruction Reference PMAXSB, VPMAXSB 349

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMAXSD, VPMAXSD 350

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each packed 32-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMAXSD
Compares four pairs of packed 32-bit signed integer values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPMAXSD
The extended form of the instruction has 128-bit encoding.

Compares four pairs of packed 32-bit signed integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXSD is an SSE4.1 instruction and VPMAXSD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMAXSB, (V)PMAXSW, (V)PMAXUB, (V)PMAXUD, (V)PMAXUW

PMAXSD
VPMAXSD

Packed Maximum
Signed Doublewords

Mnemonic Opcode Description
PMAXSD xmm1, xmm2/mem128 66 0F 38 3D /r Compares four pairs of packed 32-bit values in xmm1

and xmm2 or mem128 and writes the greater values to
the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMAXSD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3D /r

Instruction Reference PMAXSD, VPMAXSD 351

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMAXSW, VPMAXSW 352

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each packed 16-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMAXSW
Compares eight pairs of packed 16-bit signed integer values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPMAXSW
The extended form of the instruction has 128-bit encoding.

Compares eight pairs of packed 16-bit signed integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXSW is an SSE2 instruction and VPMAXSW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PMAXSB, (V)PMAXSD, (V)PMAXUB, (V)PMAXUD, (V)PMAXUW

PMAXSW
VPMAXSW

Packed Maximum
Signed Words

Mnemonic Opcode Description
PMAXSW xmm1, xmm2/mem128 66 0F EE /r Compares eight pairs of packed 16-bit values in xmm1

and xmm2 or mem128 and writes the greater values to
the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMAXSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 EE /r

Instruction Reference PMAXSW, VPMAXSW 353

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMAXUB, VPMAXUB 354

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each packed 8-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMAXUB
Compares 16 pairs of 8-bit unsigned integer values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPMAXUB
The extended form of the instruction has 128-bit encoding.

Compares 16 pairs of 8-bit unsigned integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXUB is an SSE2 instruction and VPMAXUB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PMAXSB, (V)PMAXSD, (V)PMAXSW, (V)PMAXUD, (V)PMAXUW

PMAXUB
VPMAXUB

Packed Maximum
Unsigned Bytes

Mnemonic Opcode Description
PMAXUB xmm1, xmm2/mem128 66 0F DE /r Compares 16 pairs of packed unsigned 8-bit values in

xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMAXUB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DE /r

Instruction Reference PMAXUB, VPMAXUB 355

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMAXUD, VPMAXUD 356

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each packed 32-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMAXUD
Compares four pairs of packed 32-bit unsigned integer values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPMAXUD
The extended form of the instruction has 128-bit encoding.

Compares four pairs of packed 32-bit unsigned integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXUD is an SSE4.1 instruction and VPMAXUD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMAXSB, (V)PMAXSD, (V)PMAXSW, (V)PMAXUB, (V)PMAXUW

PMAXUD
VPMAXUD

Packed Maximum
Unsigned Doublewords

Mnemonic Opcode Description
PMAXUD xmm1, xmm2/mem128 66 0F 38 3F /r Compares four pairs of packed unsigned 32-bit values

in xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMAXUD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3F /r

Instruction Reference PMAXUD, VPMAXUD 357

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMAXUW, VPMAXUW 358

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each packed 16-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMAXUW
Compares eight pairs of packed 16-bit unsigned integer values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPMAXUW
The extended form of the instruction has 128-bit encoding.

Compares eight pairs of packed 16-bit signed integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXUW is an SSE4.1 instruction and VPMAXUW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMAXSB, (V)PMAXSD, (V)PMAXSW, (V)PMAXUB, (V)PMAXUD

PMAXUW
VPMAXUW

Packed Maximum
Unsigned Words

Mnemonic Opcode Description
PMAXUW xmm1, xmm2/mem128 66 0F 38 3E /r Compares eight pairs of packed unsigned 16-bit values

in xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMAXUW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3E /r

Instruction Reference PMAXUW, VPMAXUW 359

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMINSB, VPMINSB 360

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each packed 8-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMINSB
Compares 16 pairs of 8-bit signed integer values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPMINSB
The extended form of the instruction has 128-bit encoding.

Compares 16 pairs of 8-bit signed integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINSB is an SSE4.1 instruction and VPMINSB is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Related Instructions
(V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUD, (V)PMINUW

PMINSB
VPMINSB

Packed Minimum
Signed Bytes

Mnemonic Opcode Description
PMINSB xmm1, xmm2/mem128 66 0F 38 38 /r Compares 16 pairs of packed 8-bit values in xmm1 and

xmm2 or mem128 and writes the lesser values to the
corresponding positions in xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMINSB xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 38 /r

Instruction Reference PMINSB, VPMINSB 361

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMINSD, VPMINSD 362

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each packed 32-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMINSD
Compares four pairs of packed 32-bit signed integer values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPMINSD
The extended form of the instruction has 128-bit encoding.

Compares four pairs of packed 32-bit signed integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINSD is an SSE4.1 instruction and VPMINSD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMINSB, (V)PMINSW, (V)PMINUB, (V)PMINUD, (V)PMINUW

PMINSD
VPMINSD

Packed Minimum
Signed Doublewords

Mnemonic Opcode Description
PMINSD xmm1, xmm2/mem128 66 0F 38 39 /r Compares four pairs of packed 32-bit values in xmm1

and xmm2 or mem128 and writes the lesser values to
the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMINSD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 39 /r

Instruction Reference PMINSD, VPMINSD 363

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMINSW, VPMINSW 364

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each packed 16-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMINSW
Compares eight pairs of packed 16-bit signed integer values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPMINSW
The extended form of the instruction has 128-bit encoding.

Compares eight pairs of packed 16-bit signed integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINSW is an SSE2 instruction and VPMINSW is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PMINSB, (V)PMINSD, (V)PMINUB, (V)PMINUD, (V)PMINUW

PMINSW
VPMINSW

Packed Minimum Signed Words

Mnemonic Opcode Description
PMINSW xmm1, xmm2/mem128 66 0F EA /r Compares eight pairs of packed 16-bit values in xmm1

and xmm2 or mem128 and writes the lesser values to the
corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMINSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 EA /r

Instruction Reference PMINSW, VPMINSW 365

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMINUB, VPMINUB 366

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each packed 8-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMINUB
Compares 16 pairs of 8-bit unsigned integer values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPMINUB
The extended form of the instruction has 128-bit encoding.

Compares 16 pairs of 8-bit unsigned integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINUB is an SSE2 instruction and VPMINUB is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUD, (V)PMINUW

PMINUB
VPMINUB

Packed Minimum
Unsigned Bytes

Mnemonic Opcode Description
PMINUB xmm1, xmm2/mem128 66 0F DA /r Compares 16 pairs of packed unsigned 8-bit values in

xmm1 and xmm2 or mem128 and writes the lesser
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMINUB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DA /r

Instruction Reference PMINUB, VPMINUB 367

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMINUD, VPMINUD 368

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each packed 32-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMINUD
Compares four pairs of packed 32-bit unsigned integer values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPMINUD
The extended form of the instruction has 128-bit encoding.

Compares four pairs of packed 32-bit unsigned integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINUD is an SSE4.1 instruction and VPMINUD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUW

PMINUD
VPMINUD

Packed Minimum
Unsigned Doublewords

Mnemonic Opcode Description
PMINUD xmm1, xmm2/mem128 66 0F 38 3B /r Compares four pairs of packed unsigned 32-bit values

in xmm1 and xmm2 or mem128 and writes the lesser
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMINUD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3B /r

Instruction Reference PMINUD, VPMINUD 369

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMINUW, VPMINUW 370

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares each packed 16-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMINUW
Compares eight pairs of packed 16-bit unsigned integer values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPMINUW
The extended form of the instruction has 128-bit encoding.

Compares eight pairs of packed 16-bit signed integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINUW is an SSE4.1 instruction and VPMINUW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUD

PMINUW
VPMINUW

Packed Minimum Unsigned Words

Mnemonic Opcode Description
PMINUW xmm1, xmm2/mem128 66 0F 38 3A /r Compares eight pairs of packed unsigned 16-bit values

in xmm1 and xmm2 or mem128 and writes the lesser
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMINUW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3A /r

Instruction Reference PMINUW, VPMINUW 371

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVMSKB, VPMOVMSKB 372

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies the values of the most-significant bits of each byte element of the source operand to create a
16-bit mask value, zero-extends the value, and writes it to the destination.

There are legacy and extended forms of the instruction:

PMOVMSKB
The source operand is an XMM register. The destination is a 32-bit general purpose register. The mask
is zero-extended to fill the destination register, the mask occupies bits [15:0].

VPMOVMSKB
The source operand is an XMM register. The destination is a 64-bit general purpose register. The mask
is zero-extended to fill the destination register, the mask occupies bits [15:0]. VEX.W is ignored.

PMOVMSKB is an SSE2 instruction and VPMOVMSKB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)MOVMSKPD, (V)MOVMSKPS

PMOVMSKB
VPMOVMSKB

Packed Move Mask
Byte

Mnemonic Opcode Description
PMOVMSKB reg32, xmm1 66 0F D7 /r Moves a zero-extended mask consisting of the most-

significant bit of each byte in xmm1 to a 32-bit general-
purpose register.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VMOVMSKB reg64, xmm1 C4 RXB.00001 X.1111.0.01 D7 /r

Instruction Reference PMOVMSKB, VPMOVMSKB 373

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv field ! = 1111b.
A VEX.L field = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVSXBD, VPMOVSXBD 374

26568—Rev. 3.11—December 2010 AMD64 Technology

Sign-extends each of four packed 8-bit signed integers, in either the four low bytes of a source register
or a 32-bit memory location, to 32 bits and writes four packed doubleword signed integers to the
destination.

There are legacy and extended forms of the instruction:

PMOVSXBD
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPMOVSXBD
The extended form of the instruction has 128-bit encoding.

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXBD is an SSE4.1 instruction and VPMOVSXBD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMOVSXBQ, (V)PMOVSXBW, (V)PMOVSXDQ, (V)PMOVSXWD, (V)PMOVSXW

PMOVSXBD
VPMOVSXBD

 Packed Move with Sign-Extension
Byte to Doubleword

Mnemonic Opcode Description
PMOVSXBD xmm1, xmm2/mem32 66 0F 38 21 /r Sign-extends four packed signed 8-bit

integers in the four low bytes of xmm2 or
mem32 and writes four packed signed
32-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMOVSXBD xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 21 /r

Instruction Reference PMOVSXBD, VPMOVSXBD 375

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVSXBQ, VPMOVSXBQ 376

26568—Rev. 3.11—December 2010 AMD64 Technology

Sign-extends each of two packed 8-bit signed integers, in either the two low bytes of a source register
or a 16-bit memory location, to 64 bits and writes two packed quadword signed integers to the
destination.

There are legacy and extended forms of the instruction:

PMOVSXBQ
The source operand is either an XMM register or a 16-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPMOVSXBQ
The extended form of the instruction has 128-bit encoding.

The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXBQ is an SSE4.1 instruction and VPMOVSXBQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMOVSXBD, (V)PMOVSXBW, (V)PMOVSXDQ, (V)PMOVSXWD, (V)PMOVSXW

PMOVSXBQ
VPMOVSXBQ

 Packed Move with Sign Extension
Byte to Quadword

Mnemonic Opcode Description
PMOVSXBQ xmm1, xmm2/mem16 66 0F 38 22 /r Sign-extends two packed signed 8-bit

integers in the two low bytes of xmm2
or mem16 and writes two packed
signed 64-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMOVSXBQ xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 22 /r

Instruction Reference PMOVSXBQ, VPMOVSXBQ 377

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVSXBW, VPMOVSXBW 378

26568—Rev. 3.11—December 2010 AMD64 Technology

Sign-extends each of eight packed 8-bit signed integers, in either the eight low bytes of a source
register or a 64-bit memory location, to 16 bits and writes eight packed word signed integers to the
destination.

There are legacy and extended forms of the instruction:

PMOVSXBW
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPMOVSXBW
The extended form of the instruction has 128-bit encoding.

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXBW is an SSE4.1 instruction and VPMOVSXBW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMOVSXBD, (V)PMOVSXBQ, (V)PMOVSXDQ, (V)PMOVSXWD, (V)PMOVSXW

PMOVSXBW
VPMOVSXBW

 Packed Move with Sign Extension
Byte to Word

Mnemonic Opcode Description
PMOVSXBW xmm1, xmm2/mem128 66 0F 38 20 /r Sign-extends eight packed signed 8-bit

integers in the eight low bytes of xmm2 or
mem128 and writes eight packed signed
16-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMOVSXBW xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 20 /r

Instruction Reference PMOVSXBW, VPMOVSXBW 379

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVSXDQ, VPMOVSXDQ 380

26568—Rev. 3.11—December 2010 AMD64 Technology

Sign-extends each of two packed 32-bit signed integers, in either the two low doublewords of a source
register or a 64-bit memory location, to 64 bits and writes two packed quadword signed integers to the
destination.

There are legacy and extended forms of the instruction:

PMOVSXDQ
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPMOVSXDQ
The extended form of the instruction has 128-bit encoding.

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXDQ is an SSE4.1 instruction and VPMOVSXDQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMOVSXBD, (V)PMOVSXBQ, (V)PMOVSXBW, (V)PMOVSXWD, (V)PMOVSXWQ

PMOVSXDQ
VPMOVSXDQ

 Packed Move with Sign-Extension
Doubleword to Quadword

Mnemonic Opcode Description
PMOVSXDQ xmm1, xmm2/mem64 66 0F 38 25 /r Sign-extends two packed signed 32-bit

integers in the two low doublewords of
xmm2 or mem64 and writes two packed
signed 64-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMOVSXDQ xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 25 /r

Instruction Reference PMOVSXDQ, VPMOVSXDQ 381

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVSXWD, VPMOVSXWD 382

26568—Rev. 3.11—December 2010 AMD64 Technology

Sign-extends each of four packed 16-bit signed integers, in either the four low words of a source
register or a 64-bit memory location, to 32 bits and writes four packed doubleword signed integers to
the destination.

There are legacy and extended forms of the instruction:

PMOVSXWD
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPMOVSXWD
The extended form of the instruction has 128-bit encoding.

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXWD is an SSE4.1 instruction and VPMOVSXWD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMOVSXBD, (V)PMOVSXBQ, (V)PMOVSXBW, (V)PMOVSXDQ, (V)PMOVSXWQ

PMOVSXWD
VPMOVSXWD

 Packed Move with Sign-Extension
Word to Doubleword

Mnemonic Opcode Description
PMOVSXWD xmm1, xmm2/mem64 66 0F 38 23 /r Sign-extends four packed signed 16-bit

integers in the four low words of xmm2 or
mem64 and writes four packed signed 32-bit
integers to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMOVSXWD xmm1, xmm2/mem64 C4 RXB.00010 X.1111.0.01 23 /r

Instruction Reference PMOVSXWD, VPMOVSXWD 383

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVSXWQ, VPMOVSXWQ 384

26568—Rev. 3.11—December 2010 AMD64 Technology

Sign-extends each of two packed 16-bit signed integers, in either the two low words of a source
register or a 32-bit memory location, to 64 bits and writes two packed quadword signed integers to the
destination.

There are legacy and extended forms of the instruction:

PMOVSXWQ
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPMOVSXWQ
The extended form of the instruction has 128-bit encoding.

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXWQ is an SSE4.1 instruction and VPMOVSXWQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMOVSXBD, (V)PMOVSXBQ, (V)PMOVSXBW, (V)PMOVSXDQ, (V)PMOVSXWD

PMOVSXWQ
VPMOVSXWQ

 Packed Move with Sign-Extension
Word to Quadword

Mnemonic Opcode Description
PMOVSXWQ xmm1, xmm2/mem32 66 0F 38 24 /r Sign-extends two packed signed 16-bit

integers in the two low words of xmm2 or
mem32 and writes two packed signed
64-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMOVSXWQ xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 24 /r

Instruction Reference PMOVSXWQ, VPMOVSXWQ 385

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVZXBD, VPMOVZXBD 386

26568—Rev. 3.11—December 2010 AMD64 Technology

Zero-extends each of four packed 8-bit unsigned integers, in either the four low bytes of a source
register or a 32-bit memory location, to 32 bits and writes four packed doubleword positive-signed
integers to the destination.

There are legacy and extended forms of the instruction:

PMOVZXBD
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPMOVZXBD
The extended form of the instruction has 128-bit encoding.

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVZXBD is an SSE4.1 instruction and VPMOVZXBD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMOVZXBQ, (V)PMOVZXBW, (V)PMOVZXDQ, (V)PMOVZXWD, (V)PMOVZXW

PMOVZXBD
VPMOVZXBD

 Packed Move with Zero-Extension
Byte to Doubleword

Mnemonic Opcode Description
PMOVZXBD xmm1, xmm2/mem32 66 0F 38 31 /r Zero-extends four packed unsigned 8-bit

integers in the four low bytes of xmm2 or
mem32 and writes four packed positive-
signed 32-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMOVZXBD xmm1, xmm2/mem32 C4 RXB.00010 X.1111.0.01 31 /r

Instruction Reference PMOVZXBD, VPMOVZXBD 387

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVZXBQ, VPMOVZXBQ 388

26568—Rev. 3.11—December 2010 AMD64 Technology

Zero-extends each of two packed 8-bit unsigned integers, in either the two low bytes of a source
register or a 16-bit memory location, to 64 bits and writes two packed quadword positive-signed
integers to the destination.

There are legacy and extended forms of the instruction:

PMOVZXBQ
The source operand is either an XMM register or a 16-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPMOVZXBQ
The extended form of the instruction has 128-bit encoding.

The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVZXBQ is an SSE4.1 instruction and VPMOVZXBQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMOVZXBD, (V)PMOVZXBW, (V)PMOVZXDQ, (V)PMOVZXWD, (V)PMOVZXW

PMOVZXBQ
VPMOVZXBQ

 Packed Move Byte to Quadword
with Zero-Extension

Mnemonic Opcode Description
PMOVZXBQ xmm1, xmm2/mem16 66 0F 38 32 /r Zero-extends two packed unsigned 8-bit

integers in the two low bytes of xmm2 or
mem16 and writes two packed positive-
signed 64-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMOVZXBQ xmm1, xmm2/mem16 C4 RXB.00010 X.1111.0.01 32 /r

Instruction Reference PMOVZXBQ, VPMOVZXBQ 389

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVZXBW, VPMOVZXBW 390

26568—Rev. 3.11—December 2010 AMD64 Technology

Zero-extends each of eight packed 8-bit unsigned integers, in either the eight low bytes of a source
register or a 64-bit memory location, to 16 bits and writes eight packed word positive-signed integers
to the destination.

There are legacy and extended forms of the instruction:

PMOVZXBW
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPMOVZXBW
The extended form of the instruction has 128-bit encoding.

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVZXBW is an SSE4.1 instruction and VPMOVZXBW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMOVZXBD, (V)PMOVZXBQ, (V)PMOVZXDQ, (V)PMOVZXWD, (V)PMOVZXW

PMOVZXBW
VPMOVZXBW

 Packed Move Byte to Word with Zero-Extension

Mnemonic Opcode Description
PMOVZXBW xmm1, xmm2/mem128 66 0F 38 30 /r Zero-extends eight packed unsigned 8-bit

integers in the eight low bytes of xmm2 or
mem128 and writes eight packed positive-
signed 16-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMOVZXBW xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 30 /r

Instruction Reference PMOVZXBW, VPMOVZXBW 391

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVZXDQ, VPMOVZXDQ 392

26568—Rev. 3.11—December 2010 AMD64 Technology

Zero-extends each of two packed 32-bit unsigned integers, in either the two low doublewords of a
source register or a 64-bit memory location, to 64 bits and writes two packed quadword positive-
signed integers to the destination.

There are legacy and extended forms of the instruction:

PMOVZXDQ
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPMOVZXDQ
The extended form of the instruction has 128-bit encoding.

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

The PMOVZXDQ is an SSE4.1 instruction and VPMOVZXDQ is an AVX instruction.Support for
t he se i n s t ruc t i ons i s i nd i ca t ed by CPUID Fn0000_00001_ECX[SSE41] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)PMOVZXBD, (V)PMOVZXBQ, (V)PMOVZXBW, (V)PMOVZXWD, (V)PMOVZXWQ

PMOVZXDQ
VPMOVZXDQ

 Packed Move with Zero-Extension
Doubleword to Quadword

Mnemonic Opcode Description
PMOVZXDQ xmm1, xmm2/mem64 66 0F 38 35 /r Zero-extends two packed unsigned 32-bit

integers in the two low doublewords of xmm2
or mem64 and writes two packed positive-
signed 64-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMOVZXDQ xmm1, xmm2/mem64 C4 RXB.00010 X.1111.0.01 35 /r

Instruction Reference PMOVZXDQ, VPMOVZXDQ 393

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVZXWD, VPMOVZXWD 394

26568—Rev. 3.11—December 2010 AMD64 Technology

Zero-extends each of four packed 16-bit unsigned integers, in either the four low words of a source
register or a 64-bit memory location, to 32 bits and writes four packed doubleword positive-signed
integers to the destination.

There are legacy and extended forms of the instruction:

PMOVZXWD
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPMOVZXWD
The extended form of the instruction has 128-bit encoding.

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVZXWD is an SSE4.1 instruction and VPMOVZXWD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMOVZXBD, (V)PMOVZXBQ, (V)PMOVZXBW, (V)PMOVZXDQ, (V)PMOVZXWQ

PMOVZXWD
VPMOVZXWD

 Packed Move Word to Doubleword
with Zero-Extension

Mnemonic Opcode Description
PMOVZXWD xmm1, xmm2/mem64 66 0F 38 33 /r Zero-extends four packed unsigned 16-bit

integers in the four low words of xmm2 or
mem64 and writes four packed positive-
signed 32-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMOVZXWD xmm1, xmm2/mem64 C4 RXB.00010 X.1111.0.01 33 /r

Instruction Reference PMOVZXWD, VPMOVZXWD 395

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVSXWQ, VPMOVSXWQ 396

26568—Rev. 3.11—December 2010 AMD64 Technology

Zero-extends each of two packed 16-bit unsigned integers, in either the two low words of a source
register or a 32-bit memory location, to 64 bits and writes two packed quadword positive-signed
integers to the destination.

There are legacy and extended forms of the instruction:

PMOVZXWQ
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPMOVZXWQ
The extended form of the instruction has 128-bit encoding.

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSZWQ is an SSE4.1 instruction and VPMOVZXWQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMOVZXBD, (V)PMOVZXBQ, (V)PMOVZXBW, (V)PMOVZXDQ, (V)PMOVZXWD

PMOVZXWQ
VPMOVZXWQ

 Packed Move with Zero-Extension
Word to Quadword

Mnemonic Opcode Description
PMOVZXWQ xmm1, xmm2/mem32 66 0F 38 34 /r Zero-extends two packed unsigned 16-bit

integers in the two low words of xmm2 or
mem32 and writes two packed positive-
signed 64-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMOVZXWQ xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 34 /r

Instruction Reference PMOVSXWQ, VPMOVSXWQ 397

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMULDQ, VPMULDQ 398

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the packed 32-bit signed integer in bits [31:0] of the first source operand by the
corresponding value of the second source operand and writes the packed 64-bit signed integer product
to bits [63:0] of the destination; multiplies the packed 32-bit signed integer in bits [95:64] of the first
source operand by the corresponding value of the second source operand and writes the packed 64-bit
signed integer product to bits [127:64] of the destination.

When the source is a memory location, all 128 bits are fetched, but only the first and third doublewords
are used in the computation.

There are legacy and extended forms of the instruction:

PMULDQ
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMULDQ
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMULDQ is an SSE4.1 instruction and VPMULDQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMULLD, (V)PMULHW, (V)PMULHUW,(V)PMULUDQ, (V)PMULLW

PMULDQ
VPMULDQ

 Packed Multiply
Signed Doubleword to Quadword

Mnemonic Opcode Description
PMULDQ xmm1, xmm2/mem128 66 0F 38 28 /r Multiplies two packed 32-bit signed integers in

xmm1[31:0] and xmm1[95:64] by the
corresponding values in xmm2 or mem128.
Writes packed 64-bit signed integer products to
xmm1[63:0] and xmm1[127:64].

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMULDQ xmm1, xmm2/mem128 C4 RXB.00010 X.src.0.01 28 /r

Instruction Reference PMULDQ, VPMULDQ 399

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMULHRSW, VPMULHRSW 400

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed 16-bit signed value in the first source operand by the corresponding value in
the second source operand, truncates the 32-bit product to the 18 most significant bits by right-shifting,
then rounds the truncated value by adding 1 to its least-significant bit. Writes bits [16:1] of the sum to
the corresponding word of the destination.

There are legacy and extended forms of the instruction:

PMULHRSW
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMULHRSW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMULHRSW instruction is an SSSE3 instruction and VPMULHRSW is an AVX instruction. Support
f o r t he se i n s t ruc t i ons i s i nd i ca t ed by CPUID Fn0000_00001_ECX[SSSE3] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
None

PMULHRSW
VPMULHRSW

Packed Multiply High with Round and Scale
Words

Mnemonic Opcode Description
PMULHRSW xmm1, xmm2/mem128 66 0F 38 0B /r Multiplies each packed 16-bit signed value in xmm1

by the corresponding value in xmm2 or mem128,
truncates product to 18 bits, rounds by adding 1.
Writes bits [16:1] of the sum to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMULHRSW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 0B /r

Instruction Reference PMULHRSW, VPMULHRSW 401

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMULHUW, VPMULHUW 402

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed 16-bit unsigned value in the first source operand by the corresponding value in
the second source operand; writes the high-order 16 bits of each 32-bit product to the corresponding
word of the destination.

There are legacy and extended forms of the instruction:

PMULHUW
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMULHUW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMULHUW is an SSE2 instruction and VPMULHUW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PMULDQ, (V)PMULHW, (V)PMULLD, (V)PMULLW, (V)PMULUDQ

PMULHUW
VPMULHUW

Packed Multiply High
Unsigned Word

Mnemonic Opcode Description
PMULHUW xmm1, xmm2/mem128 66 0F E4 /r Multiplies packed 16-bit unsigned values in xmm1 by

the corresponding values in xmm2 or mem128. Writes
bits [31:16] of each product to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMULHUW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 E4 /r

Instruction Reference PMULHUW, VPMULHUW 403

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMULHW, VPMULHW 404

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed 16-bit signed value in the first source operand by the corresponding value in
the second source operand; writes the high-order 16 bits of each 32-bit product to the corresponding
word of the destination.

There are legacy and extended forms of the instruction:

PMULHW
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMULHW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMULHW is an SSE2 instruction and VPMULHW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PMULDQ, (V)PMULHUW, (V)PMULLD, (V)PMULLW, (V)PMULUDQ

PMULHW
VPMULHW

Packed Multiply High
Signed Word

Mnemonic Opcode Description
PMULHW xmm1, xmm2/mem128 66 0F E5 /r Multiplies packed 16-bit signed values in xmm1 by the

corresponding values in xmm2 or mem128. Writes bits
[31:16] of each product to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMULHW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 E5 /r

Instruction Reference PMULHW, VPMULHW 405

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMULLD, VPMULLD 406

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies four packed 32-bit signed integers in the first source operand by the corresponding values in
the second source operand and writes bits [31:0] of each 64-bit product to the corresponding 32-bit
element of the destination.

There are legacy and extended forms of the instruction:

PMULLD
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMULLD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMULLD is an SSE4.1 instruction and VPMULLD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PMULDQ, (V)PMULHUW, (V)PMULHW, (V)PMULLW, (V)PMULUDQ

PMULLD
VPMULLD

 Packed Multiply and Store Low
Signed Doubleword

Mnemonic Opcode Description
PMULLD xmm1, xmm2/mem128 66 0F 38 40 /r Multiplies four packed 32-bit signed integers in

xmm1 by corresponding values in xmm2 or
m128. Writes bits [31:0] of each 64-bit product to
the corresponding 32-bit element of xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMULLD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 40 /r

Instruction Reference PMULLD, VPMULLD 407

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMULLW, VPMULLW 408

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies eight packed 16-bit signed integers in the first source operand by the corresponding values
in the second source operand and writes bits [15:0] of each 32-bit product to the corresponding 16-bit
element of the destination.

There are legacy and extended forms of the instruction:

PMULLW
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMULLW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMULLW is an SSE2 instruction and VPMULLW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PMULDQ, (V)PMULHUW, (V)PMULHW, (V)PMULLD, (V)PMULUDQ

PMULLW
VPMULLW

Packed Multiply Low
Signed Word

Mnemonic Opcode Description
PMULLW xmm1, xmm2/mem128 66 0F D5 /r Multiplies eight packed 16-bit signed integers in

xmm1 by corresponding values in xmm2 or
m128. Writes bits [15:0] of each 32-bit product to
the corresponding 16-bit element of xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMULLW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D5 /r

Instruction Reference PMULLW, VPMULLW 409

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMULUDQ, VPMULUDQ 410

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the packed 32-bit unsigned integer in bits [31:0] of the first source operand by the
corresponding value of the second source operand and writes the packed 64-bit unsigned integer
product to bits [63:0] of the destination; multiplies the packed 32-bit unsigned integer in bits [95:64] of
the first source operand by the corresponding value of the second source operand and writes the
packed 64-bit unsigned integer product to bits [127:64] of the destination.

When the source is a memory location, all 128 bits are fetched, but only the first and third doublewords
are used in the computation.

There are legacy and extended forms of the instruction:

PMULUDQ
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMULUDQ
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMULUDQ is an SSE2 instruction and VPMULUDQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PMULDQ, (V)PMULHUW, (V)PMULHW, (V)PMULLD, (V)PMULLW, (V)PMULUDQ

PMULUDQ
VPMULUDQ

Packed Multiply
Unsigned Doubleword to Quadword

Mnemonic Opcode Description
PMULUDQ xmm1, xmm2/mem128 66 0F F4 /r Multiplies two packed 32-bit unsigned integers in

xmm1[31:0] and xmm1[95:64] by the
corresponding values in xmm2 or mem128.
Writes packed 64-bit unsigned integer products to
xmm1[63:0] and xmm1[127:64].

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPMULUDQ xmm1, xmm2/mem128 C4 RXB.00001 X.src.0.01 F4 /r

Instruction Reference PMULUDQ, VPMULUDQ 411

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference POR, VPOR 412

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs a bitwise OR of the first and second source operands and writes the result to the destination.
When one or both of a pair of corresponding bits in the first and second operands are set, the
corresponding bit of the destination is set; when neither source bit is set, the destination bit is cleared.

There are legacy and extended forms of the instruction:

POR
The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The first source XMM register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPOR
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

POR is an SSE2 instruction and VPOR is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PAND, (V)PANDN, (V)PXOR

POR
VPOR

Packed OR

Mnemonic Opcode Description
POR xmm1, xmm2/mem128 66 0F EB /r Performs bitwise OR of values in xmm1 and xmm2 or

mem128. Writes results to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPOR xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 EB /r

Instruction Reference POR, VPOR 413

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSADBW, VPSADBW 414

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts the 16 packed 8-bit unsigned integers in the second source operand from the corresponding
values in the first source operand and computes the absolute difference for each subtraction, then
computes two unsigned 16-bit integer sums, one for the eight differences that correspond to the upper
eight source bytes, and one for the differences that correspond to the lower eight source bytes. Writes
the sums to the destination.

The unsigned 16-bit integer sum of the differences of the eight bytes in bits [127:64] of the source
operands is written to bits [15:0] of the destination; bits [63:16] are cleared.

The unsigned 16-bit integer sum of the differences of the eight bytes in bits [63:0] of the source
operands is written to bits [79:64] of the destination; bits [127:80] are cleared.

There are legacy and extended forms of the instruction:

PSADBW
The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The first source XMM register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSADBW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PSADBW is an SSE2 instruction and VPSADBW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)MPSADBW

PSADBW
VPSADBW

Packed Sum of Absolute Differences
Bytes to Words

Mnemonic Opcode Description
PSADBW xmm1, xmm2/mem128 66 0F F6 /r Compute the sum of the absolute differences of two sets

of packed 8-bit unsigned integer values in xmm1 and
xmm2 or mem128. Writes 16-bit unsigned integer sums
to xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPSADBW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F6 /r

Instruction Reference PSADBW, VPSADBW 415

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSHUFB, VPSHUFB 416

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies bytes from the first source operand to the destination or clears bytes in the destination, as
specified by control bytes in the second source operand.

The control bytes occupy positions in the source operand that correspond to positions in the
destination. Each control byte has the following fields.

There are legacy and extended forms of the instruction:

PSHUFB
The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The first source XMM register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSHUFB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PSHUFB is an SSSE3 instruction and VPSHUFB is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PSHUFD, (V)PSHUFW, (V)PSHUHW, (V)PSHUFLW

PSHUFB
VPSHUFB

Packed Shuffle
Byte

7 6 4 3 0
FRZ Reserved SRC_Index

Bits Description
[7] Set the bit to clear the corresponding byte of the destination.

Clear the bit to copy the selected source byte to the corresponding byte of the destination.
[6:4] Reserved
[3:0] Binary value selects the source byte.

Mnemonic Opcode Description
PSHUFB xmm1, xmm2/mem128 66 0F 38 00 /r Moves bytes in xmm1 as specified by control bytes in

xmm2 or mem128.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPSHUFB xmm1, xmm2/mem128 C4 RXB.00010 X.src.0.01 00 /r

Instruction Reference PSHUFB, VPSHUFB 417

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSHUFD, VPSHUFD 418

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies packed doubleword values from a source to a doubleword in the destination, as specified by bit
fields of an immediate byte operand. A source doubleword can be copied more than once.

Source doublewords are selected by two-bit fields in the immediate-byte operand. Each bit field
corresponds to a destination doubleword, as shown:

There are legacy and extended forms of the instruction:

PSHUFD
The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPSHUFD
The extended form of the instruction has 128-bit encoding.

The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PSHUFD is an SSE2 instruction and VPSHUFD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

PSHUFD
VPSHUFD

Packed Shuffle
Doublewords

Destination
Doubleword

Immediate-Byte
Bit Field

Value of
Bit Field

Source
Doubleword

[31:0] [1:0] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[63:32] [3:2] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[95:64] [5:4] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[127:96] [7:6] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

Instruction Reference PSHUFD, VPSHUFD 419

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)PSHUFHW, (V)PSHUFLW, (V)PSHUFW

Mnemonic Opcode Description
PSHUFD xmm1, xmm2/mem128, imm8 66 0F 70 /r ib Moves packed 32-bit values from xmm2 or

mem128 to xmm1, as specified by imm8.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPSHUFD xmm1, xmm2/mem128, imm8 C4 RXB.00001 X.1111.0.01 70 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSHUFHW, VPSHUFHW 420

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies packed word values from the high quadword of a source to a word in the high quadword of the
destination, as specified by bit fields of an immediate byte operand. A source word can be copied more
than once. The low-order quadword of the source is copied to the low-order quadword of the
destination.

Source words are selected by two-bit fields in the immediate-byte operand. Each bit field corresponds
to a destination word, as shown:

There are legacy and extended forms of the instruction:

PSHUFHW
The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPSHUFHW
The extended form of the instruction has 128-bit encoding.

The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PSHUFHW
VPSHUFHW

Packed Shuffle
High Words

Destination
Word

Immediate-Byte
Bit Field

Value of
Bit Field

Source
Word

[79:64] [1:0] 00 [79:64]
01 [95:80]
10 [111:96]
11 [127:112]

[95:80] [3:2] 00 [79:64]
01 [95:80]
10 [111:96]
11 [127:112]

[111:96] [5:4] 00 [79:64]
01 [95:80]
10 [111:96]
11 [127:112]

[127:112] [7:6] 00 [79:64]
01 [95:80]
10 [111:96]
11 [127:112]

Instruction Reference PSHUFHW, VPSHUFHW 421

26568—Rev. 3.11—December 2010 AMD64 Technology

PSHUFHW is an SSE2 instruction and VPSHUFHW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PSHUFD, (V)PSHUFLW, (V)PSHUFW

Mnemonic Opcode Description
PSHUFHW xmm1, xmm2/mem128, imm8 F3 0F 70 /r ib Copies packed 16-bit values from the

high-order quadword of xmm2 or mem128
to the high-order quadword of xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPSHUFHW xmm1, xmm2/mem128, imm8 C4 RXB.00001 X.1111.0.10 70 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSHUFLW, VPSHUFLW 422

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies packed word values from the low quadword of a source to a word in the low quadword of the
destination, as specified by bit fields of an immediate byte operand. A source word can be copied more
than once. The high-order quadword of the source is copied to the high-order quadword of the
destination.

Source words are selected by two-bit fields in the immediate-byte operand. Each bit field corresponds
to a destination word, as shown:

There are legacy and extended forms of the instruction:

PSHUFLW
The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPSHUFLW
The extended form of the instruction has 128-bit encoding.

The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PSHUFLW
VPSHUFLW

Packed Shuffle
Low Words

Destination
Word

Immediate-Byte
Bit Field

Value of
Bit Field

Source
Word

[15:0] [1:0] 00 [15:0]
01 [31:16]
10 [47:32]
11 [63:48]

[31:16] [3:2] 00 [15:0]
01 [31:16]
10 [47:32]
11 [63:48]

[47:32] [5:4] 00 [15:0]
01 [31:16]
10 [47:32]
11 [63:48]

[63:48] [7:6] 00 [15:0]
01 [31:16]
10 [47:32]
11 [63:48]

Instruction Reference PSHUFLW, VPSHUFLW 423

26568—Rev. 3.11—December 2010 AMD64 Technology

PSHUFLW is an SSE2 instruction and VPSHUFLW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PSHUFD, (V)PSHUFHW, (V)PSHUFW

Mnemonic Opcode Description
PSHUFLW xmm1, xmm2/mem128, imm8 F2 0F 70 /r ib Copies packed 16-bit values from the low-

order quadword of xmm2 or mem128 to
the low-order quadword of xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPSHUFLW xmm1, xmm2/mem128, imm8 C4 RXB.00001 X.1111.0.11 70 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSIGNB, VPSIGNB 424

26568—Rev. 3.11—December 2010 AMD64 Technology

For each packed signed byte in the first source operand, evaluate the corresponding byte of the second
source operand and perform one of the following operations.
• When a byte of the second source is negative, write the two’s-complement of the corresponding

byte of the first source to the destination.
• When a byte of the second source is positive, copy the corresponding byte of the first source to the

destination.
• When a byte of the second source is zero, clear the corresponding byte of the destination.

There are legacy and extended forms of the instruction:

PSIGNB
The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The first source XMM register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSIGNB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PSIGNB is an SSSE3 instruction and VPSIGNB is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Related Instructions
(V)PSIGNW, (V)PSIGND

PSIGNB
VPSIGNB

Packed Sign
Byte

Mnemonic Opcode Description
PSIGNB xmm1, xmm2/mem128 66 0F 38 08 /r Perform operation based on evaluation of each packed

8-bit signed integer value in xmm2 or mem128.
Write 8-bit signed results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPSIGNB xmm1, xmm2, xmm2/mem128 C4 RXB.00010 X.src.0.01 08 /r

Instruction Reference PSIGNB, VPSIGNB 425

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSIGND, VPSIGND 426

26568—Rev. 3.11—December 2010 AMD64 Technology

For each packed signed doubleword in the first source operand, evaluate the corresponding
doubleword of the second source operand and perform one of the following operations.
• When a doubleword of the second source is negative, write the two’s-complement of the

corresponding doubleword of the first source to the destination.
• When a doubleword of the second source is positive, copy the corresponding doubleword of the

first source to the destination.
• When a doubleword of the second source is zero, clear the corresponding doubleword of the

destination.

There are legacy and extended forms of the instruction:

PSIGND
The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The first source XMM register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSIGND
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PSIGND is an SSSE3 instruction and VPSIGND is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Related Instructions
(V)PSIGNB, (V)PSIGNW

PSIGND
VPSIGND

Packed Sign
Doubleword

Mnemonic Opcode Description
PSIGND xmm1, xmm2/mem128 66 0F 38 0A /r Perform operation based on evaluation of each packed

32-bit signed integer value in xmm2 or mem128.
Write 32-bit signed results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPSIGND xmm1, xmm2, xmm2/mem128 C4 RXB.00010 X.src.0.01 0A /r

Instruction Reference PSIGND, VPSIGND 427

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSIGNW, VPSIGNW 428

26568—Rev. 3.11—December 2010 AMD64 Technology

For each packed signed word in the first source operand, evaluate the corresponding word of the
second source operand and perform one of the following operations.
• When a word of the second source is negative, write the two’s-complement of the corresponding

word of the first source to the destination.
• When a word of the second source is positive, copy the corresponding word of the first source to

the destination.
• When a word of the second source is zero, clear the corresponding word of the destination.

There are legacy and extended forms of the instruction:

PSIGNW
The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The first source XMM register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSIGNW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PSIGNW is an SSSE3 instruction and VPSIGNW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)PSIGNB, (V)PSIGND

PSIGNW
VPSIGNW

Packed Sign
Word

Mnemonic Opcode Description
PSIGNW xmm1, xmm2/mem128 66 0F 38 09 /r Perform operation based on evaluation of each packed

16-bit signed integer value in xmm2 or mem128.
Write 16-bit signed results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPSIGNW xmm1, xmm2, xmm2/mem128 C4 RXB.00010 X.src.0.01 09 /r

Instruction Reference PSIGNW, VPSIGNW 429

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSLLD, VPSLLD 430

26568—Rev. 3.11—December 2010 AMD64 Technology

Left-shifts each packed 32-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.

The shift-count operand can be an immediate byte, a source register, or a memory location. There are
different encodings for immediate operands and register/memory operands.Only bits [63:0] of the
source register or memory location are used to generate the shift count.

Low-order bits emptied by shifting are cleared. When the shift value is greater than 31, the destination
is cleared.

There are legacy and extended forms of the instruction:

PSLLD
There are two forms of the instruction, based on the type of count operand.

The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM
register is also the destination. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VPSLLD
The extended form of the instruction has 128-bit encoding. There are two forms of the instruction,
based on the type of count operand.

The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

PSLLD is an SSE2 instruction and VPSLLD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

PSLLD
VPSLLD

Packed Shift Left Logical
Doublewords

Mnemonic Opcode Description
PSLLD xmm1, xmm2/mem128 66 0F F2 /r Left-shifts packed doublewords in xmm1 as specified

by xmm2[63:0] or mem128[63:0].
PSLLD xmm, imm8 66 0F 72 /6 ib Left-shifts packed doublewords in xmm as specified by

imm8.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPSLLD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F2 /r
VPSLLD xmm1, xmm2, imm8 C4 RXB.00001 X.dest.0.01 72 /6 ib

Instruction Reference PSLLD, VPSLLD 431

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD, (V)PSRLDQ,
(V)PSRLQ, (V)PSRLW

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSLLDQ, VPSLLDQ 432

26568—Rev. 3.11—December 2010 AMD64 Technology

Left-shifts the double quadword value in an XMM register the number of bytes specified by an
immediate byte operand and writes the shifted values to the destination.

Low-order bytes emptied by shifting are cleared. When the shift value is greater than 15, the
destination is cleared.

There are legacy and extended forms of the instruction:

PSLLDQ
The source XMM register is also the destination. Bits [255:128] of the YMM register that corresponds
to the destination are not affected.

VPSLLDQ
The source operand is an XMM register. The destination is an XMM register specified by VEX.vvvv.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PSLLDQ is an SSE2 instruction and VPSLLDQ is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PSLLD, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD, (V)PSRLDQ, (V)PSRLQ,
(V)PSRLW

PSLLDQ
VPSLLDQ

Packed Shift Left Logical
Double Quadword

Mnemonic Opcode Description
PSLLDQ xmm, imm8 66 0F 73 /7 ib Left-shifts double quadword value in xmm1 as specified by imm8.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPSLLDQ xmm1, xmm2, imm8 C4 RXB.00001 0.dest.0.01 73 /7 ib

Instruction Reference PSLLDQ, VPSLLDQ 433

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSLLQ, VPSLLQ 434

26568—Rev. 3.11—December 2010 AMD64 Technology

Left-shifts each packed 64-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.

The shift-count operand can be an immediate byte, a source register, or a memory location. There are
different encodings for immediate operands and register/memory operands.Only bits [63:0] of the
source register or memory location are used to generate the shift count.

Low-order bits emptied by shifting are cleared. When the shift value is greater than 64, the destination
is cleared.

There are legacy and extended forms of the instruction:

PSLLQ
There are two forms of the instruction, based on the type of count operand.

The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM
register is also the destination. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VPSLLQ
The extended form of the instruction has 128-bit encoding. There are two forms of the instruction,
based on the type of count operand.

The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

PSLLQ is an SSE2 instruction and VPSLLQ is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

PSLLQ
VPSLLQ

Packed Shift Left Logical
Quadwords

Mnemonic Opcode Description
PSLLQ xmm1, xmm2/mem128 66 0F F3 /r Left-shifts packed quadwords in xmm1 as specified by

xmm2[63:0] or mem128[63:0].
PSLLQ xmm, imm8 66 0F 73 /6 ib Left-shifts packed quadwords in xmm as specified by

imm8.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPSLLQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F3 /r
VPSLLQ xmm1, xmm2, imm8 C4 RXB.00001 X.dest.0.01 73 /6 ib

Instruction Reference PSLLQ, VPSLLQ 435

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD, (V)PSRLDQ,
(V)PSRLQ, (V)PSRLW

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSLLW, VPSLLW 436

26568—Rev. 3.11—December 2010 AMD64 Technology

Left-shifts each packed 16-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.

The shift-count operand can be an immediate byte, a source register, or a memory location. There are
different encodings for immediate operands and register/memory operands.Only bits [63:0] of the
source register or memory location are used to generate the shift count.

Low-order bits emptied by shifting are cleared. When the shift value is greater than 64, the destination
is cleared.

There are legacy and extended forms of the instruction:

PSLLW
There are two forms of the instruction, based on the type of count operand.

The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM
register is also the destination. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VPSLLW
The extended form of the instruction has 128-bit encoding. There are two forms of the instruction,
based on the type of count operand.

The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

PSLLW is an SSE2 instruction and VPSLLW is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSRAD, (V)PSRAW, (V)PSRLD, (V)PSRLDQ,
(V)PSRLQ, (V)PSRLW

PSLLW
VPSLLW

Packed Shift Left Logical
Words

Mnemonic Opcode Description
PSLLW xmm1, xmm2/mem128 66 0F F1 /r Left-shifts packed words in xmm1 as specified by

xmm2[63:0] or mem128[63:0].
PSLLW xmm, imm8 66 0F 71 /6 ib Left-shifts packed words in xmm as specified by imm8.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPSLLW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F1 /r
VPSLLW xmm1, xmm2, imm8 C4 RXB.00001 X.dest.0.01 71 /6 ib

Instruction Reference PSLLW, VPSLLW 437

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSRAD, VPSRAD 438

26568—Rev. 3.11—December 2010 AMD64 Technology

Right-shifts each packed 32-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.

The shift-count operand can be an immediate byte, a source register, or a memory location. There are
different encodings for immediate operands and register/memory operands.Only bits [63:0] of the
source register or memory location are used to generate the shift count.

High-order bits emptied by shifting are filled with the sign bit of the initial value. When the shift value
is greater than 31, each doubleword of the destination is filled with the sign bit of its initial value.

There are legacy and extended forms of the instruction:

PSRAD
There are two forms of the instruction, based on the type of count operand.

The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM
register is also the destination. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VPSRAD
The extended form of the instruction has 128-bit encoding. There are two forms of the instruction,
based on the type of count operand.

The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

PSRAD is an SSE2 instruction and VPSRAD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

PSRAD
VPSRAD

Packed Shift Right Arithmetic
Doublewords

Mnemonic Opcode Description
PSRAD xmm1, xmm2/mem128 66 0F E2 /r Right-shifts packed doublewords in xmm1 as specified

by xmm2[63:0] or mem128[63:0].
PSRAD xmm, imm8 66 0F 72 /4 ib Right-shifts packed doublewords in xmm as specified

by imm8.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPSRAD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F2 /r
VPSRAD xmm1, xmm2, imm8 C4 RXB.00001 X.dest.0.01 72 /4 ib

Instruction Reference PSRAD, VPSRAD 439

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAW, (V)PSRLD, (V)PSRLDQ,
(V)PSRLQ, (V)PSRLW
T

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSRAW, VPSRAW 440

26568—Rev. 3.11—December 2010 AMD64 Technology

Right-shifts each packed 16-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.

The shift-count operand can be an immediate byte, a source register, or a memory location. There are
different encodings for immediate operands and register/memory operands.Only bits [63:0] of the
source register or memory location are used to generate the shift count.

High-order bits emptied by shifting are filled with the sign bit of the initial value. When the shift value
is greater than 31, each doubleword of the destination is filled with the sign bit of its initial value.

There are legacy and extended forms of the instruction:

PSRAW
There are two forms of the instruction, based on the type of count operand.

The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM
register is also the destination. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VPSRAW
The extended form of the instruction has 128-bit encoding. There are two forms of the instruction,
based on the type of count operand.

The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

PSRAW is an SSE2 instruction and VPSRAW is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRLD, PSRLDQ, PSRLQ, PSRLW

PSRAW
VPSRAW

Packed Shift Right Arithmetic
Words

Mnemonic Opcode Description
PSRAW xmm1, xmm2/mem128 66 0F E1 /r Right-shifts packed words in xmm1 as specified by

xmm2[63:0] or mem128[63:0].
PSRAW xmm, imm8 66 0F 71 /4 ib Right-shifts packed words in xmm as specified by

imm8.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPSRAW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 E1 /r
VPSRAW xmm1, xmm2, imm8 C4 RXB.00001 X.dest.0.01 71 /4 ib

Instruction Reference PSRAW, VPSRAW 441

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSRLD, VPSRLD 442

26568—Rev. 3.11—December 2010 AMD64 Technology

Right-shifts each packed 32-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.

The shift-count operand can be an immediate byte, a source register, or a memory location. There are
different encodings for immediate operands and register/memory operands.Only bits [63:0] of the
source register or memory location are used to generate the shift count.

Low-order bits emptied by shifting are cleared. When the shift value is greater than 31, the destination
is cleared.

There are legacy and extended forms of the instruction:

PSRLD
There are two forms of the instruction, based on the type of count operand.

The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM
register is also the destination. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VPSRLD
The extended form of the instruction has 128-bit encoding. There are two forms of the instruction,
based on the type of count operand.

The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

PSRLD is an SSE2 instruction and VPSRLD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

PSRLD
VPSRLD

Packed Shift Right Logical
Doublewords

Mnemonic Opcode Description
PSRLD xmm1, xmm2/mem128 66 0F D2 /r Right-shifts packed doublewords in xmm1 as specified

by xmm2[63:0] or mem128[63:0].
PSRLD xmm, imm8 66 0F 72 /2 ib Right-shifts packed doublewords in xmm as specified

by imm8.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPSRLD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D2 /r
VPSRLD xmm1, xmm2, imm8 C4 RXB.00001 X.dest.0.01 72 /2 ib

Instruction Reference PSRLD, VPSRLD 443

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLDQ,
(V)PSRLQ, (V)PSRLW

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSRLDQ, VPSRLDQ 444

26568—Rev. 3.11—December 2010 AMD64 Technology

Right-shifts the double quadword value in an XMM register the number of bytes specified by an
immediate byte operand and writes the shifted values to the destination.

High-order bytes emptied by shifting are cleared. When the shift value is greater than 15, the
destination is cleared.

There are legacy and extended forms of the instruction:

PSRLDQ
The source XMM register is also the destination. Bits [255:128] of the YMM register that corresponds
to the destination are not affected.

VPSRLDQ
The source operand is an XMM register. The destination is an XMM register specified by VEX.vvvv.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PSRLDQ is an SSE2 instruction and VPSRLDQ is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD, (V)PSRLQ,
(V)PSRLW

PSRLDQ
VPSRLDQ

Packed Shift Right Logical
Double Quadword

Mnemonic Opcode Description
PSRLDQ xmm, imm8 66 0F 73 /3 ib Right-shifts double quadword value in xmm1 as specified by

imm8.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPSRLDQ xmm1, xmm2, imm8 C4 RXB.00001 0.dest.0.01 73 /3 ib

Instruction Reference PSRLDQ, VPSRLDQ 445

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSRLQ, VPSRLQ 446

26568—Rev. 3.11—December 2010 AMD64 Technology

Right-shifts each packed 64-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.

The shift-count operand can be an immediate byte, a source register, or a memory location. There are
different encodings for immediate operands and register/memory operands. Only bits [63:0] of the
source register or memory location are used to generate the shift count.

Low-order bits emptied by shifting are cleared. When the shift value is greater than 31, the destination
is cleared.

There are legacy and extended forms of the instruction:

PSRLQ
There are two forms of the instruction, based on the type of count operand.

The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM
register is also the destination. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VPSRLQ
The extended form of the instruction has 128-bit encoding. There are two forms of the instruction,
based on the type of count operand.

The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

PSRLQ is an SSE2 instruction and VPSRLQ is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

PSRLQ
VPSRLQ

Packed Shift Right Logical
Quadwords

Mnemonic Opcode Description
PSRLQ xmm1, xmm2/mem128 66 0F D3 /r Right-shifts packed quadwords in xmm1 as specified

by xmm2[63:0] or mem128[63:0].
PSRLQ xmm, imm8 66 0F 73 /2 ib Right-shifts packed quadwords in xmm as specified by

imm8.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPSRLQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D3 /r
VPSRLQ xmm1, xmm2, imm8 C4 RXB.00001 X.dest.0.01 73 /2 ib

Instruction Reference PSRLQ, VPSRLQ 447

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD,
(V)PSRLDQ, (V)PSRLW

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSRLW, VPSRLW 448

26568—Rev. 3.11—December 2010 AMD64 Technology

Right-shifts each packed 16-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.

The shift-count operand can be an immediate byte, a source register, or a memory location. There are
different encodings for immediate operands and register/memory operands. Only bits [63:0] of the
source register or memory location are used to generate the shift count.

Low-order bits emptied by shifting are cleared. When the shift value is greater than 31, the destination
is cleared.

There are legacy and extended forms of the instruction:

PSRLW
There are two forms of the instruction, based on the type of count operand.

The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM
register is also the destination. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VPSRLW
The extended form of the instruction has 128-bit encoding. There are two forms of the instruction,
based on the type of count operand.

The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

PSRLW is an SSE2 instruction and VPSRLW is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

PSRLW
VPSRLW

Packed Shift Right Logical
Words

Mnemonic Opcode Description
PSRLW xmm1, xmm2/mem128 66 0F D1 /r Right-shifts packed words in xmm1 as specified by

xmm2[63:0] or mem128[63:0].
PSRLW xmm, imm8 66 0F 71 /2 ib Right-shifts packed words in xmm as specified by

imm8.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPSRLQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D1 /r
VPSRLQ xmm1, xmm2, imm8 C4 RXB.00001 X.dest.0.01 71 /2 ib

Instruction Reference PSRLW, VPSRLW 449

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD,
(V)PSRLDQ, (V)PSRLQ

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSUBB, VPSUBB 450

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts 16 packed 8-bit integer values in the second source operand from the corresponding values
in the first source operand and writes the integer differences to the corresponding bytes of the
destination.

This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:

PSUBB
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSUBB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PSUBB is an SSE2 instruction and VPSUBB is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW, (V)PSUBW

PSUBB
VPSUBB

Packed Subtract
Bytes

Mnemonic Opcode Description
PSUBB xmm1, xmm2/mem128 66 0F F8 /r Subtracts 8-bit signed integer values in xmm2 or

mem128 from corresponding values in xmm1.
Writes differences to xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPSUBB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F8 /r

Instruction Reference PSUBB, VPSUBB 451

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSUBD, VPSUBD 452

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts four packed 32-bit integer values in the second source operand from the corresponding
values in the first source operand and writes the integer differences to the corresponding doubleword
of the destination.

This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:

PSUBD
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VSUBD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

The PSUBD is an SSE2 instruction and VPSUBD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PSUBB, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW, (V)PSUBW

PSUBD
VPSUBD

Packed Subtract
Doublewords

Mnemonic Opcode Description
PSUBD xmm1, xmm2/mem128 66 0F FA /r Subtracts packed 32-bit integer values in xmm2 or

mem128 from corresponding values in xmm1. Writes the
differences to xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPSUBD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 FA /r

Instruction Reference PSUBD, VPSUBD 453

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSUBQ, VPSUBQ 454

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts two packed 64-bit integer values in the second source operand from the corresponding
values in the first source operand and writes the differences to the corresponding quadword of the
destination.

This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:

PSUBQ
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VSUBQ
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PSUBQ is an SSE2 instruction and VPSUBQ is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PSUBB, (V)PSUBD, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW, (V)PSUBW

PSUBQ
VPSUBQ

Packed Subtract
Quadword

Mnemonic Opcode Description
PSUBQ xmm1, xmm2/mem128 66 0F FB /r Subtracts packed 64-bit integer values in xmm2 or

mem128 from corresponding values in xmm1. Writes the
differences to xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPSUBQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 FB /r

Instruction Reference PSUBQ, VPSUBQ 455

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSUBSB, VPSUBSB 456

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts 16 packed 8-bit signed integer value in the second source operand from the corresponding
values in the first source operand and writes the signed integer differences to the corresponding byte of
the destination.

For each packed value in the destination, if the value is larger than the largest signed 8-bit integer, it is
saturated to 7Fh, and if the value is smaller than the smallest signed 8-bit integer, it is saturated to 80h.

There are legacy and extended forms of the instruction:

PSUBSB
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSUBSB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PSUBSB is an SSE2 instruction and VPSUBSB is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PSUBB, (V)PSUBD, (V)PSUBQ, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW, (V)PSUBW

PSUBSB
VPSUBSB

Packed Subtract Signed With Saturation
Bytes

Mnemonic Opcode Description
PSUBSB xmm1, xmm2/mem128 66 0F E8 /r Subtracts packed 8-bit signed integer values in xmm2 or

mem128 from corresponding values in xmm1. Writes the
differences to xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPSUBSB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 E8 /r

Instruction Reference PSUBSB, VPSUBSB 457

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSUBSW, VPSUBSW 458

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts eight packed 16-bit signed integer values in the second source operand from the
corresponding values in the first source operand and writes the signed integer differences to the
corresponding word of the destination.

Positive differences greater than 7FFFh are saturated to 7FFFh; negative differences less than 8000h
are saturated to 8000h.

There are legacy and extended forms of the instruction:

PSUBSW
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSUBSW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PSUBSW is an SSE2 instruction and VPSUBSW is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PSUBB, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBUSB, (V)PSUBUSW, (V)PSUBW

PSUBSW
VPSUBSW

Packed Subtract Signed With Saturation
Words

Mnemonic Opcode Description
PSUBSW xmm1, xmm2/mem128 66 0F E9 /r Subtracts packed 16-bit signed integer values in xmm2 or

mem128 from corresponding values in xmm1. Writes the
differences to xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPSUBSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 E9 /r

Instruction Reference PSUBSW, VPSUBSW 459

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSUBUSB, VPSUBUSB 460

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts 16 packed 8-bit unsigned integer value in the second source operand from the corresponding
values in the first source operand and writes the unsigned integer difference to the corresponding byte
of the destination.

Differences greater than 7Fh are saturated to 7Fh; differences less than 00h are saturated to 00h.

There are legacy and extended forms of the instruction:

PSUBUSB
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSUBUSB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PSUBUSB is an SSE2 instruction and VPSUBUSB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PSUBB, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSW, (V)PSUBW

PSUBUSB
VPSUBUSB

Packed Subtract Unsigned With Saturation
Bytes

Mnemonic Opcode Description
PSUBUSB xmm1, xmm2/mem128 66 0F D8 /r Subtracts packed byte unsigned integer values in

xmm2 or mem128 from corresponding values in xmm1.
Writes the differences to xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPSUBUSB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D8 /r

Instruction Reference PSUBUSB, VPSUBUSB 461

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSUBUSW, VPSUBUSW 462

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts eight packed 16-bit unsigned integer value in the second source operand from the
corresponding values in the first source operand and writes the unsigned integer differences to the
corresponding word of the destination.

Differences greater than FFFFh are saturated to FFFFh; differences less than 0000h are saturated to
0000h.

There are legacy and extended forms of the instruction:

PSUBUSW
The first source operand is an XMM register and the second source operand is another XMM register
or 128-bit memory location. The first source operand is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSUBUSW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PSUBUSW is an SSE2 instruction and VPSUBUSW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PSUBB, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBW

PSUBUSW
VPSUBUSW

Packed Subtract Unsigned With Saturation
Words

Mnemonic Opcode Description
PSUBUSW xmm1, xmm2/mem128 66 0F D9 /r Subtracts packed 16-bit unsigned integer values in

xmm2 or mem128 from corresponding values in
xmm1. Writes the differences to xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPSUBUSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D9 /r

Instruction Reference PSUBUSW, VPSUBUSW 463

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSUBW, VPSUBW 464

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts eight packed 16-bit integer values in the second source operand from the corresponding
values in the first source operand and writes the integer differences to the corresponding word of the
destination.

This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:

PSUBW
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSUBW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PSUBW is an SSE2 instruction and VPSUBW is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PSUBB, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW

PSUBW
VPSUBW

Packed Subtract
Words

Mnemonic Opcode Description
PSUBW xmm1, xmm2/mem128 66 0F F9 /r Subtracts packed 16-bit integer values in xmm2 or

mem128 from corresponding values in xmm1. Writes the
differences to xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPSUBW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F9 /r

Instruction Reference PSUBW, VPSUBW 465

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PTEST, VPTEST 466

26568—Rev. 3.11—December 2010 AMD64 Technology

First, performs a bitwise AND of the first source operand with the second source operand.
Sets rFLAGS.ZF when all bit operations = 0; else, clears ZF.

Second. performs a bitwise AND of the second source operand with the logical complement (NOT) of
the first source operand. Sets rFLAGS.CF when all bit operations = 0; else, clears CF.

Neither source operand is modified.

There are legacy and extended forms of the instruction:

PTEST
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location.

VPTEST
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location.
YMM Encoding

The first source operand is a YMM register. The second source operand is a YMM register or 256-bit
memory location.

PTEST is an SSE4.1 instruction and VPTEST is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
VTESTPD, VTESTPS

PTEST
VPTEST

 Packed Bit Test

Mnemonic Opcode Description
PTEST xmm1, xmm2/mem128 66 0F 38 17 /r Set ZF if bitwise AND of xmm2/m128 with xmm1 = 0;

else, clear ZF.
Set CF if bitwise AND of xmm2/m128 with NOTxmm1 = 0;
else, clear CF.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPTEST xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 17 /r
VPTEST ymm1, ymm2/mem256 C4 RXB.00010 X.1111.1.01 17 /r

Instruction Reference PTEST, VPTEST 467

26568—Rev. 3.11—December 2010 AMD64 Technology

rFLAGS Affected
ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 M 0 0 M
21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3 and 1 are reserved. A flag set or cleared is M (modified). Unaffected flags are blank. Undefined
flags are U.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PUNPCKHBW, VPUNPCKHBW 468

26568—Rev. 3.11—December 2010 AMD64 Technology

Unpacks the high-order bytes of the first and second source operands and interleaves the 16 values into
the destination. The low-order bytes of the source operands are ignored.

Bytes are interleaved in ascending order from the lsb of the sources and the destination. Bits [71:64] of
the first source are written to bits [7:0] of the destination; bits [71:64] of the second source are written
to bits [15:8] of the destination and so on, ending with bits [127:120] of the second source in bits
[127:120] of the destination

When the second source operand is all 0s, the destination effectively contains the bytes from the first
source operand zero-extended to 16 bits. This operation is useful for expanding unsigned 8-bit values
to unsigned 16-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:

PUNPCKHBW
The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The first source operand is also the destination register. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPUNPCKHBW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PUNPCKHBW is an SSE2 instruction and VPUNPCKHBW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKHWD, (V)PUNPCKLBW, (V)PUNPCKLDQ,
(V)PUNPCKLQDQ, (V)PUNPCKLWD

PUNPCKHBW
VPUNPCKHBW

Unpack and Interleave
High Bytes

Mnemonic Opcode Description
PUNPCKHBW xmm1, xmm2/mem128 66 0F 68 /r Unpacks and interleaves the high-order bytes of

xmm1 and xmm2 or mem128. Writes the bytes to
xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPUNPCKHBW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 68 /r

Instruction Reference PUNPCKHBW, VPUNPCKHBW 469

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PUNPCKHDQ, VPUNPCKHDQ 470

26568—Rev. 3.11—December 2010 AMD64 Technology

Unpacks the high-order doublewords of the first and second source operands and interleaves the four
values into the destination. The low-order doublewords of the source operands are ignored.

Doublewords are interleaved in ascending order from the lsb of the sources and the destination. Bits
[95:64] of the first source are written to bits [31:0] of the destination; bits [95:64] of the second source
are written to bits [63:32] of the destination and so on, ending with bits [127:96] of the second source
in bits [127:96] of the destination

When the second source operand is all 0s, the destination effectively contains the doublewords from
the first source operand zero-extended to 64 bits. This operation is useful for expanding unsigned
32-bit values to unsigned 64-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:

PUNPCKHDQ
The first source operand is an XMM register and the second source operand is another XMM register
or 128-bit memory location. The first source operand is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPUNPCKHDQ
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PUNPCKHDQ is an SSE2 instruction and VPUNPCKHDQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PUNPCKHBW, (V)PUNPCKHQDQ, (V)PUNPCKHWD, (V)PUNPCKLBW, (V)PUNPCKLDQ,
(V)PUNPCKLQDQ, (V)PUNPCKLWD

PUNPCKHDQ
VPUNPCKHDQ

Unpack and Interleave
High Doublewords

Mnemonic Opcode Description
PUNPCKHDQ xmm1, xmm2/mem128 66 0F 6A /r Unpacks and interleaves the high-order doublewords

of xmm1 and xmm2 or mem128. Writes the
doublewords to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPUNPCKHDQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 6A /r

Instruction Reference PUNPCKHDQ, VPUNPCKHDQ 471

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PUNPCKHQDQ, VPUNPCKHQDQ 472

26568—Rev. 3.11—December 2010 AMD64 Technology

Unpacks the high-order quadwords of the first and second source operands and interleaves the two
values into the destination. The low-order bytes of the source operands are ignored.

Quadwords are interleaved in ascending order from the lsb of the sources and the destination. Bits
[127:64] of the first source are written to bits [63:0] of the destination; bits [127:64] of the second
source are written to bits [127:64] of the destination.

When the second source operand is all 0s, the destination effectively contains the quadword from the
first source operand zero-extended to 128 bits. This operation is useful for expanding unsigned 64-bit
values to unsigned 128-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:

PUNPCKHQDQ
The first source operand is an XMM register and the second source operand is another XMM register
or 128-bit memory location. The first source operand is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPUNPCKHQDQ
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PUNPCKHQDQ is an SSE2 instruction and VPUNPCKHQDQ is an AVX instruction. Support for
t h e s e i n s t r u c t i o n s i s i n d i c a t ed by CPUID Fn0000_00001_EDX[SSE2] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)PUNPCKHBW, (V)PUNPCKHDQ, (V)PUNPCKHWD, (V)PUNPCKLBW, (V)PUNPCKLDQ,
(V)PUNPCKLQDQ, (V)PUNPCKLWD

PUNPCKHQDQ
VPUNPCKHQDQ

Unpack and Interleave
High Quadwords

Mnemonic Opcode Description
PUNPCKHQDQ xmm1, xmm2/mem128 66 0F 6D /r Unpacks and interleaves the high-order

quadwords of xmm1 and xmm2 or mem128.
Writes the bytes to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPUNPCKHQDQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 6D /r

Instruction Reference PUNPCKHQDQ, VPUNPCKHQDQ 473

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PUNPCKHWD, VPUNPCKHWD 474

26568—Rev. 3.11—December 2010 AMD64 Technology

Unpacks the high-order words of the first and second source operands and interleaves the eight values
into the destination. The low-order words of the source operands are ignored.

Words are interleaved in ascending order from the lsb of the sources and the destination. Bits [79:64]
of the first source are written to bits [15:0] of the destination; bits [79:64] of the second source are
written to bits [31:16] of the destination and so on, ending with bits [127:112] of the second source in
bits [127:112] of the destination

When the second source operand is all 0s, the destination effectively contains the words from the first
source operand zero-extended to 32 bits. This operation is useful for expanding unsigned 16-bit values
to unsigned 32-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:

PUNPCKHWD
The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The first source operand is also the destination register. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPUNPCKHWD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PUNPCKHWD is an SSE2 instruction and VPUNPCKHWD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PUNPCKHBW, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLDQ,
(V)PUNPCKLQDQ, (V)PUNPCKLWD

PUNPCKHWD
VPUNPCKHWD

Unpack and Interleave
High Words

Mnemonic Opcode Description
PUNPCKHWD xmm1, xmm2/mem128 66 0F 69 /r Unpacks and interleaves the high-order words of

xmm1 and xmm2 or mem128. Writes the words to
xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPUNPCKHWD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 69 /r

Instruction Reference PUNPCKHWD, VPUNPCKHWD 475

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PUNPCKLBW, VPUNPCKLBW 476

26568—Rev. 3.11—December 2010 AMD64 Technology

Unpacks the low-order bytes of the first and second source operands and interleaves the 16 values into
the destination. The high-order bytes of the source operands are ignored.

Bytes are interleaved in ascending order from the lsb of the sources and the destination. Bits [7:0] of
the first source are written to bits [7:0] of the destination; bits [7:0] of the second source are written to
bits [15:8] of the destination and so on, ending with bits [63:56] of the second source in bits [127:120]
of the destination

When the second source operand is all 0s, the destination effectively contains the bytes from the first
source operand zero-extended to 16 bits. This operation is useful for expanding unsigned 8-bit values
to unsigned 16-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:

PUNPCKLBW
The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The first source operand is also the destination register. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPUNPCKLBW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PUNPCKLBW is an SSE2 instruction and VPUNPCKLBW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PUNPCKHBW, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKHWD, (V)PUNPCKLDQ,
(V)PUNPCKLQDQ, (V)PUNPCKLWD

PUNPCKLBW
VPUNPCKLBW

Unpack and Interleave
Low Bytes

Mnemonic Opcode Description
PUNPCKLBW xmm1, xmm2/mem128 66 0F 60 /r Unpacks and interleaves the low-order bytes of

xmm1 and xmm2 or mem128. Writes the bytes to
xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPUNPCKLBW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 69 /r

Instruction Reference PUNPCKLBW, VPUNPCKLBW 477

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PUNPCKLDQ, VPUNPCKLDQ 478

26568—Rev. 3.11—December 2010 AMD64 Technology

Unpacks the low-order doublewords of the first and second source operands and interleaves the four
values into the destination. The high-order doublewords of the source operands are ignored.

Doublewords are interleaved in ascending order from the lsb of the sources and the destination. Bits
[31:0] of the first source are written to bits [31:0] of the destination; bits [31:0] of the second source are
written to bits [63:32] of the destination and so on, ending with bits [63:32] of the second source in bits
[127:96] of the destination

When the second source operand is all 0s, the destination effectively contains the doublewords from
the first source operand zero-extended to 64 bits. This operation is useful for expanding unsigned
32-bit values to unsigned 64-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:

PUNPCKLDQ
The first source operand is an XMM register and the second source operand is another XMM register
or 128-bit memory location. The first source operand is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPUNPCKLDQ
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PUNPCKLDQ is an SSE2 instruction and VPUNPCKLDQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PUNPCKHW, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKHWD, (V)PUNPCKLBW,
(V)PUNPCKLQDQ, (V)PUNPCKLWD

PUNPCKLDQ
VPUNPCKLDQ

Unpack and Interleave
Low Doublewords

Mnemonic Opcode Description
PUNPCKLDQ xmm1, xmm2/mem128 66 0F 62 /r Unpacks and interleaves the low-order doublewords

of xmm1 and xmm2 or mem128. Writes the
doublewords to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPUNPCKLDQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 62 /r

Instruction Reference PUNPCKLDQ, VPUNPCKLDQ 479

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PUNPCKLQDQ, VPUNPCKLQDQ 480

26568—Rev. 3.11—December 2010 AMD64 Technology

Unpacks the low-order quadwords of the first and second source operands and interleaves the two
values into the destination. The high-order bytes of the source operands are ignored.

Quadwords are interleaved in ascending order from the lsb of the sources and the destination. Bits
[63:0] of the first source are written to bits [63:0] of the destination; bits [63:0] of the second source are
written to bits [127:64] of the destination.

When the second source operand is all 0s, the destination effectively contains the quadword from the
first source operand zero-extended to 128 bits. This operation is useful for expanding unsigned 64-bit
values to unsigned 128-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:

PUNPCKLQDQ
The first source operand is an XMM register and the second source operand is another XMM register
or 128-bit memory location. The first source operand is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPUNPCKLQDQ
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PUNPCKLQDQ is an SSE2 instruction and VPUNPCKLQDQ is an AVX instruction. Support for
t h e s e i n s t r u c t i o n s i s i n d i c a t ed by CPUID Fn0000_00001_EDX[SSE2] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)PUNPC KHB W, (V)PUNPCKHDQ, (V)PU NPC KHQ DQ, (V)PU NPCK HWD,
(V)PUNPCKLBW, (V)PUNPCKLDQ, (V)PUNPCKLWD

PUNPCKLQDQ
VPUNPCKLQDQ

Unpack and Interleave
Low Quadwords

Mnemonic Opcode Description
PUNPCKLQDQ xmm1, xmm2/mem128 66 0F 6C /r Unpacks and interleaves the low-order

quadwords of xmm1 and xmm2 or mem128.
Writes the bytes to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPUNPCKLQDQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 6C /r

Instruction Reference PUNPCKLQDQ, VPUNPCKLQDQ 481

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PUNPCKLWD, VPUNPCKLWD 482

26568—Rev. 3.11—December 2010 AMD64 Technology

Unpacks the low-order words of the first and second source operands and interleaves the eight values
into the destination. The high-order words of the source operands are ignored.

Words are interleaved in ascending order from the lsb of the sources and the destination. Bits [15:0] of
the first source are written to bits [15:0] of the destination; bits [15:0] of the second source are written
to bits [31:16] of the destination and so on, ending with bits [63:48] of the second source in bits
[127:112] of the destination

When the second source operand is all 0s, the destination effectively contains the words from the first
source operand zero-extended to 32 bits. This operation is useful for expanding unsigned 16-bit values
to unsigned 32-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:

PUNPCKLWD
The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The first source operand is also the destination register. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

PUNPCKLWD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PUNPCKLWD is an SSE2 instruction and VPUNPCKLWD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)PUNPC KHB W, (V)PUNPCKHDQ, (V)PU NPC KHQ DQ, (V)PU NPCK HWD,
(V)PUNPCKLBW, (V)PUNPCKLDQ, (V)PUNPCKLQDQ

PUNPCKLWD
VPUNPCKLWD

Unpack and Interleave
Low Words

Mnemonic Opcode Description
PUNPCKLWD xmm1, xmm2/mem128 66 0F 61 /r Unpacks and interleaves the low-order words of

xmm1 and xmm2 or mem128. Writes the words to
xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPUNPCKLLWD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 61 /r

Instruction Reference PUNPCKLWD, VPUNPCKLWD 483

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PXOR, VPXOR 484

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs a bitwise XOR of the first and second source operands and writes the result to the
destination. When either of a pair of corresponding bits in the first and second operands are set, the
corresponding bit of the destination is set; when both source bits are set or when both source bits are
not set, the destination bit is cleared.

There are legacy and extended forms of the instruction:

PXOR
The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The first source XMM register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPXOR
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PXOR is an SSE2 instruction and VPXOR is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)PAND, (V)PANDN, (V)POR

PXOR
VPXOR

Packed Exclusive OR

Mnemonic Opcode Description
PXOR xmm1, xmm2/mem128 66 0F EF /r Performs bitwise XOR of values in xmm1 and xmm2 or

mem128. Writes the result to xmm1
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPXOR xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 EF /r

Instruction Reference PXOR, VPXOR 485

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference RCPPS, VRCPPS 486

26568—Rev. 3.11—December 2010 AMD64 Technology

Computes the approximate reciprocal of each packed single-precision floating-point value in the
source operand and writes the results to the corresponding doubleword of the destination. MXCSR.RC
as no effect on the result.

The maximum error is less than or equal to 1.5 * 2–12 times the true reciprocal. A source value that is
±zero or denormal returns an infinity of the source value sign. Results that underflow are changed to
signed zero. For both SNaN and QNaN source operands, a QNaN is returned.

There are legacy and extended forms of the instruction:

RCPPS
Computes four reciprocals. The first source operand is an XMM register. The second source operand is
either another XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VRCPPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Computes four reciprocals. The source operand is either an XMM register or a 128-bit memory
location. The destination is an XMM register. Bits [255:128] of the YMM register that corresponds to
the destination are cleared.
YMM Encoding

Computes eight reciprocals. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM
register.

RCPPS is an SSE2 instruction and VRCPPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)RCPSS, (V)RSQRTPS, (V)RSQRTSS

RCPPS
VRCPPS

Reciprocal
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
RCPPS xmm1, xmm2/mem128 0F 53 /r Computes reciprocals of packed single-precision floating-

point values in xmm1 or mem128. Writes result to xmm1
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VRCPPS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 53 /r
VRCPPS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 53 /r

Instruction Reference RCPPS, VRCPPS 487

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference RCPSS, VRCPSS 488

26568—Rev. 3.11—December 2010 AMD64 Technology

Computes the approximate reciprocal of the scalar single-precision floating-point value in a source
operand and writes the results to the low-order doubleword of the destination. MXCSR.RC as no
effect on the result.

The maximum error is less than or equal to 1.5 * 2–12 times the true reciprocal. A source value that is
±zero or denormal returns an infinity of the source value sign. Results that underflow are changed to
signed zero. For both SNaN and QNaN source operands, a QNaN is returned.

There are legacy and extended forms of the instruction:

RCPSS
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [127:32] of the destination are not affected. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.

VRCPSS
The extended form of the instruction has both 128-bit encoding.
XMM Encoding

The first source operand and the destination are XMM registers. The second source operand is either
an XMM register or a 32-bit memory location. Bits [31:0] of the destination contain the reciprocal; bits
[127:32] of the destination are copied from the first source register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

RCPSS is an SSE instruction and VRCPSS is an AVX instruction. Support for these instructions is
i nd i ca t ed by CPUID f ea tu r e i den t i f i e r s CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)RCPPS, (V)RSQRTPS, (V)RSQRTSS

RCPSS
VRCPSS

Reciprocal
Scalar Single-Precision Floating-Point

Mnemonic Opcode Description
RCPSS xmm1, xmm2/mem32 F3 0F 53 /r Computes reciprocal of scalar single-precision floating-point

value in xmm1 or mem32. Writes the result to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VRCPSS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.X.10 53 /r

Instruction Reference RCPSS, VRCPSS 489

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ROUNDPD, VROUNDPD 490

26568—Rev. 3.11—December 2010 AMD64 Technology

Rounds two or four double-precision floating-point values as specified by an immediate byte operand.
Source values are rounded to integral values and written to the destination as double-precision
floating-point values.

SNaN source values are converted to QNaN. When DAZ =1, denormals are converted to zero before
rounding.

The immediate byte operand is defined as follows.

Precision exception definitions:

Rounding control source definitions:

Rounding control definition:

ROUNDPD
VROUNDPD

Round
Packed Double-Precision Floating-Point

7 4 3 2 1 0
Reserved P O RC

Bits Mnemonic Description
[7:4] — Reserved
[3] P Precision Exception
[2] O Rounding Control Source

[1:0] RC Rounding Control

Value Description
0 Normal PE exception
1 PE field is not updated.

No precision exception is taken when unmasked.

Value Description
0 MXCSR:RC
1 Use RC field value.

Value Description
00 Nearest
01 Downward (toward negative infinity)
10 Upward (toward positive infinity)
11 Truncated

Instruction Reference ROUNDPD, VROUNDPD 491

26568—Rev. 3.11—December 2010 AMD64 Technology

There are legacy and extended forms of the instruction:

ROUNDPD
Rounds two source values. The first source operand is an XMM register. The second source operand is
either another XMM register or a 128-bit memory location. There is a third 8-bit immediate operand.
The first source register is also the destination. Bits [255:128] of the YMM register that corresponds to
the destination are not affected.

VROUNDPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Rounds two source values. The first source operand is an XMM register. The second source operand is
either another XMM register or a 128-bit memory location. There is a third 8-bit immediate operand.
The destination is a third XMM register. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.
YMM Encoding

Rounds four source values. The first source operand is a YMM register and the second source operand
is either a YMM register or a 256-bit memory location. There is a third 8-bit immediate operand. The
destination is a third YMM register.

ROUNDPD is an SSE4.1 instruction and VROUNDPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)ROUNDPS, (V)ROUNDSD, (V)ROUNDSS

Mnemonic Opcode Description
ROUNDPD xmm1, xmm2/mem128,
imm8

66 0F 3A 09 /r ib Rounds double-precision floating-point values
in xmm2 or mem128. Writes rounded double-
precision values to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VROUNDPD xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.src.0.01 09 /r ib
VROUNDPD ymm1, xmm2/mem256, imm8 C4 RXB.00011 X.src.1.01 09 /r ib

Instruction Reference ROUNDPD, VROUNDPD 492

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ROUNDPS, VROUNDPS 493

26568—Rev. 3.11—December 2010 AMD64 Technology

Rounds four or eight single-precision floating-point values as specified by an immediate byte operand.
Source values are rounded to integral values and written to the destination as single-precision floating-
point values.

SNaN source values are converted to QNaN. When DAZ =1, denormals are converted to zero before
rounding.

The immediate byte operand is defined as follows.

Precision exception definitions:

Rounding control source definitions:

Rounding control definition:

ROUNDPS
VROUNDPS

Round
Packed Single-Precision Floating-Point

7 4 3 2 1 0
Reserved P O RC

Bits Mnemonic Description
[7:4] — Reserved
[3] P Precision Exception
[2] O Rounding Control Source

[1:0] RC Rounding Control

Value Description
0 Normal PE exception
1 PE field is not updated.

No precision exception is taken when unmasked.

Value Description
0 MXCSR:RC
1 Use RC field value.

Value Description
00 Nearest
01 Downward (toward negative infinity)
10 Upward (toward positive infinity)
11 Truncated

Instruction Reference ROUNDPS, VROUNDPS 494

26568—Rev. 3.11—December 2010 AMD64 Technology

There are legacy and extended forms of the instruction:

ROUNDPS
Rounds four source values. The first source operand is an XMM register. The second source operand is
either another XMM register or a 128-bit memory location. There is a third 8-bit immediate operand.
The first source register is also the destination. Bits [255:128] of the YMM register that corresponds to
the destination are not affected.

VROUNDPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Rounds four source values. The first source operand is an XMM register. The second source operand is
either another XMM register or a 128-bit memory location. There is a third 8-bit immediate operand.
The destination is a third XMM register. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.
YMM Encoding

Rounds eight source values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. There is a third 8-bit immediate
operand. The destination is a third YMM register.

ROUNDPS is an SSE4.1 instruction and VROUNDPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)ROUNDPD, (V)ROUNDSD, (V)ROUNDSS

Mnemonic Opcode Description
ROUNDPS xmm1, xmm2/mem128, imm8 66 0F 3A 08 /r ib Rounds single-precision floating-point

values in xmm2 or mem128. Writes
rounded single-precision values to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VROUNDPS xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.src.0.01 08 /r ib
VROUNDPS ymm1, xmm2/mem256, imm8 C4 RXB.00011 X.src.1.01 08 /r ib

Instruction Reference ROUNDPS, VROUNDPS 495

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ROUNDSD, VROUNDSD 496

26568—Rev. 3.11—December 2010 AMD64 Technology

Rounds a scalar double-precision floating-point value as specified by an immediate byte operand.
Source values are rounded to integral values and written to the destination as double-precision
floating-point values.

SNaN source values are converted to QNaN. When DAZ =1, denormals are converted to zero before
rounding.

The immediate byte operand is defined as follows.

Precision exception definitions:

Rounding control source definitions:

Rounding control definition:

ROUNDSD
VROUNDSD

Round
Scalar Double-Precision

7 4 3 2 1 0
Reserved P O RC

Bits Mnemonic Description
[7:4] — Reserved
[3] P Precision Exception
[2] O Rounding Control Source

[1:0] RC Rounding Control

Value Description
0 Normal PE exception
1 PE field is not updated.

No precision exception is taken when unmasked.

Value Description
0 MXCSR:RC
1 Use RC field value.

Value Description
00 Nearest
01 Downward (toward negative infinity)
10 Upward (toward positive infinity)
11 Truncated

Instruction Reference ROUNDSD, VROUNDSD 497

26568—Rev. 3.11—December 2010 AMD64 Technology

There are legacy and extended forms of the instruction:

ROUNDSD
The source operand is either an XMM register or a 64-bit memory location. When the source is an
XMM register, the value to be rounded must be in the low doubleword. The destination is an XMM
register. There is a third 8-bit immediate operand. Bits [127:64] of the destination are not affected. Bits
[255:128] of the YMM register that corresponds to destination XMM register are not affected.

VROUNDSD
The extended form of the instruction has 128-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 64-bit memory location. When the second source is an XMM register, the value to be rounded must
be in the low doubleword. The destination is a third XMM register. There is a fourth 8-bit immediate
operand. Bits [127:64] of the destination are copied from the first source operand. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

ROUNDSD is an SSE4.1 instruction and VROUNDSD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)ROUNDPD, (V)ROUNDPS, (V)ROUNDSS

Mnemonic Opcode Description
ROUNDSD xmm1, xmm2/mem64, imm8 66 0F 3A 0B /r ib Rounds a double-precision floating-point

value in xmm2[63:0] or mem64. Writes a
rounded double-precision value to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VROUNDSD xmm1, xmm2, xmm3/mem64, imm8 C4 RXB.00011 X.src.X.01 0B /r ib

Instruction Reference ROUNDSD, VROUNDSD 498

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ROUNDSS, VROUNDSS 499

26568—Rev. 3.11—December 2010 AMD64 Technology

Rounds a scalar single-precision floating-point value as specified by an immediate byte operand.
Source values are rounded to integral values and written to the destination as single-precision floating-
point values.

SNaN source values are converted to QNaN. When DAZ =1, denormals are converted to zero before
rounding.

The immediate byte operand is defined as follows.

Precision exception definitions:

Rounding control source definitions:

Rounding control definition:

ROUNDSS
VROUNDSS

Round
Scalar Single-Precision

7 4 3 2 1 0
Reserved P O RC

Bits Mnemonic Description
[7:4] — Reserved
[3] P Precision Exception
[2] O Rounding Control Source

[1:0] RC Rounding Control

Value Description
0 Normal PE exception
1 PE field is not updated.

No precision exception is taken when unmasked.

Value Description
0 MXCSR:RC
1 Use RC field value.

Value Description
00 Nearest
01 Downward (toward negative infinity)
10 Upward (toward positive infinity)
11 Truncated

Instruction Reference ROUNDSS, VROUNDSS 500

26568—Rev. 3.11—December 2010 AMD64 Technology

There are legacy and extended forms of the instruction:

ROUNDSS
The source operand is either an XMM register or a 32-bit memory location. When the source is an
XMM register, the value to be rounded must be in the low word. The destination is an XMM register.
There is a third 8-bit immediate operand. Bits [127:32] of the destination are not affected. Bits
[255:128] of the YMM register that corresponds to destination XMM register are not affected.

VROUNDSS
The extended form of the instruction has 128-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 32-bit memory location. When the second source is an XMM register, the value to be rounded must
be in the low word. The destination is a third XMM register. There is a fourth 8-bit immediate operand.
Bits [127:32] of the destination are copied from the first source operand. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

ROUNDSS is an SSE4.1 instruction and VROUNDSS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Related Instructions
(V)ROUNDPD, (V)ROUNDPS, (V)ROUNDSD

Mnemonic Opcode Description
ROUNDSS xmm1, xmm2/mem64, imm8 66 0F 3A 0A /r ib Rounds a single-precision floating-point

value in xmm2[63:0] or mem64. Writes a
rounded single-precision value to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VROUNDSS xmm1, xmm2, xmm3/mem64, imm8 C4 RXB.00011 X.src.X.01 0A /r ib

Instruction Reference ROUNDSS, VROUNDSS 501

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference RSQRTPS, VRSQRTPS 502

26568—Rev. 3.11—December 2010 AMD64 Technology

Computes the approximate reciprocal of the square root of each packed single-precision floating-point
value in the source operand and writes the results to the corresponding doublewords of the destination.
MXCSR.RC has no effect on the result.

The maximum error is less than or equal to 1.5 * 2–12 times the true reciprocal square root. A source
value that is ±zero or denormal returns an infinity of the source value sign. Negative source values
other than –zero and –denormal return a QNaN floating-point indefinite value. For both SNaN and
QNaN source operands, a QNaN is returned.

There are legacy and extended forms of the instruction:

RSQRTPS
Computes four values. The first source operand is an XMM register. The second source operand is
either another XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VRSQRTPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Computes four values The source operand is either an XMM register or a 128-bit memory location.
The destination is an XMM register. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.
YMM Encoding

Computes eight values. The first source operand is a YMM register and the second source operand is
either a YMM register or a 256-bit memory location. The destination is a third YMM register.

RSQRTPS is an SSE instruction and VRSQRTPS is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)RSQRTSS, (V)SQRTPD, (V)SQRTPS, (V)SQRTSD, (V)SQRTSS

RSQRTPS
VRSQRTPS

Reciprocal Square Root
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
RSQRTPS xmm1, xmm2/mem128 0F 52 /r Computes reciprocals of square roots of packed single-

precision floating-point values in xmm1 or mem128.
Writes result to xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VRSQRTPS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 52 /r
VRSQRTPS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 52 /r

Instruction Reference RSQRTPS, VRSQRTPS 503

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference RSQRTSS, VRSQRTSS 504

26568—Rev. 3.11—December 2010 AMD64 Technology

Computes the approximate reciprocal of the square root of the scalar single-precision floating-point
value in a source operand and writes the result to the low-order doubleword of the destination.
MXCSR.RC as no effect on the result.

The maximum error is less than or equal to 1.5 * 2–12 times the true reciprocal square root. A source
value that is ±zero or denormal returns an infinity of the source value’s sign. Negative source values
other than –zero and –denormal return a QNaN floating-point indefinite value. For both SNaN and
QNaN source operands, a QNaN is returned.

RSQRTSS
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [127:32] of the destination are not affected. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.

VRSQRTSS
The extended form of the instruction has both 128-bit encoding.
XMM Encoding

The first source operand and the destination are XMM registers. The second source operand is either
an XMM register or a 32-bit memory location. Bits [31:0] of the destination contain the reciprocal; bits
[127:32] of the destination are copied from the first source register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

RSQRTSS is an SSE instruction and VSQRTSS is an AVX instruction. Support for these instructions
i s ind ica ted by CPUID fea ture ident i f ie rs CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)RSQRTPS, (V)SQRTPD, (V)SQRTPS, (V)SQRTSD, (V)SQRTSS

RSQRTSS
VRSQRTSS

Reciprocal Square Root
Scalar Single-Precision Floating-Point

Mnemonic Opcode Description
RSQRTSS xmm1, xmm2/mem32 F3 0F 52 /r Computes reciprocal of square root of a scalar single-

precision floating-point value in xmm1 or mem32. Writes
result to xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VRSQRTSS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.X.10 52 /r

Instruction Reference RSQRTSS, VRSQRTSS 505

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference SHUFPD, VSHUFPD 506

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies packed double-precision floating-point values from either of two sources to quadwords in the
destination, as specified by bit fields of an immediate byte operand.

Each bit corresponds to a quadword destination. The 128-bit legacy and extended versions of the
instruction use bits [1:0]; the 256-bit extended version uses bits [3:0], as shown.

There are legacy and extended forms of the instruction:

SHUFPD
Shuffles four source values. The first source operand is an XMM register. The second source operand
is either another XMM register or a 128-bit memory location. There is a third 8-bit immediate
operand. The first source register is also the destination. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VSHUFPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Shuffles four source values. The first source operand is an XMM register. The second source operand
is either another XMM register or a 128-bit memory location. The destination is a third XMM register.
There is a fourth 8-bit immediate operand. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.
YMM Encoding

Shuffles eight source values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM
register. There is a fourth 8-bit immediate operand.

SHUFPD
VSHUFPD

Shuffle
Packed Double-Precision Floating-Point

Destination
Quadword

Immediate-Byte
Bit Field

Value of
Bit Field

Source 1
Bits Copied

Source 2
Bits Copied

Used by 128-bit encoding and 256-bit encoding
[63:0] [0] 0 [63:0] —

1 [127:64] —
[127:64] [1] 0 — [63:0]

1 —]127:64]
Used only by 256-bit encoding

[191:128] [2] 0 [191:128] —
1 [255:192] —

[255:192] [3] 0 — [191:128]
1 — [255:192]

Instruction Reference SHUFPD, VSHUFPD 507

26568—Rev. 3.11—December 2010 AMD64 Technology

SHUFPD is an SSE2 instruction and VSHUFPD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)SHUFPS

Mnemonic Opcode Description
SHUFPD xmm1, xmm2/mem128, imm8 66 0F C6 /r ib Shuffles packed double-precision floating-

point values in xmm1 and xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VSHUFPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00001 X.src.0.01 C6 /r
VSHUFPD ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00001 X.src.1.01 C6 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference SHUFPS, VSHUFPS 508

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies packed single-precision floating-point values from either of two sources to doublewords in the
destination, as specified by bit fields of an immediate byte operand.

Each bit field corresponds to a doubleword destination. The 128-bit legacy and extended versions of
the instruction use a single 128-bit destination; the 256-bit extended version performs duplicate
operations on bits [127:0] and bits [255:128] of the source and destination.

SHUFPS
VSHUFPS

Shuffle
Packed Single-Precision Floating-Point

Destination
Doubleword

Immediate-Byte
Bit Field

Value of Bit
Field

Source 1
Bits Copied

Source 2
Bits Copied

[31:0] [1:0] 00 [31:0] —
01 [63:32] —
10 [95:64] —
11 [127:96] —

[63:32] [3:2] 00 [31:0] —
01 [63:32] —
10 [95:64] —
11 [127:96] —

[95:64] [5:4] 00 — [31:0]
01 — [63:32]
10 — [95:64]
11 — [127:96]

[127:96] [7:6] 00 — [31:0]
01 — [63:32]
10 — [95:64]
11 — [127:96]

Upper 128 bits of 256-bit source and destination used by 256-bit encoding
[159:128] [1:0] 00 [159:128] —

01 [191:160] —
10 [223:192] —
11 [255:224] —

[191:160] [3:2] 00 [159:128] —
01 [191:160] —
10 [223:192] —
11 [255:224] —

[223:192] [5:4] 00 — [159:128]
01 — [191:160]
10 — [223:192]
11 — [255:224]

[255:224] [7:6] 00 — [159:128]
01 — [191:160]
10 — [223:192]
11 — [255:224]

Instruction Reference SHUFPS, VSHUFPS 509

26568—Rev. 3.11—December 2010 AMD64 Technology

There are legacy and extended forms of the instruction:

SHUFPS
Shuffles eight source values. The first source operand is an XMM register. The second source operand
is either another XMM register or a 128-bit memory location. There is a third 8-bit immediate
operand. The first source register is also the destination. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VSHUFPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Shuffles eight source values. The first source operand is an XMM register. The second source operand
is either another XMM register or a 128-bit memory location. The destination is a third XMM register.
There is a fourth 8-bit immediate operand. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.
YMM Encoding

Shuffles 16 source values. The first source operand is a YMM register and the second source operand
is either a YMM register or a 256-bit memory location. The destination is a third YMM register. There
is a fourth 8-bit immediate operand.

SHUFPS is an SSE instruction and VSHUFPS is an AVX instruction. Support for these instructions is
i nd i ca t ed by CPUID f ea tu r e i den t i f i e r s CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)SHUFPD

Mnemonic Opcode Description
SHUFPS xmm1, xmm2/mem128, imm8 0F C6 /r ib Shuffles packed single-precision floating-

point values in xmm1 and xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VSHUFPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00001 X.src.0.00 C6 /r
VSHUFPS ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00001 X.src.1.00 C6 /r

Instruction Reference SHUFPS, VSHUFPS 510

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference SQRTPD, VSQRTPD 511

26568—Rev. 3.11—December 2010 AMD64 Technology

Computes the square root of each packed double-precision floating-point value in a source operand
and writes the result to the corresponding quadword of the destination.

Performing the square root of +infinity returns +infinity.

There are legacy and extended forms of the instruction:

SQRTPD
Computes two values. The first source operand is an XMM register. The second source operand is
either another XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VSQRTPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Computes two values. The first source operand is an XMM register. The second source operand is
either another XMM register or a 128-bit memory location. The destination is a third XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Computes four values. The first source operand is a YMM register and the second source operand is
either a YMM register or a 256-bit memory location. The destination is a third YMM register.

SQRTPD is an SSE2 instruction and VSQRTPD is an AVX instruction.Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)RSQRTPS, (V)RSQRTSS, (V)SQRTPS, (V)SQRTSD, (V)SQRTSS

SQRTPD
VSQRTPD

Square Root
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
SQRTPD xmm1, xmm2/mem128 66 0F 51 /r Computes square roots of packed double-precision

floating-point values in xmm1 or mem128. Writes the
results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VSQRTPD xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 51 /r
VSQRTPD ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 51 /r

Instruction Reference SQRTPD, VSQRTPD 512

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference SQRTPS, VSQRTPS 513

26568—Rev. 3.11—December 2010 AMD64 Technology

Computes the square root of each packed single-precision floating-point value in a source operand and
writes the result to the corresponding doubleword of the destination.

Performing the square root of +infinity returns +infinity.

There are legacy and extended forms of the instruction:

SQRTPS
Computes four values. The first source operand is an XMM register. The second source operand is
either another XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VSQRTPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Computes four values. The first source operand is an XMM register. The second source operand is
either another XMM register or a 128-bit memory location. The destination is a third XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Computes eight values. The first source operand is a YMM register and the second source operand is
either a YMM register or a 256-bit memory location. The destination is a third YMM register.

SQRTPS is an SSE instruction and VSQRTPS is an AVX instruction.Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)RSQRTPS, (V)RSQRTSS, (V)SQRTPD, (V)SQRTSD, (V)SQRTSS

SQRTPS
VSQRTPS

Square Root
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
SQRTPS xmm1, xmm2/mem128 0F 51 /r Computes square roots of packed single-precision

floating-point values in xmm1 or mem128. Writes the
results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VSQRTPS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 51 /r
VSQRTPS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 51 /r

Instruction Reference SQRTPS, VSQRTPS 514

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference SQRTSD, VSQRTSD 515

26568—Rev. 3.11—December 2010 AMD64 Technology

Computes the square root of a double-precision floating-point value and writes the result to the low
doubleword of the destination.

Performing the square root of +infinity returns +infinity.

There are legacy and extended forms of the instruction:

SQRTSD
The source operand is either an XMM register or a 64-bit memory location. When the source is an
XMM register, the source value must be in the low doubleword. The destination is an XMM register.
Bits [127:64] of the destination are not affected. Bits [255:128] of the YMM register that corresponds
to destination XMM register are not affected.

VSQRTSD
The extended form of the instruction has 128-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 64-bit memory location. When the second source is an XMM register, the source value must be in the
low doubleword. The destination is a third XMM register. Bits [127:64] of the destination are copied
from the first source operand. Bits [255:128] of the YMM register that corresponds to the destination
are cleared.

SQRTSD is an SSE2 instruction and VSQRTSD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)RSQRTPS, (V)RSQRTSS, (V)SQRTPD, (V)SQRTPS, (V)SQRTSS

SQRTSD
VSQRTSD

Square Root
Scalar Double-Precision Floating-Point

Mnemonic Opcode Description
SQRTSD xmm1, xmm2/mem64 F2 0F 51 /r Computes the square root of a double-precision floating-

point value in xmm1 or mem64. Writes the result to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VSQRTSD xmm1, xmm2/mem64 C4 RXB.00001 X.src.X.11 51 /r

Instruction Reference SQRTSD, VSQRTSD 516

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference SQRTSS, VSQRTSS 517

26568—Rev. 3.11—December 2010 AMD64 Technology

Computes the square root of a single-precision floating-point value and writes the result to the low
word of the destination.

Performing the square root of +infinity returns +infinity.

There are legacy and extended forms of the instruction:

SQRTSS
The source operand is either an XMM register or a 32-bit memory location. When the source is an
XMM register, the source value must be in the low word. The destination is an XMM register. Bits
[127:32] of the destination are not affected. Bits [255:128] of the YMM register that corresponds to
destination XMM register are not affected.

VSQRTSS
The extended form of the instruction has 128-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 32-bit memory location. When the second source is an XMM register, the source value must be in the
low word. The destination is a third XMM register. Bits [127:32] of the destination are copied from the
first source operand. Bits [255:128] of the YMM register that corresponds to the destination are
cleared.

SQRTSS is an SSE instruction and VSQRTSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)RSQRTPS, (V)RSQRTSS, (V)SQRTPD, (V)SQRTPS, (V)SQRTSD

SQRTSS
VSQRTSS

Square Root
Scalar Single-Precision Floating-Point

Mnemonic Opcode Description
SQRTSS xmm1, xmm2/mem32 F3 0F 51 /r Computes square root of a single-precision floating-point

value in xmm1 or mem32. Writes the result to xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VSQRTSS xmm1, xmm2/mem64 C4 RXB.00001 X.src.X.10 51 /r

Instruction Reference SQRTSS, VSQRTSS 518

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference STMXCSR, VSTMXCSR 519

26568—Rev. 3.11—December 2010 AMD64 Technology

Saves the content of the MXCSR extended control/status register to a 32-bit memory location.
Reserved bits are stored as zeroes. The MXCSR is described in “Registers” in Volume 1.

For both legacy STMXCSR and extended VSTMXCSR forms of the instruction, the source operand is
the MXCSR and the destination is a 32-bit memory location.

STMXCSR is an SSE instruction and VSTMXCSR is an AVX instruction. Support for these
instructions is indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
(V)LDMXCSR

STMXCSR
VSTMXCSR

Store MXCSR

Mnemonic Opcode Description
STMXCSR mem32 0F AE /3 Stores content of MXCSR in mem32.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VSTMXCSR mem32 C4 RXB.00001 X.1111.0.00 AE /3

Instruction Reference STMXCSR, VSTMXCSR 520

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M M M M M M M M M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.
S S S Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference SUBPD, VSUBPD 521

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts each packed double-precision floating-point value of the second source operand from the
corresponding value of the first source operand and writes the difference to the corresponding
quadword of the destination.

There are legacy and extended forms of the instruction:

SUBPD
Subtracts two pairs of values. The first source operand is an XMM register. The second source operand
is either another XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VSUBPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Subtracts two pairs of values. The first source operand is an XMM register. The second source operand
is either another XMM register or a 128-bit memory location. The destination is a third XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Subtracts four pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM
register.

SUBPD is an SSE2 instruction and VSUBPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)SUBPS, (V)SUBSD, (V)SUBSS

SUBPD
VSUBPD

Subtract
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
SUBPD xmm1, xmm2/mem128 66 0F 5C /r Subtracts packed double-precision floating-point values in

xmm2 or mem128 from corresponding values of xmm1.
Writes differences to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5C /r
VSUBPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5C /r

Instruction Reference SUBPD, VSUBPD 522

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference SUBPS, VSUBPS 523

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts each packed single-precision floating-point value of the second source operand from the
corresponding value of the first source operand and writes the difference to the corresponding
quadword of the destination.

There are legacy and extended forms of the instruction:

SUBPS
Subtracts four pairs of values. The first source operand is an XMM register. The second source
operand is either another XMM register or a 128-bit memory location. The first source register is also
the destination. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VSUBPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Subtracts four pairs of values. The first source operand is an XMM register. The second source
operand is either another XMM register or a 128-bit memory location. The destination is a third XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Subtracts eight pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM
register.

SUBPS is an SSE instruction and VSUBPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)SUBPD, (V)SUBSD, (V)SUBSS

SUBPS
VSUBPS

Subtract
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
SUBPS xmm1, xmm2/mem128 0F 5C /r Subtracts packed single-precision floating-point values in

xmm2 or mem128 from corresponding values of xmm1.
Writes differences to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VSUBPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5C /r
VSUBPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5C /r

Instruction Reference SUBPS, VSUBPS 524

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference SUBSD, VSUBSD 525

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts the double-precision floating-point value in the low-order quadword of the second source
operand from the corresponding value in the first source operand and writes the result to the low-order
quadword of the destination

SUBSD
The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location. The first source register is also the destination register. Bits [127:64] of
the destination and bits [255:128] of the corresponding YMM register are not affected.

VSUBSD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the first source
operand are copied to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

SUBSD is an SSE2 instruction and VSUBSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)SUBPD, (V)SUBPS, (V)SUBSS

SUBSD
VSUBSD

Subtract
Scalar Double-Precision Floating-Point

Mnemonic Opcode Description
SUBSD xmm1, xmm2/mem64 F2 0F 5C /r Subtracts low-order double-precision floating-point value in

xmm2 or mem64 from the corresponding value of xmm1.
Writes the difference to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VSUBSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5C /r

Instruction Reference SUBSD, VSUBSD 526

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference SUBSS, VSUBSS 527

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts the single-precision floating-point value in the low-order word of the second source operand
from the corresponding value in the first source operand and writes the result to the low-order word of
the destination

SUBSS
The first source operand is an XMM register and the second source operand is either an XMM register
or a 32-bit memory location. The first source register is also the destination register. Bits [127:32] of
the destination and bits [255:128] of the corresponding YMM register are not affected.

VSUBSS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the first source
operand are copied to bits [127:32] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

SUBSS is an SSE2 instruction and VSUBSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)SUBPD, (V)SUBPS, (V)SUBSD

SUBSS
VSUBSS

Subtract
Scalar Single-Precision Floating-Point

Mnemonic Opcode Description
SUBSS xmm1, xmm2/mem32 F3 0F 5C /r Subtracts a low-order single-precision floating-point value

in xmm2 or mem32 from the corresponding value of xmm1.
Writes the difference to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VSUBSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5C /r

Instruction Reference SUBSS, VSUBSS 528

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference UCOMISD, VUCOMISD 529

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs an unordered comparison of a double-precision floating-point value in the low-order 64 bits
of an XMM register with a double-precision floating-point value in the low-order 64 bits of another
XMM register or a 64-bit memory location.

The ZF, PF, and CF bits in the rFLAGS register reflect the result of the compare as follows.

The OF, AF, and SF bits in rFLAGS are cleared. If the instruction causes an unmasked SIMD floating-
point exception (#XF), the rFLAGS bits are not updated.

The result is unordered when one or both of the operand values is a NaN. UCOMISD signals a SIMD
floating-point invalid operation exception (#I) only when a source operand is an SNaN.

The legacy and extended forms of the instruction operate in the same way.

UCOMISD is an SSE2 instruction and VUCOMISD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISS

UCOMISD
VUCOMISD

Unordered Compare
Scalar Double-Precision Floating-Point

Result of Compare ZF PF CF
Unordered 1 1 1

Greater Than 0 0 0
Less Than 0 0 1

Equal 1 0 0

Mnemonic Opcode Description
UCOMISD xmm1, xmm2/mem64 66 0F 2E /r Compares scalar double-precision floating-point values

in xmm1 and xmm2 or mem64. Sets rFLAGS.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VUCOMISD xmm1, xmm2/mem64 C4 RXB.00001 X.1111.X.01 2E /r

Instruction Reference UCOMISD, VUCOMISD 530

26568—Rev. 3.11—December 2010 AMD64 Technology

rFLAGS Affected

MXCSR Flags Affected

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
0 0 M 0 M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set or cleared is M (modified). Unaffected flags are blank.
Note: If the instruction causes an unmasked SIMD floating-point exception (#XF), the rFLAGS bits are not updated.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference UCOMISS, VUCOMISS 531

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs an unordered comparison of a single-precision floating-point value in the low-order 32 bits
of an XMM register with a double-precision floating-point value in the low-order 32 bits of another
XMM register or a 32-bit memory location.

The ZF, PF, and CF bits in the rFLAGS register reflect the result of the compare as follows.

The OF, AF, and SF bits in rFLAGS are cleared. If the instruction causes an unmasked SIMD floating-
point exception (#XF), the rFLAGS bits are not updated.

The result is unordered when one or both of the operand values is a NaN. UCOMISD signals a SIMD
floating-point invalid operation exception (#I) only when a source operand is an SNaN.

The legacy and extended forms of the instruction operate in the same way.

UCOMISS is an SSE instruction and VUCOMISS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD

UCOMISS
VUCOMISS

Unordered Compare
Scalar Single-Precision Floating-Point

Result of Compare ZF PF CF
Unordered 1 1 1

Greater Than 0 0 0
Less Than 0 0 1

Equal 1 0 0

Mnemonic Opcode Description
UCOMISS xmm1, xmm2/mem32 0F 2E /r Compares scalar double-precision floating-point values

in xmm1 and xmm2 or mem64. Sets rFLAGS.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VUCOMISS xmm1, xmm2/mem32 C4 RXB.00001 X.1111.X.00 2E /r

Instruction Reference UCOMISS, VUCOMISS 532

26568—Rev. 3.11—December 2010 AMD64 Technology

rFLAGS Affected

MXCSR Flags Affected

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
0 0 M 0 M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set or cleared is M (modified). Unaffected flags are blank.
Note: If the instruction causes an unmasked SIMD floating-point exception (#XF), the rFLAGS bits are not updated.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference UNPCKHPD, VUNPCKHPD 533

26568—Rev. 3.11—December 2010 AMD64 Technology

Unpacks the high-order double-precision floating-point values of the first and second source operands
and interleaves the values into the destination. Bits [63:0] of the source operands are ignored.

Values are interleaved in ascending order from the lsb of the sources and the destination. Bits [127:64]
of the first source are written to bits [63:0] of the destination; bits [127:64] of the second source are
written to bits [127:64] of the destination.For the 256-bit encoding, the process is repeated for bits
[255:192] of the sources and bits [255:128] of the destination.

There are legacy and extended forms of the instruction:

UNPCKHPD
Interleaves one pair of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VUNPCKHPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Interleaves one pair of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The destination is an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Interleaves two pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM
register.

UNPCKHPD is an SSE2 instruction and VUNPCKHPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)UNPCKHPS, (V)UNPCKLPD, (V)UNPCKLPS

UNPCKHPD
VUNPCKHPD

Unpack High
Double-Precision Floating-Point

Mnemonic Opcode Description
UNPCKHPD xmm1, xmm2/mem128 66 0F 15 /r Unpacks the high-order double-precision floating-

point values in xmm1 and xmm2 or mem128 and
interleaves them into xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VUNPCKHPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 15 /r
VUNPCKHPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 15 /r

Instruction Reference UNPCKHPD, VUNPCKHPD 534

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference UNPCKHPS, VUNPCKHPS 535

26568—Rev. 3.11—December 2010 AMD64 Technology

Unpacks the high-order single-precision floating-point values of the first and second source operands
and interleaves the values into the destination. Bits [63:0] of the source operands are ignored.

Values are interleaved in ascending order from the lsb of the sources and the destination. Bits [95:64]
of the first source are written to bits [31:0] of the destination; bits [95:64] of the second source are
written to bits [63:32] of the destination and so on, ending with bits [127:96] of the second source in
bits [127:96] of the destination. For the 256-bit encoding, the process continues for bits [255:192] of
the sources and bits [255:128] of the destination.

There are legacy and extended forms of the instruction:

UNPCKHPS
Interleaves two pairs of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VUNPCKHPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Interleaves two pairs of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The destination is an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Interleaves four pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM
register.

UNPCKHPS is an SSE instruction and VUNPCKHPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)UNPCKHPD, (V)UNPCKLPD, (V)UNPCKLPS

UNPCKHPS
VUNPCKHPS

Unpack High
Single-Precision Floating-Point

Mnemonic Opcode Description
UNPCKHPS xmm1, xmm2/mem128 0F 15 /r Unpacks the high-order single-precision floating-point

values in xmm1 and xmm2 or mem128 and
interleaves them into xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VUNPCKHPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 15 /r
VUNPCKHPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 15 /r

Instruction Reference UNPCKHPS, VUNPCKHPS 536

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference UNPCKLPD, VUNPCKLPD 537

26568—Rev. 3.11—December 2010 AMD64 Technology

Unpacks the low-order double-precision floating-point values of the first and second source operands
and interleaves the values into the destination. Bits [127:64] of the source operands are ignored.

Values are interleaved in ascending order from the lsb of the sources and the destination. Bits [63:0] of
the first source are written to bits [63:0] of the destination; bits [63:0] of the second source are written
to bits [127:64] of the destination. For the 256-bit encoding, the process is repeated for bits [191:128]
of the sources and bits [255:128] of the destination.

There are legacy and extended forms of the instruction:

UNPCKLPD
Interleaves one pair of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VUNPCKLPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Interleaves one pair of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The destination is an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Interleaves two pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM
register.

UNPCKLPD is an SSE2 instruction and VUNPCKLPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)UNPCKHPD, (V)UNPCKHPS, (V)UNPCKLPS

UNPCKLPD
VUNPCKLPD

Unpack Low
Double-Precision Floating-Point

Mnemonic Opcode Description
UNPCKLPD xmm1, xmm2/mem128 66 0F 14 /r Unpacks the low-order double-precision floating-point

values in xmm1 and xmm2 or mem128 and
interleaves them into xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VUNPCKLPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 14 /r
VUNPCKLPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 14 /r

Instruction Reference UNPCKLPD, VUNPCKLPD 538

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference UNPCKLPS, VUNPCKLPS 539

26568—Rev. 3.11—December 2010 AMD64 Technology

Unpacks the low-order single-precision floating-point values of the first and second source operands
and interleaves the values into the destination. Bits [127:64] of the source operands are ignored.

Values are interleaved in ascending order from the lsb of the sources and the destination. Bits [31:0] of
the first source are written to bits [31:0] of the destination; bits [31:0] of the second source are written
to bits [63:32] of the destination and so on, ending with bits [63:32] of the second source in bits
[127:96] of the destination. For the 256-bit encoding, the process continues for bits [191:128] of the
sources and bits [255:128] of the destination.

There are legacy and extended forms of the instruction:

UNPCKLPS
Interleaves two pairs of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VUNPCKLPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Interleaves two pairs of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The destination is an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Interleaves four pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM
register.

UNPCKLPS is an SSE instruction and VUNPCKLPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Related Instructions
(V)UNPCKHPD, (V)UNPCKHPS, (V)UNPCKLPD

UNPCKLPS
VUNPCKLPS

Unpack Low
Single-Precision Floating-Point

Mnemonic Opcode Description
UNPCKLPS xmm1, xmm2/mem128 0F 14 /r Unpacks the high-order single-precision floating-point

values in xmm1 and xmm2 or mem128 and
interleaves them into xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VUNPCKLPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 14 /r
VUNPCKLPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 14 /r

Instruction Reference UNPCKLPS, VUNPCKLPS 540

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference VBROADCASTF128 541

26568—Rev. 3.11—December 2010 AMD64 Technology

Loads double-precision floating-point data from a 128-bit memory location and writes it to the two
128-bit elements of a YMM register

This extended-form instruction has 256-bit encoding.

The source operand is a128-bit memory location. The destination is a YMM register.

VBROADCASTF128 is an AVX instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
VBROADCASTSD, VBROADCASTSS

VBROADCASTF128 Load With Broadcast
From 128-bit Memory Location

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VBROADCASTF128 ymm1, mem128 C4 RXB.00010 X.1111.1.01 1A /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Instruction Reference VBROADCASTSD 542

26568—Rev. 3.11—December 2010 AMD64 Technology

Loads a double-precision floating-point value from a 64-bit memory location and writes it to the four
64-bit elements of a YMM register

This extended-form instruction has 256-bit encoding.

The source operand is a 64-bit memory location. The destination is a YMM register.

VBROADCASTSD is an AVX instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
VBROADCASTF128, VBROADCASTSS

VBROADCASTSD Load With Broadcast
From 64-Bit Memory Location

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VBROADCASTSD ymm1, mem64 C4 RXB.00010 0.1111.1.01 19 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Instruction Reference VBROADCASTSS 543

26568—Rev. 3.11—December 2010 AMD64 Technology

Loads a single-precision floating-point value from a 32-bit memory location and writes it to 32-bit
elements of an XMM or YMM register

This extended-form instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Broadcasts to eight 32-bit elements.

The source operand is a 32-bit memory location. The destination is an XMM register.
YMM Encoding

Broadcasts to sixteen 32-bit elements.

The source operand is a 32-bit memory location. The destination is a YMM register.

VBROADCASTSS is an AVX instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
VBROADCASTF128, VBROADCASTSD

VBROADCASTSS Load With Broadcast
From 32-Bit Memory Location

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VBROADCASTSS xmm1, mem32 C4 RXB.00010 0.1111.0.01 18 /r
VBROADCASTSS ymm1, mem32 C4 RXB.00010 0.1111.1.01 18 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Instruction Reference VEXTRACT128 544

26568—Rev. 3.11—December 2010 AMD64 Technology

Extracts 128-bit packed-value data from a YMM register as specified by an immediate byte operand,
and writes it to either an XMM register or a 128-bit memory location.

Only bit [0] of the immediate operand is used. Operation is as follows.
• When imm8[0] = 0, copy bits [127:0] of the source to the destination.
• When imm8[0] = 1, copy bits [255:128] of the source to the destination.

This extended-form instruction has 256-bit encoding.

The source operand is a YMM register and the destination is either an XMM register or a 128-bit
memory location. There is a third immediate byte operand.

This i s an AVX inst ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
VBROADCASTF128, VINSERTF128

VEXTRACTF128 Extract
Packed Values from 128-bit Memory Location

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VEXTRACT128 xmm/mem128, ymm, imm8 C4 RXB.00011 0.1111.1.01 19 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Instruction Reference VFMADDPD 545

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed double-precision floating-point value of the first source by the corresponding
value of the second source, adds each product to the corresponding value of the third source and writes
the rounded results to the destination.

There are four operands: VFMADDPD dest, src1, src2, src3 dest = (src1* src2) + src3

The 128-bit version multiplies each of two double-precision values in the first source XMM register
by the corresponding double-precision value in the second source. It then adds each intermediate
product to the corresponding double-precision value in the third source and places the result in the
destination XMM register.

The 256-bit version multiplies each of four double-precision values in the first source YMM register
by the corresponding double-precision value in the second source. It then adds each product to the
corresponding double-precision value in the third source and places the results in the destination
YMM register.

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.

The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register, bits [255:128] of the corresponding YMM register are cleared.

The intermediate products are not rounded; the infinitely precise products are used in the addition. The
results of the addition are rounded, as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

Related Instructions
VFMADDPS, VFMADDSD, VFMADDSS

VFMADDPD Multiply and Add
Packed Double-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFMADDPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 69 /r /is4
VFMADDPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 69 /r /is4
VFMADDPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 69 /r /is4
VFMADDPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 69 /r /is4

Instruction Reference VFMADDPD 546

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFMADDPS 547

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed single-precision floating-point value of the first source by the corresponding
value of the second source, adds each product to the corresponding value of the third source and writes
the rounded results to the destination.

There are four operands: VFMADDPS dest, src1, src2, src3 dest = src1* src2 + src3

The 128-bit version multiplies each of four single-precision values in the first source XMM register by
the corresponding single-precision value in the second source. It then adds each product to the
corresponding single-precision value in the third source and places the results in the destination XMM
register.

The 256-bit version multiplies each of eight single-precision values in the first source YMM register
by the corresponding double-precision value in the second source. It then adds each product to the
corresponding double-precision value in the third source and places the results in the destination
YMM register.

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.

The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register, bits [255:128] of the corresponding YMM register are cleared.

The intermediate products are not rounded; the infinitely precise products are used in the addition. The
results of the addition are rounded, as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

Related Instructions
VFMADDPD, VFMADDSD, VFMADDSS

VFMADDPS Multiply and Add
Packed Single-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFMADDPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 68 /r /is4
VFMADDPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 68 /r /is4
VFMADDPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 68 /r /is4
VFMADDPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 68 /r /is4

Instruction Reference VFMADDPS 548

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFMADDSD 549

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the double-precision floating-point value of the low-order quadword of the first source by
the corresponding value of the low-order quadword of the second source, adds the product to the
corresponding value of the low-order quadword of the third source, and writes the result to the low-
order quadword of the destination.

There are four operands: VFMADDSD dest, src1, src2, src3 dest = src1* src2 + src3

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a 64-bit memory location and the third

source is a register.
• When VEX.W = 1, the second source is a a register and the third source is a register or a 64-bit

memory location.

The destination is an XMM register. When the result is written to the destination XMM register, bits
[127:64] of the destination and bits [255:128] of the corresponding YMM register are cleared.

The intermediate product is not rounded; the infinitely precise product is used in the addition. The
result of the addition is rounded, as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

Related Instructions
VFMADDPD, VFMADDPS, VFMADDSS

VFMADDSD Multiply and Add
Scalar Double-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFMADDSD xmm1, xmm2, xmm3/mem64, xmm4 C4 RXB.00011 0.src.X.01 6B /r /is4
VFMADDSD xmm1, xmm2, xmm3, xmm4/mem64 C4 RXB.00011 1.src.X.01 6B /r /is4

Instruction Reference VFMADDSD 550

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFMADDSS 551

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the single-precision floating-point value of the low-order doubleword of the first source by
the corresponding value of the second source, adds the product to the corresponding value of the third
source, and writes the result to the low-order doubleword of the destination.

There are four operands: VFMADDSS dest, src1, src2, src3 dest = src1* src2 + src3

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a 32-bit memory location and the third

source is a register.
• When VEX.W = 1, the second source is a a register and the third source is either a register or a 32-

bit memory location.

The destination is an XMM register. When the result is written to the destination XMM register, bits
[127:32] of the destination and bits [255:128] of the corresponding YMM register are cleared.

The intermediate product is not rounded; the infinitely precise product is used in the addition. The
result of the addition is rounded, as specified byMXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

Related Instructions
VFMADDPD, VFMADDPS, VFMADDSD

VFMADDSS Multiply and Add
Scalar Single-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFMADDSS xmm1, xmm2, xmm3/mem32, xmm4 C4 RXB.00011 0.src.X.01 6A /r /is4
VFMADDSS xmm1, xmm2, xmm3, xmm4/mem32 C4 RXB.00011 1.src.X.01 6A /r /is4

Instruction Reference VFMADDSS 552

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFMADDSUBPD 553

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed double-precision floating-point value of the first source by the corresponding
value of the second source. Adds each odd-numbered double-precision floating-point value of the
third source to the corresponding infinite-precision intermediate product; subtracts each even-
numbered double-precision floating-point value of the third source from the corresponding product.
Writes the results to the destination.

The 128-bit version multiplies each of two double-precision floating-point values in the first source by
the corresponding value in the second source. The low-order double-precision floating-point value in
the third source is subtracted from the corresponding infinite-precision product and the high-order
double-precision floating-point value in the third source is added to the corresponding product. The
results of these operations are placed in their corresponding positions in the destination.

The 256-bit version multiplies each of four double-precision floating-point values in first source by the
corresponding double-precision value in the second source. The even-numbered double-precision
values in the third source are subtracted from their corresponding infinite-precision intermediate
products and the odd-numbered double-precision values in the third source are added to their
corresponding infinite precision intermediate products. The results of these operations are placed in
their corresponding positions in the destination.

The first source is an XMM register or a YMM register, as determined by VEX.L.

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.

The destination is either an XMM register or a YMM register, as determined by VEX.L. When writing
to an XMM destination, bits [255:128] of the corresponding YMM register are cleared.

The intermediate products are not rounded; the infinitely precise products are used in the final addition
and subtraction operation(s). The results of the addition and subtraction operations are rounded, as
specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

VFMADDSUBPD Multiply with Alternating Add/Subtract
Packed Double-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFMADDSUBPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 5D /r /is4
VFMADDSUBPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 5D /r /is4
VFMADDSUBPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 5D /r /is4
VFMADDSUBPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 5D /r /is4

Instruction Reference VFMADDSUBPD 554

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
VFMADDSUBPD, VFMSUBADDPD, VFMSUBADDPS

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFMADDSUBPS 555

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed single-precision floating-point value of the first source by the corresponding
value of the second source. Adds each odd-numbered single-precision floating-point value of the third
source to the corresponding infinite-precision intermediate product; subtracts each even-numbered
single-precision floating-point value of the third source from the corresponding product. Writes the
results to the destination.

The 128-bit version multiplies each of four single-precision floating-point values in first source by the
corresponding single-precision value in the second source. The even-numbered single-precision
values in the third source are subtracted from their corresponding infinite-precision intermediate
products and the odd-numbered single-precision values in the third source are added to their
corresponding infinite precision intermediate products. The results of these operations are placed in
their corresponding positions in the destination.

The 256-bit version multiplies each of eight single-precision floating-point values in first source by the
corresponding single-precision value in the second source. The even-numbered single-precision
values in the third source are subtracted from their corresponding infinite-precision intermediate
products and the odd-numbered single-precision values in the third source are added to their
corresponding infinite precision intermediate products. The results of these operations are placed in
their corresponding positions in the destination.

The first source is either an XMM register or a YMM register, as determined by VEX.L.

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.

The destination is either an XMM register or a YMM register, as determined by VEX.L. When writing
to an XMM destination, bits [255:128] of the corresponding YMM register are cleared.

The intermediate products are not rounded; the infinitely precise intermediate products are used in the
addition and subtraction operations. The results of the addition and subtraction operations are rounded,
as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

VFMADDSUBPS Multiply with Alternating Add/Subtract
Packed Single-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFMADDSUBPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 5C /r /is4
VFMADDSUBPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 5C /r /is4
VFMADDSUBPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 5C /r /is4
VFMADDSUBPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 5C /r /is4

Instruction Reference VFMADDSUBPS 556

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
VFMADDSUBPD, VFMSUBADDPD, VFMSUBADDPS

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFMSUBADDPD 557

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed double-precision floating-point value of the first source by the corresponding
value of the second source. Adds each even-numbered double-precision floating-point value of the
third source to the corresponding infinite-precision intermediate product; subtracts each odd-
numbered double-precision floating-point value of the third source from the corresponding product.
Writes the results to the destination.

The 128-bit version multiplies each of two double-precision floating-point values in the first source by
the corresponding value in the second source. The high-order double-precision floating-point value in
the third source is subtracted from the corresponding infinite-precision product and the low-order
double-precision floating-point value in the third source is added to the corresponding product. The
results of these operations are placed in their corresponding positions in the destination.

The 256-bit version multiplies each of four double-precision floating-point values in first source by the
corresponding double-precision value in the second source. The odd-numbered double-precision
values in the third source are subtracted from their corresponding infinite-precision intermediate
products and the even-numbered double-precision values in the third source are added to their
corresponding infinite precision intermediate products. The results of these operations are placed in
their corresponding positions in the destination.

The first source is either an XMM register or a YMM register, as determined by VEX.L.

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source operand is either a register

or a memory location.

The destination is either an XMM register or a YMM register, as determined by VEX.L. When writing
to an XMM destination, bits [255:128] of the corresponding YMM register are cleared.

The intermediate products are not rounded; the two infinitely precise intermediate products are used in
the addition. The results of the addition and subtraction operations are rounded, as specified by
MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

VFMSUBADDPD Multiply with Alternating Subtract/Add
Packed Double-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFMSUBADDPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 5F /r /is4
VFMSUBADDPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 5F /r /is4
VFMSUBADDPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 5F /r /is4
VFMSUBADDPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 5F /r /is4

Instruction Reference VFMSUBADDPD 558

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
VFMADDSUBPD, VFMADDSUBPS, VFMSUBADDPS

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFMSUBADDPS 559

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed single-precision floating-point value of the first source by the corresponding
value of the second source. Adds each even-numbered single-precision floating-point value of the
third source to the corresponding infinite-precision intermediate product; subtracts each odd-
numbered single-precision floating-point value of the third source from the corresponding product.
Writes the results to the destination.

The 128-bit version multiplies each of four single-precision floating-point values in first source by the
corresponding single-precision value in the second source. The odd-numbered single-precision values
in the third source are subtracted from their corresponding infinite-precision intermediate products and
the even-numbered single-precision values in the third source are added to their corresponding infinite
precision intermediate products. The results of these operations are placed in their corresponding
positions in the destination.

The 256-bit version multiplies each of eight single-precision floating-point values in first source by the
corresponding single-precision value in the second source. The odd-numbered single-precision values
in the third source are subtracted from their corresponding infinite-precision intermediate products and
the even-numbered single-precision values in the third source are added to their corresponding infinite
precision intermediate products. The results of these operations are placed in their corresponding
positions in the destination.

The first source is either an XMM register or a YMM register, as determined by VEX.L.

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.

The destination is either an XMM register or a YMM register, as determined by VEX.L. When writing
to an XMM destination, bits [255:128] of the corresponding YMM register are cleared.

The intermediate products are not rounded; the infinitely precise products are used in the addition. The
results of the additions and subtracts are rounded, as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

VFMSUBADDPS Multiply with Alternating Subtract/Add
Packed Single-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFMSUBADDPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 5E /r /is4
VFMSUBADDPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 5E /r /is4
VFMSUBADDPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 5E /r /is4
VFMSUBADDPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 5E /r /is4

Instruction Reference VFMSUBADDPS 560

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
VFMADDSUBPD, VFMADDSUBPS, VFMSUBADDPD, VFMSUBADDPS

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFMSUBPD 561

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed double-precision floating-point value of the first source by the corresponding
value of the second source, subtracts the corresponding values of the third source from the
intermediate products of the multiplication, and writes results to the destination.

There are four operands: VFMSUBPD dest, src1, src2, src3 dest = src1* src2 - src3

The 128-bit version multiplies two packed double-precision floating-point values in the first source,
by their corresponding packed double-precision floating point values in the second source, producing
two intermediate products. The two double precision floating-point values in the third source are
subtracted from the intermediate products of the multiplication and the remainders are placed in the
destination XMM register.

The 256-bit version multiplies four packed double-precision floating-point values in the first source by
their corresponding packed double-precision floating point values in the second source, producing
four intermediate products. The four double-precision floating-point values in the third source are
subtracted from the intermediate products of the multiplication and the remainders are placed in the
destination YMM register.

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.

The destination is either an XMM register or a YMM register, as determined by VEX.L. When writing
to an XMM destination, bits [255:128] of the corresponding YMM register are cleared.

The intermediate products are not rounded; the two infinitely precise products are used in the
subtraction. The results of the subtraction are rounded, as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

Related Instructions
VFMSUBPS, VFMSUBSD, VFMSUBSS

VFMSUBPD Multiply and Subtract
Packed Double-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFMSUBPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 6D /r /is4
VFMSUBPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 6D /r /is4
VFMSUBPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 6D /r /is4
VFMSUBPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 6D /r /is4

Instruction Reference VFMSUBPD 562

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFMSUBPS 563

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed single-precision floating-point value of the first source by the corresponding
value of the second source, subtracts the corresponding values of the third source from the products,
and writes four results to the destination.

There are four operands: VFMSUBPS dest, src1, src2, src3 dest = src1* src2 - src3

The 128-bit version multiplies four packed single-precision floating-point values in the first source by
their corresponding packed single-precision floating point values in the second source, producing four
intermediate products. The four single-precision floating-point values in the third source are
subtracted from the intermediate products of the multiplication and the remainders are placed in the
destination XMM register.

The 256-bit version multiplies eight packed single-precision floating-point values in the first source by
their corresponding packed single-precision floating point values in the second source, producing
eight intermediate products. The eight single-precision floating-point values in the third source are
subtracted from the intermediate products of the multiplication and the remainders are placed in the
destination YMM register.

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a a register and the third source is either a register or a

memory location.

The destination is either an XMM register or a YMM register, as determined by VEX.L. When writing
to an XMM destination, bits [255:128] of the corresponding YMM register are cleared.

The intermediate products are not rounded; the two infinitely precise products are used in the
subtraction. The results of the subtraction are rounded, as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

Related Instructions
VFMSUBPD, VFMSUBSD, VFMSUBSS

VFMSUBPS Multiply and Subtract
Packed Single-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFMSUBPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 6C /r /is4
VFMSUBPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 6C /r /is4
VFMSUBPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 6C /r /is4
VFMSUBPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 6C /r /is4

Instruction Reference VFMSUBPS 564

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFMSUBSD 565

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the double-precision floating-point value of the low-order quadword of the first source by
the corresponding value of the low-order quadword of the second source, subtracts the corresponding
value of the low-order quadword of the third source from the intermediate product, and writes results
to the low-order quadword of the destination.

There are four operands: VFMSUBSD dest, src1, src2, src3 dest = src1* src2 - src3

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or 64-bit memory location and the third

source is a register.
• When VEX.W = 1, the second source is a register and the third source is a register or 64-bit

memory location.

The destination is an XMM register. When the result is written to the destination XMM register, bits
[127:64] of the destination and bits [255:128] of the corresponding YMM register are cleared.

The intermediate product is not rounded; the infinitely precise product is used in the subtraction. The
result of the subtraction is rounded, as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

Related Instructions
VFMSUBPD, VFMSUBPS, VFMSUBSS

VFMSUBSD Multiply and Subtract
Scalar Double-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFMSUBSD xmm1, xmm2, xmm3/mem64, xmm4 C4 RXB.00011 0.src.0.01 6F /r /is4
VFMSUBSD xmm1, xmm2, xmm3, xmm4/mem64 C4 RXB.00011 1.src.0.01 6F /r /is4

Instruction Reference VFMSUBSD 566

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFMSUBSS 567

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the single-precision floating-point value of the low-order doubleword of the first source by
the corresponding value of the low-order doubleword of the second source, subtracts the
corresponding value of the low-order doubleword of the third source from the product, and writes
results to the low-order doubleword of the destination.

There are four operands: VFMSUBSS dest, src1, src2, src3 dest = src1* src2 - src3

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or 32-bit memory location and the third

source is a register.
• When VEX.W = 1, the second source is a register and the third source is a register or 32-bit

memory location.

The destination is an XMM register. When the result is written to the destination XMM register, bits
[127:32] of the XMM register and bits [255:128] of the corresponding YMM register are cleared.

The intermediate product is not rounded; the infinitely precise product is used in the subtraction. The
result of the subtraction is rounded, as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

Related Instructions
VFMSUBPD, VFMSUBPS, VFMSUBSD

VFMSUBSS Multiply and Subtract
Scalar Single-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFMSUBSS xmm1, xmm2, xmm3/mem32, xmm4 C4 RXB.00011 0.src.0.01 6E /r /is4
VFMSUBSS xmm1, xmm2, xmm3, xmm4/mem32 C4 RXB.00011 1.src.0.01 6E /r /is4

Instruction Reference VFMSUBSS 568

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference FNMADDPD 569

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed double-precision floating-point value of the first source by the corresponding
value of the second source, negates the products, adds them to the corresponding values of the third
source, and writes results to the destination.

There are four operands: VFNMADDPD dest, src1, src2, src3 dest = – (src1* src2) + src3

The 128-bit version multiplies the two double-precision values in the first source XMM register by the
corresponding double-precision values in the second source, which can be either an XMM register or a
128-bit memory location. It then negates each product and adds it to the corresponding double-
precision value in the third source. The results are then placed in the destination XMM register.

The 256-bit version multiplies the four double-precision values in the first source YMM register by the
four double-precision values in the second source, which can be either a YMM register or a 256-bit
memory location. It then negates each product and adds it to the corresponding double-precision value
in the third source. The results are then placed in the destination YMM register.

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.

The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register, bits [255:128] of the corresponding YMM register are cleared.

The intermediate products are not rounded; the infinitely precise products are used in the addition. The
results of the addition are rounded, as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

Related Instructions
VFNMADDPS, VFNMADDSD, VFNMADDSS

VFNMADDPD Negative Multiply and Add
Packed Double-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFNMADDPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 79 /r /is4
VFNMADDPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 79 /r /is4
VFNMADDPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 79 /r /is4
VFNMADDPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 79 /r /is4

Instruction Reference FNMADDPD 570

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference FNMADDPS 571

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed single-precision floating-point value of the first source by the corresponding
value of the second source, negates the products, adds them to the corresponding values of the third
source, and writes results to the destination.

There are four operands: VFNMADDPS dest, src1, src2, src3 dest = – (src1* src2) + src3

The 128-bit version multiplies the four single-precision values in the first source XMM register by the
corresponding single-precision values in the second source, which can be either an XMM register or a
128-bit memory location. It then negates each product and adds it to the corresponding single-
precision value in the third source. The results are then placed in the destination XMM register.

The 256-bit version multiplies the eight single-precision values in the first source YMM register by the
eight single-precision values in the second source, which can be either a YMM register or a 256-bit
memory location. It then negates each product and adds it to the corresponding single-precision value
in the third source. The result is then placed in the destination YMM register.

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.

The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register, bits [255:128] of the corresponding YMM register are cleared.

The intermediate products are not rounded; the infinitely precise products are used in the addition. The
results of the addition are rounded, as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

Related Instructions
VFNMADDPD, VFNMADDSD, VFNMADDSS

VFNMADDPS Negative Multiply and Add
Packed Single-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFNMADDPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 78 /r /is4
VFNMADDPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 78 /r /is4
VFNMADDPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 78 /r /is4
VFNMADDPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 78 /r /is4

Instruction Reference FNMADDPS 572

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFNMADDSD 573

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the double-precision floating-point value of the low-order quadword of the first source by
the corresponding value of the low-order quadword of the second source, negates the product, adds it
to the corresponding value of the low-order quadword of the third source, and writes the result to the
low-order quadword of the destination.

There are four operands: VFNMADDSD dest, src1, src2, src3 dest = – (src1* src2) + src)

The first source is an XMM register specified by VEX.vvvv.

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or 64-bit memory location and the third

source is a register.
• When VEX.W = 1, the second source is a register and the third source is a register or 64-bit

memory location. The destination is an XMM register. When the result is written to the
destination, bits [127:64] of the XMM register and bits [255:128] of the corresponding YMM
register are cleared.

The intermediate products are not rounded; the infinitely precise products are used in the addition. The
results of the addition are rounded, as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

Related Instructions
VFNMADDPD, VFNMADDPS, VFNMADDSS

VFNMADDSD Negative Multiply and Add
Scalar Double-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFNMADDSD xmm1, xmm2, xmm3/mem64, xmm4 C4 RXB.00011 0.src.X.01 7B /r /is4
VFNMADDSD xmm1, xmm2, xmm3, xmm4/mem64 C4 RXB.00011 1.src.X.01 7B /r /is4

Instruction Reference VFNMADDSD 574

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFNMADDSS 575

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the single-precision floating-point value of the low-order doubleword of the first source by
the corresponding value of the low-order doubleword of the second source, negates the product, adds it
to the corresponding value of the low-order doubleword of the third source, and writes results to the
low-order doubleword of the destination.

There are four operands: VFNMADDSS dest, src1, src2, src3 dest = - (src1* src2) + src3

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or 32-bit memory location and the third

source is a register.
• When VEX.W = 1, the second source is a register and the third source is a register or 32-bit

memory location.

The destination is an XMM register. When the result is written to the destination, bits [127:32] of the
XMM register and bits [255:128] of the corresponding YMM register are cleared.

The intermediate products are not rounded; the infinitely precise products are used in the addition. The
results of the addition are rounded, as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

Related Instructions
VFNMADDPD, VFNMADDPS, VFNMADDSS

VFNMADDSS Negative Multiply and Add
Scalar Single-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFNMADDSS xmm1, xmm2, xmm3/mem32, xmm4 C4 RXB.00011 0.src.X.01 7A /r /is4
VFNMADDSS xmm1, xmm2, xmm3, xmm4/mem32 C4 RXB.00011 1.src.X.01 7A /r /is4

Instruction Reference VFNMADDSS 576

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFNMSUBPD 577

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed double-precision floating-point value of the first source by the corresponding
value of the second source, subtracts the corresponding value of the third source from the negated
interim products, and writes results to the destination.

There are four operands: VFNMSUBPD dest, src1, src2, src3 dest = – (src1* src2) - src3

The 128-bit version multiplies each of two double-precision values in the first source XMM register
by the corresponding double-precision value in the second source, which can be either an XMM
register or a 128-bit memory location. It then subtracts the corresponding double-precision value in the
third source from the negated interim product. The results are then placed in the destination XMM
register.

The 256-bit version multiplies each of four double-precision values in the first source YMM register
by the corresponding double-precision value in the second source, which can be either a YMM register
or a 256-bit memory location. It then subtracts the corresponding double-precision value in the third
source from the negated interim product. The results are then placed in the destination YMM register.

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.

The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register, bits [255:128] of the corresponding YMM register are cleared.

The intermediate products are not rounded; the infinitely precise products are used in the subtraction.
The results of the subtraction are rounded, as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

Related Instructions
VFNMSUBPS, VFNMSUBSD, VFNMSUBSS

VFNMSUBPD Negative Multiply and Subtract
Packed Double-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFNMSUBPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 7D /r /is4
VFNMSUBPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 7D /r /is4
VFNMSUBPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 7D /r /is4
VFNMSUBPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 7D /r /is4

Instruction Reference VFNMSUBPD 578

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFNMSUBPS 579

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed single-precision floating-point value of the first source by the corresponding
value of the second source, subtracts the corresponding values of the third source from the negated
products, and writes results to the destination.

There are four operands: VFNMSUBPS dest, src1, src2, src3 dest = – (src1* src2) – src3

The 128-bit version multiplies each of four single-precision values in the first source XMM register by
the corresponding single-precision value in the second source, which can be either an XMM register or
a 128-bit memory location. It then subtracts the corresponding single-precision value in the third
source from the negated interim product. The results are then placed in the destination XMM register.

The 256-bit version multiplies each of eight single-precision values in the first source YMM register
by the corresponding single-precision value in the second source, which can be either a YMM register
or a 256-bit memory location. It then subtracts the corresponding single-precision value in the third
source from the negated interim product. The results are then placed in the destination YMM register.

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.

The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register, bits [255:128] of the corresponding YMM register are cleared.

The intermediate products are not rounded; the infinitely precise products are used in the subtraction.
The results of the subtraction are rounded, as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

Related Instructions
VFNMSUBPD, VFNMSUBSD, VFNMSUBSS

VFNMSUBPS Negative Multiply and Subtract
Packed Single-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFNMSUBPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 7C /r /is4
VFNMSUBPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 7C /r /is4
VFNMSUBPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 7C /r /is4
VFNMSUBPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 7C /r /is4

Instruction Reference VFNMSUBPS 580

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFNMSUBSD 581

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the double-precision floating-point value of the low-order quadword of the first source by
the corresponding value of the low-order quadword of the second source, subtracts the corresponding
value of the low-order quadword of the third source from the negated interim product, and writes
results to the low-order quadword of the destination.

There are four operands: VFNMSUBSD dest, src1, src2, src3 dest = – (src1* src2) – src3

The first source is an XMM register.

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a 64-bit memory location and the third

source is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a 64-bit

memory location.

The destination is an XMM register specified by VEX.vvvv. Bits [127:64] of the destination XMM
register and bits [255:128] of the corresponding YMM register are cleared.

The intermediate products are not rounded; the infinitely precise products are used in the subtraction.
The results of the subtraction are rounded, as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

Related Instructions
VFNMSUBPD, VFNMSUBPS, VFNMSUBSS

VFNMSUBSD Negative Multiply and Subtract
Scalar Double-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFNMSUBSD xmm1, xmm2, xmm3/mem64, xmm4 C4 RXB.00011 0.src.X.01 7F /r /is4
VFNMSUBSD xmm1, xmm2, xmm3, xmm4/mem64 C4 RXB.00011 1.src.X.01 7F /r /is4

Instruction Reference VFNMSUBSD 582

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFNMSUBSS 583

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the single-precision floating-point value of the low-order doubleword of the first source by
the corresponding value of the low-order doubleword of the second source, subtracts the
corresponding value of the low-order doubleword of the third source from the negated product, and
writes results to the low-order doubleword of the destination.

There are four operands: VFNMSUBSS dest, src1, src2, src3 dest = - (src1* src2) - src3

VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a 32-bit memory location and the third

source is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a 32-bit

memory location.

The destination is an XMM register specified by VEX.vvvv. Bits[127:32] of the destination XMM
register and bits [255:128] of the corresponding YMM register are cleared.

The intermediate products are not rounded; the infinitely precise products are used in the subtraction.
The results of the subtraction are rounded, as specified by MXCSR.RC.

This is an FMA4 instruct ion. Support for these instruct ions is indicated by CPUID
Fn8000_00001_ECX[FMA4] (see the CPUID Specification, order# 25481).

Related Instructions
VFNMSUBPD, VFNMSUBPS, VFNMSUBSD

VFNMSUBSS Negative Multiply and Subtract
Scalar Single-Precision Floating-Point

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VFNMSUBSS xmm1, xmm2, xmm3/mem32, xmm4 C4 RXB.00011 0.src.X.01 7E /r /is4
VFNMSUBSS xmm1, xmm2, xmm3, xmm4/mem32 C4 RXB.00011 1.src.X.01 7E /r /is4

Instruction Reference VFNMSUBSS 584

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFRCZPD 585

26568—Rev. 3.11—December 2010 AMD64 Technology

Extracts the fractional portion of each double-precision floating-point value of either a source register
or a memory location and writes the resulting values to the corresponding elements of the destination.
The fractional results are precise.
• When XOP.L = 0, the source is either an XMM register or a 128-bit memory location.
• When XOP.L = 1, the source is a YMM register or 256-bit memory location.

When the destination is an XMM register, bits [255:128] of the corresponding YMM register are
cleared.

Exception conditions are the same as for other arithmetic instructions, except with respect to the sign
of a zero result. A zero is returned in the following cases:
• When the operand is a zero.
• When the operand is a normal integer.
• When the operand is a denormal value and is coerced to zero by MXCSR.DAZ.
• When the operand is a denormal value that is not coerced to zero by MXCSR.DAZ.

In the first three cases, when MXCSR.RC = 01b (round toward − ∞) the sign of the zero result is
negative, and is otherwise positive.

In the fourth case, the operand is its own fractional part, which results in underflow, and the result is
forced to zero by MXCSR.FZ; the result has the same sign as the operand.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
(V)ROUNDPD, (V)ROUNDPS, (V)ROUNDSD, (V)ROUNDSS, VFRCZPS, VFRCZSS, VFRCZSD

VFRCZPD Extract Fraction
Packed Double-Precision Floating-Point

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VFRCZPD xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 81 /r
VFRCZPD ymm1, ymm2/mem256 8F RXB.01001 0.1111.1.00 81 /r

Instruction Reference VFRCZPD 586

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions below for details.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
X A source operand was an SNaN value.
X Undefined operation.

Denormalized operand, DE X A source operand was a denormal value.
Underflow, UE X Rounded result too small to fit into the format of the destination operand.
Precision, PE X A result could not be represented exactly in the destination format.
X — XOP exception

Instruction Reference VFRCZPS 587

26568—Rev. 3.11—December 2010 AMD64 Technology

Extracts the fractional portion of each single-precision floating-point value of either a source register
or a memory location and writes the resulting values to the corresponding elements of the destination.
The fractional results are exact.
• When XOP.L = 0, the source is either an XMM register or a 128-bit memory location.
• When XOP.L = 1, the source is a YMM register or 256-bit memory location.

When the destination is an XMM register, bits [255:128] of the corresponding YMM register are
cleared.

Exception conditions are the same as for other arithmetic instructions, except with respect to the sign
of a zero result. A zero is returned in the following cases:
• When the operand is a zero.
• When the operand is a normal integer.
• When the operand is a denormal value and is coerced to zero by MXCSR.DAZ.
• When the operand is a denormal value that is not coerced to zero by MXCSR.DAZ.

In the first three cases, when MXCSR.RC = 01b (round toward − ∞) the sign of the zero result is
negative, and is otherwise positive.

In the fourth case, the operand is its own fractional part, which results in underflow, and the result is
forced to zero by MXCSR.FZ; the result has the same sign as the operand.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
(V)ROUNDPD, (V)ROUNDPS, (V)ROUNDSD, (V)ROUNDSS, VFRCZPD, VFRCZSS,
VFRCZSD

VFRCZPS Extract Fraction
Packed Single-Precision Floating-Point

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VFRCZPS xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 80 /r
VFRCZPS ymm1, ymm2/mem256 8F RXB.01001 0.1111.1.00 80 /r

Instruction Reference VFRCZPS 588

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions below for details.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
X A source operand was an SNaN value.
X Undefined operation.

Denormalized operand, DE X A source operand was a denormal value.
Underflow, UE X Rounded result too small to fit into the format of the destination operand.
Precision, PE X A result could not be represented exactly in the destination format.
X — XOP exception

Instruction Reference VFRCZSD 589

26568—Rev. 3.11—December 2010 AMD64 Technology

Extracts the fractional portion of the double-precision floating-point value of either the low-order
quadword of an XMM register or a 64-bit memory location and writes the result to the low-order
quadword of the destination XMM register. The fractional results are precise.

When the result is written to the destination XMM register, bits [127:64] of the destination and bits
[255:128] of the corresponding YMM register are cleared.

Exception conditions are the same as for other arithmetic instructions, except with respect to the sign
of a zero result. A zero is returned in the following cases:
• When the operand is a zero.
• When the operand is a normal integer.
• When the operand is a denormal value and is coerced to zero by MXCSR.DAZ.
• When the operand is a denormal value that is not coerced to zero by MXCSR.DAZ.

In the first three cases, when MXCSR.RC = 01b (round toward − ∞) the sign of the zero result is
negative, and is otherwise positive.

In the fourth case, the operand is its own fractional part, which results in underflow, and the result is
forced to zero by MXCSR.FZ; the result has the same sign as the operand.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
(V)ROUNDPD, (V)ROUNDPS, (V)ROUNDSD, (V)ROUNDSS, VFRCZPS, VFRCZPD, VFRCZSS

VFRCZSD Extract Fraction
Scalar Double-Precision Floating-Point

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VFRCZSD xmm1, xmm2/mem64 8F RXB.01001 0.1111.0.00 83 /r

Instruction Reference VFRCZSD 590

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions below for details.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
X A source operand was an SNaN value.
X Undefined operation.

Denormalized operand, DE X A source operand was a denormal value.
Underflow, UE X Rounded result too small to fit into the format of the destination operand.
Precision, PE X A result could not be represented exactly in the destination format.
X — XOP exception

Instruction Reference VFRCZSS 591

26568—Rev. 3.11—December 2010 AMD64 Technology

Extracts the fractional portion of the single-precision floating-point value of the low-order doubleword
of an XMM register or 32-bit memory location and writes the result in the low-order doubleword of
the destination XMM register. The fractional results are precise.

When the result is written to the destination XMM register, bits [127:32] of the destination and bits
[255:128] of the corresponding YMM register are cleared.

Exception conditions are the same as for other arithmetic instructions, except with respect to the sign
of a zero result. A zero is returned in the following cases:
• When the operand is a zero.
• When the operand is a normal integer.
• When the operand is a denormal value and is coerced to zero by MXCSR.DAZ.
• When the operand is a denormal value that is not coerced to zero by MXCSR.DAZ.

In the first three cases, when MXCSR.RC = 01b (round toward − ∞) the sign of the zero result is
negative, and is otherwise positive.

In the fourth case, the operand is its own fractional part, which results in underflow, and the result is
forced to zero by MXCSR.FZ; the result has the same sign as the operand.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
ROUNDPD, ROUNDPS, ROUNDSD, ROUNDSS, VFRCZPS, VFRCZPD, VFRCZSD

VFRCZSS Extract Fraction
Scalar Single-Precision Floating Point

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VFRCZSS xmm1, xmm2/mem32 8F RXB.01001 0.1111.0.00 82 /r

Instruction Reference VFRCZSS 592

26568—Rev. 3.11—December 2010 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions below for details.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
X A source operand was an SNaN value.
X Undefined operation.

Denormalized operand, DE X A source operand was a denormal value.
Underflow, UE X Rounded result too small to fit into the format of the destination operand.
Precision, PE X A result could not be represented exactly in the destination format.
X — XOP exception

Instruction Reference VINSERTF128 593

26568—Rev. 3.11—December 2010 AMD64 Technology

Combines 128 bits of data from a YMM register with 128-bit packed-value data from an XMM
register or a 128-bit memory location, as specified by an immediate byte operand, and writes the
combined data to the destination.

Only bit [0] of the immediate operand is used. Operation is a follows.
• When imm8[0] = 0, copy bits [255:128] of the first source to bits [255:128] of the destination and

copy bits [127:0] of the second source to bits [127:0] of the destination.
• When imm8[0] = 1, copy bits [127:0] of the first source to bits [127:0] of the destination and copy

bits [127:0] of the second source to bits [255:128] of the destination.

This extended-form instruction has 256-bit encoding.

The first source operand is a YMM register. The second source operand is either an XMM register or a
128-bit memory location.The destination is a YMM register. There is a third immediate byte operand.

This i s an AVX inst ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
VBROADCASTF128, VEXTRACTF128

VINSERTF128 Insert Packed Values
128-bit

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VINSERTF128 ymm1, ymm2, xmm3/mem128, imm8 C4 RXB.00011 0.src.1.01 18 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Instruction Reference VMASKMOVPD 594

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves packed double-precision data elements from a source element to a destination element, as
specified by mask bits in a source operand. There are load and store versions of the instruction.

For loads, the data elements are in a source memory location; for stores the data elements are in a
source register. The mask bits are the msb of the corresponding data element of a source register.
• For loads, when a mask bit = 1, the corresponding data element is copied from the source to the

same element of the destination; when a mask bit = 0, the corresponding element of the destination
is cleared.

• For stores, when a mask bit = 1, the corresponding data element is copied from the source to the
same element of the destination; when a mask bit = 0, the corresponding element of the destination
is not affected.

XMM Encoding

There are load and store encodings.
• For loads, there are two 64-bit source data elements in a 128-bit memory location, the mask

operand is an XMM register, and the destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

• For stores, there are two 64-bit source data elements in an XMM register, the mask operand is
another XMM register, and the destination is a 128-bit memory location.

YMM Encoding

There are load and store encodings.
• For loads, there are four 64-bit source data elements in a 256-bit memory location, the mask

operand is a YMM register, and the destination is a YMM register.
• For stores, there are four 64-bit source data elements in a YMM register, the mask operand is

another YMM register, and the destination is a 128-bit memory location.

This i s an AVX inst ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

VMASKMOVPD Masked Move
Packed Double-Precision

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

Loads:
VMASKMOVPD xmm1, xmm2, mem128 C4 RXB.00010 0.src.0.01 2D /r
VMASKMOVPD ymm1, ymm2, mem256 C4 RXB.00010 0.src.1.01 2D /r
Stores:
VMASKMOVPD mem128, xmm1, xmm2 C4 RXB.00010 0.src.0.01 2F /r
VMASKMOVPD mem256, ymm1, ymm2 C4 RXB.00010 0.src.1.01 2F /r

Instruction Reference VMASKMOVPD 595

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
VMASKMOVPS

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

S S X Write to a read-only data segment.
Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Instruction Reference VMASKMOVPS 596

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves packed single-precision data elements from a source element to a destination element, as
specified by mask bits in a source operand. There are load and store versions of the instruction.

For loads, the data elements are in a source memory location; for stores the data elements are in a
source register. The mask bits are the msb of the corresponding data element of a source register.
• For loads, when a mask bit = 1, the corresponding data element is copied from the source to the

same element of the destination; when a mask bit = 0, the corresponding element of the destination
is cleared.

• For stores, when a mask bit = 1, the corresponding data element is copied from the source to the
same element of the destination; when a mask bit = 0, the corresponding element of the destination
is not affected.

XMM Encoding

There are load and store encodings.
• For loads, there are four 32-bit source data elements in a 128-bit memory location, the mask

operand is an XMM register, and the destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

• For stores, there are four 32-bit source data elements in an XMM register, the mask operand is
another XMM register, and the destination is a 128-bit memory location.

YMM Encoding

There are load and store encodings.
• For loads, there are eight 32-bit source data elements in a 256-bit memory location, the mask

operand is a YMM register, and the destination is a YMM register.
• For stores, there are eight 32-bit source data elements in a YMM register, the mask operand is

another YMM register, and the destination is a 128-bit memory location.

This i s an AVX inst ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
VMASKMOVPS

VMASKMOVPS Masked Move
Packed Single-Precision

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

Loads:
VMASKMOVPS xmm1, xmm2, mem128 C4 RXB.00010 0.src.0.01 2C /r
VMASKMOVPS ymm1, ymm2, mem256 C4 RXB.00010 0.src.1.01 2C /r
Stores:
VMASKMOVPS mem128, xmm1, xmm2 C4 RXB.00010 0.src.0.01 2E /r
VMASKMOVPS mem256, ymm1, ymm2 C4 RXB.00010 0.src.1.01 2E /r

Instruction Reference VMASKMOVPS 597

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

S S X Write to a read-only data segment.
Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Instruction Reference VPCMOV 598

26568—Rev. 3.11—December 2010 AMD64 Technology

Moves bits of either the first source or the second source to the corresponding positions in the
destination, depending on the value of the corresponding bit of a third source.

When a bit of the third source = 1, the corresponding bit of the first source is moved to the destination;
when a bit of the third source = 0, the corresponding bit of the second source is moved to the
destination.

This instruction directly implements the C-language ternary “?” operation on each source bit.

Arbitrary bit-granular predicates can be constructed by any number of methods, or loaded as constants
from memory. This instruction may use the results of any SSE instructions as the predicate in the
selector. VPCMPEQB (VPCMPGTB), VPCMPEQW (VPCMPGTW), VPCMPEQD (VPCMPGTD)
and VPCMPEQQ (VPCMPGTQ) compare bytes, words, doublewords, quadwords and integers,
respectively, and set the predicate in the destination to masks of 1s and 0s accordingly. VCMPPS
(VCMPSS) and VCMPPD (VCMPSD) compare word and doubleword floating-point source values,
respectively, and provide the predicate for the floating-point instructions.

There are four operands: VPCMOV dest, src1, src2, src3.

The first source (src1) is an XMM or YMM register specified by XOP.vvvv.

XOP.W and bits [7:4] of an immediate byte (imm8) configure src2 and src3:
• When XOP.W = 0, src2 is either a register or a memory location specified by MODRM.rm and

src3 is a register specified by imm8[7:4].
• When XOP.W = 1, src2 is a register specified by imm8[7:4] and src3 is either a register or a

memory location specified by MODRM.rm.

The destination (dest) is either an XMM or a YMM register, as determined by XOP.L. When the
destination is an XMM register, bits [255:128] of the corresponding YMM register are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPCOMUB, VPCOMUD, VPCOMUQ, VPCOMUW, VCMPPD, VCMPPS

VPCMOV Vector Conditional Move

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPCMOV xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 A2 /r ib
VPCMOV ymm1, ymm2, ymm3/mem256, ymm4 8F RXB.01000 0.src.1.00 A2 /r ib
VPCMOV xmm1, xmm2, xmm3, xmm4/mem128 8F RXB.01000 1.src.0.00 A2 /r ib
VPCMOV ymm1, ymm2, ymm3, ymm4/mem256 8F RXB.01000 1.src.1.00 A2 /r ib

Instruction Reference VPCMOV 599

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPCOMB 600

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares corresponding packed signed bytes in the first and second sources and writes the result of
each comparison in the corresponding byte of the destination. The result of each comparison is an 8-bit
value of all 1s (TRUE) or all 0s (FALSE).

There are four operands: VPCOMB dest, src1, src2, imm8

The destination (dest) is an XMM registers specified by MODRM.reg. When the comparison results
are written to the destination XMM register, bits [255:128] of the corresponding YMM register are
cleared.

The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the MODRM.rm field.

The comparison type is specified by bits [2:0] of the immediate-byte operand (imm8). Each type has an
alias mnemonic to facilitate coding.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPCOMUB, VPCOMUW, VPCOMUD, VPCOMUQ, VPCOMW, VPCOMD, VPCOMQ

VPCOMB Compare Vector
Signed Bytes

imm8[2:0] Comparison Mnemonic
000 Less Than VPCOMLTB
001 Less Than or Equal VPCOMLEB
010 Greater Than VPCOMGTB
011 Greater Than or Equal VPCOMGEB
100 Equal VPCOMEQB
101 Not Equal VPCOMNEQB
110 False VPCOMFALSEB
111 True VPCOMTRUEB

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPCOMB xmm1, xmm2, xmm3/mem128, imm8 8F RXB.01000 0.src.0.00 CC /r ib

Instruction Reference VPCOMB 601

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPCOMD 602

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares corresponding packed signed doublewords in the first and second sources and writes the
result of each comparison to the corresponding doubleword of the destination. The result of each
comparison is a 32-bit value of all 1s (TRUE) or all 0s (FALSE).

There are four operands: VPCOMD dest, src1, src2, imm8

The destination (dest) is an XMM register specified by MODRM.reg. When the results of the
comparisons are written to the destination XMM register, bits [255:128] of the corresponding YMM
register are cleared.

The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the MODRM.rm field.

The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has an
alias mnemonic to facilitate coding.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPCOMUB, VPCOMUW, VPCOMUD, VPCOMUQ, VPCOMB, VPCOMW, VPCOMQ

VPCOMD Compare Vector
Signed Doublewords

imm8[2:0] Comparison Mnemonic
000 Less Than VPCOMLTD
001 Less Than or Equal VPCOMLED
010 Greater Than VPCOMGTD
011 Greater Than or Equal VPCOMGED
100 Equal VPCOMEQD
101 Not Equal VPCOMNEQD
110 False VPCOMFALSED
111 True VPCOMTRUED

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPCOMD xmm1, xmm2, xmm3/mem128, imm8 8F RXB.01000 0.src.0.00 CE /r ib

Instruction Reference VPCOMD 603

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPCOMQ 604

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares corresponding packed signed quadwords in the first and second sources and writes the
result of each comparison to the corresponding quadword of the destination. The result of each
comparison is a 64-bit value of all 1s (TRUE) or all 0s (FALSE).

There are four operands: VPCOMQ dest, src1, src2, imm8

The destination (dest) is an XMM register specified by MODRM.reg. When the result is written to the
destination XMM register, bits [255:128] of the corresponding YMM register are cleared.

The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the MODRM.rm field.

The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has an
alias mnemonic to facilitate coding.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPCOMUB, VPCOMUW, VPCOMUD, VPCOMUQ, VPCOMB, VPCOMW, VPCOMD

VPCOMQ Compare Vector
Signed Quadwords

imm8[2:0] Comparison Mnemonic
000 Less Than VPCOMLTQ
001 Less Than or Equal VPCOMLEQ
010 Greater Than VPCOMGTQ
011 Greater Than or Equal VPCOMGEQ
100 Equal VPCOMEQQ
101 Not Equal VPCOMNEQQ
110 False VPCOMFALSEQ
111 True VPCOMTRUEQ

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPCOMQ xmm1, xmm2, xmm3/mem128, imm8 8F RXB.01000 0.src.0.00 CF /r ib

Instruction Reference VPCOMQ 605

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPCOMUB 606

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares corresponding packed unsigned bytes in the first and second sources and writes the result of
each comparison to the corresponding byte of the destination. The result of each comparison is an 8-bit
value of all 1s (TRUE) or all 0s (FALSE).

There are four operands: VPCOMUB dest, src1, src2, imm8

The destination (dest) is an XMM register specified by MODRM.reg. When the result is written to the
destination XMM register, bits [255:128] of the corresponding YMM register are cleared.

The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the MODRM.rm field.

The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has an
alias mnemonic to facilitate coding.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPCOMUW, VPCOMUD, VPCOMUQ, VPCOMB, VPCOMW, VPCOMD, VPCOMQ

VPCOMUB Compare Vector
Unsigned Bytes

imm8[2:0] Comparison Mnemonic
000 Less Than VPCOMLTUB
001 Less Than or Equal VPCOMLEUB
010 Greater Than VPCOMGTUB
011 Greater Than or Equal VPCOMGEUB
100 Equal VPCOMEQUB
101 Not Equal VPCOMNEQUB
110 False VPCOMFALSEUB
111 True VPCOMTRUEUB

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPCOMUB xmm1, xmm2, xmm3/mem128, imm8 8F RXB.01000 0.src.0.00 6C /r ib

Instruction Reference VPCOMUB 607

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPCOMUD 608

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares corresponding packed unsigned doublewords in the first and second sources and writes the
result of each comparison to the corresponding doubleword of the destination. The result of each
comparison is a 32-bit value of all 1s (TRUE) or all 0s (FALSE).

There are four operands: VPCOMUD dest, src1, src2, imm8

The destination (dest) is an XMM register specified by MODRM.reg. When the results are written to
the destination XMM register, bits [255:128] of the corresponding YMM register are cleared.

The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the MODRM.rm field.

The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has an
alias mnemonic to facilitate coding.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPCOMUB, VPCOMUW, VPCOMUQ, VPCOMB, VPCOMW, VPCOMD, VPCOMQ

VPCOMUD Compare Vector
Unsigned Doublewords

imm8[2:0] Comparison Mnemonic
000 Less Than VPCOMLTUD
001 Less Than or Equal VPCOMLEUD
010 Greater Than VPCOMGTUD
011 Greater Than or Equal VPCOMGEUD
100 Equal VPCOMEQUD
101 Not Equal VPCOMNEQUD
110 False VPCOMFALSEUD
111 True VPCOMTRUEUD

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPCOMUD xmm1, xmm2, xmm3/mem128, imm8 8F RXB.01000 0.src.0.00 6E /r ib

Instruction Reference VPCOMUD 609

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPCOMUQ 610

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares corresponding packed unsigned quadwords in the first and second sources and writes the
result of each comparison to the corresponding quadword of the destination. The result of each
comparison is a 64-bit value of all 1s (TRUE) or all 0s (FALSE).

There are four operands: VPCOMUQ dest, src1, src2, imm8

The destination (dest) is an XMM register specified by MODRM.reg. When the results are written to
the destination XMM register, bits [255:128] of the corresponding YMM register are cleared.

The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the MODRM.rm field.

The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has an
alias mnemonic to facilitate coding.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPCOMUB, VPCOMUW, VPCOMUD, VPCOMB, VPCOMW, VPCOMD, VPCOMQ

VPCOMUQ Compare Vector
Unsigned Quadwords

imm8[2:0] Comparison Mnemonic
000 Less Than VPCOMLTUQ
001 Less Than or Equal VPCOMLEUQ
010 Greater Than VPCOMGTUQ
011 Greater Than or Equal VPCOMGEUQ
100 Equal VPCOMEQUQ
101 Not Equal VPCOMNEQUQ
110 False VPCOMFALSEUQ
111 True VPCOMTRUEUQ

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPCOMUQ xmm1, xmm2, xmm3/mem128, imm8 8F RXB.01000 0.src.0.00 6F /r ib

Instruction Reference VPCOMUQ 611

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPCOMUW 612

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares corresponding packed unsigned words in the first and second sources and writes the result
of each comparison to the corresponding word of the destination. The result of each comparison is a
16-bit value of all 1s (TRUE) or all 0s (FALSE).

There are four operands: VPCOMUW dest, src1, src2, imm8

The destination (dest) is an XMM register specified by MODRM.reg. When the results are written to
the destination XMM register, bits [255:128] of the corresponding YMM register are cleared.

The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the MODRM.rm field.

The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has an
alias mnemonic to facilitate coding.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPCOMUB, VPCOMUD, VPCOMUQ, VPCOMB, VPCOMW, VPCOMD, VPCOMQ

VPCOMUW Compare Vector
Unsigned Words

imm8[2:0] Comparison Mnemonic
000 Less Than VPCOMLTUW
001 Less Than or Equal VPCOMLEUW
010 Greater Than VPCOMGTUW
011 Greater Than or Equal VPCOMGEUW
100 Equal VPCOMEQUW
101 Not Equal VPCOMNEQUW
110 False VPCOMFALSEUW
111 True VPCOMTRUEUW

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPCOMUW xmm1, xmm2, xmm3/mem128, imm8 8F RXB.01000 0.src.0.00 6D /r ib

Instruction Reference VPCOMUW 613

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPCOMW 614

26568—Rev. 3.11—December 2010 AMD64 Technology

Compares corresponding packed signed words in the first and second sources and writes the result of
each comparison in the corresponding word of the destination. The result of each comparison is a 16-
bit value of all 1s (TRUE) or all 0s (FALSE).

There are four operands: VPCOMW dest, src1, src2, imm8

The destination (dest) is an XMM register specified by MODRM.reg. When the results are written to
the destination XMM register, bits [255:128] of the corresponding YMM register are cleared.

The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the MODRM.rm field.

The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has an
alias mnemonic to facilitate coding.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPCOMUB, VPCOMUW, VPCOMUD, VPCOMUQ, VPCOMB, VPCOMD, VPCOMQ

VPCOMW Compare Vector
Signed Words

imm8[2:0] Comparison Mnemonic
000 Less Than VPCOMLTW
001 Less Than or Equal VPCOMLEW
010 Greater Than VPCOMGTW
011 Greater Than or Equal VPCOMGEW
100 Equal VPCOMEQW
101 Not Equal VPCOMNEQW
110 False VPCOMFALSEW
111 True VPCOMTRUEW

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPCOMW xmm1, xmm2, xmm3/mem128, imm8 8F RXB.01000 0.src.0.00 CD /r ib

Instruction Reference VPCOMW 615

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPERM2F128 616

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies 128-bit floating-point data elements from two 256-bit sources to two 128-bit elements of a
256-bit destination, as specified by an immediate byte operand.

The immediate operand is encoded as follows.

This is a 256-bit extended-form instruction:

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

This i s an AVX inst ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
VEXTRACTF128, VINSERTF128, VPERMILPD, VPERMILPS

VPERM2F128 Permute Floating-Point
128-bit

Destination Immediate-Byte
Bit Field

Value of
Bit Field

Source 1
Bits Copied

Source 2
Bits Copied

[127:0] [1:0] 00 [127:0] —
01 [255:128] —
10 — [127:0]
11 — [255:128]

Setting imm8 [3] clears bits [127:0] of the destination; imm8 [2] is ignored.
[255:128] [5:4] 00 [127:0] —

01 [255:128] —
10 — [127:0]
11 — [255:128]

Setting imm8 [7] clears bits [255:128] of the destination; imm8 [6] is ignored.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VPERM2F128 ymm1, xmm2, xmm3/mem256, imm8 C4 RXB.00011 0.src.1.01 06 /r

Instruction Reference VPERM2F128 617

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Instruction Reference VPERMIL2PD 618

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies a selected quadword value from one of two source registers to a selected element of the
destination or clears the selected element of the destination. Values in a third source operand and an
immediate byte operand control operation.

There are XMM and YMM versions of this instruction. Both versions have four operands:

VPERMIL2PD dest, src1, src2, src3

The 128-bit version of the instruction concatenates the first source XMM register and the second
source, which can be either an XMM register or a 128-bit memory location, to form a single operand
partition consisting of four 64-bit double-precision floating point values.

The 256-bit version of the instruction concatenates the first source YMM register and the second
source, which can be either a YMM register or a 256-bit memory location, to form two operand
partitions, each containing four 64-bit double-precision floating point values.

XOP.W and bits [7:4] of an immediate byte (imm8) configure src2 and src3:
• When XOP.W = 0, src2 is either a register or a memory location specified by MODRM.rm and

src3 is a register specified by imm8[7:4].
• When XOP.W = 1, src2 is a register specified by imm8[7:4] and src3 is either a register or a

memory location specified by MODRM.rm.

The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register, bits [255:128] of the corresponding YMM register are cleared.

The third source operand can be either a register or a memory location. The operand of the 128-bit
version of the instruction is divided into two quadword selector elements; the operand of the 256-bit
version is divided into four quadword selector elements.

The bit field layout of each selector is as follows.

Bit [0] and bits [63:4] of the quadword selector element are ignored.

VPERMIL2PD Permute Two-Source
Double-Precision Floating-Point

63 4 3 2 1 0
Ignored M Sel I

Bits Mnemonic Description
[63:4] Ignored —

[3] M Match
[2:1] Sel Select
[0] Ignored —

Instruction Reference VPERMIL2PD 619

26568—Rev. 3.11—December 2010 AMD64 Technology

Each selector element has the following fields.
• Select — Selects the source to copy into the corresponding quadword element of the destination:

• Match — This bit and the immediate byte Match field select destination quadwords to zero.

The immediate byte operand is defined as follows.

Bits [3:2] of the byte are ignored.

Byte fields are:
• Source Register Select — In 64-bit mode, when XOP.W = 0, the field identifies the third source

register; when XOP.W = 1, it identifies the second source register. In non-64-bit mode, only bits
[6:4] identify the register, and imm8[7] is ignored.

• Match to Zero — This field interacts with the Match bit of the selector element to determine the
double-precision floating-point value that is written to the corresponding doubleword element of
the destination operand.

The selector element Match bit and the immediate operand M2Z field operate as follows.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Value Source Selected for Quadwords
0 and 1

Source Selected for Quadwords
2 and 3

00b src1[63:0] src1[191:128]
01b src1[127:64] src1[255:192]
10b src2[63:0] src2[191:128]
11b src2[127:64] src2[255:192]

7 4 3 2 1 0
SRS Ignore M2Z

Bits Mnemonic Description
[7:4] SRS Source Register Select
[3:2] Ignore —
[1:0] M2Z Match to Zero

Immediate M2Z Field Selector Match Bit Value Loaded into Destination Quadword
0Xb X Operand value selected by selector element Sel field.
10b 0 Operand value selected by selector element Sel field.
10b 1 Zero
11b 0 Zero
11b 1 Operand value selected by selector element Sel field.

Instruction Reference VPERMIL2PD 620

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
VPERM2F128, VPERMIL2PD, VPERMIL2PS, VPERMILPD, VPERMILPS, VPPERM

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPERMIL2PD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.00011 0.src.0.01 49 /r ib
VPERMIL2PD xmm1, xmm2, xmm3, xmm4/mem128 8F RXB.00011 1.src.0.01 49 /r ib
VPERMIL2PD ymm1, ymm2, ymm3/mem256, ymm4 8F RXB.00011 0.src.1.01 49 /r ib
VPERMIL2PD ymm1, ymm2, ymm3, ymm4/mem256 8F RXB.00011 1.src.1.01 49 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPERMIL2PS 621

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies a selected doubleword value from one of two source registers to a selected element of the
destination or clears the selected element of the destination. Values in a third source operand and an
immediate byte operand control operation.

There are XMM and YMM versions of this instruction. Both versions have four operands:

VPERMIL2PS dest, src1, src2, src3

The 128-bit version of the instruction concatenates the first source XMM register and the second
source, which can be either an XMM register or a 128-bit memory location, to form a single operand
partition consisting of four 64-bit double-precision floating point values.

The 256-bit version of the instruction concatenates the first source YMM register and the second
source, which can be either a YMM register or a 256-bit memory location, to form two operand
partitions, each containing four 64-bit double-precision floating point values.

XOP.W and bits [7:4] of an immediate byte (imm8) configure src2 and src3:
• When XOP.W = 0, src2 is either a register or a memory location specified by MODRM.rm and

src3 is a register specified by imm8[7:4].
• When XOP.W = 1, src2 is a register specified by imm8[7:4] and src3 is either a register or a

memory location specified by MODRM.rm.

The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register, bits [255:128] of the corresponding YMM register are cleared.

The third source operand can be either a register or a memory location. The operand of the 128-bit
version of the instruction is divided into two quadword selector elements; the operand of the 256-bit
version is divided into four quadword selector elements.

The bit field layout of each selector is as follows.

Bits [31:4] of the doubleword selector element are ignored.

Selector elements have the following fields.

VPERMIL2PS Permute Two-Source
Single-Precision Floating-Point

31 4 3 2 1 0
Ignored M Sel

Bits Mnemonic Description
[31:4] Ignored —

[3] M Match
[2:0] Sel Select

Instruction Reference VPERMIL2PS 622

26568—Rev. 3.11—December 2010 AMD64 Technology

• Select — Selects the source to copy into the corresponding quadword element of the destination:

• Match — This bit and the immediate byte Match field select destination quadwords to zero.
Immediate Operand

The immediate byte layout is as follows.

Bits [3:2] of the byte are ignored.

Byte fields are:
• Source Register Select — In 64-bit mode, when XOP.W = 0, the field identifies the third source

register; when XOP.W = 1, it identifies the second source register. In non-64-bit mode, only bits
[6:4] identify the register, and imm8[7] is ignored.

• Match to Zero — This field interacts with the Match bit of the selector element to determine the
double-precision floating-point value that is written to the corresponding doubleword element of
the destination operand.

The selector element Match bit and the immediate operand M2Z field operate as follows.

Selector Source Selected for Doublewords
0, 1, 2 and 3

Source Selected for Doublewords
4, 5, 6 and 7

000b src1[31:0] src1[159:128]
001b src1[63:32] src1[191:160]
010b src1[95:64] src1[223:192]
011b src1[127:96] src1[255:224]
100b src2[31:0] src2[159:128]
101b src2[63:32] src2[191:160]
110b src2[95:64] src2[223:192]
111b src2[127:96] src2[255:224]

7 4 3 2 1 0
SRS Ignore M2Z

Bits Mnemonic Description
[7:4] SRS Source Register Select
[3:2] Ignore —
[1:0] M2Z Match to Zero

Immediate M2Z Field Selector Match Bit Value Loaded into Destination Quadword
0Xb X Operand value selected by selector element Sel field.
10b 0 Operand value selected by selector element Sel field.
10b 1 Zero
11b 0 Zero
11b 1 Operand value selected by selector element Sel field.

Instruction Reference VPERMIL2PS 623

26568—Rev. 3.11—December 2010 AMD64 Technology

This is an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPERM2F128, VPERMIL2PD, VPERMILPD, VPERMILPS, VPPERM

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPERMIL2PS xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.00011 0.src.0.01 48 /r ib
VPERMIL2PS xmm1, xmm2, xmm3, xmm4/mem128 8F RXB.00011 1.src.0.01 48 /r ib
VPERMIL2PS ymm1, ymm2, ymm3/mem256, ymm4 8F RXB.00011 0.src.1.01 48 /r ib
VPERMIL2PS ymm1, ymm2, ymm3, ymm4/mem256 8F RXB.00011 1.src.1.01 48 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPERMILPS 624

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies double-precision floating-point values from a source to a destination. Source and destination
can be selected in two ways. There are different encodings for each selection method.

Selection by bits in a source register or memory location:

Each quadword of the operand is defined as follows.

A bit selects source and destination. Only bit [1] is used; bits [63:2} and bit [0] are ignored. Setting the
bit selects the corresponding quadword element of the source and the destination.

Selection by bits in an immediate byte:

Each bit corresponds to a destination quadword. Only bits [3:2] and bits [1:0] are used; bits [7:4] are
ignored. Selections are defined as follows.

This extended-form instruction has both 128-bit and 256-bit encoding.
XMM Encoding

There are two encodings, one for each selection method:
• The first source operand is an XMM register. The second source operand is either an XMM

register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

• The first source operand is either an XMM register or a 128-bit memory location. The destination
is an XMM register. There is a third, immediate byte operand. Bits [255:128] of the YMM register
that corresponds to the destination are cleared.

VPERMILPD Permute
Double-Precision

63 2 1 0
Sel

Destination
Quadword

Immediate-Byte
Bit Field

Value of
Bit Field

Source 1
Bits Copied

Used by 128-bit encoding and 256-bit encoding
[63:0] [0] 0 [63:0]

1 [127:64]
[127:64] [1] 0 [63:0]

1 [127:64]
Used only by 256-bit encoding

[191:128] [2] 0 [191:128]
1 [255:192]

[255:192] [3] 0 [191:128]
1 [255:192]

Instruction Reference VPERMILPS 625

26568—Rev. 3.11—December 2010 AMD64 Technology

YMM Encoding

There are two encodings, one for each selection method:
• The first source operand is a YMM register. The second source operand is either a YMM register

or a 256-bit memory location. The destination is a third YMM register.
• The first source operand is either a YMM register or a 256-bit memory location. The destination is

a YMM register. There is a third, immediate byte operand.

This i s an AVX inst ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
VPERM2F128, VPERMIL2PD, VPERMIL2PS, VPERMILPS, VPPERM

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

Selection by source register or memory:
VPERMILPD xmm1, xmm2/mem128 C4 RXB.00010 0.src.0.01 0D /r
VPERMILPD ymm1, ymm2/mem256 C4 RXB.00010 0.src.1.01 0D /r
Selection by immediate byte operand:
VPERMILPD xmm1, xmm2, imm8 C4 RXB.00011 0.1111.1.01 05 /r ib
VPERMILPD ymm1, ymm2, imm8 C4 RXB.00011 0.1111.1.01 05 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b (for versions with immediate byte operand only).
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Instruction Reference VPERMILPD 626

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies single-precision floating-point values from a source to a destination. Source and destination
can be selected in two ways. There are different encodings for each selection method.

Selection by bit fields in a source register or memory location:

Each doubleword of the operand is defined as follows.

Each bit field corresponds to a destination doubleword. Bit values select a source doubleword. Only
bits [1:0] of each word are used; bits [31:2} are ignored. The 128-bit encoding uses four two-bit fields;
the 256-bit version uses eight two-bit fields. Field encoding is as follows.

VPERMILPS Permute
Single-Precision

31 2 1 0
Sel

Destination
Doubleword

Immediate Operand
Bit Field

Value of
Bit Field

Source
Bits Copied

[31:0] [1:0] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[63:32] [33:32] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[95:64] [65:64] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[127:96] [97:96] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

Instruction Reference VPERMILPD 627

26568—Rev. 3.11—December 2010 AMD64 Technology

Selection by bit fields in an immediate byte:

Each bit field corresponds to a destination doubleword. For the 256-bit encoding, the fields specify
sources and destinations in both the upper and lower 128 bits of the register. Selections are defined as
follows.

Upper 128 bits of 256-bit source and destination used by 256-bit encoding
[159:128] [129:128] 00 [159:128]

01 [191:160]
10 [223:192]
11 [255:224]

[191:160] [161:160] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

[223:192] [193:192] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

[255:224] [225:224] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

Destination
Doubleword

Bit Field Value of Bit
Field

Source
Bits Copied

[31:0] [1:0] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[63:32] [3:2] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[95:64] [5:4] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[127:96] [7:6] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

Destination
Doubleword

Immediate Operand
Bit Field

Value of
Bit Field

Source
Bits Copied

Instruction Reference VPERMILPD 628

26568—Rev. 3.11—December 2010 AMD64 Technology

This extended-form instruction has both 128-bit and 256-bit encoding.
XMM Encoding

There are two encodings, one for each selection method:
• The first source operand is an XMM register. The second source operand is either an XMM

register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

• The first source operand is either an XMM register or a 128-bit memory location. The destination
is an XMM register. There is a third, immediate byte operand. Bits [255:128] of the YMM register
that corresponds to the destination are cleared.

YMM Encoding

There are two encodings, one for each selection method:
• The first source operand is a YMM register. The second source operand is either a YMM register

or a 256-bit memory location. The destination is a third YMM register.
• The first source operand is either a YMM register or a 256-bit memory location. The destination is

a YMM register. There is a third, immediate byte operand.
This i s an AVX inst ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Upper 128 bits of 256-bit source and destination used by 256-bit encoding
[159:128] [1:0] 00 [159:128]

01 [191:160]
10 [223:192]
11 [255:224]

[191:160] [3:2] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

[223:192] [5:4] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

[255:224] [7:6] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

Destination
Doubleword

Bit Field Value of Bit
Field

Source
Bits Copied

Instruction Reference VPERMILPD 629

26568—Rev. 3.11—December 2010 AMD64 Technology

Related Instructions
VPERM2F128, VPERMIL2PD, VPERMIL2PS, VPERMILPD, VPPERM

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

Selection by source register or memory:
VPERMILPS xmm1, xmm2/mem128 C4 RXB.00010 0.src.0.01 0C /r
VPERMILPS ymm1, ymm2/mem256 C4 RXB.00010 0.src.1.01 0C /r
Selection by immediate byte operand:
VPERMILPS xmm1, xmm2, imm8 C4 RXB.00011 0.1111.1.01 04 /r ib
VPERMILPS ymm1, ymm2, imm8 C4 RXB.00011 0.1111.1.01 04 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b (for versions with immediate byte operand only).
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Instruction Reference VPHADDBD 630

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds four sets of four 8-bit signed integer values of the source and packs the sign-extended sums into
the corresponding doubleword of the destination.

There are two operands: VPHADDBD dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPHADDBW, VPHADDBQ, VPHADDWD, VPHADDWQ, VPHADDDQ

VPHADDBD Packed Horizontal Add
Signed Byte to Signed Doubleword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPHADDBD xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 C2 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPHADDBQ 631

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds two sets of eight 8-bit signed integer values of the source and packs the sign-extended sums into
the corresponding quadword of the destination.

There are two operands: VPHADDBQ dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This is an XOP instruction. The presence of this instruction set is indicated by a CPUID feature bit.
(See the CPUID Specification, order# 25481.

Related Instructions
VPHADDBW, VPHADDBD, VPHADDWD, VPHADDWQ, VPHADDDQ

VPHADDBQ Packed Horizontal Add
Signed Byte to Signed Quadword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPHADDBQ xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 C3 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPHADDBW 632

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds each adjacent pair of 8-bit signed integer values of the source and packs the sign-extended 16-bit
integer result of each addition into the corresponding word element of the destination.

There are two operands: VPHADDBW dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPHADDBD, VPHADDBQ, VPHADDWD, VPHADDWQ, VPHADDDQ

VPHADDBW Packed Horizontal Add
Signed Byte to Signed Word

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPHADDBW xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 C1 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPHADDDQ 633

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds each adjacent pair of signed doubleword integer values of the source and packs the sign-
extended sums into the corresponding quadword of the destination.

There are two operands: VPHADDDQ dest, src

The source is either an XMM register or a 128-bit memory location and the destination is an XMM
register. Bits [255:128] of the corresponding YMM register are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPHADDBW, VPHADDBD, VPHADDBQ, VPHADDWD, VPHADDWQ

VPHADDDQ Packed Horizontal Add
Signed Doubleword to Signed Quadword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPHADDDQ xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 CB /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPHADDUBD 634

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds four sets of four 8-bit unsigned integer values of the source and packs the sums into the
corresponding doublewords of the destination.

There are two operands: VPHADDUBD dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPHADDUBW, VPHADDUBQ, VPHADDUWD, VPHADDUWQ, VPHADDUDQ

VPHADDUBD Packed Horizontal Add
Unsigned Byte to Doubleword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPHADDUBD xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 D2 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPHADDUBQ 635

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds two sets of eight 8-bit unsigned integer values from the second source and packs the sums into
the corresponding quadword of the destination.

There are two operands: VPHADDUBQ dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. When the destination XMM register is written, bits [255:128] of the corresponding YMM
register are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPHADDUBW, VPHADDUBD, VPHADDUWD, VPHADDUWQ, VPHADDUDQ

VPHADDUBQ Packed Horizontal Add
Unsigned Byte to Quadword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPHADDUBQ xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 D3 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPHADDUBW 636

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds each adjacent pair of 8-bit unsigned integer values of the source and packs the 16-bit integer
sums to the corresponding word of the destination.

There are two operands: VPHADDUBW dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPHADDUBD, VPHADDUBQ, VPHADDUWD, VPHADDUWQ, VPHADDUDQ

VPHADDUBW Packed Horizontal Add
Unsigned Byte to Word

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPHADDUBWD xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 D1 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPHADDUDQ 637

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds two adjacent pairs of 32-bit unsigned integer values of the source and packs the sums into the
corresponding quadword of the destination.

There are two operands: VPHADDUDQ dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPHADDUBW, VPHADDUBD, VPHADDUBQ, VPHADDUWD, VPHADDUWQ

VPHADDUDQ Packed Horizontal Add
Unsigned Doubleword to Quadword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPHADDUDQ xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 DB /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPHADDUWD 638

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds four adjacent pairs of 16-bit unsigned integer values of the source and packs the sums into the
corresponding doubleword of the destination.

There are two operands: VPHADDUWD dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This is an XOP instruction. The presence of this instruction set is indicated by a CPUID feature bit.
(See the CPUID Specification, order# 25481.

Related Instructions
VPHADDUBW, VPHADDUBD, VPHADDUBQ, VPHADDUWQ, VPHADDUDQ

VPHADDUWD Packed Horizontal Add
Unsigned Word to Doubleword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPHADDUWD xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 D6 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPHADDUWQ 639

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds two pairs of 16-bit unsigned integer values of the source and packs the sums into the
corresponding quadword element of the destination.

There are two operands: VPHADDUWQ dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPHADDUBW, VPHADDUBD, VPHADDUBQ, VPHADDUWD, VPHADDUDQ

VPHADDUWQ Packed Horizontal Add
Unsigned Word to Quadword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPHADDUWQ xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 D7 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPHADDWD 640

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds four adjacent pairs of 16-bit signed integer values of the source and packs the sign-extended
sums to the corresponding doubleword of the destination.

There are two operands: VPHADDWD dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPHADDBW, VPHADDBD, VPHADDBQ, VPHADDWQ, VPHADDDQ

VPHADDWD Packed Horizontal Add
Signed Word to Signed Doubleword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPHADDWD xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 C6 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPHADDWQ 641

26568—Rev. 3.11—December 2010 AMD64 Technology

Adds four successive pairs of 16-bit signed integer values of the source and packs the sign-extended
sums to the corresponding quadword of the destination.

There are two operands: VPHADDWQ dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPHADDBW, VPHADDBD, VPHADDBQ, VPHADDWD, VPHADDDQ

VPHADDWQ Packed Horizontal Add
Signed Word to Signed Quadword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPHADDWQ xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 C7 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPHSUBBW 642

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts the most significant signed integer byte from the least significant signed integer byte of each
word element in the source and packs the sign-extended 16-bit integer differences into the destination.

There are two operands: VPHSUBBW dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. When the destination is written, bits [255:128] of the corresponding YMM register are
cleared.

This is an XOP instruction. The presence of this instruction set is indicated by a CPUID feature bit.
(See the CPUID Specification, order# 25481.

Related Instructions
VPHSUBWD, VPHSUBDQ

VPHSUBBW Packed Horizontal Subtract
Signed Byte to Signed Word

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPHSUBBW xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 E1 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPHSUBDQ 643

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts the most significant signed integer doubleword from the least significant signed integer
doubleword of each quadword in the source and packs the sign-extended 64-bit integer differences
into the corresponding quadword element of the destination.

There are two operands: VPHSUBDQ dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. When the destination is written, bits [255:128] of the corresponding YMM register are
cleared.

This is an XOP instruction. The presence of this instruction set is indicated by a CPUID feature bit.
(See the CPUID Specification, order# 25481.

Related Instructions
VPHSUBBW, VPHSUBWD

VPHSUBDQ Packed Horizontal Subtract
Signed Doubleword to Signed Quadword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPHSUBDQ xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 DB /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPHSUBWD 644

26568—Rev. 3.11—December 2010 AMD64 Technology

Subtracts the most significant signed integer word from the least significant signed integer word of
each doubleword of the source and packs the sign-extended 32-bit integer differences into the
destination.

There are two operands: VPHSUBWD dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This is an XOP instruction. The presence of this instruction set is indicated by a CPUID feature bit.
(See the CPUID Specification, order# 25481.

Related Instructions
VPHSUBBW, VPHSUBDQ

VPHSUBWD Packed Horizontal Subtract
Signed Word to Signed Doubleword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPHSUBWD xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 E2 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPMACSDD 645

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed 32-bit signed integer value of the first source by the corresponding value of the
second source, adds the corresponding value of the third source to the 64-bit signed integer product,
and writes four 32-bit sums to the destination.

No saturation is performed on the sum. When the result of the multiplication causes non-zero values to
be set in the upper 32 bits of the 64-bit product, they are ignored. When the result of the add overflows,
the carry is ignored (neither the overflow nor carry bit in rFLAGS is set). In both cases, only the signed
low-order 32 bits of the result are written to the destination.

There are four operands: VPMACSDD dest, src1, src2, src3 dest = src1* src2 + src3

The destination (dest) is an XMM register specified by MODRM.reg. When the destination is written,
bits [255:128] of the corresponding YMM register are cleared.

The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either an
XMM register or a 128-bit memory location specified by the MODRM.rm field; and the third source
(src3) is an XMM register specified by bits [7:4] of an immediate byte operand.

When the third source designates the same XMM register as the destination, the XMM register
behaves as an accumulator.

This is an XOP instruction. The presence of this instruction set is indicated by a CPUID feature bit.
(See the CPUID Specification, order# 25481.

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

VPMACSDD Packed Multiply Accumulate
Signed Doubleword to Signed Doubleword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPMACSDD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 9E /r ib

Instruction Reference VPMACSDD 646

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPMACSDQH 647

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the second 32-bit signed integer value of the first source by the corresponding value of the
second source, then adds the low-order 64-bit signed integer value of the third source to the 64-bit
signed integer product. Simultaneously, multiplies the fourth 32-bit signed integer value of the first
source by the fourth 32-bit signed integer value of the second source, then adds the high-order 64-bit
signed integer value of the third source to the 64-bit signed integer product. Writes two 64-bit sums to
the destination.

No saturation is performed on the sum. When the result of the add overflows, the carry is ignored
(neither the overflow nor carry bit in rFLAGS is set).

There are four operands: VPMACSDQH dest, src1, src2, src3 dest = src1* src2 + src3

The destination (dest) is an XMM register specified by MODRM.reg. When the destination is written,
bits [255:128] of the corresponding YMM register are cleared.

The first source (src1) is an XMM register specified by the XOP.vvvv field; the second source (src2) is
either an XMM register or a 128-bit memory location specified by the MODRM.rm field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.

When the third source designates the same XMM register as the destination, the XMM register
behaves as an accumulator.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQL, VPMACSSDQH, VPMACSDQL, VPMADCSSWD, VPMADCSWD

VPMACSDQH Packed Multiply Accumulate
Signed High Doubleword to Signed Quadword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPMACSDQH xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 9F /r ib

Instruction Reference VPMACSDQH 648

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPMACSDQL 649

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the low-order 32-bit signed integer value of the first source by the corresponding value of
the second source, then adds the low-order 64-bit signed integer value of the third source to the 64-bit
signed integer product. Simultaneously, multiplies the third 32-bit signed integer value of the first
source by the corresponding value of the second source, then adds the high-order 64-bit signed integer
value of the third source to the 64-bit signed integer product. Writes two 64-bit sums to the destination
register.

No saturation is performed on the sum. When the result of the add overflows, the carry is ignored
(neither the overflow nor carry bit in rFLAGS is set). Only the low-order 64 bits of each result are
written to the destination.

There are four operands: VPMACSDQL dest, src1, src2, src3 dest = src1* src2 + src3

The destination is a YMM register specified by MODRM.reg. When the destination is written, bits
[255:128] of the corresponding YMM register are cleared.

The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either an
XMM register or a 128-bit memory location specified by the MODRM.rm field; and the third source
(src3) is an XMM register specified by bits [7:4] of an immediate byte operand.

When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQL, VPMACSSDQH, VPMACSDQH, VPMADCSSWD, VPMADCSWD

VPMACSDQL Packed Multiply Accumulate
Signed Low Doubleword to Signed Quadword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPMACSDQL xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 97 /r ib

Instruction Reference VPMACSDQL 650

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPMACSSDD 651

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed 32-bit signed integer value of the first source by the corresponding value of the
second source, then adds the corresponding packed 32-bit signed integer value of the third source to
each 64-bit signed integer product. Writes four saturated 32-bit sums to the destination.

Out of range results of the addition are saturated to fit into a signed 32-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 32-bit integer, it is saturated to
7FFF_FFFFh, and when the value is smaller than the smallest signed 32-bit integer, it is saturated to
8000_0000h.

There are four operands: VPMACSSDD dest, src1, src2, src3 dest = src1* src2 + src3

The destination (dest) is an XMM register specified by MODRM.reg. When the destination is written,
bits [255:128] of the corresponding YMM register are cleared.

The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either an
XMM register or a 128-bit memory location specified by the MODRM.rm field; and the third source
(src3) is an XMM register specified by bits [7:4] of an immediate byte operand.

When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSDD, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

VPMACSSDD Packed Multiply Accumulate with Saturation
Signed Doubleword to Signed Doubleword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPMACSSDD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 X.src.0.00 8E /r ib

Instruction Reference VPMACSSDD 652

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPMACSSDQH 653

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the second 32-bit signed integer value of the first source by the corresponding value of the
second source, then adds the low-order 64-bit signed integer value of the third source to the 64-bit
signed integer product. Simultaneously, multiplies the fourth 32-bit signed integer value of the first
source by the corresponding value of the second source, then adds the high-order 64-bit signed integer
value of the third source to the 64-bit signed integer product. Writes two saturated sums to the
destination.

Out of range results of the addition are saturated to fit into a signed 64-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 64-bit integer, it is saturated to
7FFF_FFFF_FFFF_FFFFh, and when the value is smaller than the smallest signed 64-bit integer, it is
saturated to 8000_0000_0000_0000h.

There are four operands: VPMACSSDQH dest, src1, src2, src3 dest = src1* src2 + src3

The destination (dest) is an XMM register specified by MODRM.reg. When the destination XMM
register is written, bits [255:128] of the corresponding YMM register are cleared.

The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either an
XMM register or a 128-bit memory location specified by the MODRM.rm field; and the third source
(src3) is an XMM register specified by bits [7:4] of an immediate byte operand.

When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQL, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

VPMACSSDQH Packed Multiply Accumulate with Saturation
Signed High Doubleword to Signed Quadword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPMACSSDQH xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 8F /r ib

Instruction Reference VPMACSSDQH 654

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPMACSSDQL 655

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the low-order 32-bit signed integer value of the first source by the corresponding value of
the second source, then adds the low-order 64-bit signed integer value of the third source to the 64-bit
signed integer product. Simultaneously, multiplies the third 32-bit signed integer value of the first
source by the third 32-bit signed integer value of the second source, then adds the high-order 64-bit
signed integer value of the third source to the 64-bit signed integer product. Writes two saturated sums
to the destination.

Out of range results of the addition are saturated to fit into a signed 64-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 64-bit integer, it is saturated to
7FFF_FFFF_FFFF_FFFFh, and when the value is smaller than the smallest signed 64-bit integer, it is
saturated to 8000_0000_0000_0000h.

There are four operands: VPMACSSDQL dest, src1, src2, src3 dest = src1* src2 + src3

The destination (dest) register is an XMM register specified by MODRM.reg. When the destination is
written, bits [255:128] of the corresponding YMM register are cleared.

The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either an
XMM register or a 128-bit memory location specified by the MODRM.rm field; and the third source
(src3) is an XMM register specified by bits [7:4] of an immediate byte operand.

When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

VPMACSSDQL Packed Multiply Accumulate with Saturation
Signed Low Doubleword to Signed Quadword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

PMACSSDQL xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 87 /r ib

Instruction Reference VPMACSSDQL 656

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPMACSSWD 657

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies the odd-numbered packed 16-bit signed integer values of the first source by the
corresponding values of the second source, then adds the corresponding packed 32-bit signed integer
values of the third source to the 32-bit signed integer products. Writes four saturated sums to the
destination.

Out of range results of the addition are saturated to fit into a signed 32-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 32-bit integer, it is saturated to
7FFF_FFFFh, and when the value is smaller than the smallest signed 32-bit integer, it is saturated to
8000_0000h.

There are four operands: VPMACSSWD dest, src1, src2, src3 dest = src1* src2 + src3

The destination (dest) is an XMM register specified by MODRM.reg. When the destination XMM
register is written, bits [255:128] of the corresponding YMM register are cleared.

The first source (src1) is an XMM register specified by the XOP.vvvv field; the second source (src2) is
either an XMM register or a 128-bit memory location specified by the MODRM.rm field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.

When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSWD, VPMACSSDD, VPMACSDD, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

VPMACSSWD Packed Multiply Accumulate with Saturation
Signed Word to Signed Doubleword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPMACSSWD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 86 /r ib

Instruction Reference VPMACSSWD 658

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPMACSSWW 659

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed 16-bit signed integer value of the first source by the corresponding packed 16-
bit signed integer value of the second source, then adds the corresponding packed 16-bit signed integer
value of the third source to the 32-bit signed integer products. Writes four saturated sums to the
destination.

Out of range results of the addition are saturated to fit into a signed 16-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 16-bit integer, it is saturated to
7FFFh, and when the value is smaller than the smallest signed 16-bit integer, it is saturated to 8000h.

There are four operands: VPMACSSWW dest, src1, src2, src3 dest = src1* src2 + src3

The destination is an XMM register specified by MODRM.reg. When the destination is written, bits
[255:128] of the corresponding YMM register are cleared.

The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either an
XMM register or a 128-bit memory location specified by the MODRM.rm field; and the third source
(src3) is an XMM register specified by bits [7:4] of an immediate byte operand.

When src3 and dest designate the same XMM register, this register behaves as an accumulator.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL,VPMACSDQH, VPMADCSSWD, VPMADCSWD

VPMACSSWW Packed Multiply Accumulate with Saturation
Signed Word to Signed Word

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

PMACSSWW xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 X.src.0.00 85 /r ib

Instruction Reference VPMACSSWW 660

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPMACSWD 661

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each odd-numbered packed 16-bit signed integer value of the first source by the
corresponding value of the second source, then adds the corresponding packed 32-bit signed integer
value of the third source to the 32-bit signed integer products. Writes four 32-bit results to the
destination.

When the result of the add overflows, the carry is ignored (neither the overflow nor carry bit in
rFLAGS is set). Only the low-order 32 bits of the result are written to the destination.

There are four operands: VPMACSWD dest, src1, src2, src3 dest = src1* src2 + src3

The destination (dest) register is an XMM register specified by MODRM.reg. When the destination
XMM register is written, bits [255:128] of the corresponding YMM register are cleared.

The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either an
XMM register or a 128-bit memory location specified by the MODRM.rm field; and the third source
(src3) is an XMM register specified by bits [7:4] of an immediate byte operand.

When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSSDD, VPMACSDO, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

VPMACSWD Packed Multiply Accumulate
Signed Word to Signed Doubleword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPMACSWD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 96 /r ib

Instruction Reference VPMACSWD 662

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPMACSWW 663

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed 16-bit signed integer value of the first source by the corresponding value of the
second source, then adds the corresponding packed 16-bit signed integer value of the third source to
each 32-bit signed integer product. Writes eight 16-bit results to the destination.

No saturation is performed on the sum. When the result of the multiplication causes non-zero values to
be set in the upper 16 bits of the 32 bit result, they are ignored. When the result of the add overflows,
the carry is ignored (neither the overflow nor carry bit in rFLAGS is set). In both cases, only the signed
low-order 16 bits of the result are written to the destination.

There are four operands: VPMACSWW dest, src1, src2, src3 dest = src1* src2 + src3

The destination (dest) is an XMM register specified by MODRM.reg. When the destination XMM
register is written, bits [255:128] of the corresponding YMM register are cleared.

The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either an
XMM register or a 128-bit memory location specified by the MODRM.rm field; and the third source
(src3) is an XMM register specified by bits [7:4] of an immediate byte operand.

When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPMACSSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

VPMACSWW Packed Multiply Accumulate
Signed Word to Signed Word

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPMACSWW xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 95 /r ib

Instruction Reference VPMACSWW 664

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPMADCSSWD 665

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed 16-bit signed integer value of the first source by the corresponding value of the
second source, then adds the 32-bit signed integer products of the even-odd adjacent words. Each
resulting sum is then added to the corresponding packed 32-bit signed integer value of the third source.
Writes four 16-bit results to he destination.

Out of range results of the addition are saturated to fit into a signed 32-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 32-bit integer, it is saturated to
7FFF_FFFFh, and when the value is smaller than the smallest signed 32-bit integer, it is saturated to
8000_0000h.

There are four operands: VPMADCSSWD dest, src1, src2, src3 dest = src1* src2 + src3

The destination is an XMM register specified by MODRM.reg. When the destination is written, bits
[255:128] of the corresponding YMM register are cleared.

The first source is an XMM register specified by XOP.vvvv; the second source is either an XMM
register or a 128-bit memory location specified by the MODRM.rm field; and the third source is an
XMM register specified by bits [7:4] of an immediate byte operand.

When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQL, VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSWD

VPMADCSSWD Packed Multiply Add Accumulate
with Saturation

Signed Word to Signed Doubleword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPMADCSSWD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 A6 /r ib

Instruction Reference VPMADCSSWD 666

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPMADCSWD 667

26568—Rev. 3.11—December 2010 AMD64 Technology

Multiplies each packed 16-bit signed integer value of the first source by the corresponding value of the
second source, then adds the 32-bit signed integer products of the even-odd adjacent words together
and adds the sums to the corresponding packed 32-bit signed integer values of the third source. Writes
four 32-bit sums to the destination.

No saturation is performed on the sum. When the result of the addition overflows, the carry is ignored
(neither the overflow nor carry bit in rFLAGS is set). Only the signed 32-bits of the result are written
to the destination.

There are four operands: VPMADCSWD dest, src1, src2, src3 dest = src1* src2 + src3

The destination is an XMM register specified by MODRM.reg. When the destination is written, bits
[255:128] of the corresponding YMM register are cleared.

The first source is an XMM register specified by XOP.vvvv, the second source is either an XMM
register or a 128-bit memory location specified by the MODRM.rm field; and the third source is an
XMM register specified by bits [7:4] of an immediate byte operand.

When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQL, VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD

VPMADCSWD Packed Multiply Add Accumulate
Signed Word to Signed Doubleword

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

PMADCSWD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 B6 /r ib

Instruction Reference VPMADCSWD 668

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPPERM 669

26568—Rev. 3.11—December 2010 AMD64 Technology

Selects 16 of 32 packed bytes from two concatenated sources, applies a logical transformation to each
selected byte, then writes the byte to a specified position in the destination.

There are four operands: VPPERM dest, src1, src2, src3

The second (src2) and first (src1) sources are concatenated to form the 32-byte source.

The src1 operand is an XMM register specified by XOP.vvvv.

The third source (src3) contains 16 control bytes. Each control byte specifies the source byte and the
logical operation to perform on that byte. The order of the bytes in the destination is the same as that of
the control bytes in the src3.

For each byte of the 16-byte result, the corresponding src3 byte is used as follows:
• Bits [7:5] select a logical operation to perform on the selected byte.

• Bits [4:0] select a source byte to move from src2:src1.

VPPERM Packed Permute
Bytes

Bit Value Selected Operation
000 Source byte (no logical operation)
001 Invert source byte
010 Bit reverse of source byte
011 Bit reverse of inverted source byte
100 00h (zero-fill)
101 FFh (ones-fill)
110 Most significant bit of source byte replicated in all bit positions.
111 Invert most significant bit of source byte and replicate in all bit positions.

Bit
Value

Source
Byte

Bit
Value

Source
Byte

Bit
Value

Source
Byte

Bit
Value

Source
Byte

00000 src1[7:0] 01000 src1[71:64] 10000 src2[7:0] 11000 src2[71:64]
00001 src1[15:8] 01001 src1[79:72] 10001 src2[15:8] 11001 src2[79:72]
00010 src1[23:16] 01010 src1[87:80] 10010 src2[23:16] 11010 src2[87:80]
00011 src1[31:24] 01011 src1[95:88] 10011 src2[31:24] 11011 src2[95:88]
00100 src1[39:32] 01100 src1[103:96] 10100 src2[39:32] 11100 src2[103:96]
00101 src1[47:40] 01101 src1[111:104] 10101 src2[47:40] 11101 src2[111:104]
00110 src1[55:48] 01110 src1[119:112] 10110 src2[55:48] 11110 src2[119:112]
00111 src1[63:56] 01111 src1[127:120] 10111 src2[63:56] 11111 src2[127:120]

Instruction Reference VPPERM 670

26568—Rev. 3.11—December 2010 AMD64 Technology

XOP.W and an immediate byte (imm8) determine register configuration.
• When XOP.W = 0, src2 is either an XMM register or a 128-bit memory location specified by

MODRM.rm and src3 is an XMM register specified by imm8[7:4].
• When XOP.W = 1, src2 is an XMM register specified by imm8[7:4] and src3 is either an XMM

register or a 128-bit memory location specified by MODRM.rm.

The destination (dest) is an XMM register specified by MODRM.reg. When the result is written to the
dest XMM register, bits [255:128] of the corresponding YMM register are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPSHUFHW, VPSHUFD, VPSHUFLW, VPSHUFW, VPERMIL2PS, VPERMIL2PD

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPPERM xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 A3 /r ib
VPPERM xmm1, xmm2, xmm3, xmm4/mem128 8F RXB.01000 1.src.0.00 A3 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPROTB 671

26568—Rev. 3.11—December 2010 AMD64 Technology

Rotates each byte of the source as specified by a count operand and writes the result to the
corresponding byte of the destination.

There are two versions of the instruction, one for each source of the count byte:
• VPROTB dest, src, fixed-count
• VPROTB dest, src, variable-count

For both versions of the instruction, the destination (dest) operand is an XMM register specified by
MODRM.reg.

The fixed-count version of the instruction rotates each byte of the source (src) the number of bits
specified by the immediate fixed-count byte. All bytes are rotated the same amount. The source XMM
register or memory location is selected by the MODRM.rm field.

The variable-count version of the instruction rotates each byte of the source the amount specified in
the corresponding byte element of the variable-count. Both src and variable-count are configured by
XOP.W.
• When XOP.W = 0, variable-count is an XMM register specified by XOP.vvvv and src is either an

XMM register or a 128-bit memory location specified by MODRM.rm.
• When XOP.W = 1, variable-count is either an XMM register or a 128-bit memory location

specified by MODRM.rm and src is an XMM register specified by XOP.vvvv.

When the count value is positive, bits are rotated to the left (toward the more significant bit positions).
The bits rotated out left of the most significant bit are rotated back in at the right end (least-significant
bit) of the byte.

When the count value is negative, bits are rotated to the right (toward the least significant bit
positions). The bits rotated to the right out of the least significant bit are rotated back in at the left end
(most-significant bit) of the byte.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPROTW, VPROTD, VPROTQ,VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

VPROTB Packed Rotate
Bytes

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPROTB xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 90 /r
VPROTB xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 90 /r
VPROTB xmm1, xmm2/mem128, imm8 8F RXB.01000 0.1111.0.00 C0 /r ib

Instruction Reference VPROTB 672

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.vvvv ! = 1111b (for immediate operand variant only)
X XOP.L field = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPROTD 673

26568—Rev. 3.11—December 2010 AMD64 Technology

Rotates each doubleword of the source as specified by a count operand and writes the result to the
corresponding doubleword of the destination.

There are two versions of the instruction, one for each source of the count byte:
• VPROTD dest, src, fixed-count
• VPROTD dest, src, variable-count

For both versions of the instruction, the dest operand is an XMM register specified by MODRM.reg.

The fixed count version of the instruction rotates each doubleword of the source operand the number
of bits specified by the immediate fixed-count byte operand. All doublewords are rotated the same
amount. The src XMM register or memory location is selected by the MODRM.rm field.

The variable count version of the instruction rotates each doubleword of the source by the amount
specified in the low order byte of the corresponding doubleword of the variable-count operand vector.

Both src and variable-count are configured by XOP.W.
• When XOP.W = 0, src is either an XMM register or a128-bit memory location specified by the

MODRM.rm field and variable-count is an XMM register specified by XOP.vvvv.
• When XOP.W = 1, src is an XMM register specified by XOP.vvvv and variable-count is either an

XMM register or a 128-bit memory location specified by the MODRM.rm field.

When the count value is positive, bits are rotated to the left (toward the more significant bit positions).
The bits rotated out to the left of the most significant bit of each source doubleword operand are
rotated back in at the right end (least-significant bit) of the doubleword.

When the count value is negative, bits are rotated to the right (toward the least significant bit
positions). The bits rotated to the right out of the least significant bit of each source doubleword
operand are rotated back in at the left end (most-significant bit) of the doubleword.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPROTB, VPROTW, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

VPROTD Packed Rotate
Doublewords

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPROTD xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 92 /r
VPROTD xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 92 /r
VPROTD xmm1, xmm2/mem128, imm8 8F RXB.01000 0.1111.0.00 C2 /r ib

Instruction Reference VPROTD 674

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.vvvv ! = 1111b (for immediate operand variant only)
X XOP.L field = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPROTQ 675

26568—Rev. 3.11—December 2010 AMD64 Technology

Rotates each quadword of the source operand as specified by a count operand and writes the result to
the corresponding quadword of the destination.

There are two versions of the instruction, one for each source of the count byte:
• VPROTQ dest, src, fixed-count
• VPROTQ dest, src, variable-count

For both versions of the instruction, the dest operand is an XMM register specified by MODRM.reg.

The fixed count version of the instruction rotates each quadword in the source the number of bits
specified by the immediate fixed-count byte operand. All quadword elements of the source are rotated
the same amount. The src XMM register or memory location is selected by the MODRM.rm field.

The variable count version of the instruction rotates each quadword of the source the amount specified
ny the low order byte of the corresponding quadword of the variable-count operand.

Both src and variable-count are configured by XOP.W.
• When XOP.W = 0, src is either an XMM register or a 128-bit memory location specified by

MODRM.rm and variable-count is an XMM register specified by XOP.vvvv.
• When XOP.W = 1, src is an XMM register specified by XOP.vvvv and variable-count is either an

XMM register or a128-bit memory location specified by MODRM.rm.

When the count value is positive, bits are rotated to the left (toward the more significant bit positions)
of the operand element. The bits rotated out to the left of the most significant bit of the word element
are rotated back in at the right end (least-significant bit).

When the count value is negative, operand element bits are rotated to the right (toward the least
significant bit positions). The bits rotated to the right out of the least significant bit are rotated back in
at the left end (most-significant bit) of the word element.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPROTB, VPROTW, VPROTD, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

VPROTQ Packed Rotate
Quadwords

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPROTQ xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 93 /r
VPROTQ xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 93 /r
VPROTQ xmm1, xmm2/mem128, imm8 8F RXB.01000 0.1111.0.00 C3 /r ib

Instruction Reference VPROTQ 676

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.vvvv ! = 1111b (for immediate operand variant only)
X XOP.L field = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPROTW 677

26568—Rev. 3.11—December 2010 AMD64 Technology

Rotates each word of the source as specified by a count operand and writes the result to the
corresponding word of the destination.

There are two versions of the instruction, one for each source of the count byte:
• VPROTW dest, src, fixed-count
• VPROTW dest, src, variable-count

For both versions of the instruction, the dest operand is an XMM register specified by MODRM.reg.

The fixed count version of the instruction rotates each word of the source the number of bits specified
by the immediate fixed-count byte operand. All words of the source operand are rotated the same
amount. The src XMM register or memory location is selected by the MODRM.rm field.

The variable count version of this instruction rotates each word of the source operand by the amount
specified in the low order byte of the corresponding word of the variable-count operand.

Both src and variable-count are configured by XOP.W.
• When XOP.W = 0, src is either an XMM register or a 128-bit memory location specified by

MODRM.rm and variable-count is an XMM register specified by XOP.vvvv.
• When XOP.W = 1, src is an XMM register specified by XOP.vvvv and variable-count is either an

XMM register or a 128-bit memory location specified by MODRM.rm.

When the count value is positive, bits are rotated to the left (toward the more significant bit positions).
The bits rotated out to the left of the most significant bit of an element are rotated back in at the right
end (least-significant bit) of the word element.

When the count value is negative, bits are rotated to the right (toward the least significant bit positions)
of the element. The bits rotated to the right out of the least significant bit of an element are rotated back
in at the left end (most-significant bit) of the word element.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPROTB, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

VPROTW Packed Rotate
Words

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPROTW xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 91 /r
VPROTW xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 91 /r
VPROTW xmm1, xmm2/mem128, imm8 8F RXB.01000 0.1111.0.00 C1 /r ib

Instruction Reference VPROTW 678

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.vvvv ! = 1111b (for immediate operand variant only)
X XOP.L field = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPSHAB 679

26568—Rev. 3.11—December 2010 AMD64 Technology

Shifts each signed byte of the source as specified by a count byte and writes the result to the
corresponding byte of the destination.

The count bytes are 8-bit signed two's-complement values in the corresponding bytes of the count
operand.

When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the byte.

When the count value is negative, bits are shifted to the right (toward the least significant bit
positions). The most significant bit (sign bit) is replicated and shifted in at the left end (most-
significant bit) of the byte.

There are three operands: VPSHAB dest, src, count

The destination (dest) is an XMM register specified by MODRM.reg.

Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a128-bit memory location specified by MODRM.rm.
• When XOP.W = 1, count is either an XMM register or a 128-bit memory location specified by

MODRM.rm and src is an XMM register specified by XOP.vvvv.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAW,
VPSHAD, VPSHAQ

VPSHAB Packed Shift Arithmetic
Bytes

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPSHAB xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 98 /r
VPSHAB xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 98 /r

Instruction Reference VPSHAB 680

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPSHAD 681

26568—Rev. 3.11—December 2010 AMD64 Technology

Shifts each signed doubleword of the source operand as specified by a count byte and writes the result
to the corresponding doubleword of the destination.

The count bytes are 8-bit signed two's-complement values located in the low-order byte of the
corresponding doubleword of the count operand.

When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the doubleword.

When the count value is negative, bits are shifted to the right (toward the least significant bit
positions). The most significant bit (sign bit) is replicated and shifted in at the left end (most-
significant bit) of the doubleword.

There are three operands: VPSHAD dest, src, count

The destination (dest) is an XMM register specified by MODRM.reg.

Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by MODRM.rm.
• When XOP.W = 1, count is either an XMM register or a memory location specified by

MODRM.rm and src is an XMM register specified by XOP.vvvv.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB,
VPSHAW, VPSHAQ

VPSHAD Packed Shift Arithmetic
Doublewords

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPSHAD xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 9A /r
VPSHAD xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 9A /r

Instruction Reference VPSHAD 682

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPSHAQ 683

26568—Rev. 3.11—December 2010 AMD64 Technology

Shifts each signed quadword of the source as specified by a count byte and writes the result to the
corresponding quadword of the destination.

The count bytes are 8-bit signed two's-complement values located in the low-order byte of the
corresponding quadword element of the count operand.

When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the quadword.

When the count value is negative, bits are shifted to the right (toward the least significant bit
positions). The most significant bit is replicated and shifted in at the left end (most-significant bit) of
the quadword.

The shift amount is stored in two’s-complement form. The count is modulo 64.

There are three operands: VPSHAQ dest, src, count

The destination (dest) is an XMM register specified by MODRM.reg.

Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by MODRM.rm.
• When XOP.W = 1, count is either an XMM register or a memory location specified by

MODRM.rm and src is an XMM register specified by XOP.vvvv.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB,
VPSHAW, VPSHAD

VPSHAQ Packed Shift Arithmetic
Quadwords

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPSHAQ xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 9B /r
VPSHAQ xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 9B /r

Instruction Reference VPSHAQ 684

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPSHAW 685

26568—Rev. 3.11—December 2010 AMD64 Technology

Shifts each signed word of the source as specified by a count byte and writes the result to the
corresponding word of the destination.

The count bytes are 8-bit signed two's-complement values located in the low-order byte of the
corresponding word of the count operand.

When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the word.

When the count value is negative, bits are shifted to the right (toward the least significant bit
positions). The most significant bit (signed bit) is replicated and shifted in at the left end (most-
significant bit) of the word.

The shift amount is stored in two’s-complement form. The count is modulo 16.

There are three operands: VPSHAW dest, src, count

The destination (dest) is an XMM register specified by MODRM.reg.

Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by MODRM.rm.
• When XOP.W = 1, count is either an XMM register or a memory location specified by

MODRM.rm and src is an XMM register specified by XOP.vvvv.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB,
VPSHAD, VPSHAQ

VPSHAW Packed Shift Arithmetic
Words

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPSHAW xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 99 /r
VPSHAW xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 99 /r

Instruction Reference VPSHAW 686

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPSHLB 687

26568—Rev. 3.11—December 2010 AMD64 Technology

Shifts each packed byte of the source as specified by a count byte and writes the result to the
corresponding byte of the destination.

The count bytes are 8-bit signed two's-complement values located in the corresponding byte element
of the count operand.

When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the byte.

When the count value is negative, bits are shifted to the right (toward the least significant bit
positions). Zeros are shifted in at the left end (most-significant bit) of the byte.

There are three operands: VPSHLB dest, src, count

The destination (dest) is an XMM register specified by MODRM.reg.

Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by MODRM.rm.
• When XOP.W = 1, count is either an XMM register or a memory location specified by

MODRM.rm and src is an XMM register specified by XOP.vvvv.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLW, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

VPSHLB Packed Shift Logical
Bytes

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPSHLB xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 94 /r
VPSHLB xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 94 /r

Instruction Reference VPSHLB 688

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPSHLD 689

26568—Rev. 3.11—December 2010 AMD64 Technology

Shifts each doubleword of the source operand as specified by a count byte and writes the result to the
corresponding doubleword of the destination.

The count bytes are 8-bit signed two's-complement values located in the low-order byte of the
corresponding doubleword element of the count operand.

When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the doubleword.

When the count value is negative, bits are shifted to the right (toward the least significant bit
positions). Zeros are shifted in at the left end (most-significant bit) of the doubleword.

The shift amount is stored in two’s-complement form. The count is modulo 32.

There are three operands: VPSHLD dest, src, count

The destination (dest) is an XMM register specified by MODRM.reg.

Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by MODRM.rm.
• When XOP.W = 1, count is either an XMM register or a memory location specified by

MODRM.rm and src is an XMM register specified by XOP.vvvv.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

VPSHLD Packed Shift Logical
Doublewords

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPSHLD xmm1, xmm3/mem128, xmm2 8F RXB.01001 0.src.0.00 96 /r
VPSHLD xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 96 /r

Instruction Reference VPSHLD 690

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPSHLQ 691

26568—Rev. 3.11—December 2010 AMD64 Technology

Shifts each quadwords of the source by as specified by a count byte and writes the result in the
corresponding quadword of the destination.

The count bytes are 8-bit signed two's-complement values located in the low-order byte of the
corresponding quadword element of the count operand.

Bit 6 of the count byte is ignored.

When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the quadword.

When the count value is negative, bits are shifted to the right (toward the least significant bit
positions). Zeros are shifted in at the left end (most-significant bit) of the quadword.

There are three operands: VPSHLQ dest, src, count

The destination (dest) is an XMM register specified by MODRM.reg.

Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by MODRM.rm.
• When XOP.W = 1, count is either an XMM register or a memory location specified by

MODRM.rm and src is an XMM register specified by XOP.vvvv.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

VPSHLQ Packed Shift Logical
Quadwords

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPSHLQ xmm1, xmm3/mem128, xmm2 8F RXB.01001 0.src.0.00 97 /r
VPSHLQ xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 97 /r

Instruction Reference VPSHLQ 692

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPSHLW 693

26568—Rev. 3.11—December 2010 AMD64 Technology

Shifts each word of the source operand as specified by a count byte and writes the result to the
corresponding word of the destination.

The count bytes are 8-bit signed two's-complement values located in the low-order byte of the
corresponding word element of the count operand.

When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the word.

When the count value is negative, bits are shifted to the right (toward the least significant bit
positions). Zeros are shifted in at the left end (most-significant bit) of the word.

There are three operands: VPSHLW dest, src, count

The destination (dest) is an XMM register specified by MODRM.reg.

Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by MODRM.rm.
• When XOP.W = 1, count is either an XMM register or a memory location specified by

MODRM.rm and src is an XMM register specified by XOP.vvvv.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This i s an XOP ins t ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Related Instructions
VPROTB, VPROLW, VPROTD, VPROTQ, VPSHLB, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

VPSHLW Packed Shift Logical
Words

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPSHLW xmm1, xmm3/mem128, xmm2 8F RXB.01001 0.src.0.00 95 /r
VPSHLW xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 95 /r

Instruction Reference VPSHLW 694

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPTESTPD 695

26568—Rev. 3.11—December 2010 AMD64 Technology

First, performs a bitwise AND of the sign bits of each double-precision floating-point element of the
first source operand with the sign bits of the corresponding elements of the second source operand.
Sets rFLAGS.ZF when all bit operations = 0; else, clears ZF.

Second, performs a bitwise AND of the sign bits of each double-precision floating-point element of
the first source with the complements (NOT) of the sign bits of the corresponding elements of the
second source operand. Sets rFLAGS.CF when all bit operations = 0; else, clears CF.

Neither source operand is modified.

This extended-form instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location.
YMM Encoding

The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location.

VTESTPD is an AVX instruction. Support for these instructions is indicated by CPUID feature
identifiers (see the CPUID Specification, order# 25481).

Related Instructions
PTEST, VTESTPS

VTESTPD Packed Bit Test

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VTESTPD xmm1, xmm2/mem128 C4 RXB.00010 0.1111.0.01 0F /r
VTESTPD ymm1, ymm2/mem256 C4 RXB.00010 0.1111.1.01 0F /r

Instruction Reference VPTESTPD 696

26568—Rev. 3.11—December 2010 AMD64 Technology

rFLAGS Affected
ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M M M M
21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3 and 1 are reserved. A flag set or cleared is M (modified). Unaffected flags are blank. Undefined
flags are U.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference VPTESTPS 697

26568—Rev. 3.11—December 2010 AMD64 Technology

First, performs a bitwise AND of the sign bits of each single-precision floating-point element of the
first source operand with the sign bits of the corresponding elements of the second source operand.
Sets rFLAGS.ZF when all bit operations = 0; else, clears ZF.

Second, performs a bitwise AND of the sign bits of each single-precision floating-point element of the
first source with the complements (NOT) of the sign bits of the corresponding elements of the second
source operand. Sets rFLAGS.CF when all bit operations = 0; else, clears CF.

Neither source operand is modified.

This extended-form instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location.
YMM Encoding

The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location.

VTESTPS is an AVX instruction. Support for these instructions is indicated by CPUID feature
identifiers (see the CPUID Specification, order# 25481).

Related Instructions
PTEST, VTESTPD

VTESTPS Packed Bit Test

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VTESTPS xmm1, xmm2/mem128 C4 RXB.00010 0.1111.0.01 0E /r
VTESTPS ymm1, ymm2/mem256 C4 RXB.00010 0.1111.1.01 0E /r

Instruction Reference VPTESTPS 698

26568—Rev. 3.11—December 2010 AMD64 Technology

rFLAGS Affected
ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M M M M
21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3 and 1 are reserved. A flag set or cleared is M (modified). Unaffected flags are blank. Undefined
flags are U.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference VZEROALL 699

26568—Rev. 3.11—December 2010 AMD64 Technology

Clears all XMM and YMM registers.

This extended-form instruction has 256-bit YMM encoding.

This i s an AVX inst ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
VZEROUPPER

VZEROALL Clear
All YMM Registers

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VZEROALL C4 RXB.00001 X.1111.1.00 77

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
A — AVX exception.

Instruction Reference VZEROUPPER 700

26568—Rev. 3.11—December 2010 AMD64 Technology

Clears bits [255:128] of all YMM registers. The corresponding XMM registers are not affected.

This extended-form instruction has 128-bit encoding.

This i s an AVX inst ruct ion. Support for these ins t ruct ions i s indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Related Instructions
VZEROUPPER

VZEROUPPER Clear
Bits [255:128] Of All YMM Registers

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VZEROUPPER C4 RXB.00001 X.1111.0.00 77

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
A — AVX exception.

Instruction Reference XORPD, VXORPD 701

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs bitwise XOR of two packed double-precision floating-point values in the first source
operand with the corresponding values of the second source operand and writes the results into the
corresponding elements of the destination.

There are legacy and extended forms of the instruction:

XORPD
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VXORPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

XORPD is an SSE2 instruction and VXORPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPS

XORPD
VXORPD

XOR
Packed Double-Precision Floating-Point

Mnemonic Opcode Description
XORPD xmm1, xmm2/mem128 66 0F 57 /r Performs bitwise XOR of two packed double-precision

floating-point values in xmm1 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VXORPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 57 /r
VXORPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 57 /r

Instruction Reference XORPD, VXORPD 702

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference XORPS, VXORPS 703

26568—Rev. 3.11—December 2010 AMD64 Technology

Performs bitwise XOR of four packed single-precision floating-point values in the first source operand
with the corresponding values of the second source operand and writes the results into the
corresponding elements of the destination.

There are legacy and extended forms of the instruction:

XORPS
The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VXORPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

XORPS is an SSE2 instruction and VXORPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Related Instructions
(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD

XORPS
VXORPS

XOR
Packed Single-Precision Floating-Point

Mnemonic Opcode Description
XORPS xmm1, xmm2/mem128 66 0F 57 /r Performs bitwise XOR of four packed single-precision

floating-point values in xmm1 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VXORPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 57 /r
VXORPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 57 /r

Instruction Reference XORPS, VXORPS 704

26568—Rev. 3.11—December 2010 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference XGETBV 705

26568—Rev. 3.11—December 2010 AMD64 Technology

Copies the content of the extended control register (XCR) specified by the ECX register into the
EDX:EAX register pair. The high-order 32 bits of the XCR are loaded into EDX and the low-order 32
bits are loaded into EAX. The corresponding high-order 32 bits of RAX and RDX are cleared.

This instruction and associated data structures extend the FXSAVE/FXRSTOR memory image used to
manage processor states and provide additional functionality. See Section 1.3, “XSAVE/XRSTOR
Instructions” for more information.

Values returned to EDX:EAX in unimplemented bit locations are undefined.

Specifying a reserved or unimplemented XCR in ECX causes a general protection exception.

Currently, only XCR0 (the XFEATURE_ENABLED_MASK register) is supported. All other values
of ECX are reserved.

XGETBV is an XSAVE/XRSTOR instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[XSAVE] (see the CPUID Specification, order# 25481).

Related Instructions

RDMSR

XGETBV Get Extended Control Register Value

Mnemonic Opcode Description

XGETBV 0F 01 D0 Copies content of the XCR specified by ECX into
EDX:EAX.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X Lock prefix (F0h) preceding opcode.

General protection, #GP X X X ECX specifies a reserved or unimplemented XCR address.
X — exception generated

Instruction Reference XRSTOR 706

26568—Rev. 3.11—December 2010 AMD64 Technology

Restores processor state from memory.

This instruction and associated data structures extend the FXSAVE/FXRSTOR memory image used to
manage processor states and provide additional functionality. See Section 1.3, “XSAVE/XRSTOR
Instructions” for more information.

The XSAVE/XRSTOR save area consists of a header section and individual save areas for each
processor state component. A component save area is updated when both the corresponding bits in the
mask operand (EDX:EAX) and the XFEATURE_ENABLED_MASK (XCR0) register are set. A
component save area is not updated when either of the corresponding bits in EDX:EAX or XCR0 is
cleared. Updated state is either loaded from memory or set directly to hardware-specified initial
values, depending on the corresponding xstate_bv bit in the save area header.

Software can set any bit in EDX:EAX, regardless of whether the bit position in XCR0 is valid for the
processor. When the mask operand contains all 1's, all processor state components enabled in XCR0
are updated.

XRSTOR is an XSAVE/XRSTOR instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[XSAVE] (see the CPUID Specification, order# 25481).

Related Instructions

XGETBV, XSAVE, XSETBV

XRSTOR Save Extended States

Mnemonic Opcode Description

XRSTOR mem 0F AE /5 Restores user-specified processor state from memory.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSFXSR = 0.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.
X X X Null data segment used to reference memory.
X X X Memory operand not aligned on 64-byte boundary.
X X X Any must be zero (MBZ) bits in the save area were set.
X X X Attempt to set reserved bits in MXCSR.

Page fault, #PF X X X Instruction execution caused a page fault.
X — exception generated

Instruction Reference XSAVE 707

26568—Rev. 3.11—December 2010 AMD64 Technology

Saves a user-defined subset of enabled processor state data to a specified memory address.

This instruction and associated data structures extend the FXSAVE/FXRSTOR memory image used to
manage processor states and provide additional functionality. See Section 1.3, “XSAVE/XRSTOR
Instructions” for more information.

The XSAVE/XRSTOR save area consists of a header section, and individual save areas for each
processor state component. A component is saved when both the corresponding bits in the mask
operand (EDX:EAX) and the XFEATURE_ENABLED_MASK (XCR0) register are set. A
component is not saved when either of the corresponding bits in EDX:EAX or XCR0 is cleared.

Software can set any bit in EDX:EAX, regardless of whether the bit position in XCR0 is valid for the
processor. When the mask operand contains all 1's, all processor state components enabled in XCR0
are saved.

For each component saved, XSAVE sets the corresponding bit in the XSTATE_BV field of the save
area header. XSAVE does not clear XSTATE_BV bits or modify individual save areas for components
that are not saved. If a saved component is in the hardware-specified initialized state, XSAVE may
clear the corresponding XSTATE_BV bit instead of setting it. This optimization is implementation-
dependent.

XSAVE is an XSAVE/XRSTOR instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[XSAVE] (see the CPUID Specification, order# 25481).

Related Instructions
XGETBV, XRSTOR, XSETBV

XSAVE Save Extended States

Mnemonic Opcode Description

XSAVE mem 0F AE /4 Saves user-specified processor state to memory.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSFXSR = 0.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.
X X X Null data segment used to reference memory.
X X X Memory operand not aligned on 64-byte boundary.
X X X Attempt to write read-only memory.

Page fault, #PF X X X Instruction execution caused a page fault.
X — exception generated

Instruction Reference XSETBV 708

26568—Rev. 3.11—December 2010 AMD64 Technology

Writes the content of the EDX:EAX register pair into the extended control register (XCR) specified by
the ECX register. The high-order 32 bits of the XCR are loaded from EDX and the low-order 32 bits
are loaded from EAX. The corresponding high-order 32 bits of RAX and RDX are ignored.

This instruction and associated data structures extend the FXSAVE/FXRSTOR memory image used to
manage processor states and provide additional functionality. See Section 1.3, “XSAVE/XRSTOR
Instructions” for more information.

Currently, only the XFEATURE_ENABLED_MASK register (XCR0) is supported. Specifying a
reserved or unimplemented XCR in ECX causes a general protection exception (#GP).

Executing XSETBV at a privilege level other than 0 causes a general-protection exception. A general
protection exception also occurs when software attempts to write to reserved bits of an XCR.

The XGETBV instruction is an XSAVE/XRSTOR instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_ECX[XSAVE] (see the CPUID Specification, order# 25481).

Related Instructions

XGETBV, XRSTOR, XSAVE

XSETBV Set Extended Control Register Value

Mnemonic Opcode Description

XSETBV 0F 01 D1 Writes the content of the EDX:EAX register pair to
the XCR specified by the ECX register.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSFXSR = 0.
X X X Lock prefix (F0h) preceding opcode.

General protection, #GP

X X X CPL != 0.
X X X ECX specifies a reserved or unimplemented XCR address.
X X X Any must be zero (MBZ) bits in the XCR were set.

Setting XCR0[2:1] to 10b.
X X X Writing 0 to XCR[0].

X — exception generated
Note:
In virtual mode, only #UD for Instruction not supported and #GP for CPL != 0 are supported.

Exception Summary 709

26568—Rev. 3.11—December 2010 AMD64 Technology

3 Exception Summary
This chapter provides a ready reference to instruction exceptions. Table 3-1 shows instructions
grouped by exception class, with the extended and legacy instruction type (if applicable). Examples
of the exception tables for each class, in numeric order, follow the table.

Table 3-1. Instructions By Exception Class
Mnemonic Extended Type Legacy Type

Class 1 — AVX, SSE, 16/32-byte aligned, write to RO, VEX.vvvv != 1111b
MOVAPD VMOVAPD AVX SSE2
MOVAPS VMOVAPS AVX SSE
MOVDQA VMOVDQA AVX SSE2
MOVNTDQ VMOVNTDQ AVX SSE2
MOVNTPD VMOVNTPD AVX SSE2
MOVNTPS VMOVNTPS AVX SSE
Class 1A — AVX, SSE, 16/32-byte aligned, write to RO, VEX.vvvv != 1111b, VEX.L = 1
MOVNTDQA VMOVNTDQA AVX SSE4.1
Class 2 — AVX, SSE, 16/32-byte nonaligned, SIMD 111111
DIVPD VDIVPD AVX SSE2
DIVPS VDIVPS AVX SSE
Class 2-1 — AVX, SSE, 16/32-byte nonaligned, SIMD 111011
ADDPD VADDPD AVX SSE2
ADDPS VADDPS AVX SSE
ADDSUBPD VADDSUBPD AVX SSE2
ADDSUBPS VADDSUBPS AVX SSE
DPPS VDPPS AVX SSE4.1
HADDPD VHADDPD AVX SSE3
HADDPS VHADDPS AVX SSE3
HSUBPD VHSUBPD AVX SSE3
HSUBPS VHSUBPS AVX SSE3
SUBPD VSUBPD AVX SSE2
SUBPS VSUBPS AVX SSE
Class 2-2 — AVX, SSE, 16/32-byte nonaligned, SIMD 000011
CMPPD VCMPPD AVX SSE2
CMPPS VCMPPS AVX SSE
MAXPD VMAXPD AVX SSE2
MAXPS VMAXPS AVX SSE
MINPD VMINPD AVX SSE2
MINPS VMINPS AVX SSE
MULPD VMULPD AVX SSE2
MULPS VMULPS AVX SSE
Class 2-3 — AVX, SSE, 16/32-byte nonaligned, SIMD 100001
ROUNDPD, VROUNDPD AVX SSE4.1
ROUNDPS, VROUNDPS AVX SSE4.1

710 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 2A — AVX, SSE, 16/32-byte nonaligned, SIMD 111111, VEX.L = 1 1

Class 2A-1 — AVX, SSE, 16/32-byte nonaligned, SIMD 111011, VEX.L = 1
DPPD VDPPD AVX SSE4.1

Class 2B — AVX, SSE, 16/32-byte nonaligned, SIMD 111111, VEX.vvvv != 1111b 1

Class 2B-1 — AVX, SSE, 16/32-byte nonaligned, SIMD 100000, VEX.vvvv != 1111b
CVTDQ2PS VCVTDQ2PS AVX SSE2
Class 2B-2 — AVX, SSE, 16/32-byte nonaligned, SIMD 100001, VEX.vvvv != 1111b
CVTPD2DQ VCVTPD2DQ AVX SSE2
CVTPS2DQ VCVTPS2DQ AVX SSE2
CVTTPS2DQ VCVTTPS2DQ AVX SSE2
CVTTPD2DQ VCVTTPD2DQ AVX SSE2
Class 2B-3 — AVX, SSE, 16/32-byte nonaligned, SIMD 111011, VEX.vvvv != 1111b
CVTPD2PS VCVTPD2PS AVX SSE2
Class 2B-4 — AVX, SSE, 16/32-byte nonaligned, SIMD 100011, VEX.vvvv != 1111b
SQRTPD VSQRTPD AVX SSE2
SQRTPS VSQRTPS AVX SSE
Class 3 — AVX, SSE, <16-byte, SIMD
DIVSD VDIVSD AVX SSE2
DIVSS VDIVSS AVX SSE
Class 3-1 — AVX, SSE, <16-byte, SIMD 111011
ADDSD VADDSD AVX SSE2
ADDSS VADDSS AVX SSE
CVTSD2SS VCVTSD2SS AVX SSE2
SUBSD VSUBSD AVX SSE2
SUBSS VSUBSS AVX SSE
Class 3-2 — AVX, SSE, <16-byte, SIMD 000011
CMPSD VCMPSD AVX SSE2
CMPSS VCMPSS AVX SSE
CVTSS2SD VCVTSS2SD AVX SSE2
MAXSD VMAXSD AVX SSE2
MAXSS VMAXSS AVX SSE
MINSD VMINSD AVX SSE2
MINSS VMINSS AVX SSE
MULSD VMULSD AVX SSE2
MULSS VMULSS AVX SSE
UCOMISD VUCOMISD AVX SSE2
UCOMISS VUCOMISS AVX SSE
Class 3-3 — AVX, SSE, <16-byte, SIMD 100000
CVTSI2SD VCVTSI2SD AVX SSE2
CVTSI2SS VCVTSI2SS AVX SSE

Table 3-1. Instructions By Exception Class
Mnemonic Extended Type Legacy Type

Exception Summary 711

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 3-4 — AVX, SSE, <16-byte, SIMD 100001
ROUNDSD, VROUNDSD AVX SSE4.1
ROUNDSS, VROUNDSS AVX SSE4.1
Class 3-5 — AVX, SSE, <16-byte, SIMD 100011
SQRTSD VSQRTSD AVX SSE2
SQRTSS VSQRTSS AVX SSE

Class 3A — AVX, SSE, <16-byte, SIMD 111111, VEX.vvvv != 1111b1

Class 3A-1 — AVX, SSE, <16-byte, SIMD 000011, VEX.vvvv != 1111b
COMISD VCOMISD AVX SSE2
COMISS VCOMISS AVX SSE
CVTPS2PD VCVTPS2PD AVX SSE2
Class 3A-2 — AVX, SSE, <16-byte, SIMD 100001, VEX.vvvv != 1111b
CVTSD2SI VCVTSD2SI AVX SSE2
CVTSS2SI VCVTSS2SI AVX SSE
CVTTSD2SI VCVTTSD2SI AVX SSE2
CVTTSS2SI VCVTTSS2SI AVX SSE
Class 4 — AVX, SSE, 16/32-byte nonaligned
AESDEC VAESDEC AVX AES
AESDECLAST VAESDECLAST AES AES
AESENC VAESENC AES AES
AESENCLAST VAESENCLAST AES AES
AESIMC VAESIMC AES AES
AESKEYGENASSIST VAESKEYGENASSIST AES AES
ANDNPD VANDNPD AVX SSE2
ANDNPS VANDNPS AVX SSE
ANDPD VANDPD AVX SSE2
ANDPS VANDPS AVX SSE
BLENDPD VBLENDPD AVX SSE4.1
BLENDPS VBLENDPS AVX SSE4.1
ORPD VORPD AVX SSE2
ORPS VORPS AVX SSE
PCLMULQDQ — CLMUL
SHUFPD VSHUFPD AVX SSE2
SHUFPS VSHUFPS AVX SSE2
UNPCKHPD VUNPCKHPD AVX SSE2
UNPCKHPS VUNPCKHPS AVX SSE
UNPCKLPD VUNPCKLPD AVX SSE2
UNPCKLPS VUNPCKLPS AVX SSE
XORPD VXORPD AVX SSE2
XORPS VXORPS AVX SSE

Table 3-1. Instructions By Exception Class
Mnemonic Extended Type Legacy Type

712 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 4A — AVX, SSE, 16/32-byte nonaligned, VEX.W = 1
BLENDVPD VBLENDVPD AVX SSE4.1
BLENDVPS VBLENDVPS AVX SSE4.1
Class 4B — AVX, SSE, 16/32-byte nonaligned, VEX.L = 1
MPSADBW VMPSADBW AVX SSE4.1
PACKSSDW VPACKSSDW AVX SSE2
PACKSSWB VPACKSSWB AVX SSE2
PACKUSDW VPACKUSDW AVX SSE4.1
PACKUSWB VPACKUSWB AVX SSE2
PADDB VPADDB AVX SSE2
PADDD VPADDD AVX SSE2
PADDQ VPADDQ AVX SSE2
PADDSB VPADDSB AVX SSE2
PADDSW VPADDSW AVX SSE2
PADDUSB VPADDUSB AVX SSE2
PADDUSW VPADDUSW AVX SSE2
PADDW VPADDW AVX SSE2
PALIGNR VPALIGNR AVX SSSE3
PANDN VPANDN AVX SSE2
PAND VPAND AVX SSE2
PAVGB VPAVGB AVX SSE
PAVGW VPAVGW AVX SSE
PBLENDW VPBLENDW AVX SSE4.1
PCMPEQB VPCMPEQB AVX SSE2
PCMPEQD VPCMPEQD AVX SSE2
PCMPEQQ VPCMPEQQ AVX SSE4.1
PCMPEQW VPCMPEQW AVX SSE2
PCMPGTB VPCMPGTB AVX SSE2
PCMPGTD VPCMPGTD AVX SSE2
PCMPGTQ VPCMPGTQ AVX SSE4.2
PCMPGTW VPCMPGTW AVX SSE2
PCMPISTRI VPCMPISTRI AVX SSE4.2
PCMPISTRM VPCMPISTRM AVX SSE4.2
PHADDD VPHADDD AVX SSSE3
PHADDSW VPHADDSW AVX SSSE3
PHADDW VPHADDW AVX SSSE3
PHSUBD VPHSUBD AVX SSSE3
PHSUBW VPHSUBW AVX SSSE3
PHSUBSW VPHSUBSW AVX SSSE3
PMADDUBSW VPMADDUBSW AVX SSSE3
PMADDWD VPMADDWD AVX SSE2
PMAXSB VPMAXSB AVX SSE4.1

Table 3-1. Instructions By Exception Class
Mnemonic Extended Type Legacy Type

Exception Summary 713

26568—Rev. 3.11—December 2010 AMD64 Technology

PMAXSD VPMAXSD AVX SSE4.1
PMAXSW VPMAXSW AVX SSE
PMAXUB VPMAXUB AVX SSE
PMAXUD VPMAXUD AVX SSE4.1
PMAXUW VPMAXUW AVX SSE4.1
PMINSB VPMINSB AVX SSE4.1
PMINSD VPMINSD AVX SSE4.1
PMINSW VPMINSW AVX SSE
PMINUB VPMINUB AVX SSE
PMINUD VPMINUD AVX SSE4.1
PMINUW VPMINUW AVX SSE4.1
PMULDQ VPMULDQ AVX SSE4.1
PMULHRSW VPMULHRSW AVX SSSE3
PMULHUW VPMULHUW AVX SSE2
PMULHW VPMULHW AVX SSE2
PMULLD VPMULLD AVX SSE4.1
PMULLW VPMULLW AVX SSE2
PMULUDQ VPMULUDQ AVX SSE2
POR VPOR AVX SSE2
PSADBW VPSADBW AVX SSE
PSHUFB VPSHUFB AVX SSSE3
PSIGNB VPSIGNB AVX SSSE3
PSIGND VPSIGND AVX SSSE3
PSIGNW VPSIGNW AVX SSSE3
PSUBB VPSUBB AVX SSE2
PSUBD VPSUBD AVX SSE2
PSUBQ VPSUBQ AVX SSE2
PSUBSB VPSUBSB AVX SSE2
PSUBSW VPSUBSW AVX SSE2
PSUBUSB VPSUBUSB AVX SSE2
PSUBUSW VPSUBUSW AVX SSE2
PSUBW VPSUBW AVX SSE2
PUNPCKHBW VPUNPCKHBW AVX SSE2
PUNPCKHDQ VPUNPCKHDQ AVX SSE2
PUNPCKHQDQ VPUNPCKHQDQ AVX SSE2
PUNPCKHWD VPUNPCKHWD AVX SSE2
PUNPCKLBW VPUNPCKLBW AVX SSE2
PUNPCKLDQ VPUNPCKLDQ AVX SSE2
PUNPCKLQDQ VPUNPCKLQDQ AVX SSE2
PUNPCKLWD VPUNPCKLWD AVX SSE2
PXOR VPXOR AVX SSE2

Table 3-1. Instructions By Exception Class
Mnemonic Extended Type Legacy Type

714 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 4C — AVX, SSE, 16/32-byte nonaligned, VEX.vvvv != 1111b
LDDQU VLDDQU AVX SSE3
MOVSHDUP VMOVSHDUP AVX SSE3
MOVSLDUP VMOVSLDUP AVX SSE3
PSHUFD VPSHUFD AVX SSE2
PSHUFHW VPSHUFHW AVX SSE2
PSHUFLW VPSHUFLW AVX SSE2
PTEST VPTEST AVX SSE4.1
RCPPS VRCPPS AVX SSE
RSQRTPS VRSQRTPS AVX SSE
Class 4C-1 — AVX, SSE, 16/32-byte nonaligned, write to RO, VEX.vvvv != 1111b
MOVDQU VMOVDQU AVX SSE2
MOVUPD VMOVUPD AVX SSE2
MOVUPS VMOVUPS AVX SSE
Class 4D — AVX, SSE, 16/32-byte nonaligned, VEX.vvvv != 1111b, VEX.L = 1
MASKMOVDQU VMASKMOVDQU AVX SSE2
PABSB VPABSB AVX SSSE3
PABSD VPABSD AVX SSSE3
PABSW VPABSW AVX SSSE3
PCMPESTRI VPCMPESTRI AVX SSE4.2
PCMPESTRM VPCMPESTRM AVX SSE4.2
PHMINPOSUW VPHMINPOSUW AVX SSE4.1
Class 4E — AVX, SSE, 16/32-byte nonaligned, VEX.W = 1, VEX.L = 1
PBLENDVB VPBLENDVB AVX SSE4.1
Class 4F — AVX, SSE, 16/32-byte nonaligned, VEX.L = 1 (no memory argument for SSE)
PSLLD VPSLLD AVX SSE2
PSLLQ VPSLLQ AVX SSE2
PSLLW VPSLLW AVX SSE2
PSRAD VPSRAD AVX SSE2
PSRAW VPSRAW AVX SSE2
PSRLD VPSRLD AVX SSE2
PSRLQ VPSRLQ AVX SSE2
PSRLW VPSRLW AVX SSE2
Class 4G — AVX, SSE, 16/32-byte nonaligned, VEX.W = 1, VEX.vvvv != 1111b
VTESTPD AVX —
VTESTPS AVX —
Class 5 — AVX, SSE, <16-byte
RCPSS VRCPSS AVX SSE
RSQRTSS VRSQRTSS AVX SSE

Table 3-1. Instructions By Exception Class
Mnemonic Extended Type Legacy Type

Exception Summary 715

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 5A — AVX, SSE, <16-byte, VEX.L = 1
INSERTPS VINSERTPS AVX SSE4.1
PMOVZXBD VPMOVZXBD AVX SSE4.1
PMOVZXBQ VPMOVZXBQ AVX SSE4.1
PMOVZXBW VPMOVZXBW AVX SSE4.1
PMOVZXDQ VPMOVZXDQ AVX SSE4.1
PMOVZXWD VPMOVZXWD AVX SSE4.1
PMOVZXWQ VPMOVZXWQ AVX SSE4.1
Class 5B — AVX, SSE, <16-byte, VEX.vvvv != 1111b
CVTDQ2PD VCVTDQ2PD AVX SSE2
MOVDDUP VMOVDDUP AVX SSE3
Class 5C — AVX, SSE, <16-byte, VEX.vvvv != 1111b, VEX.L = 1
PINSRB VPINSRB AVX SSE4.1
PINSRD VPINSRD AVX SSE4.1
PINSRQ VPINSRQ AVX SSE4.1
PINSRW VPINSRW AVX SSE
PMOVSXBD VPMOVSXBD AVX SSE4.1
PMOVSXBQ VPMOVSXBQ AVX SSE4.1
PMOVSXBW VPMOVSXBW AVX SSE4.1
PMOVSXDQ VPMOVSXDQ AVX SSE4.1
PMOVSXWD VPMOVSXWD AVX SSE4.1
PMOVSXWQ VPMOVSXWQ AVX SSE4.1
Class 5C-1 — AVX, SSE, <16-byte, write to RO, VEX.vvvv != 1111b, VEX.L = 1
EXTRACTPS VEXTRACTPS AVX SSE4.1
MOVD VMOVD AVX SSE2
MOVQ VMOVQ AVX SSE2
PEXTRB VPEXTRB AVX SSE4.1
PEXTRD VPEXTRD AVX SSE4.1
PEXTRQ VPEXTRQ AVX SSE4.1
PEXTRW VPEXTRW AVX SSE4.1
Class 5D — AVX, SSE, <16-byte, write to RO, VEX.vvvv != 1111b (variant)
MOVSD VMOVSD AVX SSE2
MOVSS VMOVSS AVX SSE
Class 5E — AVX, SSE, <16-byte, write to RO, VEX.vvvv != 1111b (variant), VEX.L = 1
MOVHPD VMOVHPD AVX SSE2
MOVHPS VMOVHPS AVX SSE
MOVLPD VMOVLPD AVX SSE2
MOVLPS VMOVLPS AVX SSE

Class 6 — AVX, mixed memory argument1

Class 6A — AVX, mixed memory argument, VEX.W = 1
VBROADCASTSS AVX —

Table 3-1. Instructions By Exception Class
Mnemonic Extended Type Legacy Type

716 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 6A-1 — AVX, mixed memory argument, write to RO, VEX.W = 1
VMASKMOVPD AVX —
VMASKMOVPS AVX —
Class 6B — AVX, mixed memory argument, VEX.W = 1, VEX.L=0
VINSERTF128 AVX —
VPERM2F128 AVX —
Class 6B-1 — AVX, mixed memory argument, write to RO, VEX.W = 1, VEX.L=0
VEXTRACTF128 AVX —
Class 6C — AVX, mixed memory argument, VEX.W = 1, VEX.vvvv != 1111b, VEX.L=0
VBROADCASTSD AVX —
VBROADCASTF128 AVX —
Class 6D — AVX, mixed memory argument, VEX.W = 1, VEX.vvvv != 1111b
VBROADCASTSS AVX —
Class 6E — AVX, mixed memory argument, VEX.W = 1, VEX.vvvv != 1111b (variant)
VPERMILPD AVX —
VPERMILPS AVX —

Class 7 — AVX, SSE, no memory argument1

Class 7A — AVX, SSE, no memory argument, VEX.L = 1
MOVHLPS VMOVHLPS AVX SSE
MOVLHPS VMOVLHPS AVX SSE
PSLLDQ VPSLLDQ AVX SSE2
PSRLDQ VPSRLDQ AVX SSE2
Class 7B — AVX, SSE, no memory argument, VEX.vvvv != 1111b
MOVMSKPD VMOVMSKPD AVX SSE2
MOVMSKPS VMOVMSKPS AVX SSE
Class 7C — AVX, SSE, no memory argument, VEX.vvvv != 1111b, VEX.L = 1
PMOVMSKB VPMOVMSKB AVX SSE2
Class 8 — AVX, no memory argument, VEX.W = 1, VEX.vvvv != 1111b
VZEROALL AVX —
VZEROUPPER AVX —
Class 9 — SSE, AVX, 4-byte argument, write to RO, VEX.vvvv != 1111b, VEX.L = 1
STMXCSR VSTMXCSR AVX SSE
Class 9A — SSE, AVX, 4-byte argument, reserved MBZ=1 write, VEX.vvvv != 1111b, VEX.L = 1
LDMXCSR VLDMXCSR AVX SSE

Table 3-1. Instructions By Exception Class
Mnemonic Extended Type Legacy Type

Exception Summary 717

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 10 — XOP Base
VPCMOV XOP
VPCOMB XOP —
VPCOMD XOP —
VPCOMQ XOP —
VPCOMUB XOP —
VPCOMUD XOP —
VPCOMUQ XOP —
VPCOMUW XOP —
VPCOMW XOP —
VPERMIL2PS XOP —
VPERMIL2PD XOP —
Class 10A — XOP Base, XOP.L = 1
VPPERM XOP —
VPSHAB XOP —
VPSHAD XOP —
VPSHAQ XOP —
VPSHAW XOP —
VPSHLB XOP —
VPSHLD XOP —
VPSHLQ XOP —
VPSHLW XOP —
Class 10B — XOP Base, XOP.W = 1, XOP.L = 1
VPMACSDD XOP —
VPMACSDQH XOP —
VPMACSDQL XOP —
VPMACSSDD XOP —
VPMACSSDQH XOP —
VPMACSSDQL XOP —
VPMACSSWD XOP —
VPMACSSWW XOP —
VPMACSWD XOP —
VPMACSWW XOP —
VPMADCSSWD XOP —
VPMADCSWD XOP —
Class 10C — XOP Base, XOP.W = 1, XOP.vvvv != 1111b, XOP.L = 1
VPHADDBD XOP —
VPHADDBQ XOP —
VPHADDBW XOP —
VPHADDD XOP —
VPHADDDQ XOP —
VPHADDUBD XOP —

Table 3-1. Instructions By Exception Class
Mnemonic Extended Type Legacy Type

718 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

VPHADDUBQ XOP —
VPHADDUBW XOP —
VPHADDUDQ XOP —
VPHADDUWD XOP —
VPHADDUWQ XOP —
VPHADDWD XOP —
VPHADDWQ XOP —
VPHSUBBW XOP —
VPHSUBDQ XOP —
VPHSUBWD XOP —
Class 10D — XOP Base, XOP.W = 1, XOP.vvvv != 1111b, SIMD 110011
VFRCZPD XOP —
VFRCZPS XOP —
VFRCZSD XOP —
VFRCZSS XOP —
Class 10E — XOP Base, XOP.vvvv != 1111b (variant), XOP.L = 1
VPROTB XOP —
VPROTD XOP —
VPROTQ XOP —
VPROTW XOP —
Class 11
Reserved for future use.
Class 12 — FMA4, 16/32-byte nonaligned, SIMD 111011
VFMADDPD FMA4 —
VFMADDPS FMA4 —
VFMADDSUBPD FMA4 —
VFMADDSUBPS FMA4 —
VFMSUBADDPD FMA4 —
VFMSUBADDPS FMA4 —
VFMSUBPD FMA4 —
VFMSUBPS FMA4 —
VFNMADDPD FMA4 —
VFNMADDPS FMA4 —
VFNMSUBPD FMA4 —
VFNMSUBPS FMA4 —

Table 3-1. Instructions By Exception Class
Mnemonic Extended Type Legacy Type

Exception Summary 719

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 13 — FMA4, <16-byte, SIMD 111011
VFMADDSD FMA4 —
VFMADDSS FMA4 —
VFMSUBSD FMA4 —
VFMSUBSS FMA4 —
VFNMADDSD FMA4 —
VFNMADDSS FMA4 —
VFNMSUBSD FMA4 —
VFNMSUBSS FMA4 —
Unique Cases
XGETBV — —
XRSTOR — —
XSAVE — —
XSETBV — —

1.This base class does not apply to any instruction.It is shown for reference only.

Table 3-1. Instructions By Exception Class
Mnemonic Extended Type Legacy Type

720 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 1 — AVX, SSE, 16/32-byte aligned, write to RO, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on 16-byte boundary while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 721

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 1A — AVX, SSE, 16/32-byte aligned, write to RO, VEX.vvvv != 1111b, VEX.L = 1

Exceptions
Exception

Mode
Cause of Exception

Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L field = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

722 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 2 — AVX, SSE, 16/32-byte nonaligned, SIMD 111111

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 723

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 2-1 — AVX, SSE, 16/32-byte nonaligned, SIMD 111011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

724 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 2-2 — AVX, SSE, 16/32-byte nonaligned, SIMD 000011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 725

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 2-3 — AVX, SSE, 16/32-byte nonaligned, SIMD 100001

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

726 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 2A — AVX, SSE, 16/32-byte nonaligned, SIMD 111111, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 727

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 2A-1 — AVX, SSE, 16/32-byte nonaligned, SIMD 111011, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

728 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 2B — AVX, SSE, 16/32-byte nonaligned, SIMD 111111, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 729

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 2B-1 — AVX, SSE, 16/32-byte nonaligned, SIMD 100000, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

730 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 2B-2 — AVX, SSE, 16/32-byte nonaligned, SIMD 100001, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 731

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 2B-3 — AVX, SSE, 16/32-byte nonaligned, SIMD 111011, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

732 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 2B-4 — AVX, SSE, 16/32-byte nonaligned, SIMD 100011, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 733

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 3 — AVX, SSE, <16-byte, SIMD

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

734 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 3-1 — AVX, SSE, <16-byte, SIMD 111011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 735

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 3-2 — AVX, SSE, <16-byte, SIMD 000011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

736 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 3-3 — AVX, SSE, <16-byte, SIMD 100000

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 737

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 3-4 — AVX, SSE, <16-byte, SIMD 100001

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

738 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 3-5 — AVX, SSE, <16-byte, SIMD 100011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 739

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 3A — AVX, SSE, <16-byte, SIMD 111111, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

740 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 3A-1 — AVX, SSE, <16-byte, SIMD 000011, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 741

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 3A-2 — AVX, SSE, <16-byte, SIMD 100001, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

742 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 4 — AVX, SSE, 16/32-byte nonaligned

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 743

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 4A — AVX, SSE, 16/32-byte nonaligned, VEX.W = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

744 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 4B — AVX, SSE, 16/32-byte nonaligned, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 745

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 4C — AVX, SSE, 16/32-byte nonaligned, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

746 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 4C-1 — AVX, SSE, 16/32-byte nonaligned, write to RO, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 747

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 4D — AVX, SSE, 16/32-byte nonaligned, VEX.vvvv != 1111b, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

748 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 4E — AVX, SSE, 16/32-byte nonaligned, VEX.W = 1, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 749

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 4F — AVX, SSE, 16/32-byte nonaligned, VEX.L = 1 (no memory argument for
SSE)

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

750 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 4G — AVX, SSE, 16/32-byte nonaligned, VEX.W = 1, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 751

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 5 — AVX, SSE, <16-byte

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

752 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 5A — AVX, SSE, <16-byte, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 753

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 5B — AVX, SSE, <16-byte, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

754 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 5C — AVX, SSE, <16-byte, VEX.vvvv != 1111b, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 755

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 5C-1 — AVX, SSE, <16-byte, write to RO, VEX.vvvv != 1111b, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

756 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 5D — AVX, SSE, <16-byte, write to RO, VEX.vvvv != 1111b (variant)

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination enoding only).
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 757

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 5E — AVX, SSE, <16-byte, write to RO, VEX.vvvv != 1111b (variant), VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination encoding only).
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

758 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 6 — AVX, mixed memory argument

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Exception Summary 759

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 6A — AVX, mixed memory argument, VEX.W = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

760 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 6A-1 — AVX, mixed memory argument, write to RO, VEX.W = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

S S X Write to a read-only data segment.
Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Exception Summary 761

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 6B — AVX, mixed memory argument, VEX.W = 1, VEX.L = 0

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

762 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 6B-1 — AVX, mixed memory argument, write to RO, VEX.W = 1, VEX.L = 0

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Write to a read-only data segment.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Exception Summary 763

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 6C — AVX, mixed memory argument, VEX.W = 1, VEX.L = 0

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

764 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 6D — AVX, mixed memory argument, VEX.W = 1, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Exception Summary 765

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 6E — AVX, mixed memory argument, VEX.W = 1, VEX.vvvv != 1111b (variant)

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b (for versions with immediate byte operand only).
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

766 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 7 — AVX, SSE, no memory argument
Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 767

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 7A — AVX, SSE, no memory argument, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

768 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 7B — AVX, SSE, no memory argument, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 769

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 7C — AVX, SSE, no memory argument, VEX.vvvv != 1111b, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv field ! = 1111b.
A VEX.L field = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

770 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 8 — AVX, no memory argument, VEX.vvvv != 1111b, VEX.W = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
A — AVX exception.

Exception Summary 771

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 9 — AVX, 4-byte argument, write to RO, vex.vvvv != 1111b, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.
S S S Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

772 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 9A — AVX, 4-byte argument, reserved MBZ = 1, vex.vvvv != 1111b, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Null data segment used to reference memory.
S S X Attempt to load non-zero values into reserved MXCSR bits

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exception Summary 773

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 10 — XOP Base

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

774 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 10A — XOP Base, XOP.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exception Summary 775

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 10B — XOP Base, XOP.W = 1, XOP.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

776 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 10C — XOP Base, XOP.W = 1, XOP.vvvv != 1111b, XOP.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exception Summary 777

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 10D — XOP Base, SIMD 11011, XOP.vvvv != 1111b, XOP.W = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions below for details.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
X A source operand was an SNaN value.
X Undefined operation.

Denormalized operand, DE X A source operand was a denormal value.
Underflow, UE X Rounded result too small to fit into the format of the destination operand.
Precision, PE X A result could not be represented exactly in the destination format.
X — XOP exception

778 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 10E — XOP Base, XOP.vvvv != 1111b (variant), XOP.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.vvvv ! = 1111b (for immediate operand variant only)
X XOP.L field = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exception Summary 779

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 11 — Reserved for future use

780 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Class 12 — FMA4, 8/16-byte nonaligned, SIMD 111011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Exception Summary 781

26568—Rev. 3.11—December 2010 AMD64 Technology

Class 13 — FMA4, <16-byte, SIMD 111011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

782 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

XGETBV

XRSTOR

XSAVE

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X Lock prefix (F0h) preceding opcode.

General protection, #GP X X X ECX specifies a reserved or unimplemented XCR address.
X — exception generated

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSFXSR = 0.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.
X X X Null data segment used to reference memory.
X X X Memory operand not aligned on 64-byte boundary.
X X X Any must be zero (MBZ) bits in the save area were set.
X X X Attempt to set reserved bits in MXCSR.

Page fault, #PF X X X Instruction execution caused a page fault.
X — exception generated

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSFXSR = 0.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.
X X X Null data segment used to reference memory.
X X X Memory operand not aligned on 64-byte boundary.
X X X Attempt to write read-only memory.

Page fault, #PF X X X Instruction execution caused a page fault.
X — exception generated

Exception Summary 783

26568—Rev. 3.11—December 2010 AMD64 Technology

XSETBV
Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSFXSR = 0.
X X X Lock prefix (F0h) preceding opcode.

General protection, #GP

X X X CPL != 0.
X X X ECX specifies a reserved or unimplemented XCR address.
X X X Any must be zero (MBZ) bits in the save area were set.
X X X Writing 0 to XCR0.

X — exception generated
Note:
In virtual mode, only #UD for Instruction not supported and #GP for CPL != 0 are supported.

784 Exception Summary

AMD64 Technology 26568—Rev. 3.11—December 2010

Index 785

26568—Rev. 3.11—December 2010 AMD64 Technology

Numeric
16-bit mode.. xviii
256-bit media instruction....................................... xviii
32-bit mode.. xviii
64-bit mode.. xviii

A
absolute displacement ... xviii
ADDPD .. 44
ADDPS... 46
Address space identifier (ASID)............................. xviii
ADDSD .. 48
ADDSS... 50
ADDSUBPD... 52
ADDSUBPS.. 54
Advanced Encryption Standard (AES)....................... 15

data structures .. 16
decryption... 18, 25, 33
encryption.. 18, 25
Euclidean common divisor 35
InvSbox ... 21
operations .. 20
Sbox.. 21

AESDEC .. 56
AESDECLAST ... 58
AESENC .. 60
AESENCLAST ... 62
AESIMC... 64
AESKEYGENASSIST... 66
ANDNPD ... 68
ANDNPS .. 70
ANDPD .. 72
ANDPS... 74

B
biased exponent .. xviii
BLENDPD.. 76
BLENDPS .. 78
BLENDVPD ... 80
BLENDVPS.. 82
byte ... xviii

C
clear .. xviii
cleared ... xviii
CMPPD .. 84
CMPPS... 87
CMPSD .. 90

CMPSS ... 93
COMISD... 96
COMISS ... 98
commit... xix
compatibility mode ... xviii
Current privilege level (CPL)................................... xix
CVTDQ2PD.. 100
CVTDQ2PS .. 102
CVTPD2DQ.. 104
CVTPD2PS ... 106
CVTPS2DQ .. 108
CVTPS2PD ... 110
CVTSD2SI.. 112
CVTSD2SS ... 114
CVTSI2SD.. 116
CVTSI2SS .. 118
CVTSS2SD ... 120
CVTSS2SI .. 122
CVTTPD2DQ.. 124
CVTTPS2DQ .. 126
CVTTSD2SI.. 128
CVTTSS2SI .. 130

D
direct referencing .. xix
dirty data .. xix
displacement... xix
DIVPD.. 132
DIVPS .. 134
DIVSD.. 136
DIVSS .. 138
double quadword .. xix
doubleword .. xix
DPPD.. 140
DPPS .. 143

E
effective address size... xix
effective operand size .. xix
element .. xix
endian order... xxvii
exception.. xix
exponent .. xviii
extended control register... 11
extended instruction .. xix
extended operation .. xxiii
extended prefix .. 3
extended save area ... 12

Index

786 Index

AMD64 Technology 26568—Rev. 3.11—December 2010

extended state management 11
extended-register prefix.. xxii
extensible state management..................................... 11

F
flush ... xx
four-operand instruction ... 10

G
General notation ... xxiv
Global descriptor table (GDT) xx
Global interrupt flag (GIF) xx

H
HADDPD ... 148
HADDPS .. 150
HSUBPD .. 152
HSUBPS, VHSUBPS... 154

I
immediate operands ... 7
indirect ... xx
INSERTPS .. 156
Interrupt descriptor table (IDT) xx
Interrupt redirection bitmap (IRB)............................. xx
Interrupt stack table (IST)... xx

L
LDDQU.. 158
LDMXCSR ... 160
least significant byte ... xxi
least-significant bit.. xxi
legacy mode .. xx
legacy prefixes .. 2
legacy x86... xx
little endian ... xxvii
Local descriptor table (LDT) xx
long mode ... xx
LSB... xxi
lsb ... xxi

M
main memory ... xxi
mask.. xxi
MASKMOVDQU.. 162
MAXPD ... 164
MAXPS .. 166
MAXSD ... 168
MAXSS .. 170
memory ... xxi
MINPD... 172

MINPS.. 174
MINSD ... 176
MINSS.. 178
modes

16-bit .. xviii
32-bit .. xviii
64-bit .. xviii
compatibility ... xviii
legacy .. xx
long ... xx
protected .. xxii
real .. xxii
virtual-8086... xxiii

ModRM byte ... 7
most significant bit.. xxi
most significant byte ... xxi
MOVAPD.. 180
MOVAPS .. 182
MOVD.. 184
MOVDDUP .. 186
MOVDQA .. 188
MOVDQU .. 190
MOVHLPS ... 192
MOVHPD ... 194
MOVHPS.. 196
MOVLHPS ... 198
MOVLPD ... 200
MOVLPS .. 202
MOVMSKPD.. 204
MOVMSKPS .. 206
MOVNTDQ .. 208
MOVNTDQA.. 210
MOVNTPD... 212
MOVNTPS ... 214
MOVQ.. 216
MOVSD.. 218
MOVSHDUP .. 220
MOVSLDUP... 222
MOVSS .. 224
MOVUPD ... 226
MOVUPS.. 228
MPSADBW .. 230
MSB .. xxi
msb.. xxi
MULPD .. 232
MULPS... 234
MULSD .. 236
MULSS... 238
Must be zero (MBZ).. xxi

Index 787

26568—Rev. 3.11—December 2010 AMD64 Technology

N
Notation

general.. xxiv
register .. xxv

O
octword.. xxi
offset ... xxi
opcode byte ... 6
operands

immediate .. 7
ORPD... 240
ORPS ... 242
overflow .. xxi

P
PABSB ... 244
PABSD ... 246
PABSW .. 248
packed ... xxi
PACKSSDW ... 250
PACKSSWB ... 252
PACKUSDW .. 254
PACKUSWB... 256
PADDB... 258
PADDD .. 260
PADDQ .. 262
PADDSB... 264
PADDSW.. 266
PADDUSB.. 268
PADDUSW... 270
PADDW.. 272
PALIGNR ... 274
PAND ... 276
PANDN .. 278
PAVGB ... 280
PAVGW .. 282
PBLENDVB ... 284
PBLENDW ... 286
PCLMULQDQ.. 288
PCMPEQB.. 290
PCMPEQD ... 292
PCMPEQQ ... 294
PCMPEQW... 296
PCMPESTRI... 298
PCMPESTRM... 300
PCMPGTB.. 302
PCMPGTD ... 304
PCMPGTQ ... 306
PCMPGTW... 308
PCMPISTRI.. 310

PCMPISTRM .. 312
PEXTRB... 314
PEXTRD... 316
PEXTRQ... 318
PEXTRW .. 320
PHADDD.. 322
PHADDSW... 324
PHADDUBD... 634
PHADDW... 326
PHMINPOSUW .. 328
PHSUBD .. 330
PHSUBSW.. 332
PHSUBW.. 334
Physical address extension (PAE) xxi
physical memory.. xxii
PINSRB .. 336
PINSRD.. 338
PINSRQ.. 340
PINSRW ... 342
PMADDUBSW ... 344
PMADDWD.. 346
PMAXSB.. 348
PMAXSD.. 350
PMAXSW... 352
PMAXUB ... 354
PMAXUD ... 356
PMAXUW .. 358
PMINSB ... 360
PMINSD ... 362
PMINSW .. 364
PMINUB... 366
PMINUD .. 368
PMINUW.. 370
PMOVMSKB .. 372
PMOVSXBD... 374
PMOVSXBQ... 376
PMOVSXBW.. 378
PMOVSXDQ .. 380
PMOVSXWD.. 382
PMOVSXWQ.. 384
PMOVZXBD .. 386
PMOVZXBQ .. 388
PMOVZXBW.. 390
PMOVZXDQ .. 392
PMOVZXWD ... 394
PMOVZXWQ ... 396
PMULDQ ... 398
PMULHRSW .. 400
PMULHUW .. 402
PMULHW... 404
PMULLD.. 406

788 Index

AMD64 Technology 26568—Rev. 3.11—December 2010

PMULLW ... 408
PMULUDQ... 410
POR ... 412
probe .. xxii
processor states.. 11
protected mode .. xxii
PSADBW ... 414
PSHUFB... 416
PSHUFD... 418
PSHUFHW ... 420
PSHUFLW.. 422
PSIGNB, VPSIGNB .. 424
PSIGND ... 426
PSIGNW... 428
PSLLD ... 430
PSLLDQ... 432
PSLLQ ... 434
PSLLW... 436
PSRAD... 438
PSRAW .. 440
PSRLD ... 442
PSRLDQ... 444
PSRLQ ... 446
PSRLW... 448
PSUBB ... 450
PSUBD... 452
PSUBQ... 454
PSUBSB ... 456
PSUBSW .. 458
PSUBUSB .. 460
PSUBUSW ... 462
PSUBW .. 464
PTEST.. 466
PUNPCKHBW.. 468
PUNPCKHDQ .. 470
PUNPCKHQDQ.. 472
PUNPCKHWD.. 474
PUNPCKLBW .. 476
PUNPCKLDQ... 478
PUNPCKLQDQ .. 480
PUNPCKLWD .. 482
PXOR... 484

Q
quadword .. xxii

R
RCPPS.. 486
RCPSS.. 488
Read as zero (RAZ) ... xxii
real address mode. See real mode

real mode .. xxii
Register extension prefix (REX).............................. xxii
Register notation.. xxv
relative .. xxii
Relative instruction pointer (RIP) xxii
reserved .. xxii
revision history .. xv
Rip-relative addressing ... xxii
ROUNDPD ... 490
ROUNDSD ... 496
ROUNDSS.. 499
ROUNDTPS.. 493
RSQRTPS ... 502, 541
RSQRTSS ... 504

S
set... xxii
SHUFPD... 506
SHUFPS, VSHUFPS.. 508
SIB ... 7
Single instruction multiple data (SIMD)................... xxii
SQRTPD ... 511
SQRTPS.. 513
SQRTSD ... 515
SQRTSS.. 517
sticky bit .. xxiii
STMXCSR.. 519
Streaming SIMD extensions (SSE) xxiii
string compare instructions 38
string comparison... 38
SUBPD ... 521
SUBPS.. 523
SUBSD ... 525
SUBSS.. 527

T
Task state segment (TSS)....................................... xxiii
Terminology ... xviii
three-byte prefix .. 2
three-operand instruction .. 9
two-byte prefix .. 5
two-operand instruction .. 8

U
UCOMISD .. 529
UCOMISS... 531
underflow... xxiii
UNPCKHPD ... 533
UNPCKHPS.. 535
UNPCKLPD.. 537
UNPCKLPS .. 539

Index 789

26568—Rev. 3.11—December 2010 AMD64 Technology

V
VADDPD.. 44
VADDPS .. 46
VADDSD.. 48
VADDSUBPD... 52
VADDSUBPS ... 54
VADSS ... 50
VAESDEC .. 56
VAESDECLAST ... 58
VAESENC .. 60
VAESENCLAST ... 62
VAESIMC... 64
VAESKEYGENASSIST .. 66
VANDNPD ... 68
VANDNPS.. 70
VANDPD.. 72
VANDPS .. 74
VBLENDPD ... 76
VBLENDPS.. 78
VBLENDVPD... 80
VBLENDVPS ... 82
VBROADCASTSD ... 542
VBROADCASTSS.. 543
VCMPPD.. 84
VCMPPS .. 87
VCMPSD.. 90
VCMPSS .. 93
VCOMISD.. 96
VCOMISS .. 98
VCVTDQ2PD... 100
VCVTDQ2PS.. 102
VCVTPD2DQ... 104
VCVTPD2PS .. 106
VCVTPS2DQ.. 108
VCVTPS2PD .. 110
VCVTSD2SI ... 112
VCVTSD2SS .. 114
VCVTSI2SD... 116
VCVTSI2SS.. 118
VCVTSS2SD .. 120
VCVTSS2SI.. 122
VCVTTPD2DQ... 124
VCVTTPS2DQ ... 126
VCVTTSD2SI... 128
VCVTTSS2SI ... 130
VDIVPD... 132
VDIVPS ... 134
VDIVSD... 136
VDIVSS ... 138
VDPPD... 140
VDPPS ... 143

vector... xxiii
vector extension (VEX) ... xxiii
VEX prefix... xxiii, 3
VEXTRACT128 .. 544
VFMADDPD .. 545
VFMADDPS ... 547
VFMADDSD .. 549
VFMADDSS ... 551, 575
VFMADDSUBPD ... 553
VFMADDSUBPS.. 555
VFMSUBADDPD ... 557
VFMSUBADDPS.. 559
VFMSUBPD ... 561
VFMSUBPS.. 563
VFMSUBSD ... 565
VFMSUBSS.. 567
VFNMADDPD.. 569
VFNMADDPS .. 571
VFNMADDSD.. 573
VFNMSUBPD... 577
VFNMSUBPS ... 579
VFNMSUBSD... 581
VFNMSUBSS ... 583
VFRCZPD .. 585
VFRCZPS ... 587
VFRCZSD .. 589
VFRCZSS ... 591
VHADDPD ... 148
VHADDPS.. 150
VHSUBPD.. 152
VINSERTF128 .. 593
VINSERTPS.. 156
Virtual machine control block (VMCB) xxiii
Virtual machine monitor (VMM)............................ xxiii
virtual-8086 mode... xxiii
VLDDQU ... 158
VLDMXCSR... 160
VMASKMOVDQU ... 162
VMASKMOVPD... 594
VMASKMOVPS ... 596
VMAXPD ... 164
VMAXPS.. 166
VMAXSD ... 168
VMAXSS.. 170
VMINPD .. 172
VMINPS ... 174
VMINSD .. 176
VMINSS ... 178
VMOVAPS ... 182
VMOVD ... 184
VMOVDDUP.. 186

790 Index

AMD64 Technology 26568—Rev. 3.11—December 2010

VMOVDQA.. 188
VMOVDQU.. 190
VMOVHLPS... 192
VMOVHPD .. 194
VMOVHPS... 196
VMOVLHPS... 198
VMOVLPD... 200
VMOVLPS ... 202
VMOVMSKPD... 204
VMOVMSKPS.. 206
VMOVNTDQ ... 208
VMOVNTDQA... 210
VMOVNTPD.. 212
VMOVNTPS... 214
VMOVQ... 216
VMOVSD... 218
VMOVSHDUP.. 220
VMOVSLDUP.. 222
VMOVSS ... 224
VMOVUPD .. 226
VMOVUPS... 228
VMPSADBW.. 230
VMULPD ... 232
VMULPS.. 234
VMULSD ... 236
VMULSS.. 238
VORPD .. 240
VORPS... 242
VPABSB... 244
VPABSD... 246
VPABSW.. 248
VPACKSSDW .. 250
VPACKSSWB... 252
VPACKUSDW.. 254
VPACKUSWB .. 256
VPADDD.. 260
VPADDQ.. 262
VPADDSB.. 264
VPADDSW... 266
VPADDUSB ... 268
VPADDUSW .. 270
VPADDW... 272
VPALIGNR... 274
VPAND .. 276
VPANDN.. 278
VPAVGB .. 280
VPAVGW ... 282
VPBLENDVB... 284
VPBLENDW .. 286
VPCLMULQDQ ... 288
VPCMOV ... 598

VPCMPEQB ... 290
VPCMPEQD ... 292
VPCMPEQQ ... 294
VPCMPEQW .. 296
VPCMPESTRI .. 298
VPCMPESTRM .. 300
VPCMPGTB ... 302
VPCMPGTD ... 304
VPCMPGTQ ... 306
VPCMPGTW .. 308
VPCMPISTRI ... 310
VPCMPISTRM ... 312
VPCOMB ... 600, 602
VPCOMQ ... 604
VPCOMUB... 606
VPCOMUD... 606, 608
VPCOMUQ... 610
VPCOMUW.. 610, 612
VPCOMW .. 614
VPERM2F128 ... 616
VPERMIL2PD .. 618
VPERMIL2PS ... 621
VPERMILPD .. 626
VPERMILPS... 624
VPEXTRB .. 314
VPEXTRD .. 316
VPEXTRQ .. 318
VPEXTRW ... 320
VPHADDBD... 630
VPHADDBQ... 631
VPHADDBW.. 632
VPHADDD ... 322
VPHADDDQ .. 633
VPHADDSW .. 324
VPHADDUBQ .. 635
VPHADDUBW ... 636
VPHADDUDQ.. 637
VPHADDUWD ... 638
VPHADDUWQ ... 639
VPHADDW .. 326
VPHADDWD.. 640
VPHADDWQ.. 641
VPHMINPOSUW.. 328
VPHSUBBW... 642
VPHSUBD.. 330
VPHSUBDQ ... 643
VPHSUBSW ... 332
VPHSUBW ... 334
VPHSUBWD .. 644
VPINSRB ... 336
VPINSRD ... 338

Index 791

26568—Rev. 3.11—December 2010 AMD64 Technology

VPINSRQ ... 340
VPINSRW .. 342
VPMACSDD .. 645
VPMACSDQH.. 647
VPMACSDQL .. 649
VPMACSSDD .. 651
VPMACSSDQL .. 655
VPMACSSQH .. 653
VPMACSSWD.. 657
VPMACSSWW... 659
VPMACSWD.. 661
VPMACSWW... 663
VPMADCSSWD... 665
VPMADCSWD... 667
VPMADDUBSW .. 344
VPMADDWD... 346
VPMAXSB ... 348
VPMAXSD... 350
VPMAXSW.. 352
VPMAXUB .. 354
VPMAXUD .. 356
VPMAXUW ... 358
VPMINSB .. 360
VPMINSD .. 362
VPMINSW ... 364
VPMINUB.. 366
VPMINUD.. 368
VPMINUW... 370
VPMOVMSKB ... 372
VPMOVSXBD.. 374
VPMOVSXBQ.. 376
VPMOVSXBW... 378
VPMOVSXDQ.. 380
VPMOVSXWD... 382
VPMOVSXWQ... 384
VPMOVZXBD.. 386
VPMOVZXBQ.. 388
VPMOVZXBW... 390
VPMOVZXDQ ... 392
VPMOVZXWD... 394
VPMOVZXWQ... 396
VPMULDQ... 398
VPMULHRSW ... 400
VPMULHUW ... 402
VPMULHW.. 404
VPMULLD ... 406
VPMULLW .. 408
VPMULUDQ.. 410
VPOR... 412
VPPERM .. 669
VPROTB .. 671

VPROTD .. 673
VPROTQ .. 675
VPROTW ... 677
VPSADBW ... 414
VPSHAB .. 679
VPSHAD .. 681
VPSHAQ .. 683
VPSHAW.. 685
VPSHLB... 687
VPSHLD... 689
VPSHLQ... 691
VPSHLW .. 693
VPSHUFB .. 416
VPSHUFD .. 418
VPSHUFHW... 420
VPSHUFLW ... 422
VPSIGND ... 426
VPSIGNW .. 428
VPSLLD ... 430
VPSLLDQ .. 432
VPSLLQ ... 434
VPSLLW... 436
VPSRAD .. 438
VPSRAW.. 440
VPSRLD... 442
VPSRLDQ .. 444
VPSRLQ... 446
VPSRLW .. 448
VPSUBB... 450
VPSUBD .. 452
VPSUBQ .. 454
VPSUBSB... 456
VPSUBSW.. 458
VPSUBUSB .. 460
VPSUBUSW ... 462
VPSUBW.. 464
VPTEST ... 466
VPTESTPD... 695
VPTESTPS ... 697
VPUNPCKHBW ... 468
VPUNPCKHDQ.. 470
VPUNPCKHQDQ ... 472
VPUNPCKHWD ... 474
VPUNPCKLBW.. 476
VPUNPCKLDQ .. 478
VPUNPCKLQDQ.. 480
VPUNPCKLWD.. 482
VPXOR .. 484
VRCPPS ... 486
VRCPSS ... 488
VROUNDPD... 490

792 Index

AMD64 Technology 26568—Rev. 3.11—December 2010

VROUNDPS... 493
VROUNDSD .. 496
VROUNDSS... 499
VRSQRTPS ... 502, 541
VRSQRTSS .. 504
VSHUFPD .. 506
VSQRTPD .. 511
VSQRTPS... 513
VSQRTSD .. 515
VSQRTSS... 517
VSTMXCSR... 519
VSUBPD .. 521
VSUBPS... 523
VSUBSD .. 525
VSUBSS... 527
VUCOMISD ... 529
VUCOMISS.. 531
VUNPCKHPD .. 533
VUNPCKHPS... 535
VUNPCKLPD... 537
VUNPCKLPS ... 539
VXORPD.. 701
VXORPS .. 703
VZEROALL ... 699
VZEROUPPER ... 700

W
word .. xxiii

X
XGETBV.. 705
XOP prefix... xxiii, 3
XORPD .. 701
XORPS... 703
XRSTOR .. 706
XSAVE... 707
XSETBV .. 708

Y
YMM states .. 13

	Volume 4: 128-Bit and 256-Bit Media Instructions
	Contents
	Figures
	Tables
	Revision History
	Preface
	1 Introduction
	1.1 Syntax and Notation
	1.2 Extended Instruction Format
	1.2.1 Legacy Prefixes
	1.2.2 Three-Byte Extended Prefix
	1.2.3 Two-Byte Extended Prefix
	1.2.4 Opcode Byte
	1.2.5 ModRM, SIB, and Displacement
	1.2.6 Immediate Bytes
	1.2.7 Instruction Format Examples

	1.3 XSAVE/XRSTOR Instructions
	1.3.1 CPUID Enhancements
	1.3.2 Extended Control Registers
	1.3.3 Extended Save Area
	1.3.4 Instruction Functions
	1.3.5 YMM States and Supported Operating Modes
	1.3.6 YMM State Management
	1.3.7 Saving Processor State
	1.3.8 Restoring Processor State
	1.3.9 MXCSR State Management
	1.3.10 Mode-Specific XSAVE/XRSTOR State Management

	1.4 AES Instructions
	1.4.1 Coding Conventions
	1.4.2 AES Data Structures
	1.4.3 Algebraic Preliminaries
	1.4.4 AES Operations
	1.4.5 Initializing the Sbox and InvSBox Matrices
	1.4.6 Encryption and Decryption
	1.4.7 The Cipher Function
	1.4.8 The InvCipher Function
	1.4.9 An Alternative Decryption Procedure
	1.4.10 Computation of GFInv with Euclidean Greatest Common Divisor

	1.5 String Compare Instructions
	1.5.1 Source Data Format
	1.5.2 Aggregation
	1.5.3 Complementation
	1.5.4 Output Selection
	1.5.5 Valid/Invalid Override of Comparisons

	2 Instruction Reference
	ADDPD VADDPD
	ADDPS VADDPS
	ADDSD VADDSD
	ADDSS VADDSS
	ADDSUBPD VADDSUBPD
	ADDSUBPS VADDSUBPS
	AESDEC VAESDEC
	AESDECLAST VAESDECLAST
	AESENC VAESENC
	AESENCLAST VAESENCLAST
	AESIMC VAESIMC
	AESKEYGENASSIST VAESKEYGENASSIST
	ANDNPD VANDNPD
	ANDNPS VANDNPS
	ANDPD VANDPD
	ANDPS VANDPS
	BLENDPD VBLENDPD
	BLENDPS VBLENDPS
	BLENDVPD VBLENDVPD
	BLENDVPS VBLENDVPS
	CMPPD VCMPPD
	CMPPS VCMPPS
	CMPSD VCMPSD
	CMPSS VCMPSS
	COMISD VCOMISD
	COMISS VCOMISS
	CVTDQ2PD VCVTDQ2PD
	CVTDQ2PS VCVTDQ2PS
	CVTPD2DQ VCVTPD2DQ
	CVTPD2PS VCVTPD2PS
	CVTPS2DQ VCVTPS2DQ
	CVTPS2PD VCVTPS2PD
	CVTSD2SI VCVTSD2SI
	CVTSD2SS VCVTSD2SS
	CVTSI2SD VCVTSI2SD
	CVTSI2SS VCVTSI2SS
	CVTSS2SD VCVTSS2SD
	CVTSS2SI VCVTSS2SI
	CVTTPD2DQ VCVTTPD2DQ
	CVTTPS2DQ VCVTTPS2DQ
	CVTTSD2SI VCVTTSD2SI
	CVTTSS2SI VCVTTSS2SI
	DIVPD VDIVPD
	DIVPS VDIVPS
	DIVSD VDIVSD
	DIVSS VDIVSS
	DPPD VDPPD
	DPPS VDPPS
	EXTRACTPS VEXTRACTPS
	HADDPD VHADDPD
	HADDPS VHADDPS
	HSUBPD VHSUBPD
	HSUBPS VHSUBPS
	INSERTPS VINSERTPS
	LDDQU VLDDQU
	LDMXCSR VLDMXCSR
	MASKMOVDQU VMASKMOVDQU
	MAXPD VMAXPD
	MAXPS VMAXPS
	MAXSD VMAXSD
	MAXSS VMAXSS
	MINPD VMINPD
	MINPS VMINPS
	MINSD VMINSD
	MINSS VMINSS
	MOVAPD VMOVAPD
	MOVAPS VMOVAPS
	MOVD VMOVD
	MOVDDUP VMOVDDUP
	MOVDQA VMOVDQA
	MOVDQU VMOVDQU
	MOVHLPS VMOVHLPS
	MOVHPD VMOVHPD
	MOVHPS VMOVHPS
	MOVLHPS VMOVHLPS
	MOVLPD VMOVLPD
	MOVLPS VMOVLPS
	MOVMSKPD VMOVMSKPD
	MOVMSKPS VMOVMSKPS
	MOVNTDQ VMOVNTDQ
	MOVNTDQA VMOVNTDQA
	MOVNTPD VMOVNTPD
	MOVNTPS VMOVNTPS
	MOVQ VMOVQ
	MOVSD VMOVSD
	MOVSHDUP VMOVSHDUP
	MOVSLDUP VMOVSLDUP
	MOVSS VMOVSS
	MOVUPD VMOVUPD
	MOVUPS VMOVUPS
	MPSADBW VMPSADBW
	MULPD VMULPD
	MULPS VMULPS
	MULSD VMULSD
	MULSS VMULSS
	ORPD VORPD
	ORPS VORPS
	PABSB VPABSB
	PABSD VPABSD
	PABSW VPABSW
	PACKSSDW VPACKSSDW
	PACKSSWB VPACKSSWB
	PACKUSDW VPACKUSDW
	PACKUSWB VPACKUSWB
	PADDB VPADDB
	PADDD VPADDD
	PADDQ VPADDQ
	PADDSB VPADDSB
	PADDSW VPADDSW
	PADDUSB VPADDUSB
	PADDUSW VPADDUSW
	PADDW VPADDW
	PALIGNR VPALIGNR
	PAND VPAND
	PANDN VPANDN
	PAVGB VPAVGB
	PAVGW VPAVGW
	PBLENDVB VPBLENDVB
	PBLENDW VPBLENDW
	PCLMULQDQ VPCLMULQDQ
	PCMPEQB VPCMPEQB
	PCMPEQD VPCMPEQD
	PCMPEQQ VPCMPEQQ
	PCMPEQW VPCMPEQW
	PCMPESTRI VPCMPESTRI
	PCMPESTRM VPCMPESTRM
	PCMPGTB VPCMPGTB
	PCMPGTD VPCMPGTD
	PCMPGTQ VPCMPGTQ
	PCMPGTW VPCMPGTW
	PCMPISTRI VPCMPISTRI
	PCMPISTRM VPCMPISTRM
	PEXTRB VPEXTRB
	PEXTRD VPEXTRD
	PEXTRQ VPEXTRQ
	PEXTRW VPEXTRW
	PHADDD VPHADDD
	PHADDSW VPHADDSW
	PHADDW VPHADDW
	PHMINPOSUW VPHMINPOSUW
	PHSUBD VPHSUBD
	PHSUBSW VPHSUBSW
	PHSUBW VPHSUBW
	PINSRB VPINSRB
	PINSRD VPINSRD
	PINSRQ VPINSRQ
	PINSRW VPINSRW
	PMADDUBSW VPMADDUBSW
	PMADDWD VPMADDWD
	PMAXSB VPMAXSB
	PMAXSD VPMAXSD
	PMAXSW VPMAXSW
	PMAXUB VPMAXUB
	PMAXUD VPMAXUD
	PMAXUW VPMAXUW
	PMINSB VPMINSB
	PMINSD VPMINSD
	PMINSW VPMINSW
	PMINUB VPMINUB
	PMINUD VPMINUD
	PMINUW VPMINUW
	PMOVMSKB VPMOVMSKB
	PMOVSXBD VPMOVSXBD
	PMOVSXBQ VPMOVSXBQ
	PMOVSXBW VPMOVSXBW
	PMOVSXDQ VPMOVSXDQ
	PMOVSXWD VPMOVSXWD
	PMOVSXWQ VPMOVSXWQ
	PMOVZXBD VPMOVZXBD
	PMOVZXBQ VPMOVZXBQ
	PMOVZXBW VPMOVZXBW
	PMOVZXDQ VPMOVZXDQ
	PMOVZXWD VPMOVZXWD
	PMOVZXWQ VPMOVZXWQ
	PMULDQ VPMULDQ
	PMULHRSW VPMULHRSW
	PMULHUW VPMULHUW
	PMULHW VPMULHW
	PMULLD VPMULLD
	PMULLW VPMULLW
	PMULUDQ VPMULUDQ
	POR VPOR
	PSADBW VPSADBW
	PSHUFB VPSHUFB
	PSHUFD VPSHUFD
	PSHUFHW VPSHUFHW
	PSHUFLW VPSHUFLW
	PSIGNB VPSIGNB
	PSIGND VPSIGND
	PSIGNW VPSIGNW
	PSLLD VPSLLD
	PSLLDQ VPSLLDQ
	PSLLQ VPSLLQ
	PSLLW VPSLLW
	PSRAD VPSRAD
	PSRAW VPSRAW
	PSRLD VPSRLD
	PSRLDQ VPSRLDQ
	PSRLQ VPSRLQ
	PSRLW VPSRLW
	PSUBB VPSUBB
	PSUBD VPSUBD
	PSUBQ VPSUBQ
	PSUBSB VPSUBSB
	PSUBSW VPSUBSW
	PSUBUSB VPSUBUSB
	PSUBUSW VPSUBUSW
	PSUBW VPSUBW
	PTEST VPTEST
	PUNPCKHBW VPUNPCKHBW
	PUNPCKHDQ VPUNPCKHDQ
	PUNPCKHQDQ VPUNPCKHQDQ
	PUNPCKHWD VPUNPCKHWD
	PUNPCKLBW VPUNPCKLBW
	PUNPCKLDQ VPUNPCKLDQ
	PUNPCKLQDQ VPUNPCKLQDQ
	PUNPCKLWD VPUNPCKLWD
	PXOR VPXOR
	RCPPS VRCPPS
	RCPSS VRCPSS
	ROUNDPD VROUNDPD
	ROUNDPS VROUNDPS
	ROUNDSD VROUNDSD
	ROUNDSS VROUNDSS
	RSQRTPS VRSQRTPS
	RSQRTSS VRSQRTSS
	SHUFPD VSHUFPD
	SHUFPS VSHUFPS
	SQRTPD VSQRTPD
	SQRTPS VSQRTPS
	SQRTSD VSQRTSD
	SQRTSS VSQRTSS
	STMXCSR VSTMXCSR
	SUBPD VSUBPD
	SUBPS VSUBPS
	SUBSD VSUBSD
	SUBSS VSUBSS
	UCOMISD VUCOMISD
	UCOMISS VUCOMISS
	UNPCKHPD VUNPCKHPD
	UNPCKHPS VUNPCKHPS
	UNPCKLPD VUNPCKLPD
	UNPCKLPS VUNPCKLPS
	VBROADCASTF128
	VBROADCASTSD
	VBROADCASTSS
	VEXTRACTF128
	VFMADDPD
	VFMADDPS
	VFMADDSD
	VFMADDSS
	VFMADDSUBPD
	VFMADDSUBPS
	VFMSUBADDPD
	VFMSUBADDPS
	VFMSUBPD
	VFMSUBPS
	VFMSUBSD
	VFMSUBSS
	VFNMADDPD
	VFNMADDPS
	VFNMADDSD
	VFNMADDSS
	VFNMSUBPD
	VFNMSUBPS
	VFNMSUBSD
	VFNMSUBSS
	VFRCZPD
	VFRCZPS
	VFRCZSD
	VFRCZSS
	VINSERTF128
	VMASKMOVPD
	VMASKMOVPS
	VPCMOV
	VPCOMB
	VPCOMD
	VPCOMQ
	VPCOMUB
	VPCOMUD
	VPCOMUQ
	VPCOMUW
	VPCOMW
	VPERM2F128
	VPERMIL2PD
	VPERMIL2PS
	VPERMILPD
	VPERMILPS
	VPHADDBD
	VPHADDBQ
	VPHADDBW
	VPHADDDQ
	VPHADDUBD
	VPHADDUBQ
	VPHADDUBW
	VPHADDUDQ
	VPHADDUWD
	VPHADDUWQ
	VPHADDWD
	VPHADDWQ
	VPHSUBBW
	VPHSUBDQ
	VPHSUBWD
	VPMACSDD
	VPMACSDQH
	VPMACSDQL
	VPMACSSDD
	VPMACSSDQH
	VPMACSSDQL
	VPMACSSWD
	VPMACSSWW
	VPMACSWD
	VPMACSWW
	VPMADCSSWD
	VPMADCSWD
	VPPERM
	VPROTB
	VPROTD
	VPROTQ
	VPROTW
	VPSHAB
	VPSHAD
	VPSHAQ
	VPSHAW
	VPSHLB
	VPSHLD
	VPSHLQ
	VPSHLW
	VTESTPD
	VTESTPS
	VZEROALL
	VZEROUPPER
	XORPD VXORPD
	XORPS VXORPS
	XGETBV
	XRSTOR
	XSAVE
	XSETBV

	3 Exception Summary
	Class 1 — AVX, SSE, 16/32-byte aligned, write to RO, VEX.vvvv != 1111b
	Class 1A — AVX, SSE, 16/32-byte aligned, write to RO, VEX.vvvv != 1111b, VEX.L = 1
	Class 2 — AVX, SSE, 16/32-byte nonaligned, SIMD 111111
	Class 2-1 — AVX, SSE, 16/32-byte nonaligned, SIMD 111011
	Class 2-2 — AVX, SSE, 16/32-byte nonaligned, SIMD 000011
	Class 2-3 — AVX, SSE, 16/32-byte nonaligned, SIMD 100001
	Class 2A — AVX, SSE, 16/32-byte nonaligned, SIMD 111111, VEX.L = 1
	Class 2A-1 — AVX, SSE, 16/32-byte nonaligned, SIMD 111011, VEX.L = 1
	Class 2B — AVX, SSE, 16/32-byte nonaligned, SIMD 111111, VEX.vvvv != 1111b
	Class 2B-1 — AVX, SSE, 16/32-byte nonaligned, SIMD 100000, VEX.vvvv != 1111b
	Class 2B-2 — AVX, SSE, 16/32-byte nonaligned, SIMD 100001, VEX.vvvv != 1111b
	Class 2B-3 — AVX, SSE, 16/32-byte nonaligned, SIMD 111011, VEX.vvvv != 1111b
	Class 2B-4 — AVX, SSE, 16/32-byte nonaligned, SIMD 100011, VEX.vvvv != 1111b
	Class 3 — AVX, SSE, <16-byte, SIMD
	Class 3-1 — AVX, SSE, <16-byte, SIMD 111011
	Class 3-2 — AVX, SSE, <16-byte, SIMD 000011
	Class 3-3 — AVX, SSE, <16-byte, SIMD 100000
	Class 3-4 — AVX, SSE, <16-byte, SIMD 100001
	Class 3-5 — AVX, SSE, <16-byte, SIMD 100011
	Class 3A — AVX, SSE, <16-byte, SIMD 111111, VEX.vvvv != 1111b
	Class 3A-1 — AVX, SSE, <16-byte, SIMD 000011, VEX.vvvv != 1111b
	Class 3A-2 — AVX, SSE, <16-byte, SIMD 100001, VEX.vvvv != 1111b
	Class 4 — AVX, SSE, 16/32-byte nonaligned
	Class 4A — AVX, SSE, 16/32-byte nonaligned, VEX.W = 1
	Class 4B — AVX, SSE, 16/32-byte nonaligned, VEX.L = 1
	Class 4C — AVX, SSE, 16/32-byte nonaligned, VEX.vvvv != 1111b
	Class 4C-1 — AVX, SSE, 16/32-byte nonaligned, write to RO, VEX.vvvv != 1111b
	Class 4D — AVX, SSE, 16/32-byte nonaligned, VEX.vvvv != 1111b, VEX.L = 1
	Class 4E — AVX, SSE, 16/32-byte nonaligned, VEX.W = 1, VEX.L = 1
	Class 4F — AVX, SSE, 16/32-byte nonaligned, VEX.L = 1 (no memory argument for SSE)
	Class 4G — AVX, SSE, 16/32-byte nonaligned, VEX.W = 1, VEX.vvvv != 1111b
	Class 5 — AVX, SSE, <16-byte
	Class 5A — AVX, SSE, <16-byte, VEX.L = 1
	Class 5B — AVX, SSE, <16-byte, VEX.vvvv != 1111b
	Class 5C — AVX, SSE, <16-byte, VEX.vvvv != 1111b, VEX.L = 1
	Class 5C-1 — AVX, SSE, <16-byte, write to RO, VEX.vvvv != 1111b, VEX.L = 1
	Class 5D — AVX, SSE, <16-byte, write to RO, VEX.vvvv != 1111b (variant)
	Class 5E — AVX, SSE, <16-byte, write to RO, VEX.vvvv != 1111b (variant), VEX.L = 1
	Class 6 — AVX, mixed memory argument
	Class 6A — AVX, mixed memory argument, VEX.W = 1
	Class 6A-1 — AVX, mixed memory argument, write to RO, VEX.W = 1
	Class 6B — AVX, mixed memory argument, VEX.W = 1, VEX.L = 0
	Class 6B-1 — AVX, mixed memory argument, write to RO, VEX.W = 1, VEX.L = 0
	Class 6C — AVX, mixed memory argument, VEX.W = 1, VEX.L = 0
	Class 6D — AVX, mixed memory argument, VEX.W = 1, VEX.vvvv != 1111b
	Class 6E — AVX, mixed memory argument, VEX.W = 1, VEX.vvvv != 1111b (variant)
	Class 7 — AVX, SSE, no memory argument
	Class 7A — AVX, SSE, no memory argument, VEX.L = 1
	Class 7B — AVX, SSE, no memory argument, VEX.vvvv != 1111b
	Class 7C — AVX, SSE, no memory argument, VEX.vvvv != 1111b, VEX.L = 1
	Class 8 — AVX, no memory argument, VEX.vvvv != 1111b, VEX.W = 1
	Class 9 — AVX, 4-byte argument, write to RO, vex.vvvv != 1111b, VEX.L = 1
	Class 9A — AVX, 4-byte argument, reserved MBZ = 1, vex.vvvv != 1111b, VEX.L = 1
	Class 10 — XOP Base
	Class 10A — XOP Base, XOP.L = 1
	Class 10B — XOP Base, XOP.W = 1, XOP.L = 1
	Class 10C — XOP Base, XOP.W = 1, XOP.vvvv != 1111b, XOP.L = 1
	Class 10D — XOP Base, SIMD 11011, XOP.vvvv != 1111b, XOP.W = 1
	Class 10E — XOP Base, XOP.vvvv != 1111b (variant), XOP.L = 1
	Class 11 — Reserved for future use
	Class 12 — FMA4, 8/16-byte nonaligned, SIMD 111011
	Class 13 — FMA4, <16-byte, SIMD 111011
	XGETBV
	XRSTOR
	XSAVE
	XSETBV

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

