AMD 1

AMDG64 Technology

AMDG64 Architecture
Programmer’s Manual

Volume 4:
128-Bit and 256-Bit
Media Instructions

Publication No. Revision
66666

AMDZ\
AMDG64 Technology 26568—Rev. 3.119—December 2010

© 2002 — 2010 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro
Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with
respect to the accuracy or completeness of the contents of this publication and
reserves the right to make changes to specifications and product descriptions at
any time without notice. The information contained herein may be of a preliminary
or advance nature and is subject to change without notice. No license, whether
express, implied, arising by estoppel or otherwise, to any intellectual property rights
is granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any
express or implied warranty, relating to its products including, but not limited to, the
implied warranty of merchantability, fithess for a particular purpose, or infringement
of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other appli-
cations intended to support or sustain life, or in any other application in which the
failure of AMD’s product could create a situation where personal injury, death, or
severe property or environmental damage may occur. AMD reserves the right to
discontinue or make changes to its products at any time without notice.

Trademarks
AMD, the AMD arrow logo, and combinations thereof, are registered trademarks of Advanced Micro Devices, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
Contents

) xi

11 1] xiii

Revision History. . ..oooiuiiiiiiiiiiiiiiiiiiiiineeneenesnronssnssnssnssssescnses XV

g) 1 xvii

About This BooK. xvii

AUIENCEot Xvii

OTaNIZatiOnottt et ettt et e e e e e e e Xvii

Definitionst xviii

Related Documents.ot xxviil

1 Introductionottt iiiiiieiiieneeneeseenecnscnscnacnnnnns 1

1.1 Syntax and NOtation ottt et e et ettt e e 1

1.2 Extended Instruction Format. 2

Legacy Prefixeso 2

Three-Byte Extended Prefix i 2

Two-Byte Extended Prefix. o 5

OpPCode Byt ..ot e e e e 6

ModRM, SIB, and Displacement.ouuiririr i 7

Immediate Bytes e 7

Instruction Format Examples. 8

1.3 XSAVE/XRSTOR INStructions oottt et ettt e e 11

CPUID Enhancements.ttt e e e e 11

Extended Control Registers.o vt ittt et e e e 11

Extended Save ATea.ot 12

Instruction Functionso 12

YMM States and Supported Operating Modes, 13

YMM State Management.ttt 13

Saving Processor State. u .ttt e 14

Restoring Processor Stateottt e 14

MXCSR State Management.ottt e e 14

Mode-Specific XSAVE/XRSTOR State Managementcouuuon... 14

1.4 AES InStructionso 15

Coding CONVENLIONS . . .\ttt t et ettt et e e e e e e e e e e e e eeens 15

AES Data Structuresottt 16

Algebraic Preliminariest e 16

AES Operations oottt ettt e 18

Initializing the Sbox and InvSBox Matrices i, 21

Encryption and Decryptiono 25

The Cipher Function e et 27

The InvCipher Function. et e 30

An Alternative Decryption Procedure. i 33

Computation of GFInv with Euclidean Greatest Common Divisor 35

Contents

AMDZU

AMDG64 Technology 26568—Rev. 3.11—December 2010
1.5 String Compare INStrUCtiONSottt ettt ettt 38
Source Data Format.t e 38
AGEIEZaAtION . . o ot vttt 39
Complementation. ittt e e 40
Output Selectionttt 40
Valid/Invalid Override of CompariSOons.ttt ittt 41
2 Instruction Referencec.oiuiiiiiiiiiiiiniienreseetoensesnsssnssonns 43
ADDPD, VADDPD 44
ADDPS, VAD DS . .. 46
ADDSD, VADD S D . . .ot e 48
ADDSS, VAD DD S S . .o 50
ADDSUBPD, VADDSUBPD e e e e 52
ADDSUBPS, VADDSUBPS 54
AESDEC, VAESDEC 56
AESDECLAST, VAESDECLASTo e e e e 58
AESENC, VAESENC e e e e 60
AESENCLAST, VAESENCLAST ... e e e e 62
AESIMC, VAESIMC. . . . e 64
AESKEYGENASSIST, VAESKEYGENASSIST. 66
ANDNPD, VANDNPD e e 68
ANDNPS, VANDN P S . . o 70
ANDPD, VANDPDo 72
ANDPS, VAND P S. . . 74
BLENDPD, VBLENDPD e e e 76
BLENDPS, VBLENDPS 78
BLENDVPD, VBLENDVPD e 80
BLENDVPS, VBLENDV PS . ..o e e e 82
CMPPD, VCMPPD e e e 84
CMPPS, VOM PP S, . e 87
CMPSD, VOMP S D . . . 90
CM PSS, VCM PSS, . 93
COMISD, VCOMISDottt e e e e e e e e et 96
COMISS, VCOMISS. . . e e e e e 98
CVTDQ2PD, VCVTDQ2PD.o e e e e 100
CVTDQ2PS, VCVTDQ2PS . .. e e e e e 102
CVTPD2DQ, VCVTPD2DQ. . . . oottt 104
CVTPD2PS, VOV T PD2PS . . o e e 106
CVTPS2DQ, VCVTPS2DQ . . oottt e e e 108
CVTPS2PD, VOV T PS2PD . . .o e e e 110
CVTSD2SI, VOV T SD 2. . .ot e e e e e e e e 112
CVTSD2SS, VOV T S D 2SS . o e e e e e e e e 114
CVTSI2SD, VOVT SI2SD . . oo e e e e e e e 116
CVTSI2SS, VOV T SI2SS . e e e e e 118
CVTSS2SD, VOV TSS2SD . . ottt e e e e 120
CVT S S 28, VOV T S S 2SI .ottt e e e e e e e e 122
CVTTPD2DQ, VCVTTPD2DQ . . . ottt e e e 124
CVTTPS2DQ, VCVTTPS2DQ . . . oot e e e 126
i Contents

AMDZU

26568—Rev. 3.11—December 2010

CVTTSD2SI, VCVTTSD2SI
CVTTSS2SI, VCVTTSS2SI

DIVPD, VDIVPDo,
DIVPS, VDIVPS . ..o oo
DIVSD, VDIVSD ... \ooieieeeen
DIVSS, VDIVSS . ..o ooe e
DPPD, VDPPDoveieeeeee .
DPPS, VDPPSo oeieeeee e
EXTRACTPS, VEXTRACTPS
HADDPD, VHADDPDo
HADDPS, VHADDPScoov....
HSUBPD, VHSUBPD.o
HSUBPS, VHSUBPSovvveennn...
INSERTPS, VINSERTPS
LDDQU, VLDDQUoveeeeen ..
LDMXCSR, VLDMXCSR
MASKMOVDQU, VMASKMOVDQU
MAXPD, VMAXPD oooiea
MAXPS, VMAXPS. . ..o oo
MAXSD, VMAXSDo oo
MAXSS, VMAXSS . .+ oeeeeeeaeein
MINPD, VMINPD. oo
MINPS, VMINPS ...\ oiieeei
MINSD, VMINSD.o eeeeeeaeae
MINSS, VMINSS ..ot
MOVAPD, VMOVAPD.,
MOVAPS, VMOVAPS\
MOVD, VMOVDo
MOVDDUP, VMOVDDUP
MOVDQA, VMOVDQA

MOVDQU, VMOVDQU

MOVHLPS, VMOVHLPS

MOVHPD, VMOVHPD

MOVHPS, VMOVHPSo\
MOVLHPS, VMOVHLPS
MOVLPD, VMOVLPD.
MOVLPS, VMOVLPS
MOVMSKPD, VMOVMSKPD
MOVMSKPS, VMOVMSKPS

MOVNTDQ, VMOVNTDQ
MOVNTDQA, VMOVNTDQA
MOVNTPD, VMOVNTPD
MOVNTPS, VMOVNTPS

MOVQ, VMOVQ .. oo
MOVSD, VMOVSDo
MOVSHDUP, VMOVSHDUP
MOVSLDUP, VMOVSLDUP

AMDG64 Technology

Contents

iii

AMDZU

AMDG64 Technology 26568—Rev. 3.11—December 2010
MOVSS, VMOV S S . 224
MOVUPD, VMOVUPD . . .ot e e e e e 226
MOVUPS, VMOV UPS . . . e e e e e e 228
MPSADBW, VMPSADBW e 230
MULPD, VMULPD e e e e e e e 232
MULPS, VMULPS . . . e e e e e 234
MULSD, VMULSD . ..ot e e e e e e e 236
MULSS, VMULSS . . . e e e e e e e e e 238
ORPD, VORPDo e e 240
ORPS, VORPS ... 242
PABSB, VPABSB . .. 244
PABSD, VPABSD . ..ot 246
PABSW, VPABSW . o 248
PACKSSDW, VPACKSSDW . .. e e e 250
PACKSSWB, VPACKSSWB . ..o e 252
PACKUSDW, VPACKUSDW. . ..ttt ettt 254
PACKUSWB, VPACKUSWBL. e e 256
PADDB, VPADDB 258
PADDD, VPADDDot 260
PADDQ, VPADDQ . . . oottt e e 262
PADDSB, VPADDSBot 264
PADDSW, VPADDSW .. . e e e 266
PADDUSB, VPADDUSBo e e e 268
PADDUSW, VPADDUSW e e e e 270
PADDW, VPADDW . .. e e e e 272
PALIGNR, VPALIGNR. e e 274
PAND, VPAND . . .o e e e e 276
PANDN, VPANDN . ..o e e e e e 278
PAVGB, VPAVGB o 280
PAVGW, VPAVGW . . . e e 282
PBLENDVB, VPBLENDVB . .. e e 284
PBLENDW, VPBLENDW e e e e 286
PCLMULQDQ, VPCLMULQDQ. . . . oottt ettt e e e e e e e e e 288
PCMPEQB, VPCMPEQBo e 290
PCMPEQD, VPCMPEQD.ot 292
PCMPEQQ, VPCMPEQQ. . . . oot e 294
PCMPEQW, VPCMPEQWo 296
PCMPESTRI, VPCMPESTRI. o e e 298
PCMPESTRM, VPCMPESTRM e 300
PCMPGTB, VPCMPGTBo e 302
PCMPGTD, VPCMPGTD.ottt e e e e e et 304
PCMPGTQ, VPCMPGTQ. . . . ottt e e e e 306
PCMPGTW, VPCMPGTW . . o e e e 308
PCMPISTRI, VPCMPISTRI.o e e e 310
PCMPISTRM, VPCMPISTRM.ot et 312
PEXTRB, VPEXTRBo e e 314
PEXTRD, VPEXTRDottt e e e 316

iv Contents

AMDZU

26568—Rev. 3.11—December 2010

PEXTRQ, VPEXTRQ......
PEXTRW, VPEXTRW
PHADDD, VPHADDD...................
PHADDSW, VPHADDSW

PHADDW, VPHADDW

PHMINPOSUW, VPHMINPOSUW
PHSUBD, VPHSUBD.
PHSUBSW, VPHSUBSW
PHSUBW, VPHSUBW
PINSRB, VPINSRB
PINSRD, VPINSRD
PINSRQ, VPINSRQ
PINSRW, VPINSRW
PMADDUBSW, VPMADDUBSW
PMADDWD, VPMADDWD
PMAXSB, VPMAXSB
PMAXSD, VPMAXSD...................

PMAXSW, VPMAXSW
PMAXUB, VPMAXUB
PMAXUD, VPMAXUD

PMAXUW, VPMAXUW
PMINSB, VPMINSB.o,
PMINSD, VPMINSDcveueenn...
PMINSW, VPMINSW. . ..o
PMINUB, VPMINUBo
PMINUD, VPMINUD.ovoeeen
PMINUW, VPMINUW,
PMOVMSKB, VPMOVMSKB
PMOVSXBD, VPMOVSXBD

PMOVSXBQ, VPMOVSXBQ

PMOVSXBW, VPMOVSXBW
PMOVSXDQ, VPMOVSXDQ

PMOVSXWD, VPMOVSXWD
PMOVSXWQ, VPMOVSXWQ
PMOVZXBD, VPMOVZXBD

PMOVZXBQ, VPMOVZXBQ

PMOVZXBW, VPMOVZXBW
PMOVZXDQ, VPMOVZXDQ

PMOVZXWD, VPMOVZXWD
PMOVZXWQ, VPMOVZXWQ
PMULDQ, VPMULDQ. oo ...
PMULHRSW, VPMULHRSW
PMULHUW, VPMULHUW

PMULHW, VPMULHW

PMULLD, VPMULLD
PMULLW, VPMULLW.
PMULUDQ, VPMULUDQ

AMDG64 Technology

Contents

AMDZU

AMDG64 Technology 26568—Rev. 3.11—December 2010
POR, VPOR. . .o 412
PSADBW, VPSADBW .. . 414
PSHUFB, VPSHUFB e e e e 416
PSHUFD, VPSHUFD e e e e e e 418
PSHUFHW, VPSHUFHW. e e 420
PSHUFLW, VPSHUFLW e et 422
PSIGNB, VPSIGNB e e e e 424
PSIGND, VPSIGNDttt e e e e e e e e 426
PSIGNW, VPSIGNW . e e e 428
PSLLD, VPSLLDttt et e e e e e e e e e e e e 430
PSLLDQ, VPSLLDQ ...\ttt e e e e e e e e 432
PSLLQ, VPSLLQ . ..ottt ettt e e e e e e e e 434
PSLLW, VPSLLW . . o e e e e e 436
PSRAD, VPSRAD. . . . e e 438
PSRAW, VPSR AW . e e 440
PSRLD, VPSRLDttt e e e e e e e e e e 442
PSRLDQ, VPSRLDQ . ..ottt e e e e e e e e 444
PSRLQ, VPSRLQ . ..ot e e 446
PSRLW, VPSRLW. . . . e e 448
PSUBB, VPSUBB. . . .o e e e 450
PSUBD, VPSUBD. . . .ottt e e e e e e e 452
PSUBQ, VPSUBQ. . . .ottt et e et e e e e e 454
PSUBSB, VPSUBSB. . ..o e e 456
PSUBSW, VPSUBSW . . . e e e 458
PSUBUSB, VPSUBUSB. . . .ot e e e 460
PSUBUSW, VPSUBUSW . . .ottt 462
PSUBW, VPSUBW . . .o e e e e e 464
PTEST, VP TES T . . e e e e 466
PUNPCKHBW, VPUNPCKHBW. e 468
PUNPCKHDQ, VPUNPCKHDQot 470
PUNPCKHQDQ, VPUNPCKHQDQottt i 472
PUNPCKHWD, VPUNPCKHWD e 474
PUNPCKLBW, VPUNPCKLBWt 476
PUNPCKLDQ, VPUNPCKLDQ . ..ottt e e et 478
PUNPCKLQDQ, VPUNPCKLQDQ.ottt e 480
PUNPCKLWD, VPUNPCKLWDo 482
PXOR, VPXOR . . .o 484
RCPPS, VRCPPS ..o e 486
RCPSS, VRO PSS .o e 488
ROUNDPD, VROUNDPDo e e e et 490
ROUNDPS, VROUNDRPS e e e e 493
ROUNDSD, VROUNDSDttt et e e e e 496
ROUNDSS, VROUND S S . .o e e e 499
RSQRTPS, VRSQRTPS . .. e e e 502
RSQRTSS, VRSQRTSS . . e e e e 504
SHUFPD, VSHUFPD e e e e e e e e e 506
SHUFPS, VSHUFRPS . . .o e e e 508

vi Contents

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
SQRTPD, VSQRTPD . . .o e e e e 511
SQRTPS, VSQRTPS . . .ot e e e e e 513
SQRTSD, VSQRTSD . . .ottt e e e e e e e 515
SQRTSS, VSQRT S S . ottt e e e e 517
STMXCSR, VSTMXCSR . . . oottt e e e e e e 519
SUBPD, VSUBPD. . ..o e e e 521
SUBPS, VSUBPS . .o 523
SUBSD, VSUBSD.ottt e e e e e e e e e e 525
SUBSS, VSUB S S . .ot e e 527
UCOMISD, VUCOMISD . . . oottt e e e e e e e e e e e e 529
UCOMISS, VUCOMISS . . ot e e e e e e 531
UNPCKHPD, VUNPCKHPD e e e 533
UNPCKHPS, VUNPCKHPS. e 535
UNPCKLPD, VUNPCKLPDttt e e e i 537
UNPCKLPS, VUNPCKLPS . . . oot et 539
VBROADCASTFE 128 ..o e e e e e e 541
VBROADCASTSD . . .ot e e e e 542
VBROADCASTSS .o e e e 543
VEXTRACTFE 28 . o e e e e e 544
VEMADDPD. . . .o 545
VEMADDPS . .o 547
VEMADDSD . . oot 549
VEMAD DD S S . 551
VEMADDSUBPDo 553
VEMADDSUBPS . . 555
VEMSUBADDPDot e e 557
VEMSUBADDPS . . o 559
VEMSUBPD . .o 561
VEM SUB S . 563
VEMSUBSD . .o 565
VEM S UB S S L 567
VENMADDPD . . .o 569
VENMADD S, . .. 571
VENMADDSD . ..ot e e e e 573
VENMAD DD S S . . ot 575
VENMSUBPD. . ..o 577
VENM SUBPS . . o 579
VENMSUBSDottt e e e e e e e e 581
VENM SUB S S . ot 583
VERCZPD . . . e e 585
VER CZPS . o 587
VERCZSD . . o 589
VR CZ S S o 591
VINSERTFI28 . ..o e e e e e e e e e e 593
VMASKMOVPD . .o e e 594
VMASKMOV P S . . 596
VPCMOV . 598

Contents vii

AMDZU

AMDG64 Technology 26568—Rev. 3.11—December 2010
VPCOMB .. 600
VPCOMD . . e 602
VPCOMOQ .ottt e e e e 604
VPCOMUB . ..ottt e e e e e e e 606
VPCOMUD . . e e e 608
VPCOMUQ . .ot e e e e e e 610
VPCOMUW L 612
VPCOMW . o 614
VPERM 2 128 . o e 616
VPERMIL2PD. . ..o e e e e e e 618
VPERMIL 2P S . . 621
VPERMILPD. . .. 624
VPERMIL S . . 626
VPHADDBD . . . oottt e 630
VPHADDBQ . . . oottt e 631
VPHADDBW .. 632
VPHADDDQ. . . oot 633
VPHADDUBD e e 634
VPHADDUBQ . ..ottt e 635
VPHADDUBW . . .o e e e 636
VPHADDUDQ . ..ottt et e e e e e e e 637
VPHADDUWND . . .o e e e e e e e e e e 638
VPHADDUWOQ . . .o e e e e e e 639
VPHADDWD . .o 640
VPHADDWOQ ..o 641
VPHSUBBW . .o 642
VPHSUBDQ . .o oottt e e e e e e e e 643
VPHSUBWDD . . e e e e e 644
VPMACSDD . .ot 645
VPMACSDQH . ..o 647
VPMACSDQL. . ..ot 649
VPMACSSDDot e 651
VPMACSSDQH . .ot 653
VPMACSSDQL ..ot 655
VPMACSSWD . o 657
VP M A C S S W W L 659
VPMACSWD . 661
VP M A C S W W L 663
VPMADCSSWDD . .ot e e 665
VPMADCSWD . ..ot e e 667
VP PERM . .o 669
VPROTB . .o 671
VPROTD . .o 673
VPROTQ . . oottt e e e e e e e e e 675
VP ROT W o 677
VP SHAB . .o 679
VPSHAD . .o 681

viii Contents

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
VP SHAQ . o 683
VP SHAW . 685
VP SHL B . 687
VPSHLD . .o 689
VP SHLQ . 691
VP SHLW L 693
VTS P . . 695
VTS P S 697
VZEROALL . ..o e 699
VZEROUPPER e e e 700
XORPD, VXORPD . . .ot e e e 701
XORPS, VXORPS. . o e 703
XGET BV . 705
XRSTOR .t 706
XS AVE. o 707
XSE T BV Lt 708
3 Exception SUmMMAryciutiiitiiieieeereeesesnsssessssnsssnsssnssosnns 709
IndeX & oo it ittt i iiiiiit i iesierastassesssscsssssssesssssassassenasscssenansans 785

Contents

ix

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

)¢ Contents

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
Figures

Figure 1-1. Typical DesCriptive SYNOPSIS .« oottt et e et et e et et ettt ettt 2
Figure 1-2. Instruction Byte Order i i i e et e 2
Figure 1-3. Three-Byte Extended Prefix i e 3
Figure 1-4. Two-byte Extended Prefix 5
Figure 1-5. Opcode Byte Format. e 6
Figure 1-6. ModRM Byte Format e 7
Figure 1-7. XFEATURE_ENABLED MASK Register (XCRO) oveeiaie e 11
Figure 1-8. GFMatrix Representation of 16-byte Block 16
Figure 1-9. GFMatrix to Operand Byte Mappingsottt ittt 16
Figure 2-1. Typical Instruction Description it 43
Figures xi

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

Xii Figures

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Tables

Table 1-1. VEX/XOP.mmmmm Encoding i, 4
Table 1-2. VEX/XOP.vvvv Encodingt e e 4
Table 1-3. VEX/XOP.pp Encoding e 5
Table 1-4. Fixed Two-byte Prefix Field Values. i 6
Table 1-5. Operand Element Size (OES) e e 6
Table 1-6. Three-Operand SeleCtion ittt et ettt e ens 9
Table 1-7. Four-Operand Selectionttt ettt e 10
Table 1-8. XCRO Processor State COMPONENLSo ottt e ettt ettt 12
Table 1-9. Extended Save Area Format. i 12
Table 1-10. XRSTOR Hardware-Specified Initial Values. 14
Table 1-11. SBox Definition e e e e e 23
Table 1-12. InvSBOX Definition.ttt 25
Table 1-13. Cipher Key, Round Sequence, and Round Key Length 26
Table 1-14. Source Data Format e 38
Table 1-15. Comparison and Aggregation Method 39
Table 1-16. Complementationttt e et et e 40
Table 1-17. Indexed Comparison Output Selection.ttt 40
Table 1-18. Masked Comparison OQutput Selectionc..cuuii it 40
Table 1-19. End-of-String Comparison OVerride.ttt it 41
Table 3-1. Instructions By Exception Class.ttt 709

Tables xiii

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

Xiv Tables

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Revision History

Date Revision Description
December 3.1 Complete revision and reformat accommodating 128-bit and 256-bit media
2010 instructions. Includes revised definitions of legacy SSE, SSE2, SSE3,

SSE4.1, SSE4.2, and SSSE3 instructions, as well as new definitions of
extended AES, AVX, CLMUL, FMA4, and XOP instructions. Introduction
includes supplemental information concerning encoding of extended
instructions, enhanced processor state management provided by the
XSAVE/XRSTOR instructions, cryptographic capabilities of the AES
instructions, and functionality of extended string comparison instructions.

September 3.10 Added minor clarifications and corrected typographical and formatting
2007 errors.
July 2007 3.09 Added the following instructions: EXTRQ on page 105, INSERTQ on

page 121, MOVNTSD on page 183, and MOVNTSS on page 185.

Added misaligned exception mask (MXCSR.MM) information.

Added imm8 values with corresponding mnemonics to CMPPD on page 25,
CMPPS on page 29, CMPSD on page 32, and CMPSS on page 35.
Reworded CPUID information in condition tables.

Added minor clarifications and corrected typographical and formatting

errors.
September . .
2006 3.08 Made minor corrections.
December . . .
2005 3.07 Made minor editorial and formatting changes.
January 2005 3.06 Added documentation on SSE3 instructions. Corrected numerous minor
factual errors and typos.
Segtoecr)gber 3.05 Made numerous small factual corrections.
April 2003 3.04 Made minor corrections.

Revision History xv

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

xvi Revision History

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual.
The complete set includes the following volumes.

Title Order No.
Volume 1: Application Programming 24592
Volume 2: System Programming 24593
Volume 3: General-Purpose and System Instructions 24594
Volume 4: 128-Bit and 256-Bit Media Instructions 26568
Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

Audience

This volume is intended for programmers who develop application or system software.

Organization

Volumes 3, 4, and 5 describe the AMDG64 instruction set in detail, providing mnemonic syntax,
opcodes, functions, affected flags, and possible exceptions.

The AMD64 instruction set is divided into five subsets:

* General-purpose instructions

e System instructions

e 128-bit and 256-bit media instructions
e 64-bit media instructions

» x87 floating-point instructions
Several instructions belong to, and are described identically in, multiple instruction subsets.

This volume describes the 128-bit and 256-bit media instructions, including both legacy and extended
forms of the instructions. The index at the end cross-references topics within this volume. For other
topics relating to the AMDG64 architecture, and for information on instructions in other subsets, see the
tables of contents and indexes of the other volumes.

Preface XVii

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

Definitions

Many of the following definitions assume an in-depth knowledge of the legacy x86 architecture. See
“Related Documents™ for descriptions of the legacy x86 architecture.

Terminology

128-bit media instructions
Instructions that use the 128-bit XMM registers.

256-bit media instructions
Instructions that use the 256-bit YMM registers.

16-bit mode

Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode

Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

absolute

A displacement that references the base of a code segment rather than an instruction pointer.
See relative.

biased exponent

The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte
Eight bits.

clear, cleared
To write the value 0 to a bit or a range of bits. See set.

compatibility mode

A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

XViii Preface

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

commit

To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct

Referencing a memory address included in the instruction syntax as an immediate operand. The
address may be an absolute or relative address. See indirect.

dirty data
Data in processor caches or internal buffers that is more recent than the copy held in main memory.

displacement

A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

effective address size

The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size

The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element
See vector.

exception

An abnormal condition that occurs as the result of instruction execution. Processor response to an
exception depends on the type of exception. For exceptions other than SIMD floating-point
exceptions and x87 floating-point exceptions, control is transferred to a handler (service routine)
by means of an exception vector. For floating-point exceptions defined by the IEEE 754 standard,
there are both masked and unmasked responses. When unmasked, the exception handler is called,
and when masked, a default response is provided instead of calling the handler.

extended instruction
An AVX, FMA, or XOP media instruction. See legacy instruction.

Preface Xix

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

Sflush

An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

GDT
Global descriptor table.

GIF
Global interrupt flag.

IDT
Interrupt descriptor table.

indirect

Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. See direct.

IRB

The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

T
The real-address mode interrupt-vector table.

LDT

Local descriptor table.

legacy instruction
Any version of SSE media instruction. See extended instruction.

legacy x86
The legacy x86 architecture.

legacy mode

An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

long mode

An operating mode unique to the AMD64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

XX Preface

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Isb
Least-significant bit.

LSB
Least-significant byte.

main memory

Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask

(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ

Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs.

memory
Unless otherwise specified, main memory.

moffset
A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB

byte.
msb

Most-significant bit.

MSB
Most-significant byte.

octword
Same as double quadword.

offset

Same as displacement.

overflow

The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed
See vector.

PAE
Physical-address extensions.

Preface XXi

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

physical memory
Actual memory, consisting of main memory and cache.

probe

A check for an address in processor caches or internal buffers. External probes originate outside
the processor, and internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, eight bytes, or 64 bits.

RAZ

Read as zero (0), regardless of what is written.

real-address mode, real mode

A short name for real-address mode, a submode of legacy mode.

relative
Referencing with a displacement (offsef) from an instruction pointer rather than the base of a code
segment. See absolute.

reserved

Fields that may be used at some future time. Such fields may be further qualified as MBZ, RAZ,
SBZ or IGN (see definitions).

To preserve compatibility with future processors, software must observe the following constraints.

Software must not depend on the state of a reserved field, nor upon the ability of such fields to
return to a previously-written state.

When a reserved field is not marked with one of the above qualifiers, software must not change the
state of the reserved field; it must reload the field with the same values returned by a prior read.

REX

A legacy instruction prefix that specifies 64-bit operand size and provides access to additional
registers.

RIP-relative addressing
Addressing relative to the 64-bit relative instruction pointer.

set
To write the value 1 to a bit or a range of bits. See clear.

SIMD
Single instruction, multiple data. See vector.

XXii Preface

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

SSE
Streaming SIMD extensions instruction set. There are several versions, including SSE, SSE2.

SSE3, SSE4.1, SSE4.2, and SSSE3. See legacy instructions.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TSS
Task-state segment.

underflow

The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector

(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most media instructions use vectors as operands. Also called packed or SIMD operands.

(2) An interrupt descriptor table index, used to access exception handlers. See exception.

virtual-8086 mode
A submode of legacy mode.

VEX prefix
Extended instruction identifier prefix, used by AVX, CLMUL, and FMA4 instructions.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

x86
See legacy x86.

XOP prefix
Extended instruction identifier prefix, used by XOP instructions.

Preface xXXiii

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

Notation
Chapter 1, “Introduction” describes notation relating specifically to instruction encoding.

1011b
A binary value, in this example, a 4-bit value.

FOEAh
A hexadecimal value, in this example a 2-byte value.

[1.2)
A range that includes the left-most value (in this case, 1) but excludes the right-most value (in this
case, 2).

[7:4]

A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.
#GP(0)

A general-protection exception (#GP) with error code of 0.

[CRO-CR4]
A register range, from register CRO through CR4, inclusive, with the low-order register first.

CR4.OXSAVE
The OXSAVE bit of the CR4 register.

CRO.PE = 1
The PE bit of the CRO register has a value of 1.

DS:rSI

The content of a memory location whose segment address is in the DS register and whose offset
relative to that segment is in the rSI register.

EFER.LME =0
The LME bit of the EFER register has a value of 0.

FF /0
FF is the first byte of an opcode, and a subopcode in the ModR/M byte has a value of 0.

xXiv Preface

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Registers
In the following list of registers, mnemonics refer either to the register itself or to the register content:
[AH-DH]
The high 8-bit AH, BH, CH, and DH registers. See [AL—DL)].
[AL-DL]
The low 8-bit AL, BL, CL, and DL registers. See [AH-DH].

[AL-r15B]

The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and [r8B—r15B] registers, available in 64-bit
mode.

BP
Base pointer register.

CRn
Control register number 7.

CS
Code segment register.
[eAX—eSP]

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. See [rAX—rSP].

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. See rFLAGS.

EFLAGS
32-bit (extended) flags register.

elP
16-bit or 32-bit instruction-pointer register. See »/P.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

Preface XXV

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R&R15.

IDTR

Interrupt descriptor table register.

1P
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

[r8—rl5]
The 8-bit REB-R15B registers, or the 16-bit RSW—-R15W registers, or the 32-bit RED-R15D
registers, or the 64-bit R§—R15 registers.

r[AX-rSP]
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder » with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

XXVi Preface

AMDZU

26568—Rev. 3.11—December 2010

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. See RFLAGS.

RFLAGS
64-bit flags register. See rFLAGS.

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. See RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

TPR
Task priority register (CRS).
TR

Task register.

Endian Order

AMDG64 Technology

The x86 and AMDG64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with the least-significant byte at the lowest byte address, and illustrated with their
least significant byte at the right side. Strings are illustrated in reverse order, because the addresses of

string bytes increase from right to left.

Preface

XXVii

AMDZU

AMDG64 Technology 26568—Rev. 3.11—December 2010

Related Documents

Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,
1995.

Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia Technology, Sunnyvale, CA, 2000.
AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.
AMD, AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets, Sunnyvale, CA, 2000.

Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New
York, 1995.

Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,
1992.

Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,
Macmillan Publishing Co., New York, 1994.

Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.

Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest
McGraw-Hill, 1993.

Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994.

Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and
Technologies, Inc., San Jose, 1992.

John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,
TX, 1996.

Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.

Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,
NY, 1991.

William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New
York, 1991.

Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.

John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

Thom Hogan, The Programmer s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

XXViii Preface

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology

Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

Institute of Electrical and Electronics Engineers, /EEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.

Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, New York, 1999.

Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &
Sons, New York, 1987.

NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.
NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium I,
www.x86.org/articles/sse ptl/simd1.htm, June, 2000.

Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,
Redmond, WA, 1993.

PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.

Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,
New York, 1993.

Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite
class, 1992.

Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.

SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson
Corporation, 1995.

Preface XXix

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

e Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
e John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.
e Web sites and newsgroups:

- www.amd.com

- news.comp.arch

- news.comp.lang.asm.x86

- news.intel.microprocessors

- news.microsoft

XXX Preface

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

1 Introduction

This chapter provides an overview of the legacy and extended 128-bit and 256-bit media instructions,
with supplemental information about new capabilities. Chapter 2, “Instruction Reference” contains
detailed descriptions of each instruction, organized in alphabetic order by mnemonic.

Processors capable of performing the same operation simultaneously on multiple data streams are
classified as single-instruction, multiple-data (SIMD). Media instructions utilize the SIMD
capabilities of the AMD64 architecture. Most of the instructions perform simultaneous operations on
sets of packed elements called vectors, although a subset operates on scalar values. There are
instructions for both integer and floating-point operations.

Legacy instructions include members of the various sets of Streaming SIMD (SSE) instructions;
extended instructions include the AVX, CLMUL, FMA4, and XOP instruction sets. When there are
both legacy and extended forms of an instruction, the two forms are described together.

The instructions can be used in legacy mode or long (64-bit) mode. CPUID function 8000 _0001h[LM]
indicates the availability of long mode.

Compilation for execution in 64-bit mode offers the following advantages:

* Access to sixteen 128-bit XMM registers
* Access to sixteen 256-bit YMM registers
* Access to sixteen 64-bit general-purpose registers

* Access to the 64-bit virtual address space and the RIP-relative addressing mode

Hardware support for the various sets of media instructions is indicated by CPUID functions.
The CPUID functions that pertain to each instruction are shown in the instruction description.

1.1 Syntax and Notation

The descriptive synopsis of opcode syntax for legacy instructions follows the conventions described in
Volume 3: General Purpose and System Instructions.

For further information, see:

“128-Bit Media and Scientific Programming” in Volume 1.

e “Summary of Registers and Data Types” in Volume 3.

* “Notation” in Volume 3.

e “Instruction Prefixes” in Volume 3

The syntax of the extended instruction sets requires an expanded synopsis. The expanded synopsis
includes a mnemonic summary and a summary of prefix fields. Figure 1-1 shows the descriptive

synopsis of a typical XOP instruction. The synopses of other extended instructions have the same
format, differing only in regard to the instruction set prefix.

Introduction 1

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

Mnemonic Encoding
XOP RXB.mmmmm W.vvvv.L.pp Opcode

VPCMOQV ymm1, ymm2, ymm3/mem256, ymm4 RXB.08 0.src.1.00 A2 /rib

‘ w bltJ
) VWV f|eI
assembly language representation instruction set
prefix L bit
3-bit field representing R, X, B bit values

pp field
5-bit encoding for opcode prefix

opcode
register/memory type specifier

immediate operand

Figure 1-1. Typical Descriptive Synopsis

1.2 Extended Instruction Format

Figure 1-2 shows the instruction element order of extended instructions. Each element is described in
the following sections. The descriptions are overviews; reference is made to pertinent portions of the
AMDG64 Architecture Programmer s Manual.

Extended

Legacy tenc
refix

Prefix

\ 4

v

v

Opcode

ModRM ‘ SIB T‘ Displacement T‘ Immediate ——»

Figure 1-2. Instruction Byte Order

1.2.1 Legacy Prefixes

Optional legacy prefixes include operand-size override, address-size override, segment override, Lock
and REP prefixes. For additional information, see section 1.2, “Instruction Prefixes” in the AMD64
Architecture Programmer’s Manual Volume 3: General Purpose and System Instructions,
order# 24594.

1.2.2 Three-Byte Extended Prefix

All extended instructions can be encoded using a three-byte prefix. XOP instructions use only the
three-byte prefix, but VEX-encoded instructions that comply with the constraints described in
Section 1.2.3, “Two-Byte Extended Prefix” can also utilize a two-byte prefix. Figure 1-3 shows the
format of the three-byte prefix.

2 Introduction

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
Byte 0 Byte 1 Byte 2
7 0o 7 5 4 0 7 6 3 2 1 0
Instruction set prefix | R ‘ X ‘ B ‘ mmmmm ‘ w ‘ VWV ‘ L | pp ‘
Prefix Byte Bit Mnemonic Description
0 [7:0] VEX, XOP Value specific to the extended instruction set
1 [7 R Inverted one-bit extension of ModRM.reg field
[6] X Inverted one-bit extension of SIB index field
[5] B Inverted one-bit extension, ModRM r/m field or
SIB base field
[4:0] mmmmm Opcode map select
2 [7] w Default operand size override for a general

purpose register to 64-bit size in 64-bit mode;
operand configuration specifier for certain
XMM/YMM-based operations.

[6:3] VWV Source or destination register selector, in ones
complement format.

[2] L Vector length specifier
[1:0] pp Implied 66, F2, or F3 opcode extension.

Figure 1-3. Three-Byte Extended Prefix

1.2.2.1 Prefix Byte 0

The value in this byte indicates the extended instruction type. AVX, CLMUL, and FMA4 instructions
use the VEX prefix; XOP instructions use the XOP prefix.

* Byte 0 of the VEX prefix must be C4h for three-byte prefixes or C5h for two-byte prefixes.
* Byte 0 of the XOP prefix must be 8Fh, and all XOP instructions use a three-byte prefix.

1.2.2.2 Prefix Byte 1

Bit [7] — R

The bit-inverted equivalent of the REX.R bit. A one-bit extension of the ModRM.reg field in 64-bit
mode, permitting access to 16 YMM/XMM and GPR registers. In 32-bit protected and compatibility
modes, the value must be 1.

Bit [6]] — X

The bit-inverted equivalent of the REX.X bit. A one-bit extension of the SIB.index field in 64-bit
mode, permitting access to 16 YMM/XMM and GPR registers. In 32-bit protected and compatibility
modes, this value must be 1.

Introduction 3

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

Bit [5] — B

The bit-inverted equivalent of the REX.B bit, available only in the 3-byte prefix format. A one-bit
extension of either the ModRM.r/m field, to specify a GPR or XMM register, or of the SIB base field,
to specify a GPR. This permits access to 16 GPR and 16 YMM/XMM registers. In 32-bit protected and
compatibility modes, this bit is ignored.

Bits [4:0] — mmmmm

A five-bit field encoding an implied one- or two-byte opcode prefix, as shown in Table 1-3.
Table 1-1. VEX/XOP.mmmmm Encoding

Binary Value Implied Prefix
00000 Reserved
00001 Implied OFh prefix
00010 Implied OF38h prefix
00011 Implied OF3Ah prefix

00100 - 11111 Reserved

The XOP.mmmmm field must have a value greater than or equal to 8; if the value is less than 8§ these
two bytes are interpreted as a form of the POP instruction rather than as an XOP prefix.

1.2.2.3 Prefix Byte 2

Bit [7] — W

Function is instruction-specific. The bit is often used to configure source operand order.
Bits [6:3] — vvvv

Encodes an XMM or YMM register in inverted ones’ complement form, as shown in Table 1-2
Table 1-2. VEX/XOP.vvvv Encoding

Binary Value Register Binary Value Register
0000 XMM15/YMM15 1000 XMMO7/YMMO7
0001 XMM14/YMM14 1001 XMMO06/YMMO6
0010 XMM13/YMM13 1010 XMMO05/YMMO05
0011 XMM12/YMM12 1011 XMMO04/YMMO04
0100 XMM11/YMM11 1100 XMMO03/YMMO3
0101 XMM10/YMM10 1101 XMMO02/YMMO02
0110 XMMO09/YMMO09 1110 XMMO1/YMMO1
0111 XMMO08/YMMO08 1111 XMMO00/YMMOO

Values 0000h to 0111h are not valid in 32-bit modes. The selected registers are typically first sources,
but for the VPSLLDQ, VPSRLDQ, VPSRLW, VPSRLD, VPSRLQ, VPSRAW, VPSRAD, VPSLLW,
VPSLLD, and VPSLLQ shift instructions, a destination is selected.

4 Introduction

AMDZ\
AMDG64 Technology

26568—Rev. 3.11—December 2010

Bit [2] — L

L = 0 specifies 128-bit vector length (XMM registers/128-bit memory locations) or use of scalar
operands. L=1 specifies 256-bit vector length (YMM registers/256-bit memory locations).

Bits [1:0] — pp

Specifies an implied 66h, F2h, or F3h opcode extension, as shown in Table 1-3. These prefixes are not
allowed with extended instructions.

Table 1-3. VEX/XOP.pp Encoding

Binary Value | Implied Prefix
00 None
01 66h
10 F3h
11 F2h

1.2.3 Two-Byte Extended Prefix

All extended instructions can be encoded using the three-byte prefix, but certain VEX-encoded
instructions can also utilize a compact, two-byte prefix. XOP instructions do not use the two-byte
prefix. The format of the two-byte prefix is shown in Figure 1-3.

Byte 0 Byte 1
7 0 7 6 3 2 1 0
‘ ‘ W ‘ VVVV ‘ L ‘ pp ‘
Prefix Byte Bit Mnemonic Description
0 [7:0] VEX Value specific to the extended instruction set
1 [7 R Default operand size override for a general
purpose register to 64-bit size in 64-bit mode;
operand configuration specifier for certain
XMM/YMM-based operations.
[6:3] VVVV Source or destination register selector, in ones’
complement format.
[2] L Vector length specifier
[1:0] pp Implied 66, F2, or F3 opcode extension.

Figure 1-4. Two-byte Extended Prefix

When the two-byte prefix is used, specific fields of the three-byte prefix are automatically replaced by
predetermined values, as shown in Table 1-4.

Introduction 5

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

Table 1-4. Fixed Two-byte Prefix Field Values

VEX Field Value
X 1
B 1
w 0
mmmmm 00001

Because the replacement values are used, all two-byte forms can also be encoded as three-byte forms.
Other field definitions within the two bytes are the same as for the three-byte prefix.

An instruction that satisfies the constraints can be expressed as an instruction with a two-byte prefix.
In the two-byte form, the fixed value of the mmmmm field is 00001b, which decodes to an implied
OFh leading the opcode byte; all extended instructions of that form can be expressed with a two-byte
prefix, providing the other constraints are met. Instructions that use the other legal forms of mmmm,
0010h (OF 38h leading the opcode byte) and 00011 (OF 3Ah leading the opcode byte), cannot be
expressed with a two-byte prefix. Note that these implied opcode prefixes are distinct from the implied
opcode extensions defined by the pp field; any pp field value can be used.

1.2.4 Opcode Byte

Figure 1-5 shows the format of the opcode byte. For most instructions, operand element size (OES) is
specified by the two least-significant opcode bits, as shown in Table 1-5.

7 2 10
| Opcode | OEs |

Figure 1-5. Opcode Byte Format

Table 1-5. Operand Element Size (OES)

Binary Value Integer, Operation Floating-Point,
Operation
00 Byte PS
01 Word PD
10 Doubleword SS
11 Quadword SD

6 Introduction

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

1.2.5 ModRM, SIB, and Displacement

The ModRM byte is used in certain instruction encodings to define a register or memory reference or
to provide additional opcode bits with which to define the instruction’s function. Figure 1-6 shows the
format of the byte.

‘ mod ‘ reg | r/m ‘

Figure 1-6. ModRM Byte Format

The following summarizes the field functions for extended instructions.

* ModRM.r/m generally specifies a memory operand, as determined by ModRM.mod, but for some
instructions that do not address memory, it specifies a source or destination register operand.

* ModRM.reg generally encodes a source or destination register operand, but is sometimes treated
as an opcode extension.

e ModRM.mod, the SIB byte, and the displacement specify the type of memory access and
addressing mode.

In some instructions, the ModRM byte is followed by a scale-index-base (SIB) byte, which defines
memory addressing for the complex-addressing modes described in “Effective Addresses” in
Volume 1. The SIB byte has three fields (scale, index, and base) that define the scale factor, index-
register number, and base-register number for complex addressing modes.

A displacement, or offset, is a signed value that is added to the base of a code segment for absolute
addressing or to an instruction pointer for relative addressing. Displacement values can be one to four
bytes in length. When a displacement is required, the displacement bytes follow the opcode, ModRM,
or SIB byte in the instruction encoding.

1.2.6 Immediate Bytes

An immediate is a value, typically an operand, encoded directly into an instruction. Depending on the
opcode and the operating mode, the size of an immediate operand can be 1, 2, 4, or 8 bytes. Legacy and
extended media instructions typically use an immediate byte operand (immS8).

The immediate byte is generally shown in the instruction synopsis as an “ib” suffix. For four-byte
FMAA4 instructions, the suffix “is4” is used to indicate the presence of the immediate byte used to
select the fourth source operand. See Section 1.2.7.4, “Four-Operand Instructions” and “Immediate
Operand Size” in Volume 1 for more information.

Introduction 7

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

1.2.7 Instruction Format Examples

The following sections provide examples of two-, three-, and four-operand extended instructions.
These instructions generally perform nondestructive-source operations, meaning a single register is
not used as both a source and a destination, so source content is preserved. Most legacy instructions
perform destructive-source operations, in which a single register is both source and destination, so
source content is lost.

1.2.7.1 XMM Register Destinations

The following general properties apply to XMM/Y MM register destination operands.

* For legacy instructions that use XMM registers as a destination: When a result is written to a
destination XMM register, bits [255:128] of the corresponding YMM register are not affected.

* For extended instructions that use XMM registers as a destination: When a result is written to a
destination XMM register, bits [255:128] of the corresponding YMM register are cleared.
1.2.7.2 Two Operand Instructions

Two-operand instructions use ModRM-based operand assignment. For most instructions, the first
operand is the destination, selected by the ModRM.reg field, and the second operand is either a register
or a memory source, selected by the ModRM.r/m field.

VCVTDQ2PD is an example of a two-operand AVX instruction.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTDQ2PD xmm1, xmm2/mem64 C4 RXB.01 0.1111.0.10 E6 /r
VCVTDQ2PD ymm1, xmm2/mem128 C4 RXB.01 0.1111.1.10 E6 /r

The destination register is selected by ModRM.reg. The size of the destination register is determined
by VEX.L. The source is either an XMM register or a memory location specified by ModRM.r/m
Because this instruction converts packed doubleword integers to double-precision floating-point
values, the source data size is smaller than the destination data size.

VEX.vvvv is not used and must be setto 1111b.

8 Introduction

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

1.2.7.3 Three-Operand Instructions

These extended instructions have two source operands and a destination operand.

VPROTB is an example of a three-operand XOP instruction.

There are versions of the instruction for variable-count rotation and for fixed-count rotation.
VPROTB dest, src, variable-count

VPROTB dest, src, fixed-count

Mnemonic Encoding

XOP RXB.mmmmm W.vvvv.L.pp Opcode
VPROTB xmm1, xmm2/mem128, xmm3 8F RXB.09 0.5rc.0.00 90 /r
VPROTB xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 90 /r
VPROTB xmm1, xmm2/mem128, imm8 8F RXB.08 0.1111.0.00 90 /rib

For both versions of the instruction, the destination (dest) operand is an XMM register specified by
MODRM .reg.

The variable-count version of the instruction rotates each byte of the source as specified by the
corresponding byte element variable-count.

Selection of src and variable-count is controlled by XOP.W.

* When XOP.W =0, src is either an XMM register or a 128-bit memory location specified by
MODRM.rm, and variable-count is an XMM register specified by XOP.vvvv.

* When XOP.W = 1, src is an XMM register specified by XOP.vvvv and variable-count is either an
XMM register or a 128-bit memory location specified by MODRM.rm.

Table 1-6 summarizes the effect of the XOP.W bit on operand selection.

Table 1-6. Three-Operand Selection

XOP.W dest src variable-count
0 ModRM.reg ModRM.r/m XOP.vvvv
1 ModRM.reg XOP.vvvv ModRM.r/m

The fixed-count version of the instruction rotates each byte of src as specified by the immediate byte
operand fixed-count. For this version, src is either an XMM register or a 128-bit memory location
specified by MODRM.r/m. Because XOP.vvvv is not used to specify the source register, it must be set
to 1111b or execution of the instruction will cause an Invalid Opcode (#UD) exception.

Introduction 9

AMDZ\
AMDG64 Technology

26568—Rev. 3.11—December 2010

1.2.7.4 Four-Operand Instructions

Some extended instructions have three source operands and a destination operand. This is
accomplished by using the VEX/XOP.vvvv field, the ModRM.reg and ModRM.r/m fields, and bits
[7:4] of an immediate byte to select the operands. The opcode suffix “is4” is used to identify the
immediate byte, and the selected operands are shown in the synopsis.

VFMSUBPD is an example of an four-operand FMA4 instruction.

VFMSUBPD dest, srcl, src2, src3 dest = srcl* src2 - src3

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VFMSUBPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src.0.01 6D /ris4
VFMSUBPD ymm1, ymm2, ymm3/mem?256, ymm4 C4 RXB.03 0.src.1.01 6D /ris4
VFMSUBPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src.0.01 6D /ris4
VFMSUBPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src.1.01 6D /ris4

The first operand, the destination (dest), is an XMM register or a YMM register (as determined by
VEX.L) selected by MODRM.reg. The following three operands (srcl, src2, src3) are sources.

The srcl operand is an XMM or YMM register specified by VEX.vvvv.

VEX.W determines the configuration of the src2 and src3 operands.

e When VEX.W =0, src2 is either a register or a memory location specified by ModRM.r/m, and
src3 1s a register specified by bits [7:4] of the immediate byte.

e When VEX.W =1, src2 is a register specified by bits [7:4] of the immediate byte and src3 is either
a register or a memory location specified by ModRM.r/m.

Table 1-6 summarizes the effect of the VEX.W bit on operand selection.

Table 1-7. Four-Operand Selection
VEX.W dest src1 src2 src3
0 ModRM.reg VEX.vvwv ModRM.r/m is4[7:4]
1 ModRM.reg VEX.vvvv is4[7:4] ModRM.r/m

10

Introduction

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

1.3 XSAVE/XRSTOR Instructions

The XSAVE, XRSTOR, XGETBYV, and XSETBYV instructions and associated data structures extend
the FXSAVE/FXRSTOR memory image used to manage processor states and provide additional
functionality. These instructions do not obviate the FXSAVE/FXRSTOR instructions. For more
information about FXSAVE/FXRSTOR, refer to the AMDG64 Architecture Programmer’s Manual
Volume 3: General Purpose and System Instructions.

The CPUID instruction is used to identify features supported in processor hardware. Extended control
registers are used to enable and disable the handling of processor states associated with supported
hardware features and to communicate to an application whether an operating system supports a
particular feature that has a processor state specific to it.

1.3.1 CPUID Enhancements

e CPUID Fn0000 00001 ECX[XSAVE] indicates that the processor supports XSAVE/XRSTOR
instructions and at least one XCR.

e CPUID Fn0000 00001 ECX[OSXSAVE] indicates whether the operating system has enabled
extensible state management and supports processor extended state management.

* CPUID leaf function 0DH enumerates the list of processor states (including legacy x87 FPU states,
SSE states, and processor extended states), the offset, and the size of the save area for each
processor extended state.

1.3.2 Extended Control Registers

Currently, the only defined extended control register (XCR) is XFEATURE ENABLED MASK
(XCRO), shown in Figure 1-7. XCRO specifies the processor states enabled on a particular device,
including x87 floating point states, SIMD states, and extended states developed for the AMD64
architecture.

63 0
‘ X ‘ Processor State Extension Space
Bits Mnemonic Description
[63] Reserved for XCRO bit vector expansion
[62:0] Processor State Extension Space

Figure 1-7. XFEATURE_ENABLED_MASK Register (XCRO)

Table 1-8 shows the processor state components currently supported by the AMD64 architecture.

Introduction 11

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

Table 1-8. XCRO Processor State Components

Bit Meaning
When set, indicates XSAVE/XRSTOR support for x87 state management.

0 This bit must be set

1 When set, indicates XSAVE/XRSTOR support for SSE state management.
This bit must be set to enable AVX extensions.

2 When set, indicates XSAVE/XRSTOR support for YMM state management.

This bit must be set to enable AVX extensions.

62 When set, indicates support for Lightweight Profiling (LWP) extensions are
enabled and XSAVE/XRSTOR support LWP state management.

1.3.3 Extended Save Area

The XSAVE/XRSTOR save area extends the legacy 512-byte FXSAVE/FXRSTOR memory image to
provide a compatible register state management environment as well as an upward migration path. The
save area is architecturally defined to be extendable and enumerated by the sub-leaves of the
CPUID.ODH leaf. Figure 1-9 shows the format of the XSAVE/XRSTOR area.

Table 1-9. Extended Save Area Format

Save Area Offset (Byte) Size (Bytes)
FPU/SSE Save Area 0 512
Header 512 64

Reserved, (Ext_Save_Area_2) | CPUID.(EAX=0DH, ECX=2).EBX | CPUID.(EAX=0DH, ECX=2):EAX
Reserved, (Ext_Save_Area_3) | CPUID.(EAX=0DH, ECX=3):EBX | CPUID.(EAX=0DH, ECX=3):EAX
Reserved, (Ext_Save_Area 4) | CPUID.(EAX=0DH, ECX=4):EBX | CPUID.(EAX=0DH, ECX=4):EAX

Reserved, (...)
Note: Bytes [464:511] are available for software use. XRSTOR ignores bits [464:511] of an XSAVE image.

The register fields of the first 512 bytes of the XSAVE/XRSTOR area are the same as those of the
FXSAVE/FXRSTOR area, but the 512-byte area is organized as x87 FPU states, MXCSR (including
MXCSR MASK), and XMM registers. The layout of the save area is fixed and may contain non-
contiguous individual save areas because a processor does not support certain extended states or
because system software does not support certain processor extended states. The save area is not
compacted when features are not saved or are not supported by the processor or by system software.

1.3.4 Instruction Functions

CR4.0SXSAVE and XCRO can be read at all privilege levels but written only at ring 0.

* XGETBYV reads XCRO.

e XSETBYV writes XCRO, ring 0 only.

* XRSTOR restores states specified by bitwise AND of a mask operand in EDX:EAX with XCRO.
* XSAVE saves states specified by bitwise AND of a mask operand in EDX:EAX with XCRO.

12 Introduction

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

1.3.5 YMM States and Supported Operating Modes

Extended instructions operate on YMM states by means of extended (XOP/VEX) prefix encoding.
When a processor supports YMM states, the states exist in all operating modes, but interfaces to access
the YMM states may vary by mode. Processor support for extended prefix encoding is independent of
processor support of YMM states.

Instructions that use extended prefix encoding are generally supported in long and protected modes,
but are not supported in real or virtual 8086 modes, or when entering SMM mode. Bits [255:128] of
the YMM register state are maintained across transitions into and out of these modes. The
XSAVE/XRSTOR instructions function in all operating modes; XRSTOR can modify YMM register
state in any operating mode, using state information from the XSAVE/XRSTOR area.

1.3.6 YMM State Management

Operating systems must use the XSAVE/XRSTOR instructions for YMM state management. The
instructions also provide an interface to manage XMM/MXCSR states and x87 FPU states in
conjunction with processor extended states.An operating system must enable YMM state management
to support extended instructions. Attempting to execute an extended instruction without enabling
YMM state management causes a #UD exception.

1.3.6.1 Enabling YMM State

To enable YMM state support, the operating system must perform the following steps.

e Verify support for XSAVE/XRSTOR instructions and XCRO
by checking CPUID Fn0000 00001 ECX[XSAVE].

e Verify CPUID.(EAX = 0DH, ECX = 0):EAX.SSE[bit 1]= 1,
because the lower 128-bits of an YMM register are aliased to an XMM register.

* Determine buffer size requirement for the XSAVE area.
* Set CR4.0SXSAVE to enable the use of XSETBV/XGETBYV to write/read XCRO.

* Provide a mask in EDX:EAX that allows XSETBYV to enable processor state components
managed by XSAVE/XRSTOR instructions.

- To enable x87 FPU, SSE, and YMM state management, the mask is EDX = 0H, EAX = 7H.

- EDX:EAX][2:1] = 11b must be used to enable YMM state.
Attempting to execute XSETBV with EDX:EAX[2:1] = 10b causes a #GP(0) exception.

Introduction 13

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

1.3.7 Saving Processor State

The XSTATE header starts at byte offset 512 in the save area. XSTATE BV is the first 64-bit field in
the header. The order of bit vectors in XSTATE BV matches the order of bit vectors in XCRO. The
XSAVE instruction sets bits in the XSTATE BV vector field when it writes the corresponding
processor extended state to a save area in memory. XSAVE modifies only bits for processor states
specified by bitwise AND of the XSAVE bit mask operand in EDX:EAX with XCRO. If software
modifies the save area image of a particular processor state component directly, it must also set the
corresponding bit of XSTATE_ BV. If the bit is not set, directly modified state information in a save
area image may be ignored by XRSTOR.

1.3.8 Restoring Processor State

When XRSTOR is executed, processor state components are updated only if the corresponding bits in
the mask operand (EDX:EAX) and XCRO are both set. For each updated component, when the
corresponding bit in the XSTATE BV field in the save area header is set, the component is loaded
from the save area in memory. When the XSTATE BV bit is cleared, the state is set to the hardware-
specified initial values shown in Table 1-10.

Table 1-10. XRSTOR Hardware-Specified Initial Values

Component Initial Value
x87 FCW = 037Fh
FSW = 0000h
FTW = FFFFh
x87 Error Pointers = 0
ST0-ST7=0
XMM XMMO - XMM15 = 0, if 64-bit mode
XMMO - XMM7 = 0, if 164-bit mode
YMM_HI YMM_HIO -Y MM_HI15 = 0, if 64-bit mode
YMM_HIO-YMM_HI7 = 0, if !64-bit mode
LWP LWP disabled

1.3.9 MXCSR State Management

The MXCSR has no hardware-specified initial state; it is read from the save area in memory whenever
either XMM or YMM _HI are updated.

1.3.10 Mode-Specific XSAVE/XRSTOR State Management

Some state is conditionally saved or updated, depending on processor state:

* The x87 error pointers are not saved or restored if the state saved or loaded from memory doesn't
have a pending #MF.

e XMMS - XMM15 are not saved or restored in !64-bit mode.
e YMM HI8-YMM HIIS5 are not saved or restored in !64-bit mode.

14 Introduction

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

1.4 AES Instructions

This section provides an overview of AMD64 instructions that support AES software implementation.

The U.S. National Institute of Standards and Technology has adopted the Rijndael algorithm,

a block cipher that processes 16-byte data blocks using a shared key of variable length, as the
Advanced Encryption Standard (AES). The standard is defined in Federal Information Processing
Standards Publication 197 (FIPS 197), Specification for the Advanced Encryption Standard (AES).
There are three versions of the algorithm, based on key widths of 16 (AES-128), 24 (AES-192), and 32
(AES-256) bytes.

The following AMD64 instructions support AES implementation:

* AESDEC/VAESDEC and AESDECLAST/VAESDECLAST
Perform one round of AES decryption

AESENC/VAESENC and AESENCLAST/VAESENCLAST
Perform one round of AES encryption

AESIMC/VAESIMC
Perform the AES InvMixColumn transformation

AESKEYGENASSIST/VAESKEYGENASSIST
Assist AES round key generation

PCLMULQDQ, VPCLMULQDQ
Perform carry-less multiplication

See Chapter 2, “Instruction Reference” for detailed descriptions of the instructions.

1.4.1 Coding Conventions

This overview uses descriptive code that has the following basic characteristics.

* Syntax and notation based on the C language
* Four numerical data types:
- bool: The numbers 0 and 1, the values of the Boolean constants false and true
- nat: The infinite set of all natural numbers, including bool as a subtype
- int: The infinite set of all integers, including nat as a subtype
- rat: The infinite set of all rational numbers, including int as a subtype
» Standard logical and arithmetic operators
* Enumeration (enum) types, arrays, structures (struct), and union types
* Global and local variable and constant declarations, initializations, and assignments
» Standard control constructs (if, then, else, for, while, switch, break, and continue)
* Function subroutines
* Macro definitions (#define)

Introduction 15

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

1.4.2 AES Data Structures

The AES instructions operate on 16-byte blocks of text called the state. Each block is represented as a
4 x 4 matrix of bytes which is assigned the Galois field matrix data type (GFMatrix). In the AMD64
implementation, the matrices are formatted as 16-byte vectors in XMM registers or 128-bit memory
locations. This overview represents each matrix as a sequence of 16 bytes in little-endian format (least
significant byte on the right and most significant byte on the left).

Figure 1-8 shows a state block in 4 x 4 matrix representation.

X3,0X2,0 X1,0 X0,0
X31X2,1X1,1X0,1
X32X 2 X12 X0,
X33X3X13X03

GFMatrix =

Figure 1-8. GFMatrix Representation of 16-byte Block

Figure 1-9 shows the AMD64 AES format, with the corresponding mapping of FIPS 197 AES
“words” to operand bytes.

XMM Register or 128-bit Memory Operand

127 15119 411104103 0695 ¢g87 g079 7571 (463 5455 4o 47 4939 3531 5,23 (15 o7
X33| Xo3| X13| Xo3| X2 X2 | X12| Xop| K31 | X2,1| X1,1| Xo,1| X3,0 | X2,0 | X1,0 X0,0||

9 9

. AN AN AN J
h'd e e e

AES Word 3 AES Word 2 AES Word 1 AES Word 0

Figure 1-9. GFMatrix to Operand Byte Mappings

1.4.3 Algebraic Preliminaries
AES operations are based on the Galois field GF = GF(2%), of order 256, constructed by adjoining a
root of the irreducible polynomial

P = X+ X+ X+ x+1
to the field of two elements, Z,. Equivalently, GF is the quotient field Z,[X]/p(X) and thus may be
viewed as the set of all polynomials of degree less than 8§ in Z,[.X] with the operations of addition and

multiplication modulo p(X). These operations may be implemented efficiently by exploiting the
mapping from Z,[X] to the natural numbers given by

a, X"+ ... taX+tay—>2"a,+...+2a,+ta,-a,..aab

16 Introduction

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

For example:
1 -01h
X - 02h
X? - 04h
X+X3+1- 1%

p(X)— 11Bh

Thus, each element of GF is identified with a unique byte. This overview uses the data type GF256 as
an alias of nat, to identify variables that are to be thought of as elements of GF.

The operations of addition and multiplication in GF are denoted by @ and (O, respectively. Since Z, is
of characteristic 2, addition is simply the “exclusive or” operation:

x®@y=x"y
In particular, every element of GF is its own additive inverse.

Multiplication in GF may be computed as a sequence of additions and multiplications by 2. Note that
this operation may be viewed as multiplication in Z,[X] followed by a possible reduction modulo p(X).
Since 2 corresponds to the polynomial X and 11B corresponds to p(X), for any x € GF,

[x<<1 if x < 80h

20x=]
L (x<<1)®11Bh ifx>80h

Now, if y = b,...b,;b,b, then
xOy=200..20CO0 0B, 0x)DbsOx)Dbs Ox)...by
This computation is performed by the GFMul() function.

1.4.3.1 Multiplication in the Field GF

The GFMul() function operates on GF256 elements in SRC1 and SRC2 and returns a GF256 matrix
in the destination.

GF256 GFMul (GF256 x, GF256 y) {
nat sum = 0;
for (int 1i=7; i>=0; i--) {
// Multiply sum by 2. This amounts to a shift followed
// by reduction mod 0x11B:
sum <<= 1;
if (sum > OxXFF) {sum = sum ~ 0x11B;}
// Add y[i]*x:
if (y[i]) {sum = sum
}
return sum;

}

A

x;}

Introduction 17

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

Because the multiplicative group GF* is of order 255, the inverse of an element x of GF may be
computed by repeated multiplication as x~/ = x**#. A more efficient computation, however, is
performed by the GFInv() function as an application of Euclid’s greatest common divisor algorithm.
See Section 1.4.10, “Computation of GFInv with Euclidean Greatest Common Divisor” for an
analysis of this computation and the GFInv() function.

The AES algorithms operate on the vector space GF?, of dimension 4 over GF, which is represented by
the array type GFWord. FIPS 197 refers to an object of this type as a word. This overview uses the
term GF word in order to avoid confusion with the AMD64 notion of a 16-bit word.

A GFMatrix is an array of four GF words, which are viewed as the rows of a 4 x 4 matrix over GF.

The field operation symbols @ and © are used to denote addition and multiplication of matrices over
GF as well. The GFMatrixMul() function computes the product A O B of 4 x 4 matrices.

1.4.3.2 Multiplication of 4x4 Matrices Over GF
, GFMatrix GFMatrixMul (GFMatrix a, GFMatrix b) {
GFMatrix c;
for (nat i=0; i<4; i++) {
for (nat j3=0; j<4; Jj++) {

clil[3] = 0;
for (nat k=0; k<4; k++) {
c[i][J] = c[i1[J] ~ GFMul(a[i][k], b[k][J])~
}
}
}
return c;

}

1.4.4 AES Operations

The AES encryption and decryption procedures may be specified as follows, in terms of a set of basic
operations that are defined later in this section. See the alphabetic instruction reference for detailed
descriptions of the instructions that are used to implement the procedures.

Call the Encrypt or Decrypt procedure, which pass the same expanded key to the functions
TextBlock Cipher(TextBlock in, ExpandedKey w, nat Nk)

and
TextBlock InvCipher(TextBlock in, ExpandedKey w, nat Nk)

In both cases, the input text is converted by

GFMatrix Text2Matrix(TextBlock A)

to a matrix, which becomes the initial state of the process. This state is transformed through the
sequence of N, + 1 rounds and ultimately converted back to a linear array by

TextBlock Matrix2Text(GFMatrix M).

In each round 7, the round key K is extracted from the expanded key w and added to the state by

18 Introduction

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

GFMatrix AddRoundKey(GFMatrix state, ExpandedKey w, nat round).
Note that AddRoundKey does not explicitly construct K , but operates directly on the bytes of w.

The rounds of Cipher are numbered 0,...N, Let X be the initial state an an execution, i.¢., the input in
matrix format, let S; be the state produced by round 7, and let ¥ = Sy, be the final state. Let X, R , and C
denote the operations performed by SubBytes, ShiftRows, MixColumns, respectively. Then

The initial round is a simple addition:

Sy =Xa Ky

Each of the next N, + 1 rounds is a composition of four operations:

S;' = C(R(E(S;—lj}) @K@ for i=1,....N, —1;

The MixColumns transformation is omitted from the final round:

YV =& N, = R(E(S‘.\rp_lj}) 35 I('Np.

Composing these expressions yields

Y=RECRE - CREXDK))S K1)))) B Kn.—1)) B Ky,.

Note that the rounds of InvCipher are numbered in reverse order, N,,...,0. If 27and ¥V’are the initial
and final states and 57 is the state following round 7, then

LS':\[“ — X.f @ _!!'(J\.'ﬂ].

Si=ClEZ RIS @ K) for i=N.-1,...1
Y = 2" YR-YS})) & K.
Composing these expressions yields

Y =2 R CTTET R (T ETT R 9 Ka,) © Kn,—1))) @ K1) @ Ko

In order to show that InvCipher is the inverse of Cipher, it is only necessary to combine these
expanded expressions by replacing X”with Yand cancel inverse operations to yield ¥V’ =X

Introduction 19

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

1.4.4.1 Sequence of Operations

* Use predefined SBox and InvSBox matrices or initialize the matrices using the ComputeSBox
and ComputeInvSBox functions.

e Call the Encrypt or Decrypt procedure.

For the Encrypt procedure:

Load the input TextBlock and CipherKey.

Expand the cipher key using the KeyExpansion function.

Call the Cipher function to perform the number of rounds determined by the cipher key length.

L=

Perform round entry operations.
a. Convert input text block to state matrix using the Text2Matrix function.

b. Combine state and round key bytes by bitwise XOR using the AddRoundKey function.
5. Perform round iteration operations.
a. Replace each state byte with another by non-linear substitution using the SubBytes function.
b. Shift each row of the state cyclically using the ShiftRows function.
¢. Combine the four bytes in each column of the state using the MixColumns function.
d. Perform AddRoundKey.
6. Perform round exit operations.
a. Perform SubBytes.
b. Perform ShiftRows.
c. Perform AddRoundKey.
d. Convert state matrix to output text block using the Matrix2Text function and return TextBlock.

For the Decrypt procedure:
Load the input TextBlock and CipherKey.
Expand the cipher key using the KeyExpansion function.

w o=

Call the InvCipher function to perform the number of rounds determined by the cipher key
length.
4. Perform round entry operations.
a. Convert input text block to state matrix using the Text2Matrix function.
b. Combine state and round key bytes by bitwise XOR using the AddRoundKey function.
5. Perform round iteration operations.
a. Shift each row of the state cyclically using the InvShiftRows function.
b. Replace each state byte with another by non-linear substitution using the InvSubBytes function.
c. Perform AddRoundKey.
d. Combine the four bytes in each column of the state using the InvMixColumns function.
6. Perform round exit operations.
a. Perform InvShiftRows.
b. Perform InvSubBytes (InvSubWord).
c. Perform AddRoundKey.
d. Convert state matrix to output text block using the Matrix2Text function and return TextBlock.

20 Introduction

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

1.4.5 |Initializing the Sbox and InvSBox Matrices

The AES makes use of a bijective mapping ¢ : GF = GF, which is encoded, along with its inverse
mapping, in the 16 x 16 arrays SBox (for encryption) and InvSBox (for decryption), as follows:

forallx € G
o(x) = SBox[x[7:4], x[3:0]]
and
o~ (x) = InvSBox[x[7:4], x[3:0]]

While the FIPS 197 standard defines the contents of the SBox| | and InvSbox | | matrices, the
matrices may also be initialized algebraically (and algorithmically) by means of the ComputeSBox()
and ComputeInvSBox() functions, discussed below.

The bijective mappings for encryption and decryption are computed by the SubByte() and
InvSubByte () functions, respectively:

SubByte() computation:

GF256 SubByte (GF256 x) {
return SBox[x[7:4]1][x[3:0]];
}

InvSubByte () computation:

GF256 InvSubByte (GF256 x) {
return InvSBox[x[7:4]][x[3:0]1];
}

1.4.5.1 Computation of SBox and InvSBox

Computation of SBox and InvSBox elements has a direct relationship to the cryptographic properties
of the AES, but not to the algorithms that use the tables. Readers who prefer to view o as a primitive
operation may skip the remainder of this section.

The algorithmic definition of the bijective mapping G is based on the consideration of GF as an
8-dimensional vector space over the subfield Z,. Let ¢ be a linear operator on this vector space and let
M = [a;] be the matrix representation of ¢ with respect to the ordered basis {1, 2, 4, 10, 20, 40, 80}.
Then ¢ may be encoded concisely as an array of bytes A4 of dimension 8, each entry of which is the
concatenation of the corresponding row of M:

Ali] = agayy...ay

This expression may be represented algorithmically by means of the ApplyLinearOp() function,
which applies a linear operator to an element of GF. The ApplyLinear Op() function is used in the
initialization of both the sBox[] and InvSBox| | matrices.

Introduction 21

AMDZU

AMDG64 Technology 26568—Rev. 3.11—December 2010

// The following function takes the array A representing a linear operator phi and

// an element x of G and returns phi (x):

GF256 ApplyLinearOp (GF256 A[8], GF256 x) {
GF256 result = 0;
for (nat i=0; 1i<8; i++) {
bool sum = 0;
for (nat j=0; j<8; Jj++) {
sum = sum ~ (A[1][3J] & x[]J]):
}
result[i] = sum;
}
return result;

}

The definition of G involves the linear operator ¢ with matrix

—
o)

0 0
0 0
10

oD e
=D =
= = e

M =

e e e i
—_
=
=
=
I

oD e e e e e
—
=

pd ko

=

=

= et e et
D
=t et

= =
= =]

In this case,
A={F1,E3,C7,8F, 1F,3E,7C, F8}.
Initialization of SBox[]
The mapping o : G = G is defined by
o= H®63
This computation is performed by ComputeSBox().
ComputeSBox()

GF256[16][16] ComputeSBox () {
GF256 result[le][1l6];
GF256 A[8] = {0xFl, OxE3, 0xC7, O0x8F, 0Oxl1lF, O0x3E, 0x7C,
for (nat i=0; 1i<1l6; 1i++) {
for (nat J=0; 3<16; Jj++) {

GF256 x = (i << 4) | 7;
result[i] [j] = ApplyLinearOp (A, GFInv(x)) ~ 0x63;
}
}
return result;
}
const GF256 SBox[16][16] = ComputeSBox();

O0xF8};

22

Introduction

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Table 1-11 shows the resulting SBox]| |, as defined in FIPS 197.

Table 1-11. SBox Definition

S[3:0]

0 1 2 3 4 5 6 7 8 9 a b c d e f
0|63 |7c |77 | 7b | f2 | 6b | 6f | ¢c6 |30 | 01|67 | 2b | fe | d7 | ab | 76
1| ca |8 | c9O|7d| fa |59 |47 | fO | ad | d4 | a2 | af | 9c | a4 | 72 | c0
2 | b7 | fd |93 |26 |36 | 3f | f7 | cc |34 | a5 |e5b | f1 |71 | d8 | 31| a5
3|04 |c7 |23 |c3 |18 |96 |05 |9a |07 |12 |80 | €2 |eb |27 | b2 | 75
4109 |8 |2 |1a|1b | 6e | 5a | a0 |52 |3 |dé6 | b3 |29 | e3 | 2f | 84
5|53 |dl |00 |ed |20 | fc | b1 | 5b | 6a |cb|be| 39| 4a | 4c | 58 | cf
6 |do | ef | aa | fb | 43 | 4d | 33 | 85 |45 | f9 | 02 | 7f | 50 | 3c | 9f | a8

S[7:4] | 7 | 51 | a3 | 40 | 8 | 92 | 9d | 38 | f5 | bc | b6 | da | 21 | 10 | ff | f3 | d2
8| cd |Oc |13 | ec | 5f | 97 | 44 | 17 | c4 | a7 | 7e | 3d | 64 | &d | 19 | 73
9|60 |81 | 4f | dc | 22 | 2a | 90 | 88 | 46 | ee | b8 | 14 | de | 5e | Ob | db
a|e0 |32 | 3a|0a |49 06|24 |5 | c2|d3 |ac |62 | 91 |95 | ed | 79
b|e7 | c8 |37 |6d| 8| d5 |4e | a9 | 6¢c | 56 | f4 | ea | 65 | 7a | ae | 08
c|ba |78 |25 |2 | 1c | a6 | b4 | c6 | e8 |dd | 74 | 1f | 4b | bd | 8b | 8a
d|70 | 3e | b5 | 66 | 48 | 03 | f6 | Oe | 61 | 35 | 57 | b9 | 86 | c1 | 1d | 9e
e|el | f8 98|11 |69 |d9 |8 |94 |9 |1e | 87 | €9 | ce | 55| 28 | df
f |8 |al |8 |0d | bf | e6 | 42 | 68 | 41 | 99 | 2d | Of | bO | 54 | bb | 16

Introduction 23

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

1.4.5.2 Initialization of InvSBox[]
A straightforward calculation confirms that the matrix M is nonsingular with inverse.

Thus, ¢ is invertible and ¢~ is encoded as the array

00100101
100100710
01001001
| 10100100
Slo1 010010
00101001
10010100
(010010710

B=1{44,49,92,25,44, 94,29, 52}.
If y = o(x), then

(@) &5) =0 (y® ()’
=(¢'(y®63))’
=(¢(p(x") ® 63 @ 63))’
= (@ (p(x "))’

= x’
and o is a permutation of GF with

0)=(9"(7) ® 5)

This computation is performed by ComputeInvSBox().
ComputelnvSBox()

GF256[16][16] ComputeInvSBox () {
GF256 result[le][1l6];
GF256 B[8] = {0xA4, 0x49, 0x92, 0x25, O0x4A, 0x94, 0x29, 0x52};
for (nat i=0; 1i<16; 1i++) {
for (nat J=0; 3<16; Jj++) {

GF256 y = (1 << 4) | j;
result[i] [j] = GFInv (ApplyLinearOp (B, y) ~ 0x5);
}
}
return result;
}
const GF256 InvSBox[1l6][16] = ComputeInvSBox();

Table 1-12 shows the resulting InvSBox]], as defined in the FIPS 197.

24 Introduction

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Table 1-12. InvSBox Definition

S[3:0]

o1 2|3 |4|5|6|7|8|9|a|bl|lc|d]|e]Hf
0|52| 09 |6a|d5 | 30|36 |a5 |38 | bf |40 | a3 [9e | 81 | 3 | d7 | fb
1| 7c | e3 |39 |82 |9b | 2f | ff | 87 |34 | 8e | 43 | 44 | c4 | de | €9 | cb
2|54 | 7b |94 | 32| a6 | c2|23|3d|ee|4c|95|0b| 42| fa|c3 | de
3108 |2 |al |66 |28 |d) |24 |b2 |76 |5b|a2 |49 | 6d| 8 | dl | 25
4| 72| f8 | f6 |64 |8 |68 |98 | 16 | d4 | a4 | 5¢c | cc | 5d | 65 | b6 | 92
5| 6c |70 | 48 | 50 | fd | ed | b9 | da | 5e | 15 | 46 | 57 | a7 | 8d | 9d | 84
6|90 | d8 |ab [00 | 8 | bc | d3 | 0a | 7 | e4 | 58 | 05 | b8 | b3 | 45 | 06

S[7:4] | 7| d0 | 2c | 1e | 8 | ca | 3f | Of | 02 | c1 | af [bd | 03 | 01 | 13 | 8a | 6b
8 3a |91 |11 |41 | 4f |67 |dc |ea |97 | f2 | cf |[ce | f0O | b4 | e6 | 73
996 | ac |74 |22 | e7 | ad |35 |85 | e2 | f9 | 37 | e8 | 1c | 75 | df | 6e
a|47 | f1 [1a |71 | 1d |29 |c5 |89 | 6f | b7 [62 | 0e | aa | 18 | be | 1b
b|fc |56 |3 |4b|c6|d2| 79|20 |9 |db|cO| fe |78 cd| 5a]| f4
c| 1 | dd | a8 |33 |8 |07 |c7 |31 |b1|12|10 |59 |27 | 80 | ec | 5f
d| 60|51 | 7| a9 |19 | b5 |4a | 0d | 2d | e5 | 7a| 9f | 93 | c9 | 9¢c | ef
e| a0 | e0 [3b | 4d | ae |2a | f5 | bO | c8 | eb | bb | 3c | 83 | 53 | 99 | 61
f|17 | 2b |04 | 7e [ba | 77 | d6 | 26 | e1 | 69 | 14 | 63 | 55 | 21 | Oc | 7d

1.4.6 Encryption and Decryption

The AMDG64 architecture implements the AES algorithm by means of an iterative function called a
round for both encryption and the inverse operation, decryption.

The top-level encryption and decryption procedures Encrypt() and Decrypt() set up the rounds and
invoke the functions that perform them. Each of the procedures takes two 128-bit binary arguments:

* input data — a 16-byte block of text stored in a source 128-bit XMM register

* cipher key — a 16-, 24-, or 32-byte cipher key stored in either a second 128-bit XMM register or
128-bit memory location

1.4.6.1 The Encrypt() and Decrypt() Procedures

TextBlock Encrypt (TextBlock in, CipherKey key, nat Nk) {
return Cipher (in, ExpandKey (key, Nk), Nk);
}

TextBlock Decrypt (TextBlock in, CipherKey key, nat Nk) {
return InvCipher (in, ExpandKey(key, Nk), Nk);
}

Introduction 25

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

The array types TextBlock and CipherKey are introduced to accommodate the text and key
parameters. The 16-, 24-, or 32-byte cipher keys correspond to AES-128, AES-192, or AES-256 key
sizes. The cipher key is logically partitioned into N, =4, 6, or 8 AES 32-bit words. N, is passed as a
parameter to determine the AES version to be executed, and the number of rounds to be performed.

Both the Encrypt() and Decrypt() procedures invoke the ExpandKey() function to expand the
cipher key for use in round key generation. When key expansion is complete, either the Cipher() or
InvCipher() functions are invoked.

The Cipher() and InvCipher() functions are the key components of the encryption and decryption
process. See Section 1.4.7, “The Cipher Function” and Section 1.4.8, “The InvCipher Function” for
detailed information.

1.4.6.2 Round Sequences and Key Expansion

Encryption and decryption are performed in a sequence of rounds indexed by 0, ..., N, where N, is
determined by the number N, of GF words in the cipher key. A key matrix called a round key is
generated for each round. The number of GF words required to form N, + 1 round keys is equal to,
4(N, + 1). Table 1-13 shows the relationship between cipher key length, round sequence length, and
round key length.

Table 1-13. Cipher Key, Round Sequence, and Round Key Length

N, N, 4N, +1)
4 10 44
6 12 52
8 14 60

Expanded keys are generated from the cipher key by the ExpandKey() function, where the array type
ExpandedKey is defined to accommodate 60 words (the maximum required) corresponding to N, = 8.

The ExpandKey() Function

ExpandedKey ExpandKey (CipherKey key, nat Nk) {
assert ((Nk == 4) || (Nk == 0) || (Nk == 8));
nat Nr = Nk + 6;

ExpandedKey w;

// Copy key into first Nk rows of w:
for (nat 1=0; i<Nk; i++) {
for (nat j=0; j<4; j++) {
wlil[J] = key[4*i+]];
}
}

26 Introduction

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

// Write next row of w:
for (nat i=Nk; i<4* (Nr+1l); i++) {

// Encode preceding row:
GFWord tmp = w[i-1];

if (mod(i, Nk) == 0) {
tmp = SubWord (RotWord (tmp));
tmp[0] = tmp[0] ~ RCON[i/Nk];
}
else if ((Nk == 8) && (mod(i, Nk) == 4)) {

tmp = SubWord (tmp) ;
}

// XOR tmp with w[i-Nk]:
for (nat 3=0; 7J<4; J++) {
wlil[J] = w[i-Nk][J] ~ tmp[J];
}
}

return w;

}

ExpandKey() begins by copying the input cipher key into the first N, GF words of the expanded key
w. The remaining 4(N,.+ 1) — N, GF words are computed iteratively. For each i > N}, w[i] is derived
from the two GF words w[i — 1] and w[i — N;]. In most cases, w[i] is simply the sum w[i — 1] ® w[i —
N,]. There are two exceptions:

» Ifiis divisible by N,, then before adding it to w[i — N,], w[i — 1] is first rotated by one position to
the left by RotWord(), then transformed by the substitution SubWord(), and an element of the
array RCON is added to it.

RCON[11] = {00h, 01h, 02h, 04h, 08h, 10h, 20h, 40h, 80h, 1Bh, 36h}

* Inthe case N, =8, if i is divisible by 4 but not 8, then w[i — 1] is transformed by the substitution
SubWord().

The i round keyK; comprises the four GF words w[4i], ..., w[4i + 3]. More precisely, let W, be the
matrix

W= {wl4i],w[4i+1],w[4i+2], w[4i+ 3]}

Then K, = W/, the transpose of W,. Thus, the entries of the array w are the columns of the round keys.

1.4.7 The Cipher Function

This function performs encryption. It converts the input text to matrix form, generates the round key
from the expanded key matrix, and iterates through the transforming functions the number of times
determined by encryption key size to produce a 128-bit binary cipher matrix. As a final step, it
converts the matrix to an output text block.

Introduction 27

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

TextBlock Cipher (TextBlock in, ExpandedKey w, nat Nk) {
assert ((Nk == 4) || (Nk == 6) || (Nk == 8));
nat Nr = Nk + 6;
GFMatrix state = Text2Matrix(in);
state = AddRoundKey (state, w, 0);
for (nat round=1; round<Nr; round++) {

state = SubBytes (state):;
state = ShiftRows (state);
state = MixColumns (state);
state = AddRoundKey (state, w, round);
}
state = SubBytes (state);
state = ShiftRows (state);
state = AddRoundKey (state, w, Nr);

return Matrix2Text (state);

}
1.4.7.1 Text to Matrix Conversion

Prior to processing, the input text block must be converted to matrix form. The Text2Matrix()
function stores a TextBlock in a GFMatrix in column-major order as follows.

GFMatrix Text2Matrix (TextBlock A) {
GFMatrix result;
for (nat j=0; j<4; j++) {
for (nat i=0; i<4; i++) {
result[i][j] = A[4*j+i];
}
}

return result;

}
1.4.7.2 Cipher Transformations

The Cipher function employs the following transformations.

SubBytes() — Applies a non-linear substitution table (SBox) to each byte of the state.

SubWord() — Uses a non-linear substitution table (SBox) to produce a four-byte AES output
word from the four bytes of an AES input word.

ShiftRows() — Cyclically shifts the last three rows of the state by various offsets.

RotWord() — Rotates an AES (4-byte) word to the right.

MixColumns() — Mixes data in all the state columns independently to produce new columns.
AddRoundKey() — Extracts a 128-bit round key from the expanded key matrix and adds it to the
128-bit state using an XOR operation.

Inverses of SubBytes(), SubWord(), ShiftRows() and MixColumns() are used in decryption. See
Section 1.4.8, “The InvCipher Function” for more information.

28 Introduction

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

The SubBytes() Function

Performs a byte substitution operation using the invertible substitution table (SBox) to convert input
text to an intermediate encryption state.

GFMatrix SubBytes (GFMatrix M) {
GFMatrix result;
for (nat i=0; i<4; i++) {
result[i] = SubWord (M[i]) ;
}

return result;

}
The SubWord() Function

Applies SubBytes to each element of a vector or a matrix:

GFWord SubWord (GFWord x) {
GFWord result;
for (nat i=0; i<4; i++) {
result[i] = SubByte(x[1i]);
}

return result;

}
The ShiftRows() Function
Cyclically shifts the last three rows of the state by various offsets.

GFMatrix ShiftRows (GFMatrix M) {
GFMatrix result;
for (nat i=0; i<4; i++) {
result[i] = RotatelLeft(M[i], -1);
}

return result;

The RotWord() Function

Performs byte-wise cyclic permutation of a 32-bit AES word.

GFWord RotWord (GFWord x)
{ return Rotateleft(x, 1); }

The MixColumns() Function

Performs a byte-oriented column-by-column matrix multiplication

M — C O M, where C is the predefined fixed matrix

23 1 1
123 1
C=1112 3
311 2

The function is implemented as follows:

Introduction 29

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

GFMatrix MixColumns (GFMatrix M) ({
GFMatrix C = {
{0x02,0x03,0x01,0x01},
{0x01,0x02,0x03,0x01},
{0x01,0x01,0x02,0x03},
{0x03,0x01,0x01,0x02}
bi
return GFMatrixMul (C, M);
}

The AddRoundKey() Function
Extracts the round key from the expanded key and adds it to the state using a bitwise XOR operation.

GFMatrix AddRoundKey (GFMatrix state, ExpandedKey w, nat round) {
GFMatrix result = state;
for (nat i=0; i<4; i++) {
for (nat j=0; j<4; j++) {
result[i][j] = result[i][]]
}

A

wl[4*round+j] [1];

}

return result;

}

1.4.7.3 Matrix to Text Conversion

After processing, the output matrix must be converted to a text block. The Matrix2Text() function
converts a GFMatrix in column-major order to a TextBlock as follows.

TextBlock Matrix2Text (GFMatrix M) {
TextBlock result;
for (nat j=0; j<4; j++) {
for (nat i=0; i<4; i++) {
result[4*j+i] = M[i][3];
}
}

return result;

1.4.8 The InvCipher Function

This function performs decryption. It iterates through the round function the number of times
determined by encryption key size and produces a 128-bit block of text as output.

TextBlock InvCipher (TextBlock in, ExpandedKey w, nat Nk) {
assert ((Nk == 4) || (Nk == 6) [| (Nk == 8));
nat Nr = Nk + 6;
GFMatrix state = Text2Matrix(in);
state = AddRoundKey (state, w, Nr);
for (nat round=Nr-1; round>0; round--) {
state InvShiftRows (state) ;
state InvSubBytes (state);
state = AddRoundKey (state, w, round);
state InvMixColumns (state) ;

30 Introduction

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
state = InvShiftRows (state);
state = InvSubBytes (state):;
state = AddRoundKey (state, w, 0);

return Matrix2Text (state);

}

1.4.8.1 Text to Matrix Conversion

Prior to processing, the input text block must be converted to matrix form. The Text2Matrix()
function stores a TextBlock in a GFMatrix in column-major order as follows.

GFMatrix Text2Matrix (TextBlock A7) {
GFMatrix result;
for (nat j=0; j<4; j++) |
for (nat i=0; i<4; i++) {
result[i][j] = A[4*j+1i];
}
}

return result;

}
1.4.8.2 InvCypher Transformations

The following functions are used in decryption:
InvShiftRows() — The inverse of ShiftRows().
InvSubBytes() — The inverse of SubBytes().
InvSubWord() — The inverse of SubWord().
InvMixColumns() — The inverse of MixColumns().
AddRoundKey() — Is its own inverse.

Decryption is the inverse of encryption and is accomplished by means of the inverses of the,
SubBytes(), SubWord(), ShiftRows() and MixColumns() transformations used in encryption.

SubWord(), SubBytes(), and ShiftRows() are injective. This is also the case with MixColumns().
A simple computation shows that C is invertible with

E B D?9
C}]

W o
o © m
N=NesNvv!
oW g

The InvShiftRows() Function
The inverse of ShiftRows().

GFMatrix InvShiftRows (GFMatrix M) {
GFMatrix result;
for (nat i=0; i<4; i++) {
result[i] = RotateLeft (M[i], -i);
}

return result;

Introduction 31

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

The InvSubBytes() Function
The inverse of SubBytes().

GFMatrix InvSubBytes (GFMatrix M) {
GFMatrix result;
for (nat i=0; 1i<4; i++) {
result[i] = InvSubWord(M[i]):;
}
return result;

}
The InvSubWord() Function

The inverse of SubWord(), InvSubBytes() applied to each element of a vector or a matrix.

GFWord InvSubWord (GFWord x) {
GFWord result;
for (nat i=0; i<4; i++) {
result[i] = InvSubByte(x[i]);
}
return result;

}
The InvMixColumns() Function

The inverse of the MixColumns() function. Multiplies by the inverse of the predefined fixed matrix,
C, C1, as discussed previously.

GFMatrix InvMixColumns (GFMatrix M) {
GFMatrix D = {
{0x0e, 0x0b, 0x0d, 0x09},
{0x09, 0x0e, 0x0b, 0x0d},
{0x0d, 0x09, 0x0e, 0x0b},
{0x0b, 0x0d, 0x09, 0x0e}
}i
return GFMatrixMul (D, M);
}

The AddRoundKey() Function

Extracts the round key from the expanded key and adds it to the state using a bitwise XOR operation.

GFMatrix AddRoundKey (GFMatrix state, ExpandedKey w, nat round) ({
GFMatrix result = state;
for (nat i=0; i<4; i++) {
for (nat j=0; j<4; j++) {
result[i][j] = result[i][]]
}

A

wl[4*round+j] [i];

}

return result;

}

32 Introduction

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

1.4.8.3 Matrix to Text Conversion

After processing, the output matrix must be converted to a text block. The Matrix2Text() function
converts a GFMatrix in column-major order to a TextBlock as follows.

TextBlock Matrix2Text (GFMatrix M) {
TextBlock result;
for (nat j=0; j<4; Jj++) {
for (nat i=0; i<4; i++) {
result[4*j+i] = M[i][J];
}
}
return result;

}

1.4.9 An Alternative Decryption Procedure

This section outlines an alternative decrypting procedure,

TextBlock EqDecrypt(TextBlock in, CipherKey key, nat NKk):

TextBlock EgDecrypt (TextBlock in, CipherKey key, nat Nk) {
return EqgInvCipher (in, MixRoundKeys (ExpandKey (key, Nk), Nk), Nk);
}

The procedure is based on a variation of InvCipher,

TextBlock EqInvCipher(TextBlock in, ExpandedKey w, nat Nk):

TextBlock EgInvCipher (TextBlock in, ExpandedKey dw, nat Nk) {
assert ((Nk == 4) || (Nk == 6) || (Nk == 8));
nat Nr = Nk + 6;
GFMatrix state = Text2Matrix(in);
state = AddRoundKey (state, dw, Nr);
for (nat round=Nr-1; round>0; round--) {

state = InvSubBytes (state);

state = InvShiftRows (state);

state = InvMixColumns (state);

state = AddRoundKey (state, dw, round);

}

state = InvSubBytes (state);

state = InvShiftRows (state);

state AddRoundKey (state, dw, 0);
return Matrix2Text (state);

}

The variant structure more closely resembles that of Cipher. This requires a modification of the
expanded key generated by ExpandKey,

Introduction 33

AMDZU

AMDG64 Technology

26568—Rev. 3.11—December 2010

ExpandedKey MixRoundKeys(ExpandedKey w, nat Nk):

ExpandedKey MixRoundKeys (ExpandedKey w, nat Nk)

assert ((Nk == 4) || (Nk == 6) || (Nk == 8));
nat Nr = Nk + 6;
ExpandedKey result;
GFMatrix roundKey;
for (nat round=0; round<Nr+1l; round++) {
for (nat i=0; i<4; i++) {
roundKey[i] = w[4*round+i];
}
if ((round > 0) && (round < Nr)) {
roundKey = InvMixRows (roundKey) ;
}
for (nat i=0; i<4; i++) {

result[4*round+i] = roundKey[i];
}
}

return result;

}

{

The transformation MixRoundKeys leaves AOand K), unchanged, but for /= 1,...,,N,.— 1, it replaces

W, with the matrix product W;© @, where

E=Rwieslcy
OE e
WEe T
o QW
WO e«

The effect of this is to replace K, with

(W; ©Q)*

fori=1,..,.Nr-1.

JwoEd
o @HE o

=Q' oW} =C"0K; =C K

The equivalence of EqDecrypt and Decrypt follows from two properties of the basic operations:

Cis a linear transformation and therefore, so is C'V

¥ and R commute, and hence so do X! and R, for if

01
S11
&1
31

S0
510
S20
30

then

S02
S12

S99
S50

03
813
H23
S33

34

Introduction

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

| E-“u?% UES%%
.‘323% ﬂgszz) n'(c;::) = R(X(S)).

o(s31) o(sa2)

o(sp) o(sm) ©
BRE)= (00 oon
”("‘33) "7(30

Now let X”and Y”be the initial and final states of an execution of EqDecrypt and let .S”; be the state
following round 7. Suppose X”’= X" Appealing to the definitions of EqDecrypt and EqInvCipher, we
have

S =X"®& Ky, =X &Ky, =Sk,
and for /= N,- 1,...,,1, by induction,

§ = CHETURUSA)) @ 0N (Kn,)

= CYETYRTYSI)) @ Kn)
= C—l[R_l[E_l(SﬁH])EBKN.-)
= CYRYEHSL)) @ KN,)

= S

T

Finally,
v = 5y

RS @ Ka‘
= THRE)) @ Ka‘
= Y RTNS)) @ Ko

= Si=Y"

1.4.10 Computation of GFinv with Euclidean Greatest Common Divisor

Note that the operations performed by GFInv()) are in the ring Z,[X] rather than the quotient field GF.

The initial values of the variables x; and x, are the inputs x and 11b, the latter representing the
polynomial p(X). The variables a; and a, are initialized to 1 and 0.

Introduction 35

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

On each iteration of the loop, a multiple of the lesser of x; and x;, is added to the other. If x; < x,, then
the values of x, and a, are adjusted as follows:

.XZ—)XZ@ZS@)CI
a2—>a2®256a1

where s is the difference in the exponents (i.e., degrees) of x; and x, . In the remaining case, x; and a;
are similarly adjusted. This step is repeated until either x; =0 or x, = 0.

We make the following observations:

* On each iteration, the value added to xi has the same exponent as x;, and hence the sum has lesser
exponent. Therefore, termination is guaranteed.

* Since p(X) is irreducible and x is of smaller degree than p(X), the initial values of x; and x, have no
non-trivial common factor. This property is clearly preserved by each step.

e [Initially,
X1®@a; Ox=xdx=0
and
X3@a, Ox=11b®0=11b

are both divisible by 11b. This property is also invariant, since, for example, the above assignments
result in

X @ay Ox2 (X @2°Ox) @ (@ @2°Oa) Ox=(x, a2 Ox)®2°O (x; D a; O x).

Now suppose that the loop terminates with x, = 0. Then x; has no non-trivial factor and, hence, x; = 1.
Thus, 1 @ a; O x is divisible by 11b. Since the final result y is derived by reducing a; modulo 11b, it
follows that 1 @ y O x is also divisible by 11b and, hence, in the quotient field GF, 1 +y O x =0,
which impliesy ©Q x=1.

The computation of the multiplicative inverse utilizing Euclid’s algorithm is as follows:

36 Introduction

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

// Computation of multiplicative inverse based on Euclid's algorithm:

GF256 GFInv (GF256 x) {
if (x == 0) |
return 0;
}
// Initialization:
nat x1 = x;
nat x2 = 0x11B; // the irreducible polynomial p (X)
nat al = 1;
nat a2 = 0;
nat shift; // difference in exponents
while ((x1 != 0) && (x2!= 0)) {

// Termination is guaranteed, since either x1 or x2 decreases on each iteration.
// We have the following loop invariants, viewing natural numbers as elements of
// the polynomial ring Z2[X]:

// (1) x1 and x2 have no common divisor other than 1.

// (2) x1 ~ GFMul (al, x) and x2 ~ GFMul (a2, x) are both divisible by p(X).

if (x1 <= x2) {
shift = expo(x2) - expo(xl);
x2 = x2 ~ (x1 << shift);
a2 = a2 ~ (al << shift);
}
else {
shift = expo(xl) - expo(x2);
xl = x1 ©~ (x2 << shift);
al = al ~ (a2 << shift);
}
}
nat y;

// Since either x1 or x2 is 0, it follows from (1) above that the other is 1.

if (x1 == 1) { // x2 == 0
y = al;

}

else if (x2 == 1) { // x1 ==
y = az;

}

else {

assert (false) ;

}

// Now it follows from (2) that GFMul(y, x) ~ 1 is divisible by 0x1lb.
// We need only reduce y modulo 0x11lb:

nat e = expo(y);

while (e >= 8) {
y =y ~ (0x11B << (e - 8));
e = expol(y):;

}

return y;

Introduction 37

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

1.5 String Compare Instructions

The (V)PCMPESTRI, (V)PCMPESTRM, (V)PCMPISTRI, and (V)PCMPISTRM instructions
perform arithmetic comparisons of byte or word elements in two source operands using positive
Boolean logic. All possible comparisons are performed, 64 for words, 256 for bytes. Individual
comparison results are aggregated and processed to produce final results.

Instruction operation affects the arithmetic status flags (ZF, CF, SF, OF, AF, PF), but the flags are
defined to provide additional information.

The instructions have a defined base function and additional functionality controlled by bit fields in an
immediate byte operand. The base function determines whether the source strings have implicitly (I)
or explicitly (E) defined lengths, and whether the result is an index (I) or a mask (M).

Some immediate operand functions are specific to a particular instruction and others pertain to two or
more instructions. This description covers functions that are common to all of the instructions.
Individual functional differences are covered in the specific instruction descriptions.

Bit fields of the immediate operand control the following functions:
Source data format — data element length, signed or unsigned
Aggregation — comparison type and intermediate result aggregation
Complementation — intermediate result processing

Output selection — type of processing performed to produce final result

1.5.1 Source Data Format

Bits [1:0] of the immediate byte operand determine source data format, as shown in Table 1-14.
Table 1-14. Source Data Format

Imm8[1:0] Source Content
00b 16 packed unsigned bytes
01b 8 packed unsigned words
10b 16 packed signed bytes
11b 8 packed signed words

38 Introduction

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

1.5.2 Aggregation

Bits [3:2] of the immediate byte operand determine comparison type and aggregation method, as
shown in Table 1-15. Aggregation results are stored in /ntRes!. See Section 1.5.5, “Valid/Invalid
Override of Comparisons” for more information about the override function.

Table 1-15. Comparison and Aggregation Method

Imm8[3:2] Comparison Method
00b Equal Equal any
01b Greater than or equal for even-indexed elements of reg Ranges

and corresponding elements of reg/mem.
Less than or equal for odd-indexed elements of reg and
corresponding elements of reg/mem.

10b Equal Equal each
11b Equal Equal ordered

1.5.2.1 Equal Any Aggregation Method

Finds characters in a set.

UpperBound = imm8[0] 2 7:15;

IntResl = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i++

IntResl[j] OR= overrideIfDatalInvalid(BoolRes[]j,1])

1.5.2.2 Ranges Aggregation Method

Finds characters in ranges.

UpperBound = imm8([0]?27:15;

IntResl = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i+=2

IntResl[j] OR= (overrideIfDataInvalid(BoolRes[j,1])
AND overrideIfDatalInvalid(BoolRes[]j,1i+1]))

1.5.2.3 Equal Each Aggregation Method

Performs string compare.

UpperBound = imm8([0]?7:15;

IntResl = 0;

For i = 0 to UpperBound, i+t++

IntResl[i] = overrideIfDataInvalid(BoolRes([i,1])

1.5.2.4 Equal Ordered Aggregation Method

Performs a substring search

UpperBound = imm8[0]?7:15;

IntResl = imm8[0] ? OxFF : OXFFFF

For j = 0 to UpperBound, j++

For 1 = 0 to UpperBound-j, k=j to UpperBound, k++, i++
IntResl[j] AND= overrideIfDatalInvalid (BoolRes[k,i])

Introduction 39

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

1.5.3 Complementation

Bit [4] of the immediate operand determines whether a ones’-complement is performed on /ntRes[; bit
[5] of the immediate operand determines whether a complementation mask is used (see Table 1-16).
The mask allows complementation only when an /nfRes! bit corresponds to a valid reg/mem source
element. The basic functional definition of each instruction determines the validity of elements.

Table 1-16. Complementation

Imm8[5:4] Description
00b IntRes2 = IntRes1
01b IntRes2 = -1 XOR IntRes1
10b IntRes2 = IntRes1
11b IntRes2[i] = IntRes1[i] if reg/mem(i] invalid, else =~IntRes1[i]

After complementation, the data is stored in a second intermediate result, /ntRes?2.

1.5.4 Output Selection

For (V)PCMPESTRI and (V)PCMPISTRI, bit [6] of the immediate operand determines whether the
index of the lowest set bit or the highest set bit of /ntRes?2 is written to the destination, as shown in
Table 1-17.

Table 1-17. Indexed Comparison Output Selection

Imm8[6] Description

Ob Return the index of the least significant set bit in IntRes2.

1b Return the index of the most significant set bit in IntRes2.

For (V)PCMPESTRM and (V)PCMPISTRM, bit [6] of the immediate operand determines whether
the mask is a 16-bit or 8-bit mask or an expanded 128-bit byte/word mask, as shown in Table 1-18.
Mask size is determined by immd&8/1]. The mask is expanded by copying each bit of IntRes?2 to all bits
of the element of the same index.

Table 1-18. Masked Comparison Output Selection

Imm8[6] Description

Ob Return IntRes2 as the mask with zero extension to 128 bits.

1b Return expanded IntRes2 mask.

40 Introduction

AMDZU

26568—Rev. 3.11—December 2010

1.5.5 Valid/Invalid Override of Comparisons

The string comparison instructions allow for occurrence of an end-of-string (EOS) within the source
data. Source data elements that are determined to be past the EOS are considered invalid.
Aggregation method determines how invalid data within a comparison pair are handled. In most
cases, the comparison result for each element pair BoolRes[1,j] is forced true or false if one or more
elements of the pair are invalid. Table 1-19 summarizes override operation.
Table 1-19. End-of-String Comparison Override

AMDG64 Technology

xmm1, xmm2/m128, |Imma8[3:2]=00b, |Imm8[3:2]=01b, |Imm8[3:2]=10b, |Imm8[3:2]=11b,
byte/word byte/word (equal any) (ranges) (equal each) | (equal ordered)
Invalid Invalid Force false Force false Force true Force true
Invalid Valid Force false Force false Force false Force true
Valid Invalid Force false Force false Force false Force false
Valid Valid Do not force Do not force Do not force Do not force

Bit [7] of the immediate byte operand is reserved.

Introduction

41

AMDZ\
AMDG64 Technology 26568—Rev. 3.11—December 2010

42 Introduction

AMDZU

26568—Rev. 3.11—December 2010

2 Instruction Reference

AMDG64 Technology

Instructions are listed by mnemonic, in alphabetic order. Each entry describes instruction function,

syntax, opcodes, affected flags and exceptions related to the instruction.

Figure 2-1 shows the conventions used in the descriptions. Items that do not pertain to a particular

instruction, such as a synopsis of the 256-bit form, may be omitted.

Brief functional description

INST

Description of legacy version of instruction.

VINST

Description of extended version of instruction.

XMM Encoding

Description of 128-bit extended instruction.

YMM Encoding

Description of 256-bit extended instruction.

Information about CPUID functions related to the instruction set.

Synopsis diagrams for legacy and extended versions of the instruction.

Related Instructions

Instructions that perform similar or related functions.
rFLAGS Affected

Rflags diagram.

MXCSR Flags Affected

MXCSR diagram.

Exceptions

Exception summary table.

Mnemonic Opcode Description
INST xmm1, xmm2/mem128 FF FF /r Brief summary of legacy operation.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp
VINST xmm1, xmm2/mem128, xmm3 c4 RXB.11 0.src.0.00
VINST ymm1, ymm2/mem256, ymm3 C4 "RXB.11 0.5r¢.0.00

INST Instruction
VINST Mnemonic Expansion

Opcode
FF /&
FF /&

Figure 2-1. Typical Instruction Description

Instruction Reference

43

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
ADDPD Add
VADDPD Packed Double-Precision Floating-Point

Adds each packed double-precision floating-point value of the first source operand to the
corresponding value of the second source operand and writes the result of each addition into the
corresponding quadword of the destination.

There are legacy and extended forms of the instruction:
ADDPD
Adds two pairs of values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VADDPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Adds two pairs of values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding
Adds four pairs of values.

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ADDPD is an SSE2 instruction and VADDPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

ADDPD xmm1, xmm2/mem128 66 OF 58 /r Adds two packed double-precision floating-point
values in xmm1 to corresponding values in xmm2
or mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VADDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 58 /r
VADDPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 58 Ir

Related Instructions
(V)ADDPS, (V)ADDSD, (V)ADDSS

Instruction Reference ADDPD, VADDPD 44

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pont exception whle CRa OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

ADDPD, VADDPD 45

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
ADDPS Add
VADDPS Packed Single-Precision Floating-Point

Adds each packed single-precision floating-point value of the first source operand to the
corresponding value of the second source operand and writes the result of each addition into the
corresponding elements of the destination.

There are legacy and extended forms of the instruction:
ADDPS
Adds four pairs of values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VADDPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Adds four pairs of values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding
Adds eight pairs of values.

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ADDPS is an SSE2 instruction and VADDPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

ADDPS xmm1, xmm2/mem128 OF 58 /r Adds four packed single-precision floating-point values in
xmm1 to corresponding values in xmm2 or mem128. Writes
results to xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VADDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 58 Ir
VADDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 58 Ir

Related Instructions
(V)ADDPD, (V)ADDSD, (V)ADDSS

Instruction Reference ADDPS, VADDPS 46

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pont exception whle CRa OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

ADDPS, VADDPS 47

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
ADDSD Add
VADDSD Scalar Double-Precision Floating-Point

Adds the double-precision floating-point value in the low-order quadword of the first source operand
to the corresponding value in the low-order quadword of the second source operand and writes the
result into the low-order quadword of the destination.

There are legacy and extended forms of the instruction:
ADDSD

The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location. The first source register is also the destination register. Bits [127:64] of
the destination and bits [255:128] of the corresponding YMM register are not affected.

VADDSD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the first source
operand are copied to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

ADDSD is an SSE2 instruction and VADDSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

ADDSD xmm1, xmm2/mem64 F2 OF 58 /r Adds low-order double-precision floating-point values in
xmm1 to corresponding values in xmm2 or mem64.
Writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VADDSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 58 /r

Related Instructions
(V)ADDPD, (V)ADDPS, (V)ADDSS

Instruction Reference ADDSD, VADDSD 48

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pont exception whle CRa OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

ADDSD, VADDSD 49

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
ADDSS Add
VADDSS Scalar Single-Precision Floating-Point

Adds the single-precision floating-point value in the low-order doubleword of the first source operand
to the corresponding value in the low-order doubleword of the second source operand and writes the
result into the low-order doubleword of the destination.

There are legacy and extended forms of the instruction:
ADDSS

The first source operand is an XMM register and the second source operand is either an XMM register
or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination register and bits [255:128] of the corresponding YMM register are not affected.

VADDSS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the first source
register are copied to bits [127:32] of the of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

ADDSS is an SSE instruction and VADDSS is an AVX instruction. Support for these instructions is
indicated by CPUID feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] (see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

ADDSS xmm1, xmm2/mem32 F3 OF 58 /r Adds a single-precision floating-point value in the low-order
doubleword of xmm1 to a corresponding value in xmm2 or
mem32. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VADDSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 58 /r

Related Instructions
(V)ADDPD, (V)ADDPS, (V)ADDSD

Instruction Reference ADDSS, VADDSS 50

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pont exception whle CRa OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

ADDSS, VADDSS 51

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
ADDSUBPD Alternating Addition and Subtraction
VADDSUBPD Packed Double-Precision Floating-Point

Adds the odd-numbered packed double-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the sum to the corresponding odd-
numbered element of the destination; subtracts the even-numbered packed double-precision floating-
point values of the second source operand from the corresponding values of the first source operand
and writes the differences to the corresponding even-numbered element of the destination.

There are legacy and extended forms of the instruction:
ADDSUBPD

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VADDSUBPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ADDSUBPD is an SSE2 instruction and VADDSUBPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

ADDSUBPD xmm1, xmm2/mem128 66 OF DO /r Adds a value in the upper 64 bits of xmm1 to the
corresponding value in xmm2 and writes the result to
the upper 64 bits of xmm1; subtracts the value in the
lower 64 bits of xmm1 from the corresponding value
in xmm2 and writes the result to the lower 64 bits of

xmm1.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VADDSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DO /r
VADDSUBPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 DO /r

Related Instructions
(V)ADDSUBPS

Instruction Reference ADDSUBPD, VADDSUBPD 52

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pont exception whle CRa OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

ADDSUBPD, VADDSUBPD

53

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
ADDSUBPS Alternating Addition and Subtraction
VADDSUBPS Packed Single-Precision Floating Point

Adds the second and fourth single-precision floating-point values of the first source operand to the
corresponding values of the second source operand and writes the sums to the second and fourth
elements of the destination. Subtracts the first and third single-precision floating-point values of the
second source operand from the corresponding values of the first source operand and writes the
differences to the first and third elements of the destination.

There are legacy and extended forms of the instruction:
ADDSUBPS

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VADDSUBPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ADDSUBPS is an SSE instruction and VADDSUBPS is an AVX instruction. Support for these
instructions is indicated by CPUID feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] (see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

ADDSUBPS xmm1, xmm2/mem128 F2 OF DO /r Adds the second and fourth packed single-precision
values in xmm2 or mem128 to the corresponding
values in xmm<1 and writes results to the
corresponding positions of xmm1. Subtracts the first
and third packed single-precision values in xmm2 or
mem128 from the corresponding values in xmm1 and
writes results to the corresponding positions of xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VADDSUBPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 DO /r
VADDSUBPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 DO /r

Related Instructions
(V)ADDSUBPD

Instruction Reference ADDSUBPS, VADDSUBPS 54

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pont exception whle CRa OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

ADDSUBPS, VADDSUBPS

55

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
AESDEC AES
VAESDEC Decryption Round

Performs a single round of AES decryption. Transforms a state value specified by the first source
operand using a round key value specified by the second source operand, and writes the result to the
destination.

See Section 1.4, “AES Instructions” for more information about the operation of the AES instructions.

Decryption consists of 1, ..., N. — 1 iterations of sequences of operations called rounds, terminated by
a unique final round, N,. The AESDEC and VAESDEC instructions perform all the rounds except the
last; the AESDECLAST and VAESDECLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.

There are legacy and extended forms of the instruction:
AESDEC

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESDEC
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESDEC is an AES instruction and VAESDEC is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 ECX[AES] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

AESDEC xmm1, xmm2/mem128 66 OF 38 DE /r Performs one decryption round on a state value
in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VAESDEC xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DE /r

Related Instructions

(V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST

Instruction Reference AESDEC, VAESDEC 56

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

AESDEC, VAESDEC 57

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
AESDECLAST AES
VAESDECLAST Last Decryption Round

Performs the final round of AES decryption. Completes transformation of a state value specified by
the first source operand using a round key value specified by the second source operand, and writes the
result to the destination.

See Section 1.4, “AES Instructions” for more information about the operation of the AES instructions.

Decryption consists of 1, ..., N — 1 iterations of sequences of operations called rounds, terminated by
a unique final round, N,.The AESDEC and VAESDEC instructions perform all the rounds before the
final round; the AESDECLAST and VAESDECLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register

AESDECLAST

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESDECLAST

The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESDECLAST is an AES instruction and VAESDECLAST is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[AES] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

AESDECLAST xmm1, xmm2/mem128 66 OF 38 DF/r Performs the last decryption round on a state
value in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VAESDECLAST xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DF /r

Related Instructions

(V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST

Instruction Reference AESDECLAST, VAESDECLAST 58

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CR4.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

AESDECLAST, VAESDECLAST 59

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
AESENC AES
VAESENC Encryption Round

Performs a single round of AES encryption. Transforms a state value specified by the first source
operand using a round key value specified by the second source operand, and writes the result to the
destination.

See Section 1.4, “AES Instructions” for more information about the operation of the AES instructions.

Encryption consists of 1, ..., N, — 1 iterations of sequences of operations called rounds, terminated by
a unique final round, N,. The AESENC and VAESENC instructions perform all the rounds before the
final round; the AESENCLAST and VAESENCLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register

There are legacy and extended forms of the instruction:
AESENC

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESENC

The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESENC is an AES instruction and VAESENC is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 ECX[AES] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

AESENC xmm1, xmm2/mem128 66 OF 38 DC /r Performs one encryption round on a state value
in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VAESENC xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DC/r

Related Instructions

(V)AESDEC, (V)AESDECLAST, (V)AESIMC, (V)AESKEYGENASSIST

Instruction Reference AESENC, VAESENC 60

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

AESENC, VAESENC 61

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
AESENCLAST AES
VAESENCLAST Last Encryption Round

Performs the final round of AES encryption. Completes transformation of a state value specified by
the first source operand using a round key value specified by the second source operand, and writes the
result to the destination.

See Section 1.4, “AES Instructions” for more information about the operation of the AES instructions.

Encryption consists of 1, ..., N, — 1 iterations of sequences of operations called rounds, terminated by
a unique final round, N,. The AESENC and VAESENC instructions perform all the rounds before the
final round; the AESENCLAST and VAESENCLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.

AESENCLAST

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESENCLAST

The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESENCLAST is an AES instruction and VAESENCLAST is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[AES] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

AESENCLAST xmm1, xmm2/mem128 66 OF 38 DD /r Performs the last encryption round on a
state value in xmm1 using the key value in xmm2
or mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VAESENCLAST xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DD /r

Related Instructions

(V)AESDEC, (V)AESDECLAST, (V)AESIMC, (V)AESKEYGENASSIST

Instruction Reference AESENCLAST, VAESENCLAST 62

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CR4.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

AESENCLAST, VAESENCLAST 63

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
AESIMC AES
VAESIMC InvMixColumn Transformation

Applies the AES InvMixColumns() transformation to expanded round keys in preparation for
decryption. Transforms an expanded key specified by the second source operand and writes the result
to a destination register.

See Section 1.4, “AES Instructions” for more information about the operation of the AES instructions.

The 128-bit round key vector is interpreted as 16-byte column-major entries in a 4-by-4 matrix of
bytes.The transformed result is written to the destination in column-major order.

AESIMC and VAESIMC are not used to transform the first and last round key in a decryption
sequence.

There are two forms of these instructions:
AESIMC

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESIMC

The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESIMC is an AES instruction and VAESIMC is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 ECX[AES] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

AESIMC xmm1, xmm2/mem128 66 OF 38 DB /r Performs AES InvMixColumn transformation on
a round key in the xmm2 or mem128 and stores
the result in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VAESIMC xmm1, xmm2/mem128 C4 RXB.00010 X.src.0.01 DB /r

Related Instructions

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESKEYGENASSIST

Instruction Reference AESIMC, VAESIMC 64

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

AESIMC, VAESIMC 65

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
AESKEYGENASSIST AES
VAESKEYGENASSIST Assist Round Key Generation

Expands a round key for encryption. Transforms a 128-bit round key operand using an 8-bit round
constant and writes the result to a destination register.

See Section 1.4, “AES Instructions” for more information about the operation of the AES instructions.

The round key is provided by the second source operand and the round constant is specified by an
immediate operand. The 128-bit round key vector is interpreted as 16-byte column-major entries in a
4-by-4 matrix of bytes. The transformed result is written to the destination in column-major order.

There are legacy and extended forms of the instruction:
AESKEYGENASSIST

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESKEYGENASSIST

The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESKEYGENASSIST is an AES instruction and VAESKEYGENASSIST is an AVX instruction.
Support for these instructions is indicated by CPUID Fn0000 00001 ECX[AES] and
Fn0000 00001 ECX[AVX] (see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

AESKEYGENASSIST xmm1, xmm2/mem128, imm8 66 OF 3A DF /rib Expands a round key in xmm?2 or
mem128 using an immediate
round constant. Writes the result

to xmm1.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
AESKEYGENASSIST xmm1, xmm2 /mem128, imm8 C4 RXB.00011 X.src.0.01 DF /rib

Related Instructions

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST,(V)AESIMC

Instruction Reference = AESKEYGENASSIST, VAESKEYGENASSIST 66

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CR4.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

AESKEYGENASSIST, VAESKEYGENASSIST 67

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
ANDNPD AND NOT
VANDNPD Packed Double-Precision Floating-Point

Performs a bitwise AND of two packed double-precision floating-point values in the second source
operand with the ones’-complement of the two corresponding packed double-precision floating-point
values in the first source operand and writes the result into the destination.

There are legacy and extended forms of the instruction:
ANDNPD

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VANDNPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ANDNPD is an SSE2 instruction and VANDNPD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

ANDNPD xmm1, xmm2/mem128 66 OF 55 /r Performs bitwise AND of two packed double-precision
floating-point values in xmm2 or mem128 with the ones’-
complement of two packed double-precision floating-
point values in xmm<1. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VANDNPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 55 /r
VANDNPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 55/r

Related Instructions
(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

Instruction Reference ANDNPD, VANDNPD 68

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

ANDNPD, VANDNPD 69

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
ANDNPS AND NOT
VANDNPS Packed Single-Precision Floating-Point

Performs a bitwise AND of four packed single-precision floating-point values in the second source
operand with the ones’-complement of the four corresponding packed single-precision floating-point
values in the first source operand, and writes the result in the destination.

There are legacy and extended forms of the instruction:
ANDNPS

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VANDNPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ANDNPS is an SSE instruction and VANDNPS is an AVX instruction. Support for these instructions
is indicated by CPUID feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] (see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

ANDNPS xmm1, xmm2/mem128 OF 55 /r Performs bitwise AND of four packed double-precision
floating-point values in xmm2 or mem128 with the ones’-
complement of four packed double-precision floating-point
values in xmm1. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VANDNPS xmm1, xmm2, xmm3/mem128 c4 RXB.00001 X.src.0.00 55 /r
VANDNPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 55/r

Related Instructions
(V)ANDNPD, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

Instruction Reference ANDNPS, VANDNPS 70

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

ANDNPS, VANDNPS 71

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
ANDPD AND
VANDPD Packed Double-Precision Floating-Point

Performs bitwise AND of two packed double-precision floating-point values in the first source
operand with the corresponding two packed double-precision floating-point values in the second
source operand and writes the results into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:
ANDPD

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VANDPD
The extended form of the instruction has both 128-bit and 256-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ANDPD is an SSE2 instruction and VANDPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

ANDPD xmm1, xmm2/mem128 66 OF 54 /r Performs bitwise AND of two packed double-precision
floating-point values in xmm1 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VANDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 54 Ir
VANDPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 54 Ir

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

Instruction Reference ANDPD, VANDPD 72

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

ANDPD, VANDPD 73

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
ANDPS AND
VANDPS Packed Single-Precision Floating-Point

Performs bitwise AND of the four packed single-precision floating-point values in the first source
operand with the corresponding four packed single-precision floating-point values in the second
source operand, and writes the result into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:
ANDPS

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VANDPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ANDPS is an SSE instruction and VANDPS is an AVX instruction. Support for these instructions is
indicated by CPUID feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] (see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

ANDPS xmm1, xmm2/mem128 OF 54 /r Performs bitwise AND of four packed double-precision
floating-point values in xmm1 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VANDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 54 Ir
VANDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 54 Ir

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPD, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

Instruction Reference ANDPS, VANDPS 74

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

ANDPS, VANDPS 75

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
BLENDPD Blend
VBLENDPD Packed Double-Precision Floating-Point

Copies packed double-precision floating-point values from either of two sources to a destination, as
specified by an 8-bit mask operand.

Each mask bit specifies a 64-bit element in a source location and a corresponding 64-bit element in the
destination register. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination register. When a mask bit = 1, the specified element of the
second source is copied to the corresponding position in the destination register.

There are legacy and extended forms of the instruction:
BLENDPD

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. Only mask bits [1:0] are used.

VBLENDPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. Only mask bits [1:0] are used.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register. Only mask bits [3:0] are used.

BLENDPD is an SSE4.1 instruction and VBLENDPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
(see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

BLENDPD xmm1, xmm2/mem128, imm8 66 OF 3A0D /rib Copies values from xmm1 or
xmm2/mem128 to xmm1, as
specified by imm8.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VBLENDPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 0D /rib
VBLENDPD ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00011 X.src.1.01 0D /rib

Related Instructions
(V)BLENDPS, (B)BLENDVPD, (V)BLENDVPS

Instruction Reference BLENDPD, VBLENDPD 76

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

BLENDPD, VBLENDPD 77

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
BLENDPS Blend
VBLENDPS Packed Single-Precision Floating-Point

Copies packed single-precision floating-point values from either of two sources to a destination, as
specified by an 8-bit mask operand.

Each mask bit specifies a 32-bit element in a source location and a corresponding 32-bit element in the
destination register. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination register. When a mask bit = 1, the specified element of the
second source is copied to the corresponding position in the destination register.

There are legacy and extended forms of the instruction:
BLENDPS

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. Only mask bits [3:0] are used.

VBLENDPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.Only mask bits [3:0] are used.

YMM Encoding

The first operand is a YMM register and the second operand is either another YMM register or a
256-bit memory location. The destination is a third YMM register. Only mask bits [3:0] are used.

BLENDPS is an SSE4.1 instruction and VBLENDPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
(see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

BLENDPS xmm1, xmm2/mem128, imm8 66 OF 3A0C /rib Copies values from xmm1 or
xmm2/mem128 to xmm1, as
specified by imm8.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VBLENDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00011 X.src.0.01 0C/rib
VBLENDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00011 X.src.1.01 OC/rib

Related Instructions
(V)BLENDPD, (V)BLENDVPD, (V)BLENDVPS

Instruction Reference BLENDPS, VBLENDPS 78

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

BLENDPS, VBLENDPS 79

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
BLENDVPD Variable Blend
VBLENDVPD Packed Double-Precision Floating-Point

Copies packed double-precision floating-point values from either of two sources to a destination, as
specified by a mask operand.

Each mask bit specifies a 64-bit element of a source location and a corresponding 64-bit element of the
destination. The position of a mask bit corresponds to the position of the most significant bit of a
copied value. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination. When a mask bit = 1, the specified element of the second
source is copied to the corresponding position in the destination.

There are legacy and extended forms of the instruction:

BLENDVPD

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. The mask is defined by bits 127
and 63 of the implicit register XMMO.

VBLENDVPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. The mask is defined by bits 127 and 63
of a fourth XMM register.

YMM Encoding

The first operand is a YMM register and the second operand is either another YMM register or a
256-bit memory location. The destination is a third YMM register. The mask is defined by bits 255,
191, 127, and 63 of a fourth YMM register.

BLENDVPD is an SSE4.1 instruction and VBLENDVPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
(see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

BLENDVPD xmm1, xmm2/mem128 66 OF 38 15 /r Copies values from xmm1 or xmm2/mem128 to
xmm1, as specified by the MSB of corresponding
elements of xmmO.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VBLENDVPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 X.src.0.01 4B Ir
VBLENDVPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 X.src.1.01 4B Ir

Instruction Reference BLENDVPD, VBLENDVPD 80

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Related Instructions
(V)BLENDPD, (V)BLENDPS, (V)BLENDVPS

Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEXW=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference BLENDVPD, VBLENDVPD 81

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
BLENDVPS Variable Blend
VBLENDVPS Packed Single-Precision Floating-Point

Copies packed single-precision floating-point values from either of two sources to a destination, as
specified by a mask operand.

Each mask bit specifies a 32-bit element of a source location and a corresponding 32-bit element of the
destination register. The position of a mask bits corresponds to the position of the most significant bit
of a copied value. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination. When a mask bit = 1, the specified element of the second
source is copied to the corresponding position in the destination.

There are legacy and extended forms of the instruction:

BLENDVPS

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. The mask is defined by bits 127,
95, 63, and 31 of the implicit register XMMO.

VBLENDVPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. The mask is defined by bits 127, 95, 63,
and 31 of a fourth XMM register.

YMM Encoding

The first operand is a YMM register and the second operand is either another YMM register or a
256-bit memory location. The destination is a third YMM register. The mask is defined by bits 255,
223,191, 159, 127, 95, 63, and 31 of a fourth YMM register.

BLENDVPS is an SSE4.1 instruction and VBLENDVPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
(see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

BLENDVPS xmm1, xmm2/mem128 66 OF 38 14 /r Copies packed single-precision
floating-point values from xmm1 or
xmm2/mem128 to xmm1, as
specified by bits in xmmaO.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VBLENDVPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 X.src.0.01 4A Ir
VBLENDVPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 X.src.1.01 4A Ir

Instruction Reference BLENDVPS, VBLENDVPS 82

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Related Instructions
(V)BLENDPD, (V)BLENDPS, (V)BLENDVPD

Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEXW=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference BLENDVPS, VBLENDVPS 83

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
CMPPD Compare
VCMPPD Packed Double-Precision Floating-Point

Compares each of the two packed double-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the result of each comparison to the
corresponding 64-bit element of the destination. When a comparison is TRUE, all 64 bits of the
destination element are set; when a comparison is FALSE, all 64 bits of the destination element are
cleared. The type of comparison is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.

There are legacy and extended forms of the instruction:
CMPPD

The first source operand is an XMM register and the second source operand is either another XMM
register or al28-bit memory location.The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. Comparison type is specified by
bits [2:0] of an immediate byte operand.

VCMPPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. Comparison type is specified by bits
[4:0] of an immediate byte operand.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination operand is a YMM register. Comparison type is specified
by bits [4:0] of an immediate byte operand.

Immediate Operand Encoding

CMPPD uses bits [2:0] of the 8-bit immediate operand and VCMPPD uses bits [4:0] of the 8-bit
immediate operand. Although VCMPPD supports 20h encoding values, the comparison types echo
those of CMPPD on 4-bit boundaries. The following table shows the immediate operand value for
CMPPD and each of the VCMPPD echoes.

Instruction Reference CMPPD, VCMPPD 84

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown

with the directly supported comparison operations.

Immediate Operand

Compare Operation

Result If NaN Operand

QNaN Operand Causes

Value Invalid Operation
Exception

00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes
Greater than FALSE Yes

(swapped operands)
02h, OAh, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal FALSE Yes

(swapped operands)
03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, ODh, 15h, 1Dh Not less than TRUE Yes
Not greater than TRUE Yes

(swapped operands)
06h, OEh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal TRUE Yes

(swapped operands)
07h, OFh, 17h, 1Fh Ordered FALSE No

The following alias mnemonics for (V)CMPPD with appropriate value of imm8 are supported.

Mnemonic Implied Value of imm8
(V)CMPEQPD 00h, 08h, 10h, 18h
(V)CMPLTPD 01h, 09h, 11h, 19h
(V)CMPLEPD 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDPD 03h, 0Bh, 13h, 1Bh
(V)CMPNEQPD 04h, 0Ch, 14h, 1Ch
(V)CMPNLTPD 05h, ODh, 15h, 1Dh
(V)CMPNLEPD 06h, OEh, 16h, 1Eh
(V)CMPORDPD 07h, OFh, 17h, 1Fh

CMPPD is an SSE2 instruction and VCMPPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic

CMPPD xmm1, xmm2/mem128, imm8

Opcode

66 OF C2 /rib

Description
Compares two pairs of values in xmm1 to

corresponding values in xmm2 or mem128.
Comparison type is determined by imma8.
Writes comparison results to xmm1.

Instruction Reference

CMPPD, VCMPPD

85

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCMPPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00001 X.src.0.01 C2/rib
VCMPPD ymm1, ymm2, ymm3/mem256, inm8 C4 RXB.00001 X.src.1.01 C2/rib

Related Instructions

(V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM |[DAZ| PE | UE | OE | ZE | DE | IE
M | M

17 | 15 14\13 12 | 11 [10 | 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x | Smasses SIUD foatne pont exceptor whle CRAOSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

CMPPD, VCMPPD 86

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
CMPPS Compare
VCMPPS Packed Single-Precision Floating-Point

Compares each of the four packed single-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the result of each comparison to the
corresponding 32-bit element of the destination. When a comparison is TRUE, all 32 bits of the
destination element are set; when a comparison is FALSE, all 32 bits of the destination element are
cleared. The type of comparison is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.

There are legacy and extended forms of the instruction:
CMPPS

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. Comparison type is specified by
bits [2:0] of an immediate byte operand.

VCMPPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. Comparison type is specified by bits
[4:0] of an immediate byte operand.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination operand is a YMM register. Comparison type is specified
by bits [4:0] of an immediate byte operand.

Immediate Operand Encoding

CMPPS uses bits [2:0] of the 8-bit immediate operand and VCMPPS uses bits [4:0] of the 8-bit
immediate operand. Although VCMPPS supports 20h encoding values, the comparison types echo
those of CMPPS on 4-bit boundaries. The following table shows the immediate operand value for
CMPPS and each of the VCMPPDS echoes.

Instruction Reference CMPPS, VCMPPS 87

AMDZ\
AMDG64 Technology

26568—Rev. 3.11—December 2010

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown in
with the directly supported comparison operations.

Immediate Operand Compare Operation Result If NaN Operand | QNaN Operand Causes
Value Invalid Operation
Exception

00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes
Greater than FALSE Yes

(swapped operands)
02h, OAh, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal FALSE Yes

(swapped operands)
03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, ODh, 15h, 1Dh Not less than TRUE Yes
Not greater than TRUE Yes

(swapped operands)
06h, OEh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal TRUE Yes

(swapped operands)
07h, OFh, 17h, 1Fh Ordered FALSE No

The following alias mnemonics for (V)CMPPS with appropriate value of imm8 are supported.

Mnemonic Implied Value of imm8
(V)CMPEQPS 00h, 08h, 10h, 18h
(V)CMPLTPS 01h, 09h, 11h, 19h
(V)CMPLEPS 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDPS 03h, 0Bh, 13h, 1Bh
(V)CMPNEQPS 04h, 0Ch, 14h, 1Ch
(V)CMPNLTPS 05h, 0Dh, 15h, 1Dh
(V)CMPNLEPS 06h, OEh, 16h, 1Eh
(V)CMPORDPS 07h, OFh, 17h, 1Fh

CMPPS is an SSE instruction and VCMPPS is an AVX instruction. Support for these instructions is
indicated by CPUID feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] (see the CPUID Specification, order# 25481).

Description

Compares four pairs of values in xmm1 to
corresponding values in xmm2 or mem128.
Comparison type is determined by imma8.
Writes comparison results to xmm1.

Opcode
OF C2/rib

Mnemonic
CMPPS xmm1, xmm2/mem128, imm8

Instruction Reference CMPPS, VCMPPS 88

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCMPPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00001 X.src.0.00 C2/rib

Related Instructions
(V)CMPPD, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

MXCSR Flags Affected
MM | FZ RC PM | UM |OM | ZM DM | IM (DAZ| PE | UE | OE | ZE | DE | IE
M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SMD foating-point #xF | s | s | x| nmasked SIMD Teatig part excoption i CRAOSXMMEXCRT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.

Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CMPPS, VCMPPS 89

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
CMPSD Compare
VCMPSD Scalar Double-Precision Floating-Point

Compares a double-precision floating-point value in the low-order 64 bits of the first source operand
with a double-precision floating-point value in the low-order 64 bits of the second source operand and
writes the result to the low-order 64 bits of the destination. When a comparison is TRUE, all 64 bits of
the destination element are set; when a comparison is FALSE, all 64 bits of the destination element are
cleared. Comparison type is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only when the comparison type is not
Equal, Unequal, Ordered, or Unordered. SNaN operands always generate an IE.

There are legacy and extended forms of the instruction:
CMPSD

The first source operand is an XMM register. The second source operand is either another XMM
register or a 64-bit memory location. The first source register is also the destination. Bits [127:64] of
the destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected. Comparison type is specified by bits [2:0] of an immediate byte operand.

This CMPSD instruction must not be confused with the same-mnemonic CMPSD (compare strings by
doubleword) instruction in the general-purpose instruction set. Assemblers can distinguish the
instructions by the number and type of operands.

VCMPSD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the
destination are copied from bits [127:64] of the first source. Bits [255:128] of the YMM register that
corresponds to the destination are cleared. Comparison type is specified by bits [4:0] of an immediate
byte operand.

Immediate Operand Encoding

CMPSD uses bits [2:0] of the 8-bit immediate operand and VCMPSD uses bits [4:0] of the 8-bit
immediate operand. Although VCMPSD supports 20h encoding values, the comparison types echo
those of CMPSD on 4-bit boundaries. The following table shows the immediate operand value for
CMPSD and each of the VCMPSD echoes.

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown

Instruction Reference CMPSD, VCMPSD 90

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

with the directly supported comparison operations. When operands are swapped, the first source
XMM register is overwritten by the result

Immediate Operand Compare Operation Result If NaN Operand | QNaN Operand Causes
Value Invalid Operation
Exception

00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes
Greater than FALSE Yes

(swapped operands)
02h, OAh, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal FALSE Yes

(swapped operands)
03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, ODh, 15h, 1Dh Not less than TRUE Yes
Not greater than TRUE Yes

(swapped operands)
06h, OEh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal TRUE Yes

(swapped operands)
07h, OFh, 17h, 1Fh Ordered FALSE No

The following alias mnemonics for (V)CMPSD with appropriate value of imm§ are supported.

Mnemonic Implied Value of imm8
(V)CMPEQSD 00h, 08h, 10h, 18h
(V)CMPLTSD 01h, 09h, 11h, 19h
(V)CMPLESD 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDSD 03h, 0Bh, 13h, 1Bh
(V)CMPNEQSD 04h, 0Ch, 14h, 1Ch
(V)CMPNLTSD 05h, ODh, 15h, 1Dh
(V)CMPNLESD 06h, OEh, 16h, 1Eh
(V)CMPORDSD 07h, OFh, 17h, 1Fh

CMPSD is an SSE2 instruction and VCMPSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic
CMPSD xmm1, xmm2/mem64, imm8

Description

Compares double-precision floating-point
values in the low-order 64 bits of xmm1 with
corresponding values in xmm2 or mem64.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Opcode
F20F C2/rib

Instruction Reference CMPSD, VCMPSD 91

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCMPSD xmm1, xmm2, xmm3/mem64, imm8 C4 RXB.00001 X.src.X.11 C2/rib

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

MXCSR Flags Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SMD foating-point #xF | s | s | x| nmasked SIMD Teatig part excoption i CRAOSXMMEXCRT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.

Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CMPSD, VCMPSD 92

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
CMPSS Compare
VCMPSS Scalar Single-Precision Floating-Point

Compares a single-precision floating-point value in the low-order 32 bits of the first source operand
with a single-precision floating-point value in the low-order 32 bits of the second source operand and
writes the result to the low-order 32 bits of the destination. When a comparison is TRUE, all 32 bits of
the destination element are set; when a comparison is FALSE, all 32 bits of the destination element are
cleared. Comparison type is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.

There are legacy and extended forms of the instruction:
CMPSS

The first source operand is an XMM register. The second source operand is either another XMM
register or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of
the destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected. Comparison type is specified by bits [2:0] of an immediate byte operand.

VCMPSS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the
destination are copied from bits [127L32] of the first source. Bits [255:128] of the YMM register that
corresponds to the destination are cleared. Comparison type is specified by bits [4:0] of an immediate
byte operand.

Immediate Operand Encoding

CMPSS uses bits [2:0] of the 8-bit immediate operand and VCMPSS uses bits [4:0] of the 8-bit
immediate operand. Although VCMPSS supports 20h encoding values, the comparison types echo
those of CMPSS on 4-bit boundaries. The following table shows the immediate operand value for
CMPSS and each of the VCMPSS echoes.

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
below with the directly supported comparison operations. When operands are swapped, the first
source XMM register is overwritten by the result.

Instruction Reference CMPSS, VCMPSS 93

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Immediate Operand Compare Operation Result If NaN Operand | QNaN Operand Causes
Value Invalid Operation
Exception

00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes
Greater than FALSE Yes

(swapped operands)
02h, OAh, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal FALSE Yes

(swapped operands)
03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, ODh, 15h, 1Dh Not less than TRUE Yes
Not greater than TRUE Yes

(swapped operands)
06h, OEh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal TRUE Yes

(swapped operands)
07h, OFh, 17h, 1Fh Ordered FALSE No

The following alias mnemonics for (V)CMPSS with appropriate value of imm§ are supported.

Mnemonic Implied Value of imm8
(V)CMPEQSS 00h, 08h, 10h, 18h
(V)CMPLTSS 01h, 09h, 11h, 19h
(V)CMPLESS 02h, OAh, 12h, 1Ah

(V)CMPUNORDSS 03h, 0Bh, 13h, 1Bh
(V)CMPNEQSS 04h, 0Ch, 14h, 1Ch
(V)CMPNLTSS 05h, ODh, 15h, 1Dh
(V)CMPNLESS 06h, OEh, 16h, 1Eh
(V)CMPORDSS 07h, OFh, 17h, 1Fh

CMPSS is an SSE instruction and VCMPSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic

CMPSS xmm1, xmm2/mem32, imm8

Opcode

F3OF C2/rib

Description
Compares single-precision floating-point

values in the low-order 32 bits of xmm1 with
corresponding values in xmm2 or mem32.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Instruction Reference

CMPSS, VCMPSS

94

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCMPSS xmm1, xmm2, xmm3/mem32, imm8 C4 RXB.00001 X.src.X.10 C2/rib

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

MXCSR Flags Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SMD foating-point #xF | s | s | x| nmasked SIMD Teatig part excoption i CRAOSXMMEXCRT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.

Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CMPSS, VCMPSS 95

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
COMISD Compare Ordered
VCOMISD Scalar Double-Precision Floating-Point

Compares a double-precision floating-point value in the low-order 64 bits of an operand with a
double-precision floating-point value in the low-order 64 bits of another operand or a 64-bit memory
location and sets tFLAGS.ZF, PF, and CF to show the result of the comparison:

Comparison ZF PF CF
NaN input 1 1 1
operand 1 > operand 2 0 0 0
operand 1 < operand 2 0 0 1
operand 1 = operand 2 1 0 0

The result is unordered if one or both of the operand values is a NaN. The rFLAGS.OF, AF, and SF bits
are cleared. If an #XF SIMD floating-point exception occurs the rFLAGS bits are not updated.

There are legacy and extended forms of the instruction:
COMISD

The first source operand is an XMM register and the second source operand is another XMM register
or a 64-bit memory location.

VCOMISD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location.

COMISD is an SSE2 instruction and VCOMISD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description
COMISD xmm1, xmm2/mem64 66 OF 2F /r Compares double-precision floating-point values in xmm1
with corresponding values in xmm2 or mem64 and sets
rFLAGS.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCOMISD xmm1, xmm2 /mem64 C4 RXB.00001 X.src.X.01 2F Ir

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISS, (V)UCOMISD, (V)UCOMISS

Instruction Reference COMISD, VCOMISD 96

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

rFLAGS Affected

ID[VIP|VIF|AC|VM |[RF|[NT| IOPL |[OF [DF | IF | TF | SF | ZF | AF | PF | CF
0 O | M| 0O | M| M

21| 20 | 19 | 18 | 17 | 16 | 14 [13:12 | 11 | 10 | 9 8 7 6 | 4 2 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Bits 31:22, 15, 5, 3, and 1 are reserved. For #XF, rFLAGS bits are not updated.

MXCSR Flag_;s Affected

MM | FZ RC PM UM OM|ZM DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M
17 | 15 | 14 ‘ 13 | 12 | 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Unaffected flags are blank.

Exceptions

Mode

Exception

Real

Virt

Prot

Cause of Exception

X

X

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

n|lnl>

0l wn| x> X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XfeatureEnabledMask[2:1] | = 11b.

VEX.vvwv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

nunn o ln

nunn nln

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Page fault, #PF

w

Instruction execution caused a page fault.

Alignment check, #AC

w

Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF

X | X[X[X|X|X[X]| X | X[>Z>>>I>00

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE

w

w

x

A source operand was an SNaN value.

w

w

x

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

COMISD, VCOMISD 97

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
COMISS Compare
VCOMISS Ordered Scalar Single-Precision Floating-Point

Compares a double-precision floating-point value in the low-order 32 bits of an operand with a
double-precision floating-point value in the low-order 32 bits of another operand or a 32-bit memory
location and sets tFLAGS.ZF, PF, and CF to show the result of the comparison:

Comparison ZF PF CF
NaN input 1 1 1
operand 1 > operand 2 0 0 0
operand 1 < operand 2 0 0 1
operand 1 = operand 2 1 0 0

The result is unordered if one or both of the operand values is a NaN. The rFLAGS.OF, AF, and SF bits
are cleared. If an #XF SIMD floating-point exception occurs the rFLAGS bits are not updated.

There are legacy and extended forms of the instruction:
COMISS

The first source operand is an XMM register and the second source operand is another XMM register
or a 32-bit memory location.

VCOMISS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 32-bit memory location.

COMISS is an SSE instruction and VCOMISS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description
COMISS xmm1, xmm2/mem32 OF 2F /r Compares single-precision floating-point values in xmm?1
with corresponding values in xmm2 or mem32 and sets
rFLAGS.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCOMISS xmm1, xmm2 /mem32 C4 RXB.00001 X.src.X.00 2F Ir

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)UCOMISD, (V)UCOMISS

Instruction Reference COMISS, VCOMISS 98

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

rFLAGS Affected

ID[VIP|VIF|AC|VM |[RF|[NT| IOPL |[OF [DF | IF | TF | SF | ZF | AF | PF | CF
0 O | M| 0O | M| M

21| 20 | 19 | 18 | 17 | 16 | 14 [13:12 | 11 | 10 | 9 8 7 6 | 4 2 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Bits 31:22, 15, 5, 3, and 1 are reserved. For #XF, rFLAGS bits are not updated.

MXCSR Flag_;s Affected

MM | FZ RC PM UM OM|ZM DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M
17 | 15 | 14 ‘ 13 | 12 | 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Mode

Exception

Real

Virt

Prot

Cause of Exception

X

X

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

n|lnl>

0l wn| x> X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XfeatureEnabledMask[2:1] | = 11b.

VEX.vvwv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

nunn o ln

nunn nln

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Page fault, #PF

w

Instruction execution caused a page fault.

Alignment check, #AC

w

Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF

X | X[X[X|X|X[X]| X | X[>Z>>>I>00

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE

w

w

x

A source operand was an SNaN value.

w

w

x

Undefined operation.

Denormalized operand, DE

A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

COMISS, VCOMISS 99

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
CVTDQ2PD Convert Packed Doubleword Integers
VCVTDQ2PD to Packed Double-Precision Floating-Point

Converts packed 32-bit signed integer values to packed double-precision floating-point values and
writes the converted values to the destination.

There are legacy and extended forms of the instruction:
CVTDQ2PD

Converts two packed 32-bit signed integer values in the low-order 64 bits of an XMM register or in a
64-bit memory location to two packed double-precision floating-point values and writes the converted
values to an XMM register. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.

VCVTDQ2PD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Converts two packed 32-bit signed integer values in the low-order 64 bits of an XMM register or in a
64-bit memory location to two packed double-precision floating-point values and writes the converted
values to an XMM register. Bits [255:128] of the YMM register that corresponds to the destination are
cleared.

YMM Encoding

Converts four packed 32-bit signed integer values in the low-order 128 bits of a YMM register or a
256-bit memory location to four packed double-precision floating-point values and writes the
converted values to a YMM register.

CVTDQ2PD is an SSE2 instruction and VCVTDQ2PD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

CVTDQ2PD xmm1, xmm2/mem64 F3 OF E6 /r Converts packed doubleword signed integers in xmm2
or mem64 to double-precision floating-point values in

xmmf1.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTDQ2PD xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.10 E6G /r
VCVTDQ2PD ymm1, xmm2/mem128 C4 RXB.00001 X.1111.1.10 E6 /r

Related Instructions

(V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTPD2DQ,
(V)CVTTSD2SI

Instruction Reference CVTDQ2PD, VCVTDQ2PD 100

AMDZU

26568—Rev. 3.11—December 2010

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vvvv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Page fault, #PF

w

Instruction execution caused a page fault.

Alignment check, #AC

X [X|X|X|X[X|X|>Z|> > >0w0n

Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

CVTDQ2PD, VCVTDQ2PD 101

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
CVTDQ2PS Convert Packed Doubleword Integers
VCVTDQ2PS to Packed Single-Precision Floating-Point

Converts packed 32-bit signed integer values to packed single-precision floating-point values and
writes the converted values to the destination. When the result is an inexact value, it is rounded as
specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTDQ2PS

Converts four packed 32-bit signed integer values in an XMM register or a 128-bit memory location to
four packed single-precision floating-point values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VCVTDQ2PS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Converts four packed 32-bit signed integer values in an XMM register or a 128-bit memory location to
four packed double-precision floating-point values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Converts eight packed 32-bit signed integer values in a YMM register or a 256-bit memory location to
eight packed double-precision floating-point values and writes the converted values to a YMM
register.

The CVTDQ2PS is an SSE2 instruction and the VCVTDQ2PS instruction is an AVX instruction.
Support for these instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and
Fn0000 00001 ECX[AVX] (see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

CVTDQ2PS xmm1, xmm2/mem128 OF 5B /r Converts packed doubleword integer values in xmm2 or
mem128 to packed single-precision floating-point
values in xmm2.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTDQ2PS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 5B Ir
VCVTDQ2PS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 5B /r

Related Instructions
(V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ, (V)CVTTSS2SI

Instruction Reference CVTDQ2PS, VCVTDQ2PS 102

AMDZU

26568—Rev. 3.11—December 2010

MXCSR FIa_c_;s Affected

AMDG64 Technology

MM | FZ RC

PM | UM

OM|ZM DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M

17 | 15 | 14 \ 13

12 | 11

10

9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XfeatureEnabledMask[2:1] ! = 11b
A |VEX.wwvwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD floating-point, #XF s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,

see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Precision, PE |

S | S | X |Aresu|tcou|d not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

CVTDQ2PS, VCVTDQ2PS 103

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

CVTPD2DQ Convert Packed Double-Precision Floating-Point
VCVTPD2DQ to Packed Doubleword Integer

Converts packed double-precision floating-point values to packed signed doubleword integers and
writes the converted values to the destination.

When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-point
value is a NaN, infinity, or the result of the conversion is larger than the maximum signed doubleword
(—23 Tto +231 - 1), the instruction returns the 32-bit indefinite integer value (8000 0000h) when the
invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTPD2DQ

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed signed doubleword integers and writes the converted values to the two low-
order doublewords of the destination XMM register. Bits [127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VCVTPD2DQ
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two signed doubleword values and writes the converted values to the lower two
doubleword elements of the destination XMM register. Bits [127:64] of the destination are cleared.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four signed doubleword values and writes the converted values to an XMM register. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

CVTPD2DQ is an SSE2 instruction and VCVTPD2DQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481)

Mnemonic Opcode Description

CVTPD2DQ xmm1, xmm2/mem128 F2 OF E6 /r Converts two packed double-precision floating-point
values in xmm2 or mem128 to packed doubleword
integers in xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTPD2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.11 E6 /r
VCVTPD2DQ xmm1, ymm2/mem256 C4 RXB.00001 XA111.1.11 E6 /r

Instruction Reference CVTPD2DQ, VCVTPD2DQ 104

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Related Instructions

(V)CVTDQ2PD, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTPD2DQ,
(V)CVTTSD2SI

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XfeatureEnabledMask[2:1]! = 11b
A |VEX.wwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |[CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SMD foating-pont, #xF | s [s | x | UIEsed SIME featng pont excepton whle CRA OSMMEXCPT =
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.

Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTPD2DQ, VCVTPD2DQ 105

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

CVTPD2PS Convert Packed Double-Precision Floating-Point
VCVTPD2PS to Packed Single-Precision Floating-Point

Converts packed double-precision floating-point values to packed single-precision floating-point
values and writes the converted values to the low-order doubleword elements of the destination. When
the result is an inexact value, it is rounded as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTPD2PS

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed single-precision floating-point values and writes the converted values to an
XMM register. Bits [127:64] of the destination are cleared. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VCVTPD2PS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed single-precision floating-point values and writes the converted values to an
XMM register. Bits [127:64] of the destination are cleared. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

YMM Encoding

Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four packed single-precision floating-point values and writes the converted values to a
YMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

CVTPD2PS is an SSE2 instruction and VCVTPD2PS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

CVTPD2PS xmm1, xmm2/mem128 66 OF 5A /r Converts packed double-precision floating-point
values in xmm2 or mem128 to packed single-
precision floating-point values in xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTPD2PS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 5A Ir
VCVTPD2PS xmm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 5A Ir

Related Instructions
(V)CVTPS2PD, (V)CVTSD2SS, (V)CVTSS2SD

Instruction Reference CVTPD2PS, VCVTPD2PS 106

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XfeatureEnabledMask[2:1] ! = 11b
A |VEX.wwvwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SD foating-point #xF | s | s | x| nmasked SIMD Teatig partexcontion i A OSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

CVTPD2PS, VCVTPD2PS

107

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

CVTPS2DQ Convert Packed Single-Precision Floating-Point
VCVTPS2DQ to Packed Doubleword Integers

Converts packed single-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.

When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-point
value is a NaN, infinity, or the result of the conversion is larger than the maximum signed doubleword
(—23 Tto +231 - 1), the instruction returns the 32-bit indefinite integer value (8000 0000h) when the
invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTPS2DQ

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VCVTPS2DQ
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Converts eight packed single-precision floating-point values in a YMM register or a 256-bit memory
location to eight packed signed doubleword integer values and writes the converted values to a YMM
register.

CVTPS2DQ is an SSE2 instruction and VCVTPS2DQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

CVTPS2DQ xmm1, xmm2/mem128 66 OF 5B /r Converts four packed single-precision floating-point
values in xmm2 or mem128 to four packed
doubleword integers in xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTPS2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 5B Ir
VCVTPS2DQ ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 5B /r

Related Instructions
(V)CVTDQ2PS, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ, (V)CVTTSS2SI

Instruction Reference CVTPS2DQ, VCVTPS2DQ 108

AMDZU

26568—Rev. 3.11—December 2010

MXCSR FIa_c_;s Affected

AMDG64 Technology

MM | FZ RC PM | UM |OM | zZzM DM | IM (DAZ| PE | UE | OE | ZE | DE IE
M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XfeatureEnabledMask[2:1] ! = 11b
A |VEX.wwvwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SMD foating-pont, #xF | s [s | x | UIEsed SIME featng pant excepton whle CRA OSMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

CVTPS2DQ, VCVTPS2DQ

109

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

CVTPS2PD Convert Packed Single-Precision Floating-Point
VCVTPS2PD to Packed Double-Precision Floating-Point

Converts packed single-precision floating-point values to packed double-precision floating-point
values and writes the converted values to the destination.

There are legacy and extended forms of the instruction:
CVTPS2PD

Converts two packed single-precision floating-point values in the two low order doubleword elements
of an XMM register or a 64-bit memory location to two double-precision floating-point values and
writes the converted values to an XMM register. Bits [255:128] of the YMM register that corresponds
to the destination are not affected.

VCVTPS2PD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Converts two packed single-precision floating-point values in the two low order doubleword elements
of an XMM register or a 64-bit memory location to two double-precision floating-point values and
writes the converted values to an XMM register. Bits [255:128] of the YMM register that corresponds
to the destination are cleared.

YMM Encoding

Converts four packed single-precision floating-point values in a YMM register or a 128-bit memory
location to four double-precision floating-point values and writes the converted values to a YMM
register.

CVTPS2PD is an SSE2 instruction and VCVTPS2PD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

CVTPS2PD xmm1, xmm2/mem64 OF 5A/r Converts packed single-precision floating-point values
in xmm2 or memé64 to packed double-precision floating-
point values in xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTPS2PD xmm1, xmm2/mem64 Cc4 RXB.00001 X.1111.0.00 5A Ir
VCVTPS2PD ymm1, ymm2/mem128 C4 RXB.00001 X.1111.1.00 5A Ir

Related Instructions
(V)CVTPD2PS, (V)CVTSD2SS, (V)CVTSS2SD

Instruction Reference CVTPS2PD, VCVTPS2PD 110

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M | M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0wl nl>

nlm| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vvwv ! = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

N o @ m

General protection, #GP

Nnwun o @ n

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Page fault, #PF

w

Instruction execution caused a page fault.

Alignment check, #AC

w

Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S

X X[X|X| X[X[|X| X [X|>>I> > 00

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

w

(%))

x

A source operand was an SNaN value.

Invalid operation, IE

w

(%))

x

Undefined operation.

Denormalized operand, DE | S

A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

CVTPS2PD, VCVTPS2PD 111

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
CVTSD2SI Convert Scalar Double-Precision Floating-Point
VCVTSD2SI to Signed Doubleword or Quadword Integer

Converts a scalar double-precision floating-point value to a 32-bit or 64-bit signed integer value and
writes the converted value to a general-purpose register.

When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-point
value is a NaN, infinity, or the result of the conversion is larger than the maximum signed doubleword
(—231 to +231 - 1) or quadword value (—263 to +203 — 1), the instruction returns the indefinite integer
value (8000 _0000h for 32-bit integers, 8000 0000 _0000_0000h for 64-bit integers) when the invalid-
operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTSD2SI

e When REX.W =0, converts a scalar double-precision floating-point value in the low-order 64 bits
of'an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

e When REX.W =1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

VCVTSD2sI
The extended form of the instruction has 128-bit encoding.

e When VEX.W =0, converts a scalar double-precision floating-point value in the low-order 64 bits
of'an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

* When VEX.W =1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

CVTSD2SI is an SSE2 instruction and VCVTSD2SI is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

CVTSD2SI reg32, xmm1/mem64 F2 (WO0) OF 2D /r Converts a packed double-precision floating-point value
in xmm1 or memé64 to a doubleword integer in reg32.

CVTSD2SI reg64, xmm1/mem64 F2 (W1) OF 2D /r Converts a packed double-precision floating-point value
in xmm1 or mem64 to a quadword integer in reg64.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTSD2SI reg32, xmm2/mem64 C4 RXB.00001 0.1111.X.11 2D /r
VCVTSD2SI reg64, xmm2/mem64 C4 RXB.00001 1.1111.X.11 2D /r

Instruction Reference CVTSD2SI, VCVTSD2SI 112

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Related Instructions

(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSI2SD, (V)CVTTPD2DQ,
(V)CVTTSD2SI

MXCSR Flags Affected
MM | FZ RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.wwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |[CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SMD foating-pont, #xF | s [s | x| UIEsed SIME feating pont excopton whle CRA OSMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.

Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTSD2SI, VCVTSD2SI 113

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

CVTSD2SS Convert Scalar Double-Precision Floating-Point
VCVTSD2SS to Scalar Single-Precision Floating-Point

Converts a scalar double-precision floating-point value to a scalar single-precision floating-point
value and writes the converted value to the low-order 32 bits of the destination. When the result is an
inexact value, it is rounded as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTSD2SS

Converts a scalar double-precision floating-point value in the low-order 64 bits of a source XMM
register or a 64-bit memory location to a scalar single-precision floating-point value and writes the
converted value to the low-order 32 bits of a destination XMM register. Bits [127:32] of the
destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.

VCVTSD2SS
The extended form of the instruction has 128-bit encoding.

Converts a scalar double-precision floating-point value in the low-order 64 bits of a source XMM
register or a 64-bit memory location to a scalar single-precision floating-point value and writes the
converted value to the low-order 64 bits of a destination XMM register. Bits [127:32] of the
destination are copied from the first source XMM register. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

CVTSD2SS is an SSE2 instruction and VCVTSD2SS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

CVTSD2SS xmm1, xmm2/mem64 F2 OF 5A/r Converts a scalar double-precision floating-point
value in xmm2 or mem64 to a scalar single-precision
floating-point value in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTSD2SS xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5A Ir

Related Instructions
(V)CVTPD2PS, (V)CVTPS2PD, (V)CVTSS2SD

Instruction Reference CVTSD2SS, VCVTSD2SS 114

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pont exception whle CRa OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

CVTSD2SS, VCVTSD2SS

115

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

CVTSI2SD Convert Signed Doubleword or Quadword Integer
VCVTSI2SD to Scalar Double-Precision Floating-Point

Converts a signed integer value to a double-precision floating-point value and writes the converted
value to a destination register. When the result of the conversion is an inexact value, the value is
rounded as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTSI2SD

e When REX.W = 0, converts a signed doubleword integer value from a 32-bit source general-
purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 64 bits of an XMM register. Bits [127:64] of the destination
XMM register and bits [255:128] of the corresponding YMM register are not affected.

e When REX.W = 1, converts a a signed quadword integer value from a 64-bit source general-
purpose register or a 64-bit memory location to a 64-bit double-precision floating-point value and
writes the converted value to the low-order 64 bits of an XMM register. Bits [127:64] of the
destination XMM register and bits [255:128] of the corresponding YMM register are not affected.

VCVTSI2SD

The extended form of the instruction has 128-bit encoding.

e When VEX.W = 0, converts a signed doubleword integer value from a 32-bit source general-
purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 64 bits of the destination XMM register. Bits [127:64] of the
first source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

* When VEX.W =1, converts a signed quadword integer value from a 64-bit source general-purpose
register or a 64-bit memory location to a double-precision floating-point value and writes the
converted value to the low-order 64 bits of the destination XMM register. Bits [127:64] of the first
source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

CVTSI2SD is an SSE2 instruction and VCVTSI2SD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

CVTSI2SD xmm1, reg32/mem32 F2 (W0) OF 2A /r Converts a doubleword integer in reg32 or mem32 to a
double-precision floating-point value in xmm1.

CVTSI2SD xmm1, reg64/mem64 F2 (W1) OF 2A /r Converts a quadword integer in reg64 or mem64 to a
double-precision floating-point value in xmm?1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTSI2SD xmm1, xmm2, reg32/mem32 C4 RXB.00001 0.src.X.11 2A Ir
VCVTSI2SD ymm1, xmm2, reg64/mem64 C4 RXB.00001 1.src.X. 11 2A Ir

Instruction Reference CVTSI2SD, VCVTSI2SD 116

AMDZU

26568—Rev. 3.11—December 2010

Related Instructions

AMDG64 Technology

(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTTPD2DQ,

(V)CVTTSD2SI

MXCSR FIa_c_;s Affected

MM | FZ RC PM|{UM | OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M

17 | 15 14\13 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

wnl nl>

n|lm| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XfeatureEnabledMask[2:1] ! = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

nunn v

nunn o n

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Page fault, #PF

w

Instruction execution caused a page fault.

Alignment check, #AC

w

XIX|X| X[X[X| X [X[>>I> 0 n

Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF

X

Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Precision, PE

S | S | X |Aresu|tcou|d not be represented exactly in the destination format.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

CVTSI2SD, VCVTSI2SD 117

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

CVTSI2SS Convert Signed Doubleword or Quadword Integer
VCVTSI2SS to Scalar Single-Precision Floating-Point

Converts a signed integer value to a single-precision floating-point value and writes the converted
value to an XMM register. When the result of the conversion is an inexact value, the value is rounded
as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTSI2SS

e When REX.W = 0, converts a signed doubleword integer value from a 32-bit source general-
purpose register or a 32-bit memory location to a single-precision floating-point value and writes
the converted value to the low-order 32 bits of an XMM register. Bits [127:32] of the destination
XMM register and bits [255:128] of the corresponding YMM register are not affected.

e When REX.W = 1, converts a a signed quadword integer value from a 64-bit source general-
purpose register or a 64-bit memory location to a 64-bit double-precision floating-point value and
writes the converted value to the low-order 64 bits of an XMM register. Bits [127:32] of the
destination XMM register and bits [255:128] of the corresponding YMM register are not affected.

VCVTSI2SS

The extended form of the instruction has 128-bit encoding.

e When VEX.W = 0, converts a signed doubleword integer value from a 32-bit source general-
purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 32 bits of the destination XMM register. Bits [127:32] of the
first source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

* When VEX.W =1, converts a signed quadword integer value from a 64-bit source general-purpose
register or a 64-bit memory location to a double-precision floating-point value and writes the
converted value to the low-order 32 bits of the destination XMM register. Bits [127:32] of the first
source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

CVTSI2SS is an SSE instruction and VCVTSI2SS is an AVX instruction. Support for these
instructions is indicated by CPUID feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] (see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

CVTSI2SS xmm1, reg32/mem32 F3 (WO0) OF 2A /r Converts a doubleword integer in reg32 or mem32 to a
single-precision floating-point value in xmm1.

CVTSI2SS xmm1, reg64/mem64 F3 (W1) OF 2A /r Converts a quadword integer in reg64 or mem64 to a
single-precision floating-point value in xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTSI2SS xmm1, xmm2, reg32/mem32 C4 RXB.00001 0.src.X.10 2A Ir
VCVTSI2SS xmm1, xmm2, reg64/mem64 C4 RXB.00001 1.5rc.X.10 2A Ir

Instruction Reference CVTSI2SS, VCVTSI2SS 118

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSS2SI, (V)CVTTPS2DQ, (V)CVTTSS2SI

MXCSR Flags Affected

MM | FZ | RC PM | UM |OM | zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] | = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE | 8 | 8 | X |Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

SIMD floating-point, #XF S S X

Instruction Reference CVTSI2SS, VCVTSI2SS 119

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
CVTSS2SD Convert Scalar Single-Precision Floating-Point
VCVTSS2SD to Scalar Double-Precision Floating-Point

Converts a scalar single-precision floating-point value to a scalar double-precision floating-point
value and writes the converted value to the low-order 64 bits of the destination.

There are legacy and extended forms of the instruction:
CVTSS2SD

Converts a scalar single-precision floating-point value in the low-order 32 bits of a source XMM
register or a 32-bit memory location to a scalar double-precision floating-point value and writes the
converted value to the low-order 64 bits of a destination XMM register. Bits [127:64] of the
destination and bits [255:128] of the corresponding YMM register are not affected.

VCVTSS2SD
The extended form of the instruction has 128-bit encoding.

Converts a scalar single-precision floating-point value in the low-order 32 bits of a source XMM
register or a 32-bit memory location to a scalar double-precision floating-point value and writes the
converted value to the low-order 64 bits of a destination XMM register. Bits [127:64] of the
destination are copied from a second source XMM register. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

CVTSD2SD is an SSE2 instruction and VCVTSD2SD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

CVTSS2SD xmm1, xmm2/mem32 F3 OF 5A/r Converts a scalar single-precision floating-point value
in xmm2 or mem32 to a scalar double-precision
floating-point value in xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTSS2SD xmm1, xmm2, xmm3/mem64 Cc4 RXB.00001 X.src.X.10 5A Ir

Related Instructions
(V)CVTPD2PS, (V)CVTPS2PD, (V)CVTSD2SS

Instruction Reference CVTSS2SD, VCVTSS2SD 120

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SD foatngrpoi, 1 | 5 | s | x | Somasses SIUD foatine pont excepton while CRE OSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

CVTSS2SD, VCVTSS2SD 121

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
CVTSS2SI Convert Scalar Single-Precision Floating-Point
VCVTSS2SI to Signed Doubleword or Quadword Integer

Converts a single-precision floating-point value to a signed integer value and writes the converted
value to a general-purpose register.

When the result of the conversion is an inexact value, the value is rounded as specified by
MXCSR.RC. When the floating-point value is a NaN, infinity, or the result of the conversion is larger
than the maximum signed doubleword (—23 Tto +231 - 1) or quadword value (—263 to +203 — 1), the
indefinite integer value (8000 _0000h for 32-bit integers, 8000 0000 0000 0000h for 64-bit integers)
is returned when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTSS2si

* When REX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register.

* When REX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register.

VCVTSS2SI
The extended form of the instruction has 128-bit encoding.

* When VEX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register.

* When VEX.W =1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register.

CVTSS2SI is an SSE instruction and VCVTSS2SI is an AVX instruction. Support for these
instructions is indicated by CPUID feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] (see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

CVTSS2SI reg32, xmm1/mem32 F3 (WO0) OF 2D /r Converts a single-precision floating-point value in
xmm1 or mem32 to a 32-bit integer value in reg32

CVTSS2SI reg64, xmm1//mem64 F3 (W1) OF 2D /r Converts a single-precision floating-point value in
xmm<1 or mem64 to a 64-bit integer value in reg64

Instruction Reference CVTSS2SI, VCVTSS2SI 122

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology

Mnemonic

VCVTSS2SI reg32, xmm1/mem32
VCVTSS2SI reg64, xmm1/mem64

Related Instructions

Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
C4 RXB.00001 0.1111.X.10 2D /Ir
C4 RXB.00001 1.1111.X.10 2D /r

(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTTPS2DQ, (V)CVTTSS2SI

MXCSR Flags Affected

MM | FZ RC PM|[UM|OM|[ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M

17 | 15 14\13 12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.vwwwv !=1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SMD foating-point #xF | s | s | x | nmasked SIMD featig part excontion i A OSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

CVTSS2SI, VCVTSS2SI 123

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

CVTTPD2DQ Convert Packed Double-Precision Floating-Point
VCVTTPD2DQ to Packed Doubleword Integer, Truncated

Converts packed double-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.

When the result is an inexact value, it is truncated (rounded toward zero). When the floating-point
value is a NaN, infinity, or the result of the conversion is larger than the maximum signed doubleword
(—23 Tto +231 - 1), the instruction returns the 32-bit indefinite integer value (8000 0000h) when the
invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTTPD2DQ

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed signed doubleword integers and writes the converted values to the two low-
order doublewords of the destination XMM register. Bits [127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VCVTTPD2DQ
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two signed doubleword values and writes the converted values to the lower two
doubleword elements of the destination XMM register. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

YMM Encoding

Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four signed doubleword integer values and writes the converted values to an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

CVTTPD2DQ is an SSE2 instruction and VCVTTPD2DQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

CVTTPD2DQ xmm1, xmm2/mem128 66 OF E6 /r Converts two packed double-precision floating-point
values in xmm2 or mem128 to packed doubleword
integers in xmm71. Truncates inexact result.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTTPD2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 E6 /r
VCVTTPD2DQ xmm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 E6 /r

Instruction Reference CVTTPD2DQ, VCVTTPD2DQ 124

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Related Instructions
(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTSD2SI

MXCSR Flags Affected

MM | FZ | RC PM | UM |OM | zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XfeatureEnabledMask[2:1] ! = 11b
A | VEX.vwwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SMD foating-pont #xF | s | s | x | Unmasked SIMD featig pantexcoption whi CRA OSXMIMEXCT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.

Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTTPD2DQ, VCVTTPD2DQ 125

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

CVTTPS2DQ Convert Packed Single-Precision Floating-Point
VCVTTPS2DQ to Packed Doubleword Integers, Truncated

Converts packed single-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.

When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point value is a NaN, infinity, or the result of the conversion is larger than the
maximum signed doubleword (—231 to +231 - 1), the instruction returns the 32-bit indefinite integer
value (8000 _0000h) when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTTPS2DQ

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. The high-order 128-bits of the corresponding YMM register are not affected.

VCVTTPS2DQ
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Converts eight packed single-precision floating-point values in a YMM register or a 256-bit memory
location to eight packed signed doubleword integer values and writes the converted values to a YMM
register.

CVTTPS2DQ is an SSE2 instruction and VCVTTPS2DQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

CVTTPS2DQ xmm1, xmm2/mem128 F3 OF 5B /r Converts four packed single-precision floating-point
values in xmm2 or mem128 to four packed
doubleword integers in xmm1. Truncates inexact

result.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTTPS2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 5B /r
VCVTTPS2DQ ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 5B /r

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTSS2SI

Instruction Reference CVTTPS2DQ, VCVTTPS2DQ 126

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XfeatureEnabledMask[2:1] ! = 11b
A |VEX.wwvwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SMD foating-pont, #xF | s [s | x | UIEsed SIME featng pant excepton whle CRA OSMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

Instruction Reference

CVTTPS2DQ, VCVTTPS2DQ 127

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

CVTTSD2SI Convert Scalar Double-Precision Floating-Point
VCVTTSD2SI to Signed Double- or Quadword Integer, Truncated

Converts a scalar double-precision floating-point value to a signed integer value and writes the
converted value to a general-purpose register.

When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point value is a NaN, infinity, or the result of the conversion is larger than the
maximum signed doubleword (—231 to+231 — 1) or quadword value (—263 to +203 — 1), the instruction
returns the indefinite integer value (8000 0000h for 32-bit integers, 8000 0000 0000 0000h for 64-
bit integers) when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTTSD2SI

e When REX.W =0, converts a scalar double-precision floating-point value in the low-order 64 bits
of'an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

e When REX.W =1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

VCVTTSD2SI

The extended form of the instruction has 128-bit encoding.

* When VEX.W = 0, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

* When VEX.W = 1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

CVTTSD2SI is an SSE2 instruction and VCVTTSD2SI is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

CVTTSD2SI reg32, xmm1/mem64 F2 (WO0) OF 2C /r Converts a packed double-precision floating-point
value in xmm1 or memé64 to a doubleword integer in
reg32. Truncates inexact result.

CVTTSD2SI regb64, xmm1/mem64 F2 (W1) OF 2C /r Converts a packed double-precision floating-point
value in xmm1 or mem64 to a quadword integer in
reg64.Truncates inexact result.

Instruction Reference CVTTSD2SI, VCVTTSD2SI 128

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VCVTTSD2SI reg32, xmm2/mem64 C4 RXB.00001 0.1111.X.11 2C/r
VCVTTSD2SI reg64, xmm2/mem64 C4 RXB.00001 1.1111.X.11 2C/r

Related Instructions
(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD,

(V)CVTTPD2DQ
MXCSR Flags Affected
MM | FZ | RC PM UM |OM | ZM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.vwwwv !=1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SMD foating-pont, #xF | s [s | x| UIEsod SIME feating pont excopton whle CRA OSMMEXCPT =
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

CVTTSD2SI, VCVTTSD2SI

129

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

CVTTSS2SI Convert Scalar Single-Precision Floating-Point
VCVTTSS2SI to Signed Double or Quadword Integer, Truncated

Converts a single-precision floating-point value to a signed integer value and writes the converted
value to a general-purpose register.

When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point value is a NaN, infinity, or the result of the conversion is larger than the
maximum signed doubleword (—231 to +231 - 1) or quadword value (—263 to +263 — 1), the indefinite
integer value (8000 _0000h for 32-bit integers, 8000_0000 0000 0000h for 64-bit integers) is returned
when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTTSS2SI

* When REX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are not affected.

* When REX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are not affected.

VCVTTSS2SI

The extended form of the instruction has 128-bit encoding.

* When VEX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are cleared.

* When VEX.W =1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are cleared.

CVTTSS2SI is an SSE instruction and VCVTTSS2SI is an AVX instruction. Support for these
instructions is indicated by CPUID feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] (see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

CVTTSS2SI reg32, xmm1/mem32 F3 (WO0) OF 2C /r Converts a single-precision floating-point value in
xmm1 or mem32 to a 32-bit integer value in reg32.
Truncates inexact result.

CVTTSS2SI reg64, xmm1/mem64 F3 (W1) OF 2C /r Converts a single-precision floating-point value in
xmm<1 or mem64 to a 64-bit integer value in reg64.
Truncates inexact result.

Instruction Reference CVTTSS2SI, VCVTTSS2SI 130

AMDZU

26568—Rev. 3.11—December 2010

Mnemonic

VCVTTSS2SI reg32, xmm1/mem32
VCVTTSS2SI regb4, xmm1/mem64

Related Instructions

AMDG64 Technology

Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
C4 RXB.00001 0.1111.X.10 2C/r
C4 RXB.00001 1.1111.X.10 2CIr

(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ

MXCSR Flag_;s Affected

MM | FZ RC PM UM | OM|ZM DM | IM (DAZ| PE | UE | OE | ZE | DE | IE

M

17 | 15 | 14 ‘ 13 | 12 | 11 10

9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.vwwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SMD foating-pont #xF | 5 | s | x | Unmasked SIMD featig pant excoption whi CRA OSXMIMEXCT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTTSS2SI, VCVTTSS2SI 131

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
DIVPD Divide
VDIVPD Packed Double-Precision Floating-Point

Divides each of the packed double-precision floating-point values of the first source operand by the
corresponding packed double-precision floating-point values of the second source operand and writes
the quotients to the destination.

There are legacy and extended forms of the instruction:
DIVPD

Divides two packed double-precision floating-point values in the first source XMM register by the
corresponding packed double-precision floating-point values in either a second source XMM register
or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VDIVPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Divides two packed double-precision floating-point values in the first source XMM register by the
corresponding packed double-precision floating-point values in either a second source XMM register
or a 128-bit memory location and writes the two results a destination XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

YMM Encoding

Divides four packed double-precision floating-point values in the first source YMM register by the
corresponding packed double-precision floating-point values in either a second source YMM register
or a 256-bit memory location and writes the two results a destination YMM register.

DIVPD is an SSE2 instruction and VDIVPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

DIVPD xmm1, xmm2/mem128 66 OF 5E /r Divides packed double-precision floating-point values in
xmm1 by the packed double-precision floating-point
values in xmm2 or mem128. Writes quotients to xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VDIVPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5E /r
VDIVPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5E /r

Related Instructions
(V)DIVPS, (V)DIVSD, (V)DIVSS

Instruction Reference DIVPD, VDIVPD 132

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pont exception whle CRa OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Division by zero, ZE S S X | Division of finite dividend by zero-value divisor.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

DIVPD, VDIVPD 133

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
DIVPS Divide
VDIVPS Packed Single-Precision Floating-Point

Divides each of the packed single-precision floating-point values of the first source operand by the
corresponding packed single-precision floating-point values of the second source operand and writes
the quotients to the destination.

There are legacy and extended forms of the instruction:
DIVPS

Divides four packed single-precision floating-point values in the first source XMM register by the
corresponding packed single-precision floating-point values in either a second source XMM register
or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VDIVPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Divides four packed single-precision floating-point values in the first source XMM register by the
corresponding packed single-precision floating-point values in either a second source XMM register
or a 128-bit memory location and writes two results to a third destination XMM register. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Divides eight packed single-precision floating-point values in the first source YMM register by the
corresponding packed single-precision floating-point values in either a second source YMM register
or a 256-bit memory location and writes the two results a destination YMM register.

DIVPS is an SSE instruction and VDIVPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

DIVPS xmm1, xmm2/mem128 OF 5E /r Divides packed single-precision floating-point values in
xmm<1 by the corresponding values in xmm2 or mem128.
Writes quotients to xmm1

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VDIVPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5E /r
VDIVPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5E /r

Related Instructions
(V)DIVPD, (V)DIVSD, (V)DIVSS

Instruction Reference DIVPS, VDIVPS 134

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pont exception whle CRa OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Division by zero, ZE S S X | Division of finite dividend by zero-value divisor.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

DIVPS, VDIVPS 135

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
DIVSD Divide
VDIVSD Scalar Double-Precision Floating-Point

Divides the double-precision floating-point value in the low-order quadword of the first source
operand by the double-precision floating-point value in the low-order quadword of the second source
operand and writes the quotient to the low-order quadword of the destination.

There are legacy and extended forms of the instruction:
DIVSD

The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location. The first source register is also the destination register. Bits [127:64] of
the destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VDIVSD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location. Bits [127:64] of the first source operand are copied to bits [127:64] of the
destination. The destination is a third XMM register. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

DIVSD is an SSE2 instruction and VDIVSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

DIVSD xmm1, xmm2/mem64 F2 OF 5E /r Divides the double-precision floating-point value in the low-
order 64 bits of xmm1by the corresponding value in xmm2
or mem64. Writes quotient to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VDIVSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5E /r

Related Instructions
(V)DIVPD, (V)DIVPS, (V)DIVSS

Instruction Reference DIVSD, VDIVSD 136

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pont exception whle CRa OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Division by zero, ZE S S X | Division of finite dividend by zero-value divisor.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

DIVSD, VDIVSD 137

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
DIVSS Divide Scalar Single-Precision Floating-Point
VDIVSS

Divides the single-precision floating-point value in the low-order doubleword of the first source
operand by the single-precision floating-point value in the low-order doubleword of the second source
operand and writes the quotient to the low-order doubleword of the destination.

There are legacy and extended forms of the instruction:
DIVSS

The first source operand is an XMM register and the second source operand is either an XMM register
or a 32-bit memory location. The first source register is also the destination register. Bits [127:32] of
the destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VDIVSS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location. The destination is a third XMM register. Bits [127:32] of the first source
operand are copied to bits [127:32] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

DIVSS is an SSE instruction and VDIVSS is an AVX instruction. Support for these instructions is
indicated by CPUID feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] (see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

DIVSS xmm1, xmm2/mem32 F3 OF 5E /r Divides a single-precision floating-point value in the low-
order doubleword of xmm<1 by a corresponding value in
xmm2 or mem32. Writes the quotient to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VDIVSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5E /r

Related Instructions
(V)DIVPD, (V)DIVPS, (V)DIVSD

Instruction Reference DIVSS, VDIVSS 138

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pont exception whle CRa OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Division by zero, ZE S S X | Division of finite dividend by zero-value divisor.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

DIVSS, VDIVSS 139

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
DPPD Dot Product
VDPPD Packed Double-Precision Floating-Point

Computes the dot-product of the input operands. An immediate operand specifies both the input values
and the destination locations to which the products are written.

Selectively multiplies packed double-precision values in a source operand by the corresponding values
in another source operand, writes the results to a temporary location, adds the results, writes the sum to
a second temporary location and selectively writes the sum to a destination.

Mask bits [5:4] of an 8-bit immediate operand perform multiplicative selection. Bit 5 selects bits
[127:64] of the source operands; bit 4 selects bits [63:0] of the source operands. When a mask bit =1,
the corresponding packed double-precision floating point values are multiplied and the product is
written to the corresponding position of a 128-bit temporary location. When a mask bit = 0, the
corresponding position of the temporary location is cleared.

After the two 64-bit values in the first temporary location are added and written to the 64-bit second
temporary location, mask bits [1:0] of the same 8-bit immediate operand perform write selection. Bit 1
selects bits [127:64] of the destination; bit O selects bits [63:0] of the destination. When a mask bit=1,
the 64-bit value of the second temporary location is written to the corresponding position of the
destination. When a mask bit = 0, the corresponding position of the destination is cleared.

When the operation produces a NaN, its value is determined as follows.

Source Operands (in either order) NaN Result!
QNaN Any non-NaN floating-point value Value of QNaN
(or single-operand instruction)
SNaN Any non-NaN floating-point value Value of SNaN,
(or single-operand instruction) converted to a QNaN?
QNaN QNaN First operand
QNaN SNaN First operand
(converted to QNaN if SNaN
SNaN SNaN First operand
converted to a QNaN?

Note: 1. A NaN result produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.

For each addition occurring in either the second or third step, for the purpose of NaN propagation, the
addend of lower bit index is considered to be the first of the two operands. For example, when both
multiplications produce NaNs, the one that corresponds to bits [64:0] is written to all indicated fields
of the destination, regardless of how those NaNs were generated from the sources. When the high-
order multiplication produces NaNs and the low-order multiplication produces infinities of opposite
signs, the real indefinite QNaN (produced as the sum of the infinities) is written to the destination.

NaNs in source operands or in computational results result in at least one NaN in the destination. For
the 256-bit version, NaNs are propagated within the two independent dot product operations only to
their respective 128-bit results.

Instruction Reference DPPD, VDPPD 140

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

There are legacy and extended forms of the instruction:
DPPD

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VDPPD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

DPPD is an SSE4.1 instruction and VDPPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

DPPD xmm1, xmm2/mem128, imm8 66 OF 3A 41 /rib Selectively multiplies packed double-precision
floating-point values in xmm2 or mem128 by
corresponding values in xmm1, adds interim
products, selectively writes results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VDPPD xmm1, xmm2, xmm3/mem128 Cc4 RXB.00011 X.1111.0.01 41 /rib

Related Instructions
(V)DPPS

Instruction Reference DPPD, VDPPD 141

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions are determined separately for each add-multiply operation.
Unmasked exceptions do not affect the destination

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SMD foating-point #xF | s | s | x| nmasked SIMD featng pant excontion i A OSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

DPPD, VDPPD 142

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
DPPS Dot Product
VDPPS Packed Single-Precision Floating-Point

Computes the dot-product of the input operands. An immediate operand specifies both the input values
and the destination locations to which the products are written.

Selectively multiplies packed single-precision values in a source operand by corresponding values in
another source operand, writes results to a temporary location, adds pairs of results, writes the sums to
additional temporary locations, and selectively writes a cumulative sum to a destination.

Mask bits [7:4] of an 8-bit immediate operand perform multiplicative selection. Each bit selects a 32-
bit segment of the source operands; bit 7 selects bits [127:96], bit 6 selects bits [95:64], bit 5 selects
bits [63:32], and bit 4 selects bits [31:0]. When a mask bit = 1, the corresponding packed single-
precision floating point values are multiplied and the product is written to the corresponding position
of a 128-bit temporary location. When a mask bit = 0, the corresponding position of the temporary
location is cleared.

After multiplication, three pairs of 32-bit values are added and written to temporary locations.

Bits [63:32] and [31:0] of temporary location 1 are added and written to 32-bit temporary location 2;
bits [127:96] and [95:64] of temporary location 1 are added and written to 32-bit temporary location 3;
then the contents of temporary locations 2 and 3 are added and written to 32-bit temporary location 4.

After addition, mask bits [3:0] of the same 8-bit immediate operand perform write selection. Each bit
selects a 32-bit segment of the source operands; bit 3 selects bits [127:96], bit 2 selects bits [95:64], bit
1 selects bits [63:32], and bit 0 selects bits [31:0] of the destination. When a mask bit = 1, the 64-bit
value of the fourth temporary location is written to the corresponding position of the destination.
When a mask bit = 0, the corresponding position of the destination is cleared.

For the 256-bit extended encoding, this process is performed on the upper and lower 128 bits of the
affected YMM registers.

When the operation produces a NaN, its value is determined as follows.

Source Operands (in either order) NaN Result’
QNaN Any non-NaN floating-point value Value of QNaN
(or single-operand instruction)
SNaN Any non-NaN floating-point value Value of SNaN,
(or single-operand instruction) converted to a QNaN?
QNaN QNaN First operand
QNaN SNaN First operand
(converted to QNaN if SNaN
SNaN SNaN First operand
converted to a QNaN?

Note: 1. A NaN result produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.

Instruction Reference DPPS, VDPPS 143

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

For each addition occurring in either the second or third step, for the purpose of NaN propagation, the
addend of lower bit index is considered to be the first of the two operands. For example, when all four
multiplications produce NaNs, the one that corresponds to bits [31:0] is written to all indicated fields
of the destination, regardless of how those NaNs were generated from the sources. When the two
highest-order multiplication produce NaNs and the two lowest-low-order multiplications produce
infinities of opposite signs, the real indefinite QNaN (produced as the sum of the infinities) is written
to the destination.

NaNs in source operands or in computational results result in at least one NaN in the destination. For
the 256-bit version, NaNs are propagated within the two independent dot product operations only to
their respective 128-bit results. There are legacy and extended forms of the instruction:

DPPS

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VDPPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

DPPS is an SSE4.1 instruction and VDPPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_ 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

DPPS xmm1, xmm2/mem128, imm8 66 OF 3A 40 /rib Selectively multiplies packed single-precision
floating-point values in xmm2 or mem128 by
corresponding values in xmm1, adds interim
products, selectively writes results to xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VDPPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 40 /rib
VDPPS ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00011 X.src.1.01 40 /rib

Related Instructions
(V)DPPD

Instruction Reference DPPS, VDPPS 144

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions are determined separately for each add-multiply operation.
Unmasked exceptions do not affect the destination

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pontexception whle O OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

DPPS, VDPPS 145

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
EXTRACTPS Extract
VEXTRACTPS Packed Single-Precision Floating-Point

Copies one of four packed single-precision floating-point values from a source XMM register to a
general purpose register or a 32-bit memory location.

Bits [1:0] of an immediate byte operand specify the location of the 32-bit value that is copied. 00b
corresponds to the low word of the source register and 11b corresponds to the high word of the source
register. Bits [7:2] of the immediate operand are ignored.

There are legacy and extended forms of the instruction:
EXTRACTPS

The source operand is an XMM register. The destination can be a general purpose register or a 32-bit
memory location. A 32-bit single-precision value extracted to a general purpose register is zero-
extended to 64-bits.

VEXTRACTPS
The extended form of the instruction has 128-bit encoding.
XMM Encoding

The source operand is an XMM register. The destination can be a general purpose register or a 32-bit
memory location.

EXTRACTPS is an SSE4.1 instruction and VEXTRACTPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
(see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

EXTRACTPS reg32/mem32, xmm1 66 OF 3A 17 /rib Extract the single-precision floating-point

imm8 element of xmm1 specified by imm8 to
reg32/mem32.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VEXTRACTPS reg32/mem32, xmm1, imm8 C4 RXB.00011 X.1111.0.01 17 Irib

Related Instructions
(V)INSERTPS

Instruction Reference EXTRACTPS, VEXTRACTPS 146

AMDZU

26568—Rev. 3.11—December 2010

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vvvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

N nnn

NDnnnn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

(0)]

Instruction execution caused a page fault.

Alignment check, #AC

X X[X|X| X[X[X|X|> > > >>0nn

Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

EXTRACTPS, VEXTRACTPS 147

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
HADDPD Horizontal Add
VHADDPD Packed Double-Precision Floating-Point

Adds adjacent pairs of double-precision floating-point values in two source operands and writes the
sums to a destination.

There are legacy and extended forms of the instruction:

HADDPD

Adds the packed double-precision values in bits [127:64] and bits [63:0] of the first source XMM
register and writes the sum to bits [63:0] of the destination; adds the corresponding doublewords of the
second source XMM register or a 128-bit memory location and writes the sum to bits [127:64] of the
destination. The first source register is also the destination. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VHADDPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Adds the packed double-precision values in bits [127:64] and bits [63:0] of the first source XMM
register and writes the sum to bits [63:0] of the destination XMM register; adds the corresponding
doublewords of the second source XMM register or a 128-bit memory location and writes the sum to
bits [127:64] of the destination. Bits [255:128] of the YMM register that corresponds to the destination
are cleared.

YMM Encoding

Adds the packed double-precision values in bits [127:64] and bits [63:0] of the of the first source
YMM register and writes the sum to bits [63:0] of the destination YMM register; adds the
corresponding doublewords of the second source YMM register or a 256-bit memory location and
writes the sum to bits [127:64] of the destination. Performs the same process for the upper 128 bits of
the sources and destination.

HADDPD is an SSE3 instruction and VHADDPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE3] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description
HADDPD xmm1, xmm2/mem128 66 OF 7C /r Adds adjacent pairs of double-precision values in xmm1
and xmm2 or mem128. Writes the sums to xmm1.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VHADDPD xmm?1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 7CIr
VHADDPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 7CIr

Related Instructions
(V)HADDPS, (V)HSUBPD, (V)HSUBPS

Instruction Reference HADDPD, VHADDPD 148

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pont exception whle CRa OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

HADDPD, VHADDPD 149

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
HADDPS Horizontal Add
VHADDPS Packed Single-Precision

Adds adjacent pairs of single-precision floating-point values in two source operands and writes the
sums to a destination.

There are legacy and extended forms of the instruction:

HADDPS

Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source XMM
register and writes the sum to bits [31:0] of the destination; adds the packed single-precision values in
bits [127:96] and bits [95:64] of the first source register and writes the sum to bits [63:32] of the
destination. Adds the corresponding values in the second source XMM register or a 128-bit memory
location and writes the sum to bits [95:64] and [127:96] of the destination. The first source register is
also the destination. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VHADDPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source XMM
register and writes the sum to bits [31:0] of the destination XMM register; adds the packed single-
precision values in bits [127:96] and bits [95:64] of the first source register and writes the sum to bits
[63:32] of the destination. Adds the corresponding values in the second source XMM register or a
128-bit memory location and writes the sum to bits [95:64] and [127:96] of the destination. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source YMM
register and writes the sum to bits [31:0] of the destination YMM register; adds the packed single-
precision values in bits [127:96] and bits [95:64] of the first source register and writes the sum to bits
[63:32] of the destination. Adds the corresponding values in the second source YMM register or a
256-bit memory location and writes the sums to bits [95:64] and [127:96] of the destination. Performs
the same process for the upper 128 bits of the sources and destination.

HADDPS is an SSE3 instruction and VHADDPS is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 ECX[SSE3] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description
HADDPS xmm1, xmm2/mem128 F2 OF 7C /r Adds adjacent pairs of single-precision values in xmm1
and xmm2 or mem128. Writes the sums to xmm1.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VHADDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.sre.0.11 7CIr
VHADDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 7CIr

Instruction Reference HADDPS, VHADDPS 150

AMDZU

26568—Rev. 3.11—December 2010

Related Instructions

AMDG64 Technology

(V)HADDPD, (V)HSUBPD, (V)HSUBPS

MXCSR Flags Affected
MM | FZ | RC PM UM |OM | ZM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SMD foating-point #xF | s | s | x | nmasked SIME featig part excontion i R OSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

HADDPS, VHADDPS 151

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
HSUBPD Horizontal Subtract
VHSUBPD Packed Double-Precision

Subtracts adjacent pairs of double-precision floating-point values in two source operands and writes
the sums to a destination.

There are legacy and extended forms of the instruction:
HSUBPD
The first source register is also the destination.

Subtracts the packed double-precision value in bits [127:64] from the value in bits [63:0] of the first
source XMM register and writes the difference to bits [63:0] of the destination; subtracts the
corresponding values of the second source XMM register or a 128-bit memory location and writes the
difference to bits [127:64] of the destination. Bits [255:128] of the YMM register that corresponds to
the destination are not affected.

VHSUBPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Subtracts the packed double-precision values in bits [127:64] from the value in bits [63:0] of the first
source XMM register and writes the difference to bits [63:0] of the destination XMM register;
subtracts the corresponding values of the second source XMM register or a 128-bit memory location
and writes the difference to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

YMM Encoding

Subtracts the packed double-precision values in bits [127:64] from the value in bits [63:0] of the of the
first source YMM register and writes the difference to bits [63:0] of the destination YMM register;
subtracts the corresponding values of the second source YMM register or a 256-bit memory location
and writes the difference to bits [127:64] of the destination. Performs the same process for the upper
128 bits of the sources and destination.

HSUBPD is an SSE3 instruction and VHSUBPD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 ECX[SSE3] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

HSUBPD xmm1, xmm2/mem128 66 OF 7D /r Subtracts adjacent pairs of double-precision floating-
point values in xmm1 and xmm2 or mem128. Writes the
differences to xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VHSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 7D Ir
VHSUBPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 7D Ir

Instruction Reference HSUBPD, VHSUBPD 152

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Related Instructions
(V)HSUBPS, (V)HADDPD, (V)HADDPS

MXCSR Flags Affected

MM | FZ | RC PM | UM |OM | zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

RN
o

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] | = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x | Snmaskes SIUD foatine pont exceptor while CRAOSXMMEXCPT = 1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference HSUBPD, VHSUBPD 153

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
HSUBPS Horizontal Subtract Packed Single
VHSUBPS

Subtracts adjacent pairs of single-precision floating-point values in two source operands and writes the
differences to a destination.

There are legacy and extended forms of the instruction:

HSUBPS

Subtracts the packed single-precision values in bits [63:32] from the values in bits [31:0] of the first
source XMM register and writes the difference to bits [31:0] of the destination; subtracts the packed
single-precision values in bits [127:96] from the value in bits [95:64] of the first source register and
writes the difference to bits [63:32] of the destination. Subtracts the corresponding values of the
second source XMM register or a 128-bit memory location and writes the differences to bits [95:64]
and [127:96] of the destination. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VHSUBPS
The extended form of the instruction has both 128-bit and 256-bit encoding.

XMM Encoding

Subtracts the packed single-precision values in bits [63:32] from the value in bits [31:0] of the first
source XMM register and writes the difference to bits [31:0] of the destination XMM register;
subtracts the packed single-precision values in bits [127:96] from the value bits [95:64] of the first
source register and writes the sum to bits [63:32] of the destination. Subtracts the corresponding values
of the second source XMM register or a 128-bit memory location and writes the differences to bits
[95:64] and [127:96] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

YMM Encoding

Subtracts the packed single-precision values in bits [63:32] from the value in bits [31:0] of the first
source YMM register and writes the difference to bits [31:0] of the destination YMM register;
subtracts the packed single-precision values in bits [127:96] from the value in bits [95:64] of the first
source register and writes the difference to bits [63:32] of the destination. Subtracts the corresponding
values of the second source YMM register or a 256-bit memory location and writes the differences to
bits [95:64] and [127:96] of the destination. Performs the same process for the upper 128 bits of the
sources and destination.

HSUBPS is an SSE3 instruction and VHSUBPS is an AVX instruction. Support for these instructions

is indicated by CPUID Fn0000 00001 ECX[SSE3] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description
HSUBPS xmm1, xmm2/mem128 F2 OF 7D /r Subtracts adjacent pairs of values in xmm1 and xmm2
or mem128. Writes differences to xmm1.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VHSUBPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 7D Ir
VHSUBPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 7D Ir

Instruction Reference HSUBPS; VHSUBPS 154

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Related Instructions
(V)HSUBPD, (V)HADDPD, (V)HADDPS

MXCSR Flags Affected

MM | FZ | RC PM | UM |OM | zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

RN
o

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] | = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x | Snmaskes SIUD foatine pont exceptor while CRAOSXMMEXCPT = 1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference HSUBPS; VHSUBPS 155

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
INSERTPS Insert
VINSERTPS Packed Single-Precision Floating-Point

Copies a selected single-precision floating-point value from a source operand to a selected location in
a destination register and optionally clears selected elements of the destination. The legacy and
extended forms of the instruction treat the remaining elements of the destination in different ways.

Selections are specified by three fields of an immediate 8-bit operand:
7 |6 | 5] 43][2]1]o0
COUNT_S | COUNT D ZMASK

COUNT _S — The binary value of the field specifies a 32-bit element of a source register, counting
upward from the low-order doubleword. COUNT S is used only for register source; when the source
1s a memory operand, COUNT_S =0.

COUNT D — The binary value of the field specifies a 32-bit destination element, counting upward
from the low-order doubleword.

ZMASK — Set a bit to clear a 32-bit element of the destination.

There are legacy and extended forms of the instruction:
INSERTPS

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

When the source operand is a register, the instruction copies the 32-bit element of the source specified
by Count_S to the location in the destination specified by Count D, and clears destination elements as
specified by ZMask. Elements of the destination that are not cleared are not affected.

When the source operand is a memory location, the instruction copies a 32-bit value from memory, to
the location in the destination specified by Count D, and clears destination elements as specified by
ZMask. Elements of the destination that are not cleared are not affected.

VINSERTPS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 32-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

When the second source operand is a register, the instruction copies the 32-bit element of the source
specified by Count S to the location in the destination specified by Count D. The other elements of
the destination are either copied from the first source operand or cleared as specified by ZMask.

When the second source operand is a memory location, the instruction copies a 32-bit value from the
source to the location in the destination specified by Count D. The other elements of the destination
are either copied from the first source operand or cleared as specified by ZMask.

Instruction Reference INSERTPS, VINSERTPS 156

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

INSERTPS is an SSE4.1 instruction and VINSERTPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
(see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

INSERTPS xmm1, xmm2/mem32, imm8 66 OF 3A 21 /rib Insert a selected single-precision
floating-point value from xmm2 or
from mem32 at a selected location in
xmm<1 and clear selected elements of
xmm1. Selections specified by imm8.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VINSERTPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 21 Irib
Related Instructions
(V)EXTRACTPS
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference INSERTPS, VINSERTPS 157

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
LDDQU Load
VLDDQU Unaligned Double Quadword

Loads unaligned double quadwords from a memory location to a destination register.

Like the (V)MOVUPD instructions, (V)LDDQU loads a 128-bit or 256-bit operand from an unaligned
memory location. However, to improve performance when the memory operand is actually
misaligned, (V)LDDQU may read an aligned 16 or 32 bytes to get the first part of the operand, and an
aligned 16 or 32 bytes to get the second part of the operand. This behavior is implementation-specific,
and (V)LDDQU may only read the exact 16 or 32 bytes needed for the memory operand. If the
memory operand is in a memory range where reading extra bytes can cause performance or functional
issues, use (V)MOVUPD instead of (V)LDDQU.

Memory operands that are not aligned on 16-byte or 32-byte boundaries do not cause general-
protection exceptions.

There are legacy and extended forms of the instruction:
LDDQU

The source operand is an unaligned 128-bit memory location. The destination operand is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination register are not
affected.

vVLDDQU
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The source operand is an unaligned 128-bit memory location. The destination operand is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination register are cleared.

YMM Encoding

The source operand is an unaligned 256-bit memory location. The destination operand is a YMM
register.

LDDQU is an SSE3 instruction and VLDDQU is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 ECX[SSE3] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description
LDDQU xmm1, mem128 F20F FO/r Loads a 128-bit value from an unaligned mem128 to
xmmf1.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VLDDQU xmm1, mem128 C4 RXB.00001 X.1111.0.11 FO /r
VLDDQU ymm1, mem256 C4 RXB.00001 XA111.1.11 FO /r

Instruction Reference LDDQU, VLDDQU 158

AMDZU

26568—Rev. 3.11—December 2010

Related Instructions

AMDG64 Technology

(V)MOVDQU
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.vwwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

LDDQU, VLDDQU 159

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
LDMXCSR Load
VLDMXCSR MXCSR Control/Status Register

Loads the MXCSR register with a 32-bit value from memory.

For both legacy LDMXCSR and extended VLDMXCSR forms of the instruction, the source operand
is a 32-bit memory location and the destination operand is the MXCSR.

If an MXCSR load clears a SIMD floating-point exception mask bit and sets the corresponding
exception flag bit, a SIMD floating-point exception is not generated immediately. An exception is
generated only when the next instruction that operates on an XMM or YMM register operand and
causes that particular SIMD floating-point exception to be reported executes.

A general protection exception occurs if the instruction attempts to load non-zero values into reserved
MXCSR bits. Software can use MXCSR_MASK to determine which bits are reserved. For details, see
“128-Bit, 64-Bit, and x87 Programming” in Volume 2.

The MXCSR register is described in “Registers” in Volume 1.

LDMXCSR is an SSE instruction and VLDMXCSR is an AVX instruction. Support for these
instructions is indicated by CPUID feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] (see the CPUID Specification, order# 25481).

Mnemonic Opcode Description
LDMXCSR mem32 OF AE 72 Loads MXCSR register with 32-bit value from memory.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VLDMXCSR mem32 C4 RXB.00001 X.1111.0.00 AE /2

Related Instructions
(V)STMXCSR

Instruction Reference LDMXCSR, VLDMXCSR 160

AMDZU

26568—Rev. 3.11—December 2010

MXCSR FIa_c_;s Affected

AMDG64 Technology

MM | FZ RC PM UM | OM|ZM DM | IM (DAZ| PE | UE | OE | ZE | DE | IE
M M M M M M M M M M M M M M M M M
17 | 15 | 14 | 13 | 12 | 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
S S S |CRO.EM=1.
. S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.wwvwv ! =1111b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Null data segment used to reference memory.
S S X | Attempt to load non-zero values into reserved MXCSR bits
Page fault, #PF X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

Instruction Reference

LDMXCSR, VLDMXCSR 161

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MASKMOVDQU Masked Move
VMASKMOVDQU Double Quadword Unaligned

Moves bytes from the first source operand to a memory location specified by the DS:rDI register.
Bytes are selected by mask bits in the second source operand. The memory location may be unaligned.

The mask consists of the most significant bit of each byte of the second source register.
When a mask bit = 1, the corresponding byte of the first source register is written to the destination;
when a mask bit = 0, the corresponding byte is not written.

An all-zero mask value results in the following behavior:
* No data is written to memory.
* Code and data breakpoints are not guaranteed to be signaled in all implementations.

* Exceptions associated with memory addressing and page faults are not guaranteed to be signaled in
all implementations.

The instruction implicitly uses weakly-ordered, write-combining buffering for the data, as described in
“Buffering and Combining Memory Writes” in Volume 2. For data that is shared by multiple
processors, this instruction should be used together with a fence instruction in order to ensure data
coherency (see “Cache and TLB Management” in Volume 2).

There are legacy and extended forms of the instruction:

MASKMOVDQU

The first source operand is an XMM register and the second source operand is another XMM register.
The destination is a 128-bit memory location.

VMASKMOVDQU
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is another XMM register.
The destination is a 128-bit memory location.

MASKMOVDQU is an SSE2 instruction and VMASKMOVDQU is an AVX instruction. Support for
these instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and
Fn0000 00001 ECX[AVX] (see the CPUID Specification, order# 25481).

Mnemonic Opcode Description
MASKMOVDQU xmm1, xmm?2 66 OF F7 /r Move bytes selected by a mask value in xmm2 from
xmm1 to the memory location specified by DS:rDI.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMASKMOVDQU xmm1, xmm2 C4 RXB.00001 X.1111.0.01 F7Ir

Related Instructions
(VIMASKMOVPD, (V)MASKMOVPS

Instruction Reference MASKMOVDQU, VMASKMOVDQU 162

AMDZU

26568—Rev. 3.11—December 2010

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vvvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

N unn

N v unn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Page fault, #PF

X[X|X|X|X| X[>|>>> > 0nn

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MASKMOVDQU, VMASKMOVDQU 163

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MAXPD Maximum
VMAXPD Packed Double-Precision Floating-Point

Compares each packed double-precision floating-point value of the first source operand to the
corresponding value of the second source operand and writes the numerically greater value into the
corresponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MAXPD
Compares two pairs of packed double-precision floating-point values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128)]
of the YMM register that corresponds to the destination are not affected.

VMAXPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Compares two pairs of packed double-precision floating-point values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding
Compares four pairs of packed double-precision floating-point values.

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a YMM register.

MAXPD is an SSE2 instruction and VMAXPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

MAXPD xmm1, xmm2/mem128 66 OF 5F /r Compares two pairs of packed double-precision values in
xmm1 and xmm2 or mem128 and writes the greater value
to the corresponding position in xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMAXPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5F /r
VMAXPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5F /r

Instruction Reference MAXPD, VMAXPD 164

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Related Instructions
(V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flag_;s Affected
MM | FZ RC PM|{UM | OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

RN
o

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] | = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x | Snmaskes SIUD foatine pont exceptor while CRAOSXMMEXCPT = 1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.

Denormalized operand, DE | S S X | A source operand was a denormal value.
X — AVX and SSE exception

A — AVX exception

S — SSE exception

Instruction Reference MAXPD, VMAXPD 165

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MAXPS Maximum
VMAXPS Packed Single-Precision Floating-Point

Compares each packed single-precision floating-point value of the first source operand to the
corresponding value of the second source operand and writes the numerically greater value into the
corresponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MAXPS
Compares four pairs of packed single-precision floating-point values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128)]
of the YMM register that corresponds to the destination are not affected.

VMAXPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Compares four pairs of packed single-precision floating-point values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding
Compares eight pairs of packed single-precision floating-point values.

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a YMM register.

MAXPS is an SSE instruction and VMAXPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

MAXPS xmm1, xmm2/mem128 OF 5F /r Compares four pairs of packed single-precision values in
xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMAXPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5F /r
VMAXPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5F /r

Instruction Reference MAXPS, VMAXPS 166

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Related Instructions
(V)IMAXPD, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flag_;s Affected
MM | FZ RC PM|{UM | OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

RN
o

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] | = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x | Snmaskes SIUD foatine pont exceptor while CRAOSXMMEXCPT = 1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.

Denormalized operand, DE | S S X | A source operand was a denormal value.
X — AVX and SSE exception

A — AVX exception

S — SSE exception

Instruction Reference MAXPS, VMAXPS 167

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MAXSD Maximum
VMAXSD Scalar Double-Precision Floating-Point

Compares the scalar double-precision floating-point value in the low-order 64 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically greater
value into the low-order 64 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MAXSD

The first source operand is an XMM register. The second source operand is either another XMM
register or a 64-bit memory location. The first source register is also the destination. When the second
source is a 64-bit memory location, the upper 64 bits of the first source register are copied to the
destination. Bits [127:64] of the destination are not affected. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VMAXSD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 64-bit memory location. The destination is an XMM register. When the second source is a
64-bit memory location, the upper 64 bits of the first source register are copied to the destination. Bits
[127:64] of the destination are copied from bits [127:64] of the first source. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

MAXSD is an SSE2 instruction and VMAXSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

MAXSD xmm1, xmm2/mem64 F2 OF 5F /r Compares a pair of scalar double-precision values in the
low-order 64 bits of xmm1 and xmm2 or memé64 and
writes the greater value to the low-order 64 bits of xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMAXSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5F Ir

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

Instruction Reference MAXSD, VMAXSD 168

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SD foatngrpoi, 1 | 5 | s | x | Somasses SIUD foatine pont excepton while CRE OSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MAXSD, VMAXSD 169

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MAXSS Maximum
VMAXSS Scalar Single-Precision Floating-Point

Compares the scalar single-precision floating-point value in the low-order 32 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically greater
value into the low-order 32 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MAXSS

The first source operand is an XMM register. The second source operand is either another XMM
register or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of
the destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VMAXSS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 32-bit memory location. The destination is an XMM register. Bits [127:32] of the
destination are copied from the first source operand. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MAXSS is an SSE instruction and VMAXSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_ 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

MAXSS xmm1, xmm2/mem32 F3 OF 5F /r Compares a pair of scalar single-precision values in the
low-order 32 bits of xmm1 and xmm2 or mem32 and
writes the greater value to the low-order 32 bits of xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMAXSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5F Ir

Related Instructions
(V)IMAXPD, (V)MAXPS, (V)MAXSD, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

Instruction Reference MAXSS, VMAXSS 170

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SD foatngrpoi, 1 | 5 | s | x | Somasses SIUD foatine pont excepton while CRE OSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MAXSS, VMAXSS 171

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MINPD Minimum
VMINPD Packed Double-Precision Floating-Point

Compares each packed double-precision floating-point value of the first source operand to the
corresponding value of the second source operand and writes the numerically lesser value into the
corresponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MINPD
Compares two pairs of packed double-precision floating-point values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128)]
of the YMM register that corresponds to the destination are not affected.

VMINPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Compares two pairs of packed double-precision floating-point values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding
Compares four pairs of packed double-precision floating-point values.

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a YMM register.

MINPD is an SSE2 instruction and VMINPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

MINPD xmm1, xmm2/mem128 66 OF 5D /r Compares two pairs of packed double-precision values in
xmm1 and xmm2 or mem128 and writes the lesser value
to the corresponding position in xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMINPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5D /Ir
VMINPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5D /r

Instruction Reference MINPD, VMINPD 172

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Related Instructions
(VIMAXPD, (V)IMAXPS, (VIMAXSD, (V)MAXSS, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flag_;s Affected
MM | FZ RC PM|{UM | OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

RN
o

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] | = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x | Snmaskes SIUD foatine pont exceptor while CRAOSXMMEXCPT = 1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.

Denormalized operand, DE | S S X | A source operand was a denormal value.
X — AVX and SSE exception

A — AVX exception

S — SSE exception

Instruction Reference MINPD, VMINPD 173

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MINPS Minimum
VMINPS Packed Single-Precision Floating-Point

Compares each packed single-precision floating-point value of the first source operand to the
corresponding value of the second source operand and writes the numerically lesser value into the
corresponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MINPS
Compares four pairs of packed single-precision floating-point values.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source operand is also the destination. Bits [255:128)]
of the YMM register that corresponds to the destination are not affected.

VMINPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Compares four pairs of packed single-precision floating-point values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding
Compares eight pairs of packed single-precision floating-point values.

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a YMM register.

MINPS is an SSE instruction and VMINPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

MINPS xmm1, xmm2/mem128 OF 5D /r Compares four pairs of packed single-precision values in
xmm1 and xmm2 or mem128 and writes the lesser values
to the corresponding positions in xmm?1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMINPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5D /Ir
VMINPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5D /r

Instruction Reference MINPS, VMINPS 174

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Related Instructions
(V)IMAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINSD, (V)MINSS

MXCSR Flag_;s Affected
MM | FZ RC PM|{UM | OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

RN
o

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] | = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x | Snmaskes SIUD foatine pont exceptor while CRAOSXMMEXCPT = 1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.

Denormalized operand, DE | S S X | A source operand was a denormal value.
X — AVX and SSE exception

A — AVX exception

S — SSE exception

Instruction Reference MINPS, VMINPS 175

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MINSD Minimum
VMINSD Scalar Double-Precision Floating-Point

Compares the scalar double-precision floating-point value in the low-order 64 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically lesser value
into the low-order 64 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MINSD

The first source operand is an XMM register. The second source operand is either another XMM
register or a 64-bit memory location. The first source register is also the destination. Bits [127:64] of
the destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VMINSD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 64-bit memory location. The destination is an XMM register. Bits [127:64] of the
destination are copied from the first source operand. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MINSD is an SSE2 instruction and VMINSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

MINSD xmm1, xmm2/memé64 F2 OF 5D /r Compares a pair of scalar double-precision values in the
low-order 64 bits of xmm1 and xmm2 or mem64 and
writes the lesser value to the low-order 64 bits of xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMINSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5D /r

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSS

Instruction Reference MINSD, VMINSD 176

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SD foatngrpoi, 1 | 5 | s | x | Somasses SIUD foatine pont excepton while CRE OSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MINSD, VMINSD 177

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MINSS Minimum
VMINSS Scalar Single-Precision Floating-Point

Compares the scalar single-precision floating-point value in the low-order 32 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically lesser value
into the low-order 32 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MINSS

The first source operand is an XMM register. The second source operand is either another XMM
register or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of
the destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VMINSS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 32-bit memory location. The destination is an XMM register. Bits [127:32] of the
destination are copied from the first source operand. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MINSS is an SSE instruction and VMINSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_ 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

MINSS xmm1, xmm2/mem32 F3 OF 5D /r Compares a pair of scalar single-precision values in the
low-order 32 bits of xmm1 and xmm2 or mem32 and
writes the lesser value to the low-order 32 bits of xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMINSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5D /r

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD

Instruction Reference MINSS, VMINSS 178

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SD foatngrpoi, 1 | 5 | s | x | Somasses SIUD foatine pont excepton while CRE OSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MINSS, VMINSS 179

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVAPD Move Aligned
VMOVAPD Packed Double-Precision Floating-Point

Moves packed double-precision floating-point values. Values can be moved from a register or memory
location to a register; or from a register to a register or memory location.

A memory operand that is not aligned causes a general-protection exception.

There are legacy and extended forms of the instruction:
MOVAPD

Moves two double-precision floating-point values. There are encodings for each type of move.

e The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVAPD

The extended form of the instruction has both 128-bit and 256-bit encoding.

XMM Encoding

Moves two double-precision floating-point values. There are encodings for each type of move.

e The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves four double-precision floating-point values. There are encodings for each type of move.

e The source operand is either a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

e The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

MOVAPD is an SSE2 instruction and VMOVAPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Instruction Reference MOVAPD, VMOVAPD 180

AMDZU

26568—Rev. 3.11—December 2010

Mnemonic
MOVAPD xmm1, xmm2/mem128

MOVAPD xmm1/mem128, xmm?2

Mnemonic

VMOVAPD xmm1, xmm2/mem128
VMOVAPD xmm1/mem128, xmm2
VMOVAPD ymm1, ymm2/mem256
VMOVAPD ymm1/mem256, ymm2
Related Instructions

AMDG64 Technology

Opcode Description
66 OF 28 /r Moves two packed double-precision floating-point

values from xmm2 or mem128 to xmm?1.

66 OF 29 /r Moves two packed double-precision floating-point

values from xmm1 or mem128 to xmm2.
Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.01 28 Ir
C4 RXB.00001 X.1111.0.01 29 /r
C4 RXB.00001 X.1111.1.01 28 Ir
C4 RXB.00001 X.1111.1.01 29 /r

(V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A | VEX.vwwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
S S S | Memory operand not aligned on 16-byte boundary while MXCSR.MM = 0.
General protection, #GP S S X | Write to a read-only data segment.
A VEX256: Memory operand not 32-byte al?gned.
VEX128: Memory operand not 16-byte aligned.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVAPD, VMOVAPD 181

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVAPS Move Aligned
VMOVAPS Packed Single-Precision Floating-Point

Moves packed single-precision floating-point values. Values can be moved from a register or memory
location to a register; or from a register to a register or memory location.

A memory operand that is not aligned causes a general-protection exception.
There are legacy and extended forms of the instruction:

MOVAPS

Moves four single-precision floating-point values.

There are encodings for each type of move.

e The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVAPS

The extended form of the instruction has both 128-bit and 256-bit encoding.

XMM Encoding

Moves four single-precision floating-point values. There are encodings for each type of move.

e The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves eight single-precision floating-point values. There are encodings for each type of move.

e The source operand is either a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

* The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

MOVAPS is an SSE instruction and VMOVAPS is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Reference MOVAPS, VMOVAPS 182

AMDZU

26568—Rev. 3.11—December 2010

Mnemonic

MOVAPS xmm1, xmm2/mem128

MOVAPS xmm1/mem128, xmm?2

Mnemonic

VMOVAPS xmm1, xmm2/mem128
VMOVAPS xmm1/mem128, xmm2
VMOVAPS ymm1, ymm2/mem256
VMOVAPS ymm1/mem256, ymm?2

Related Instructions

AMDG64 Technology

Opcode Description
OF 28 /r Moves four packed single-precision floating-point

values from xmm2 or mem128 to xmmf1.

OF 29 /r Moves four packed single-precision floating-point

values from xmm1 or mem128 to xmm?2.

Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.00 28 /r
C4 RXB.00001 X.1111.0.00 29 /r
C4 RXB.00001 X.1111.1.00 28 Ir
C4 RXB.00001 X.1111.1.00 29 /r

(V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,

(V)MOVUPS

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

n|lnl>

0nln| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vvwv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

Memory operand not aligned on 16-byte boundary while MXCSR.MM = 0.

DO nnn

DO nn

Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.

Page fault, #PF

X[X| T [X|O|X|X|X|X|> > >>0n®

Instruction execution caused a page fault.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

Instruction Reference

MOVAPS, VMOVAPS 183

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVD Move
VMOVD Doubleword or Quadword

Moves 32-bit and 64-bit values. A value can be moved from a general-purpose register or memory
location to the corresponding low-order bits of an XMM register, with zero-extension to 128 bits; or
from the low-order bits of an XMM register to a general-purpose register or memory location.

The quadword form of this instruction is distinct from the differently-encoded (V)MOVQ instruction.
There are legacy and extended forms of the instruction:

MOVD
There are two encodings for 32-bit moves, characterized by REX.W = 0.

e The source operand is either a 32-bit general-purpose register or a 32-bit memory location. The
destination is an XMM register. The 32-bit value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either a 32-bit general-purpose register
or a 32-bit memory location.

There are two encodings for 64-bit moves, characterized by REX.W = 0.

e The source operand is either a 64-bit general-purpose register or a 64-bit memory location. The
destination is an XMM register. The 64-bit value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either a 64-bit general-purpose register
or a 64-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVD

The extended form of the instruction has 128-bit encoding.
There are two encodings for 32-bit moves, characterized by VEX.W = 0.

e The source operand is either a 32-bit general-purpose register or a 32-bit memory location. The
destination is an XMM register. The 32-bit value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either a 32-bit general-purpose register
or a 32-bit memory location.

There are two encodings for 64-bit moves, characterized by VEX.W = 1.

e The source operand is either a 64-bit general-purpose register or a 64-bit memory location. The
destination is an XMM register. The 64-bit value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either a 64-bit general-purpose register
or a 64-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVD is an SSE2 instruction and VMOVD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Reference MOVD, VMOVD 184

AMDZU

26568—Rev. 3.11—December 2010

Mnemonic
MOVD xmm, reg32/mem32
MOVQ xmm, reg64/mem64
MOVD reg32/mem32, xmm
MOVQ reg64/mem64, xmm
Mnemonic

VMOVD xmm, reg32/mem32
VMOVQ xmm, reg64/mem64
VMOVD reg32/mem32, xmm
VMOVQ reg64/mem64, xmm
Related Instructions

Opcode
66 (WO0) OF 6E /r
66 (W1) OF 6E /r
66 (WO0) OF 7E /r
66 (W1) OF 7E /r

(V)MOVDQA, (VMOVDQU, (V)MOVQ

Exceptions

AMDG64 Technology

Description
Move a 32-bit value from reg32/mem32 to xmm.
Move a 64-bit value from reg64/mem64 to xmm.
Move a 32-bit value from xmm to reg32/mem32
Move a 64-bit value from xmm to reg64/memé64.

Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
c4 RXB.00001 0.1111.0.01 6E /r
C4 RXB.00001 1.1111.0.01 6E /r
c4 RXB.00001 0.1111.1.01 TE Ir
C4 RXB.00001 1.1111.1.01 TE Ir

Exception

Mode

Real

Virt |Prot

Cause of Exception

X | Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0 onl >

0l nl > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vvwv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

nNnnunnn

General protection, #GP

nNnnnnn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

(0)]

Instruction execution caused a page fault.

Alignment check, #AC

X X[X|X|X|X[X|X|> > >>>0nn

Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVD, VMOVD 185

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVDDUP Move and Duplicate
VMOVDDUP Double-Precision Floating-Point

Moves and duplicates double-precision floating-point values.
There are legacy and extended forms of the instruction:

MOVDDUP

Moves and duplicates one quadword value.

The source operand is either the low 64 bits of an XMM register or the address of the least-significant
byte of 64 bits of data in memory. The destination is another XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VMOVDDUP

The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Moves and duplicates one quadword value.

The source operand is either the low 64 bits of an XMM register or the address of the least-significant
byte of 64 bits of data in memory. The destination is another XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding
Moves and duplicates two even-indexed quadword values.

The source operand is either a YMM register or the address of the least-significant byte of 256 bits of
data in memory. The destination is another YMM register.Bits [63:0] of the source are written to bits
[127:64] and [63:0] of the destination; bits [191:128] of the source are written to bits [255:192] and
[191:128] of the destination.

MOVDDUP is an SSE3 instruction and VMOVDDUP is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE3] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

MOVDDUP xmm1, xmm2/mem64 F2 0F 12/r Moves two copies of the low 64 bits of xmm2 or
mem64 to xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
MOVDDUP xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.11 12 /r
MOVDDUP ymm1, ymm2/mem256 C4 RXB.00001 XA111.1.11 12 /r

Related Instructions
(V)MOVSHDUP, (V)MOVSLDUP

Instruction Reference MOVDDUP, VMOVDDUP 186

AMDZU

26568—Rev. 3.11—December 2010

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vvvv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Page fault, #PF

w

Instruction execution caused a page fault.

Alignment check, #AC

X [X|X|X|X[X|X|>Z|> > >0w0n

Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MOVDDUPFP, VMOVDDUP 187

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVDQA Move Aligned
VMOVDQA Double Quadword

Moves aligned packed integer values. Values can be moved from a register or a memory location to
another register, or from a register to another register or a memory location.

A memory operand that is not aligned causes a general-protection exception.

There are legacy and extended forms of the instruction:
MOVDQA

Moves two aligned quadwords (128-bit move). There are two encodings.

e The source operand is an XMM register. The destination is either another XMM register or a
128-bit memory location.

e The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
The extended form of the instruction has both 128-bit and 256-bit encoding.
VMOVDQA

XMM Encoding

Moves two aligned quadwords (128-bit move). There are two encodings.

* The source operand is an XMM register. The destination is either another XMM register or a
128-bit memory location.

* The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves four aligned quadwords (256-bit move). There are two encodings.

* The source operand is a YMM register. The destination is either another YMM register or a 256-bit
memory location.

e The source operand is either a YMM register or a 256-bit memory location. The destination is a
YMM register.

MOVDQA is an SSE2 instruction and VMOVDQA is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Instruction Reference MOVDQA, VMOVDQA 188

AMDZU

26568—Rev. 3.11—December 2010

Mnemonic
MOVDQA xmm1, xmm2/mem128

MOVDQA xmm1/mem128, xmm?2

Mnemonic

VMOVDQA xmm1, xmm2/mem128
VMOVDQA xmm1/mem128, xmm?2
VMOVDQA ymm1, xmm2/mem256
VMOVDQA ymm1/mem256, ymm2
Related Instructions

AMDG64 Technology

Opcode Description

66

66

OF 6F /r Moves aligned packed integer values from xmm2
ormem128 to xmm1.

OF 7F /r Moves aligned packed integer values from xmm1 or
mem128 to xmm?2.

Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.01 6F /r
C4 RXB.00001 X.1111.0.01 6F /r
C4 RXB.00001 X.1111.1.01 TF Ir
C4 RXB.00001 X.1111.1.01 TF Ir

(V)MOVD, (V)MOVDQU, (V)MOVQ

Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A | VEX.vwwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
S S S | Memory operand not aligned on 16-byte boundary while MXCSR.MM = 0.
General protection, #GP S S X | Write to a read-only data segment.
A VEX256: Memory operand not 32-byte al?gned.
VEX128: Memory operand not 16-byte aligned.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVDQA, VMOVDQA 189

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVDQU Move
VMOVDQU Unaligned Double Quadword

Moves unaligned packed integer values. Values can be moved from a register or a memory location to
another register, or from a register to another register or a memory location.

There are legacy and extended forms of the instruction:
MOovDQU

Moves two unaligned quadwords (128-bit move). There are two encodings.

* The source operand is an XMM register. The destination is either another XMM register or a
128-bit memory location.

* The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
The extended form of the instruction has both 128-bit and 256-bit encoding.
VMOVDQU

XMM Encoding

Moves two unaligned quadwords (128-bit move). There are two encodings.

e The source operand is an XMM register. The destination is either another XMM register or a
128-bit memory location.

* The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves four unaligned quadwords (256-bit move). There are two encodings.

* The source operand is a YMM register. The destination is either another YMM register or a 256-bit
memory location.

* The source operand is either a YMM register or a 256-bit memory location. The destination is a
YMM register.

MOVDQU is an SSE2 instruction and VMOVDQU is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Instruction Reference MOVDQU, VMOVDQU 190

AMDZU

26568—Rev. 3.11—December 2010

Mnemonic

MOVDQU xmm1, xmm2/mem128

MOVDQU xmm1/mem128, xmm?2

Mnemonic

VMOVDQU xmm1, xmm2/mem128
VMOVDQU xmm1/mem128, xmm2
VMOVDQU ymm1, xmm2/mem256
VMOVDQU ymm1/mem256, ymm?2

Related Instructions

AMDG64 Technology

Opcode Description
F3 OF 6F /r Moves unaligned packed integer values from xmm2 or

mem128 to xmm1.

F3 OF 7F /r Moves unaligned packed integer values from xmm1 or

mem128 to xmm?2.
Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.10 6F /r
C4 RXB.00001 X.1111.0.10 6F /r
C4 RXB.00001 X.1111.1.10 TF Ir
C4 RXB.00001 X1111.1.10 TF Ir

(V)MOVD, (V)MOVDQA, (V)MOVQ

Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A | VEX.vwwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MOVDQU, VMOVDQU 191

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVHLPS Move High to Low
VMOVHLPS Packed Single-Precision Floating-Point

Moves two packed single-precision floating-point values from the high quadword of an XMM register
to the low quadword of another XMM register.

There are legacy and extended forms of the instruction:
MOVHLPS

The source operand is bits [127:64] of an XMM register. The destination is bits [63:0] of another
XMM register. Bits [127:64] of the destination are not affected. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.

VMOVHLPS
The extended form of the instruction has 128-bit encoding.

The source operands are bits [127:64] of two XMM registers. The destination is a third XMM register.
Bits [127:64] of the first source are moved to bits [127:64] of the destination; bits [127:64] of the
second source are moved to bits [63:0] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MOVHLPS is an SSE instruction and VMOVHLPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description
MOVHLPS xmm1, xmm2 OF 12 /r Moves two packed single-precision floating-point
values from xmm2[127:64] to xmm1[63:0].
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVHLPS xmm1, xmm2, xmm3 C4 RXB.00001 X.src.0.00 12 Ir

Related Instructions

(V)MOVAPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

Instruction Reference MOVHLPS, VMOVHLPS 192

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
] Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MOVHLPS, VMOVHLPS 193

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVHPD Move High
VMOVHPD Packed Double-Precision Floating-Point

Moves a packed double-precision floating-point value. Values can be moved from a 64-bit memory
location to the high-order quadword of an XMM register, or from the high-order quadword of an
XMM register to a 64-bit memory location.

There are legacy and extended forms of the instruction:

MOVHPD

There are two encodings.

e The source operand is a 64-bit memory location. The destination is bits [127:64] of an XMM
register.

e The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVHPD

The extended form of the instruction has two 128-bit encodings.

* There are two source operands. The first source is an XMM register. The second source is a 64-bit
memory location. The destination is an XMM register. Bits [63:0] of the source register are written
to bits [63:0] of the destination; bits [63:0] of the source memory location are written to bits
[127:64] of the destination.

* The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVHPD is an SSE2 instruction and VMOVHPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description
MOVHPD xmm1, mem64 66 OF 16 /r Moves a packed double-precision floating-point value from
mem64 to xmm1[127:64].
MOVHPD memé64, xmm1 66 OF 17 /r Moves a packed double-precision floating-point value from
xmm1[127:64] to mem64.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVHPD xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.01 16 /r
VMOVHPD mem64, xmm1 C4 RXB.00001 X.1111.0.01 17 Ir

Related Instructions
(V)IMOVAPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

Instruction Reference MOVHPD, VMOVHPD 194

AMDZU

26568—Rev. 3.11—December 2010

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vvvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

N unn

N v unn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Page fault, #PF

(0)]

Instruction execution caused a page fault.

Alignment check, #AC

X [X[X|X|X|X[X|>|> > >>0 w0

Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVHPD, VMOVHPD 195

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVHPS Move High
VMOVHPS Packed Single-Precision Floating-Point

Moves two packed single-precision floating-point value. Values can be moved from a 64-bit memory
location to the high-order quadword of an XMM register, or from the high-order quadword of an
XMM register to a 64-bit memory location.

There are legacy and extended forms of the instruction:
MOVHPS

There are two encodings.

e The source operand is a 64-bit memory location. The destination is bits [127:64] of an XMM
register.

e The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVHPS

The extended form of the instruction has two 128-bit encodings.

* There are two source operands. The first source is an XMM register. The second source is a 64-bit
memory location. The destination is an XMM register. Bits [63:0] of the source register are written
to bits [63:0] of the destination; bits [63:0] of the source memory location are written to bits
[127:64] of the destination.

* The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVHPS is an SSE instruction and VMOVHPS is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description
MOVHPS xmm1, mem64 OF 16 /r Moves two packed double-precision floating-point value from
mem64 to xmm1[127:64].
MOVHPS mem64, xmm1 OF 17 /Ir Moves two packed double-precision floating-point value from
xmm1[127:64] to mem64.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVHPS xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.00 16 /r
VMOVHPS mem64, xmm1 C4 RXB.00001 X.1111.0.00 17 Ir

Instruction Reference MOVHPS, VMOVHPS 196

AMDZU

26568—Rev. 3.11—December 2010

Related Instructions

AMDG64 Technology

(V)MOVAPS, (V)MOVHLPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,

(V)MOVUPS
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
’ A | XfeatureEnabledMask[2:1] ! = 11b.
A | VEX.vwwv ! = 1111b (for memory destination encoding only).
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC X ﬁ&%gr&eﬁﬂmiﬂory reference with alignment checking enabled and

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVHPS, VMOVHPS 197

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVLHPS Move Low to High
VMOVHLPS Packed Single-Precision Floating-Point

Moves two packed single-precision floating-point values from the low quadword of an XMM register
to the high quadword of another XMM register.

There are legacy and extended forms of the instruction:

MOVLHPS

The source operand is bits [63:0] of an XMM register. The destination is bits [127:64] of another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVLHPS

The extended form of the instruction has 128-bit encoding.

The source operands are bits [63:0] of two XMM registers. The destination is a third XMM register.
Bits [63:0] of the first source are moved to bits [63:0] of the destination; bits [63:0] of the second
source are moved to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MOVLHPS is an SSE instruction and VMOVLHPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description
MOVLHPS xmm1, xmm2 OF 16 /r Moves two packed single-precision floating-point
values from xmmZ2[63:0] to xmm1[127:64].
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVLHPS xmm1, xmm2, xmm3 C4 RXB.00001 X.src.0.00 16 /r

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

Instruction Reference MOVLHPS; VMOVLHPS 198

AMDZU

26568—Rev. 3.11—December 2010

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vvwv | = 1111b (for memory destination encoding only).

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

NDnnnn

Nnnunnn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

(7))

Instruction execution caused a page fault.

Alignment check, #AC

X X[X|X| X[X[X|X|> > >>>0nn

Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVLHPS; VMOVLHPS 199

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVLPD Move Low
VMOVLPD Packed Double-Precision Floating-Point

Moves a packed double-precision floating-point value. Values can be moved from a 64-bit memory
location to the low-order quadword of an XMM register, or from the low-order quadword of an XMM
register to a 64-bit memory location.

There are legacy and extended forms of the instruction:
MOVLPD

There are two encodings.

e The source operand is a 64-bit memory location. The destination is bits [63:0] of an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.

e The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.
VMOVLPD

The extended form of the instruction has two 128-bit encodings.

e There are two source operands. The first source is an XMM register. The second source is a 64-bit
memory location. The destination is an XMM register. Bits [127:64] of the source register are
written to bits [127:64] of the destination; bits [63:0] of the source memory location are written to
bits [63:0] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

e The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.
MOVLPD is an SSE2 instruction and VMOVLPD is an AVX instruction. Support for these

instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description
MOVLPD xmm1, mem64 66 OF 12 /r Moves a packed double-precision floating-point value from
mem64 to xmm1[63:0].
MOVHPD memé64, xmm1 66 OF 13 /r Moves a packed double-precision floating-point value from
xmm1[63:0] to mem64.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVLPD xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.01 12 Ir
VMOVLPD mem64, xmm1 C4 RXB.00001 X.1111.0.01 13 /r

Related Instructions
(V)IMOVAPD, (V)MOVHPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

Instruction Reference MOVLPD, VMOVLPD 200

AMDZU

26568—Rev. 3.11—December 2010

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vvwv | = 1111b (for memory destination encoding only).

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

NDnnnn

Nnnunnn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

(7))

Instruction execution caused a page fault.

Alignment check, #AC

X X[X|X| X[X[X|X|> > >>>0nn

Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVLPD, VMOVLPD 201

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVLPS Move Low Packed Single-Precision
VMOVLPS Floating-Point

Moves two packed single-precision floating-point values. Values can be moved from a 64-bit memory
location to the low-order quadword of an XMM register, or from the low-order quadword of an XMM
register to a 64-bit memory location.

There are legacy and extended forms of the instruction:
MOVLPS

There are two encodings.

e The source operand is a 64-bit memory location. The destination is bits [63:0] of an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.

e The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.
VMOVLPS

The extended form of the instruction has two 128-bit encodings.

e There are two source operands. The first source is an XMM register. The second source is a 64-bit
memory location. The destination is an XMM register. Bits [127:64] of the source register are
written to bits [127:64] of the destination; bits [63:0] of the source memory location are written to
bits [63:0] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

e The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.
MOVLPS is an SSE instruction and VMOVLPS is an AVX instruction. Support for these instructions

is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description
MOVLPS xmm1, mem64 OF 12 /r Moves two packed single-precision floating-point value from
mem64 to xmm1[63:0].
MOVLPS mem64, xmm1 OF 13 /r Moves two packed single-precision floating-point value from
xmm1[63:0] to mem64.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVLPS xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.00 12 Ir
VMOVLPS mem64, xmm1 C4 RXB.00001 X.1111.0.00 13 /r

Related Instructions

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

Instruction Reference MOVLPS, VMOVLPS 202

AMDZU

26568—Rev. 3.11—December 2010

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vvwv | = 1111b (for memory destination encoding only).

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

NDnnnn

Nnnunnn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

(7))

Instruction execution caused a page fault.

Alignment check, #AC

X X[X|X| X[X[X|X|> > >>>0nn

Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVLPS, VMOVLPS 203

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVMSKPD Extract Sign Mask
VMOVMSKPD Packed Double-Precision Floating-Point

Extracts the sign bits of packed double-precision floating-point values from an XMM register, zero-
extends the value, and writes it to the low-order bits of a general-purpose register.

There are legacy and extended forms of the instruction:
MOVMSKPD
Extracts two mask bits.

The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general
purpose register. Writes the extracted bits to positions [1:0] of the destination and clears the remaining
bits. Bits [255:128] of the YMM register that corresponds to the source are not affected.

MOVMSKPD

The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Extracts two mask bits.

The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general
purpose register. Writes the extracted bits to positions [1:0] of the destination and clears the remaining
bits. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding
Extracts four mask bits.

The source operand is a YMM register. The destination can be either a 64-bit or a 32-bit general
purpose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.

MOVMSKPD is an SSE2 instruction and VMOVMSKPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description
MOVMSKPD reg, xmm 66 OF 50 /r Move zero-extended sign bits of packed double-precision
values from xmm to a general-purpose register.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVMSKPD reg, xmm C4 RXB.00001 X.1111.0.01 50 /r
VMOVMSKPD reg, ymm C4 RXB.00001 X.1111.1.01 50 /r

Related Instructions
(VIMOVMSKPS, (V)PMOVMSKB

Instruction Reference MOVMSKPD, VMOVMSKPD 204

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
] Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.vwwwv ! = 1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MOVMSKPD, VMOVMSKPD 205

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVMSKPS Extract Sign Mask
VMOVMSKPS Packed Single-Precision Floating-Point

Extracts the sign bits of packed single-precision floating-point values from an XMM register, zero-
extends the value, and writes it to the low-order bits of a general-purpose register.

There are legacy and extended forms of the instruction:
MOVMSKPS
Extracts four mask bits.

The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general
purpose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.

MOVMSKPS

The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Extracts four mask bits.

The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general
purpose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.

YMM Encoding
Extracts eight mask bits.

The source operand is a YMM register. The destination can be either a 64-bit or a 32-bit general
purpose register. Writes the extracted bits to positions [7:0] of the destination and clears the remaining
bits.

MOVMSKPS is an SSE instruction and VMOVMSKPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description
MOVMSKPS reg, xmm OF 50 /r Move zero-extended sign bits of packed single-precision
values from xmm to a general-purpose register.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVMSKPS reg, xmm C4 RXB.00001 X.1111.0.00 50 /r
VMOVMSKPS reg, ymm C4 RXB.00001 X.1111.1.00 50 /r

Related Instructions
(VIMOVMSKPD, (V)PMOVMSKB

Instruction Reference MOVMSKPS, VMOVMSKPS 206

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
] Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.vwwwv ! = 1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MOVMSKPS, VMOVMSKPS 207

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVNTDQ Move Non-Temporal
VMOVNTDQ Double Quadword

Moves double quadword values from a register to a memory location.

Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the store as a write-combining (WC) memory write, which minimizes cache pollution.
The method of minimization depends on the hardware implementation of the instruction. For further
information, see “Memory Optimization” in Volume 1.

The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ with
respect to other stores.

There are legacy and extended forms of the instruction:

MOVNTDQ

Moves one 128-bit value.

The source operand is an XMM register. The destination is a 128-bit memory location.
MOVNTDQ

The extended form of the instruction has both 128-bit and 256-bit encoding.

XMM Encoding

Moves one 128-bit value.

The source operand is an XMM register. The destination is a 128-bit memory location.
YMM Encoding

Moves two 128-bit values.

The source operand is a YMM register. The destination is a 256-bit memory location.

MOVNTDQ is an SSE2 instruction and VMOVNTDQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description
MOVNTDQ mem128, xmm 66 OF E7 /r Moves a 128-bit value from xmm to mem128, minimizing
cache pollution.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVNTDQ mem128, xmm C4 RXB.00001 X.1111.0.01 E7 /r
VMOVNTDQ mem256, ymm C4 RXB.00001 X.1111.1.01 E7 Ir

Related Instructions
(V)IMOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

Instruction Reference MOVNTDQ, VMOVNTDQ 208

AMDZU

26568—Rev. 3.11—December 2010

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vvvv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

Memory operand not aligned on 16-byte boundary while MXCSR.MM = 0.

General protection, #GP

N nnn

N nnn

Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.

Page fault, #PF

X[X| B [X|O|X|X|X|X[|[> > P> 00

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVNTDQ, VMOVNTDQ 209

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVNTDQA Move Non-Temporal
VMOVNTDQA Double Quadword Aligned

Moves aligned double quadword values from a register to a memory location.

Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the store as a write-combining (WC) memory write, which minimizes cache pollution.
The method of minimization depends on the hardware implementation of the instruction. For further
information, see “Memory Optimization” in Volume 1.

The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an MFENCE instruction to force strong memory ordering of MOVNTDQ with respect to
other stores.

There are legacy and extended forms of the instruction:

MOVNTDQA

Moves one 128-bit value.

The source operand is an XMM register. The destination is a 128-bit memory location.
MOVNTDQ

The extended form of the instruction has both 128-bit and 256-bit encoding.

XMM Encoding

Moves one 128-bit value.

The source operand is an XMM register. The destination is a 128-bit memory location.

MOVNTDQA is an SSE4.1 instruction and VMOVNTDAQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE41] and Fn0000 00001 ECX[AVX]
(see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

MOVNTDQA mem128, xmm 66 OF 38 2A /r Moves an aligned 128-bit value from xmm to mem128,
minimizing cache pollution.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVNTDQA mem128, xmm C4 RXB.00010 X.1111.0.01 2A Ir

Related Instructions
(V)IMOVNTDQ, (V)MOVNTPD, (V)MOVNTPS

Instruction Reference MOVNTDQA, VMOVNTDQA 210

AMDZU

26568—Rev. 3.11—December 2010

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

wln|>

nlm| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vwwv | = 1111b.

VEX.L field = 1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

General protection, #GP

DO nn

DO nn

Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.

Page fault, #PF

X[X| P [X|OX|X|X|X|>>>>>O0NO®O

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVNTDQA, VMOVNTDQA 211

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVNTPD Move Non-Temporal
VMOVNTPD Packed Double-Precision Floating-Point

Moves packed double-precision floating-point values from a register to a memory location.

Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the store as a write-combining (WC) memory write, which minimizes cache pollution.
The method of minimization depends on the hardware implementation of the instruction. For further
information, see “Memory Optimization” in Volume 1.

The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ with
respect to other stores.

There are legacy and extended forms of the instruction:

MOVNTPD

Moves two values.

The source operand is an XMM register. The destination is a 128-bit memory location.
MOVNTPD

The extended form of the instruction has both 128-bit and 256-bit encoding.

XMM Encoding

Moves two values.

The source operand is an XMM register. The destination is a 128-bit memory location.
YMM Encoding

Moves four values.

The source operand is a YMM register. The destination is a 256-bit memory location.

MOVNTPD is an SSE2 instruction and VMOVNTPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description
MOVNTPD mem128, xmm 66 OF 2B /r Moves two packed double-precision floating-point values
from xmm to mem128, minimizing cache pollution.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVNTPD mem128, xmm C4 RXB.00001 X.1111.0.01 2B /Ir
VMOVNTPD mem256, ymm C4 RXB.00001 X.1111.1.01 2B Ir

Related Instructions
MOVNTDQ, MOVNTI, MOVNTPS, MOVNTQ

Instruction Reference MOVNTPD, VMOVNTPD 212

AMDZU

26568—Rev. 3.11—December 2010

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vvvv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

Memory operand not aligned on 16-byte boundary while MXCSR.MM = 0.

General protection, #GP

N nnn

N nnn

Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.

Page fault, #PF

X[X| B [X|O|X|X|X|X[|[> > P> 00

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVNTPD, VMOVNTPD 213

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVNTPS Move Non-Temporal
VMOVNTPS PackedSingle-Precision Floating-Point

Moves packed single-precision floating-point values from a register to a memory location.

Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the store as a write-combining (WC) memory write, which minimizes cache pollution.
The method of minimization depends on the hardware implementation of the instruction. For further
information, see “Memory Optimization” in Volume 1.

The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ with
respect to other stores.

There are legacy and extended forms of the instruction:

MOVNTPS

Moves four values.

The source operand is an XMM register. The destination is a 128-bit memory location.
MOVNTPS

The extended form of the instruction has both 128-bit and 256-bit encoding.

XMM Encoding

Moves four values.

The source operand is an XMM register. The destination is a 128-bit memory location.
YMM Encoding

Moves eight values.

The source operand is a YMM register. The destination is a 256-bit memory location.

MOVNTPS is an SSE instruction and VMOVNTPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description
MOVNTPS mem128, xmm OF 2B /r Moves four packed double-precision floating-point values
from xmm to mem128, minimizing cache pollution.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVNTPS mem128, xmm C4 RXB.00001 X.1111.0.00 2B /Ir
VMOVNTPS mem256, ymm C4 RXB.00001 X.1111.1.00 2B Ir

Related Instructions
(V)IMOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTQ

Instruction Reference MOVNTPS, VMOVNTPS 214

AMDZU

26568—Rev. 3.11—December 2010

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vvvv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

Memory operand not aligned on 16-byte boundary while MXCSR.MM = 0.

General protection, #GP

N nnn

N nnn

Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.

Page fault, #PF

X[X| B [X|O|X|X|X|X[|[> > P> 00

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVNTPS, VMOVNTPS 215

AMDZU

26568—Rev. 3.11—December 2010

MOvQ
vVMOVvQ

AMDG64 Technology

Move
Quadword

Moves 64-bit values. The source is either the low-order quadword of an XMM register or a 64-bit
memory location. The destination is either the low-order quadword of an XMM register or a 64-bit
memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.

There are legacy and extended forms of the instruction:
MovaQ

There are two encodings.

* The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. The 64-bit value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either an XMM register or a 64-bit
memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
vVMOVQ

The extended form of the instruction has three 128-bit encodings.

* The source operand is an XMM register. The destination is an XMM register. The 64-bit value is
zero-extended to 128 bits.

* The source operand is a 64-bit memory location. The destination is an XMM register. The 64-bit
value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either an XMM register or a 64-bit
memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVAQ is an SSE2 instruction and VMOVQ is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic
MOVQ xmm1, xmm2/mem64

Opcode Description

F3 OF 7E /r Move a zero-extended 64-bit value from xmm2 or memé64
to xmm1.

66 OF D6 /r Move a 64-bit value from xmm2 to xmm1 or mem64.
Zero-extends for register destination.

MOVQ xmm1/memé64, xmm?2

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVQ xmm1, xmm2 C4 RXB.00001 X.1111.0.10 TE Ir
VMOVQ xmm1, mem64 C4 RXB.00001 X.1111.0.10 TE Ir
VMOVQ xmm1/mem64, xmm2 C4 RXB.00001 X.1111.1.01 D6 /r

Instruction Reference MovQ, YMOVQ 216

AMDZU

26568—Rev. 3.11—December 2010

Related Instructions

AMDG64 Technology

(V)MOVD, (V)MOVDQA, (V)MOVDQU

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

wl wl >

0|l n| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vvwv | = 1111b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

nNnnnnn

nNnnnnn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

w

Instruction execution caused a page fault.

Alignment check, #AC

X | X[X[X|X| X[X|X|>Z|> > >> 00

Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

movaQ, vMovQ 217

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVSD Move
VMOVSD Scalar Double-Precision Floating-Point

Moves scalar double-precision floating point values. The source is either a low-order quadword of an
XMM register or a 64-bit memory location. The destination is either a low-order quadword of an
XMM register or a 64-bit memory location.

There are legacy and extended forms of the instruction:

MOVSD

There are three encodings.

* The source operand is an XMM register. The destination is an XMM register. Bits [127:64] of the
destination are not affected.

e The source operand is a 64-bit memory location. The destination is an XMM register. The 64-bit
value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either an XMM register or a 64-bit
memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVSD

The extended form of the instruction has four 128-bit encodings. Two of the encodings are
functionally equivalent.

e The source operand is a 64-bit memory location. The destination is an XMM register. The 64-bit
value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is a 64-bit memory location.

e Two functionally-equivalent encodings:
There are two source XMM registers. The destination is an XMM register. Bits [127:64] of the first
source register are copied to bits [127:64] of the destination; the 64-bit value in bits [63:0] of the
second source register is written to bits [63:0] of the destination.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVSD is an SSE2 instruction and VMOVSD is an AV X instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

This instruction must not be confused with the MOVSD (move string doubleword) instruction of the
general-purpose instruction set. Assemblers can distinguish the instructions by the number and type of
operands.

Instruction Reference MOVSD, VMOVSD 218

AMDZU

26568—Rev. 3.11—December 2010

Mnemonic

MOVSD xmm1, xmm?2
MOVSD xmm1, mem64
MOVSD xmm2/mem64, xmm1

Mnemonic

VMOVSD xmm1, mem64
VMOVSD mem64, xmm1
VMOVSD xmm, xmm2, xmm3
VMOVSD xmm, xmm2, xmm3
Related Instructions

AMDG64 Technology

Opcode Description
F2 OF 10 /r Moves a zero-extended 64-bit value from xmm2 to xmm1.
F2 OF 10 /r Moves a zero-extended 64-bit value from memé64 to xmm1.
F2 OF 11 /r Moves a 64-bit value from xmm1 to xmm2 or mem64.

Zero-extends for register destination.
Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode

C4 RXB.00001 X.1111.0.11 10 /r

C4 RXB.00001 X.1111.0.11 1M /r
C4 RXB.00001 X.src.1.11 10 /r
C4 RXB.00001 X.src.1.11 1M /r

(V)MOVAPD, (V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVUPD

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

wnl nl>

n|lm| > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XfeatureEnabledMask[2:1] ! = 11b.

VEX.vvvv ! = 1111b (for memory destination enoding only).

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

NDnnnn

General protection, #GP

nNnnunnn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

(@)]

Instruction execution caused a page fault.

Alignment check, #AC

X I X[X|X|X|X[X|X|>Z|> > > 0w

Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVSD, VMOVSD 219

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVSHDUP Move High and Duplicate
VMOVSHDUP Single-Precision

Moves and duplicates odd-indexed single-precision floating-point values.
There are legacy and extended forms of the instruction:

MOVSHDUP

Moves and duplicates two odd-indexed single-precision floating-point values.

The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [127:96] of the source are duplicated and written to bits [127:96] and [95:64] of the
destination. Bits [63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVSHDUP
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Moves and duplicates two odd-indexed single-precision floating-point values.

The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [127:96] of the source are duplicated and written to bits [127:96] and [95:64] of the
destination. Bits [63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding
Moves and duplicates four odd-indexed single-precision floating-point values.

The source operand is a YMM register or a 256-bit memory location. The destination is a YMM
register. Bits [255:224] of the source are duplicated and written to bits [255:224] and [223:192] of the
destination. Bits [191:160] of the source are duplicated and written to bits [191:160] and [159:128] of
the destination. Bits [127:96] of the source are duplicated and written to bits [127:96] and [95:64] of
the destination. Bits [63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination.

MOVSHDUP is an SSE3 instruction and VMOVSHDUP is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE3] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Instruction Reference MOVSHDUP; VMOVSHDUP 220

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Mnemonic Opcode Description

MOVSHDUP xmm1, xmm2/mem128 F3 0F 16 /r Moves and duplicates two odd-indexed single-
precision floating-point values in xmm2 or mem128.
Writes to xmm/1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVSHDUP xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 16 /r
VMOVSHDUP ymm1, ymm2/mem256 C4 RXB.00001 X1111.1.10 16 /r

Related Instructions
(V)MOVDDUP, (V)MOVSLDUP

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] | = 11b.
A | VEX.vwwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVSHDUP; VMOVSHDUP 221

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVSLDUP Move Low and Duplicate
VMOVSLDUP Single-Precision

Moves and duplicates even-indexed single-precision floating-point values.
There are legacy and extended forms of the instruction:

MOVSLDUP

Moves and duplicates two even-indexed single-precision floating-point values.

The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [95:64] of the source are duplicated and written to bits [127:96] and [95:64] of the
destination. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVSLDUP
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Moves and duplicates two even-indexed single-precision floating-point values.

The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [95:64] of the source are duplicated and written to bits [127:96] and [95:64] of the
destination. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding
Moves and duplicates four even-indexed single-precision floating-point values.

The source operand is a YMM register or a 256-bit memory location. The destination is a YMM
register. Bits [223:192] of the source are duplicated and written to bits [255:224] and [223:192] of the
destination. Bits [159:128] of the source are duplicated and written to bits [191:160] and [159:128] of
the destination. Bits [95:64] of the source are duplicated and written to bits [127:96] and [95:64] of the
destination. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination.

MOVSLDUP is an SSE3 instruction and VMOVSLDUP is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE3] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Instruction Reference MOVSLDUP, VMOVSLDUP 222

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

Mnemonic Opcode Description

MOVSLDUP xmm1, xmm2/mem128 F30F 12/r Moves and duplicates two even-indexed single-
precision floating-point values in xmm2 or mem128.
Writes to xmm/1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMOVSLDUP xmm1, xmm2/mem128 Cc4 RXB.00001 X.1111.0.10 12 /r
VMOVSLDUP ymm1, ymm2/mem256 Cc4 RXB.00001 X.1111.1.10 12 /r

Related Instructions
(V)MOVDDUP, (V)MOVSHDUP

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] | = 11b.
A | VEX.vwwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVSLDUP, VMOVSLDUP 223

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVSS Move
VMOVSS Scalar Single-Precision Floating-Point

Moves scalar single-precision floating point values. The source is either a low-order doubleword of an
XMM register or a 32-bit memory location. The destination is either a low-order doubleword of an
XMM register or a 32-bit memory location.

There are legacy and extended forms of the instruction:

MOVSS

There are three encodings.

* The source operand is an XMM register. The destination is an XMM register. Bits [127:32] of the
destination are not affected.

e The source operand is a 32-bit memory location. The destination is an XMM register. The 32-bit
value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either an XMM register or a 32-bit
memory location. When the destination is a register, the 32-bit value is zero-extended to 128 bits.

Bits [255:128] of the YMM register that corresponds to the source are not affected.
VMOVSS

The extended form of the instruction has four 128-bit encodings. Two of the encodings are
functionally equivalent.

e The source operand is a 32-bit memory location. The destination is an XMM register. The 32-bit
value is zero-extended to 128 bits.
* The source operand is an XMM register. The destination is a 32-bit memory location.

e Two functionally-equivalent encodings:
There are two source XMM registers. The destination is an XMM register. Bits [127:64] of the first
source register are copied to bits [127:64] of the destination; the 32-bit value in bits [31:0] of the
second source register is written to bits [31:0] of the destination.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVSS is an SSE instruction and VMOVSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Reference MOVSS, VMOVSS 224

AMDZU

26568—Rev. 3.11—December 2010

Mnemonic

MOVSS xmm1, xmm2
MOVSS xmm1, mem32
MOVSS xmm2/mem32, xmm1

Mnemonic

VMOVSS xmm1, mem32
VMOVSS mem32, xmm1
VMOVSS xmm, xmm2, xmm3
VMOVSS xmm, xmm2, xmm3
Related Instructions

AMDG64 Technology

Opcode Description

F3O0F 10 /r Moves a 32-bit value from xmm2 to xmm1.
F30F 10 /r Moves a zero-extended 32-bit value from mem32 to xmm1.
F3 OF 11 /r Moves a 32-bit value from xmm1 to xmm2 or mem32.

Zero-extended for register destination.
Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.10 10 /r
Cc4 RXB.00001 X.1111.0.10 11 /r
C4 RXB.00001 X.src.1.10 10 /r
C4 RXB.00001 X.src.1.10 11 Ir

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS,

(V)MOVUPS
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A | VEX.vvvv ! = 1111b (for memory destination enoding only).
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC X ﬁr;(acllgr&e'(\inﬂe:n}ory reference with alignment checking enabled and

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVSS, VMOVSS 225

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVUPD Move Unaligned
VMOVUPD Packed Double-Precision Floating-Point

Moves packed double-precision floating-point values. Values can be moved from a register or memory
location to a register; or from a register to a register or memory location.

A memory operand that is not aligned does not cause a general-protection exception.

There are legacy and extended forms of the instruction:
MOVUPD

Moves two double-precision floating-point values. There are encodings for each type of move.

e The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVUPD

The extended form of the instruction has both 128-bit and 256-bit encoding.

XMM Encoding

Moves two double-precision floating-point values. There are encodings for each type of move.

e The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves four double-precision floating-point values. There are encodings for each type of move.

e The source operand is either a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

e The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

MOVUPD is an SSE2 instruction and VMOVUPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Instruction Reference MOVUPD, VMOVUPD 226

AMDZU

26568—Rev. 3.11—December 2010

Mnemonic

MOVUPD xmm1, xmm2/mem128

MOVUPD xmm1/mem128, xmm?2

Mnemonic

VMOVUPD xmm1, xmm2/mem128
VMOVUPD xmm1/mem128, xmm2
VMOVUPD ymm1, ymm2/mem256
VMOVUPD ymm1/mem256, ymm?2

Related Instructions

AMDG64 Technology

Opcode Description
66 OF 10 /r Moves two packed double-precision floating-point

values from xmm2 or mem128 to xmm?1.

66 OF 11 /r Moves two packed double-precision floating-point

values from xmm1 or mem128 to xmm2.
Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.01 10 /r
C4 RXB.00001 X.1111.0.01 11 /r
C4 RXB.00001 X.1111.1.01 10 /r
C4 RXB.00001 X.1111.1.01 11 /r

(V)MOVAPD, (V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD

Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A | VEX.vwwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MOVUPD, VMOVUPD 227

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MOVUPS Move Unaligned
VMOVUPS Packed Single-Precision Floating-Point

Moves packed single-precision floating-point values. Values can be moved from a register or memory
location to a register; or from a register to a register or memory location.

A memory operand that is not aligned does not cause a general-protection exception.

There are legacy and extended forms of the instruction:
MOVUPS

Moves four single-precision floating-point values. There are encodings for each type of move.

* The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVUPS

The extended form of the instruction has both 128-bit and 256-bit encoding.

XMM Encoding

Moves four single-precision floating-point values. There are encodings for each type of move.

* The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding

Moves eight single-precision floating-point values. There are encodings for each type of move.

* The source operand is either a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

e The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

MOVUPS is an SSE instruction and VMOVUPS is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Reference MOVUPS, VMOVUPS 228

AMDZU

26568—Rev. 3.11—December 2010

Mnemonic

MOVUPS xmm1, xmm2/mem128

MOVUPS xmm1/mem128, xmm?2

Mnemonic

VMOVUPS xmm1, xmm2/mem128
VMOVUPS xmm1/mem128, xmm2
VMOVUPS ymm1, ymm2/mem256
VMOVUPS ymm1/mem256, ymm?2

Related Instructions

AMDG64 Technology

Opcode Description

OF 10 /r Moves four packed single-precision floating-point
values from xmm2 or unaligned mem128 to xmm1.

OF 11 /r Moves four packed single-precision floating-point
values from xmm1 or unaligned mem128 to xmm?2.

Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.00 10 /r
C4 RXB.00001 X.1111.0.00 11/
C4 RXB.00001 X.1111.1.00 10 /r
C4 RXB.00001 X.1111.1.00 11/

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS,

(V)MOVSS
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A | VEX.vwwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

Instruction Reference

MOVUPS, VMOVUPS 229

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MPSADBW Multiple Sum of Absolute Differences
VMPSADBW

Calculates the sum of absolute differences of each member of four sequential groups of four unsigned
byte integers in the first source register and each of four unsigned byte integers in a second source
register, and writes the 16-bit integer sums to the destination.

Bit fields in an 8-bit immediate operand are used to calculate offsets that select sequences of bytes in
the two source registers. The binary value of each bit field is multiplied by 32 to produce a 32-bit
offset. Bit 2 of the immediate operand determines the offset for the first source register; 11 bytes
beginning at the offset position are used. Bits [1:0] of the immediate operand determine the offset for
the second source register; four bytes beginning at the offset position are used.

The selected bytes are repositioned in the source registers. Bytes [10:0] of the first source occupy bits
[87:0] of the first source register; bytes [3:0] of the second source occupy bits [31:0] of the second
source register.

Operation is iterative and repeats eight times. Each repetition increments the starting byte position in
the first source by one and calculates the sum of differences with the four integers of the second
source. Results are written to eight consecutive words in the destination, starting with the low word. In
the first iteration, bytes [0:4] of the second source are subtracted from bytes [0:4] of the first source
and the sum of the differences is written to bits [15:0] of the destination; in the second iteration, bytes
[0:4] of the second source are subtracted from bytes [1:5] of the first source and the sum of the
differences is written to bits [31:16] of the destination. The process continues until bytes [0:4] of the
second source are subtracted from bytes [7:10] of the first source and the sum of the differences is
written to bits [127:112] of the destination.

There are legacy and extended forms of the instruction:
MPSADBW

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VMPSADBW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

MPSADBW is an SSE4.1 instruction and VMPSADBW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Reference MPSADBW, VMPSADBW 230

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
Mnemonic Opcode Description
MPSADBW xmm1, xmm2/mem128, inm8 66 OF 3A 42 /rib Sums absolute difference of groups of

four 8-bit integer in xmm1 and xmm?2
or mem128. Writes results to xmm1.
Starting source offsets are determined

by imm8 bit fields.
Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMPSADBW xmm1, xmm2, xmm3/mem128 C4 RXB.00011 X.src.0.01 42 Ir

Related Instructions
(V)PSADBW, (V)PABSB, (V)PABSD, (V)PABSW

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MPSADBW, VMPSADBW 231

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MULPD Multiply
VMULPD Packed Double-Precision Floating-Point

Multiplies each packed double-precision floating-point value of the first source operand by the
corresponding packed double-precision floating-point value of the second source operand and writes
the product of each multiplication into the corresponding quadword of the destination.

There are legacy and extended forms of the instruction:
MULPD

Multiplies two double-precision floating-point values in the first source XMM register by the
corresponding double precision floating-point values in either a second XMM register or a 128-bit
memory location. The first source register is also the destination. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.

VMULPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Multiplies two double-precision floating-point values in the first source XMM register by the
corresponding double-precision floating-point values in either a second source XMM register or a
128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM register
that corresponds to the destination are cleared.

YMM Encoding

Multiplies four double-precision floating-point values in the first source YMM register by the
corresponding double precision floating-point values in either a second source YMM register or a
256-bit memory location. The destination is a third YMM register.

MULPD is an SSE2 instruction and VMULPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

MULPD xmm1, xmm2/mem128 66 OF 59 /r Multiplies two packed double-precision floating-
point values in xmm<1 by corresponding values in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMULPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 59 /r
VMULPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 59 Ir

Related Instructions
(V)MULPS, (V)MULSD, (V)MULSS

Instruction Reference MULPD, VMULPD 232

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

MXCSR Flags Affected
MM | FZ RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pont exception whle CRa OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MULPD, VMULPD 233

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MULPS Multiply
VMULPS Packed Single-Precision Floating-Point

Multiplies each packed single-precision floating-point value of the first source operand by the
corresponding packed single-precision floating-point value of the second source operand and writes
the product of each multiplication into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:
MULPS

Multiplies four single-precision floating-point values in the first source XMM register by the
corresponding single-precision floating-point values of either a second source XMM register or a
128-bit memory location. The first source register is also the destination. Bits [255:128] of the YMM
register that corresponds to the destination are not affected.

VMULPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

Multiplies four single-precision floating-point values in the first source XMM register by the
corresponding single-precision floating-point values of either a second source XMM register or a
128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM register
that corresponds to the destination are cleared.

YMM Encoding

Multiplies eight single-precision floating-point values in the first source YMM register by the
corresponding single-precision floating-point values of either a second source YMM register or a
256-bit memory location. Writes the results to a third YMM register.

MULPS is an SSE2 instruction and VMULPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

MULPS xmm1, xmm2/mem128 OF 59 /r Multiplies four packed single-precision floating-point values
in xmm1 by corresponding values in xmm2 or mem128.
Writes the products to xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMULPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 59 /r
VMULPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 59 Ir

Related Instructions
(VYMULPD, (V)MULSD, (V)MULSS

Instruction Reference MULPS, VMULPS 234

AMDZ\
26568—Rev. 3.11—December 2010 AMDG64 Technology

MXCSR Flags Affected
MM | FZ RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pont exception whle CRa OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MULPS, VMULPS 235

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MULSD Multiply
VMULSD Scalar Double-Precision Floating-Point

Multiplies the double-precision floating-point value in the low-order quadword of the first source
operand by the double-precision floating-point value in the low-order quadword of the second source
operand and writes the product into the low-order quadword of the destination.

There are legacy and extended forms of the instruction:
MULSD

The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location. The first source register is also the destination register. Bits [127:64] of
the destination and bits [255:128] of the corresponding YMM register are not affected.

VMULSD
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the first source
operand are copied to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MULSD is an SSE2 instruction and VMULSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

MULSD xmm1, xmm2/mem64 F2 OF 59 /r Multiplies low-order double-precision floating-point values
in xmm1 by corresponding values in xmm2 or mem64.
Writes the products to xmm?1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMULSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 59 /r

Related Instructions
(V)MULPD, (V)MULPS, (V)MULSS

Instruction Reference MULSD, VMULSD 236

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SD foatngrpoi, 1 | 5 | s | x | Somasses SIUD foatine pont excepton while CRE OSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MULSD, VMULSD 237

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
MULSS Multiply Scalar Single-Precision Floating-Point
VMULSS

Multiplies the single-precision floating-point value in the low-order doubleword of the first source
operand by the single-precision floating-point value in the low-order doubleword of the second source
operand and writes the product into the low-order doubleword of the destination.

There are legacy and extended forms of the instruction:
MULSS

The first source operand is an XMM register and the second source operand is either an XMM register
or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination register and bits [255:128] of the corresponding YMM register are not affected.

VMULSS
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register and the second source operand is either an XMM register
or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the first source
register are copied to bits [127:32] of the of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MULSS is an SSE instruction and VMULSS is an AVX instruction. Support for these instructions is
indicated by CPUID feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] (see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

MULSS xmm1, xmm2/mem32 F3 OF 59 /r Multiplies a single-precision floating-point value in the low-
order doubleword of xmm1 by a corresponding value in
xmm?2 or mem32. Writes the product to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VMULSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 59 /r

Related Instructions
(V)MULPD, (V)MULPS, (V)MULSD

Instruction Reference MULSS, VMULSS 238

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.
SD foatngrpoi, 1 | 5 | s | x | Somasses SIUD foatine pont excepton while CRE OSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MULSS, VMULSS 239

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
ORPD OR
VORPD Packed Double-Precision Floating-Point

Performs bitwise OR of two packed double-precision floating-point values in the first source operand
with the corresponding two packed double-precision floating-point values in the second source
operand and writes the results into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:
ORPD

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VORPD
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ORPD is an SSE2 instruction and VORPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

ORPD xmm1, xmm2/mem128 66 OF 56 /r Performs bitwise OR of two packed double-precision
floating-point values in xmm1 with corresponding values in
xmm?2 or mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VORPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 56 /r
VORPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 56 /r

Related Instructions
(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPS, (V)XORPD, (V)XORPS

Instruction Reference ORPD, VORPD 240

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CR4.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

ORPD, VORPD 241

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
ORPS OR
VORPS Packed Single-Precision Floating-Point

Performs bitwise OR of the four packed single-precision floating-point values in the first source
operand with the corresponding four packed single-precision floating-point values in the second
source operand, and writes the result into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:
ORPS

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VORPS
The extended form of the instruction has both 128-bit and 256-bit encoding.
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register or
a 256-bit memory location. The destination is a third YMM register.

ORPS is an SSE instruction and VORPS is an AVX instruction. Support for these instructions is
indicated by CPUID feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] (see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

ORPS xmm1, xmm2/mem128 OF 56 /r Performs bitwise OR of four packed double-precision floating-
point values in xmm<1 with corresponding values in xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VORPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 56 /r
VORPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 56 /r

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)XORPD, (V)XORPS

Instruction Reference ORPS, VORPS 242

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CR4.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

ORPS, VORPS 243

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
PABSB Packed Absolute Value
VPABSB Signed Byte

Computes the absolute value of 16 packed 8-bit signed integers in the source operand and writes 8-bit
unsigned results to the destination.

There are legacy and extended forms of the instruction:
PABSB

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPABSB
The extended form of the instruction has 128-bit encoding.

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PABSB is an SSSE3 instruction and VPABSB is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 ECX[SSSE3] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

PABSB xmm1, xmm2/mem128 OF 38 1C /r Computes the absolute value of each packed 8-bit signed
integer value in xmm2/mem128 and writes the 8-bit unsigned
results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPABSB xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 1C/Ir

Related Instructions
(V)PABSW, (V)PABSD

Instruction Reference PABSB, VPABSB 244

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.wwvwv ! =1111b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PABSB, VPABSB 245

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
PABSD Packed Absolute Value
VPABSD Signed Doubleword

Computes the absolute value of two packed 32-bit signed integers in the source operand and writes
32-bit unsigned results to the destination.

There are legacy and extended forms of the instruction:
PABSD

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPABSD
The extended form of the instruction has 128-bit encoding.

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PABSD is an SSSE3 instruction and VPABSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 ECX[SSSE3] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

PABSD xmm1, xmm2/mem128 OF 38 1E /r Computes the absolute value of each packed 32-bit signed
integer value in xmm2/mem128 and writes the 32-bit
unsigned results to xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPABSD xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 1E/r

Related Instructions
(V)PABSB, (V)PABSW

Instruction Reference PABSD, VPABSD 246

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.wwvwv ! =1111b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PABSD, VPABSD 247

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
PABSW Packed Absolute Value
VPABSW Signed Word

Computes the absolute values of four packed 16-bit signed integers in the source operand and writes
16-bit unsigned results to the destination.

There are legacy and extended forms of the instruction:
PABSW

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPABSW
The extended form of the instruction has 128-bit encoding.

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PABSW is an SSSE3 instruction and VPABSW is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 ECX[SSSE3] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

PABSW xmm1, xmm2/mem128 OF 38 1D /r Computes the absolute value of each packed 16-bit signed
integer value in xmm2/mem128 and writes the 16-bit
unsigned results to xmm1

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPABSW xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 1D /r

Related Instructions
(V)PABSB, (V)PABSD

Instruction Reference PABSW, VPABSW 248

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.wwvwv ! =1111b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PABSW, VPABSW 249

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
PACKSSDW Pack with Signed Saturation
VPACKSSDW Doubleword to Word

Converts four 32-bit signed integers from the first source operand and four 32-bit signed integers from
the second source operand into eight 16-bit signed integers and packs the results into the destination.

Positive source value greater than 7FFFh are saturated to 7FFFh; negative source values less than
8000h are saturated to 8000h.

Converted values from the first source operand are packed into the low-order words of the destination,;
converted values from the second source operand are packed into the high-order words of the
destination.

There are legacy and extended forms of the instruction:

PACKSSDW

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPACKSSDW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PACKSSDW is an SSE2 instruction and VPACKSSDW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

PACKSSDW xmm1, xmm2/mem128 66 OF 6B /r Converts 32-bit signed integers in xmm1 and xmm2
or mem128 into 16-bit signed integers with
saturation. Writes packed results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPACKSSDW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 0.src1.0.01 6B /r

Related Instructions
(V)PACKSSWB, (V)PACKUSDW, (V)PACKUSWB

Instruction Reference PACKSSDW, VPACKSSDW 250

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PACKSSDW, VPACKSSDW 251

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
PACKSSWB Pack with Signed Saturation
VPACKSSWB Word to Byte

Converts eight 16-bit signed integers from the first source operand and eight 16-bit signed integers
from the second source operand into sixteen 8-bit signed integers and packs the results into the
destination.

Positive source values greater than 7Fh are saturated to 7Fh; negative source values less than 80h are
saturated to 80h.

Converted values from the first source operand are packed into the low-order bytes of the destination;
converted values from the second source operand are packed into the high-order bytes of the
destination.

There are legacy and extended forms of the instruction:
PACKSSWB

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPACKSSWB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PACKSSWRB is an SSE2 instruction and VPACKSSWB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

PACKSSWB xmm1, xmm2/mem128 66 OF 63 /r Converts 16-bit signed integers in xmm1 and xmm?2
or mem128 into 8-bit signed integers with saturation.
Writes packed results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPACKSSWB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 63 /r

Related Instructions
(V)PACKSSDW, (V)PACKUSDW, (V)PACKUSWB

Instruction Reference PACKSSWB, VPACKSSWB 252

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PACKSSWB, VPACKSSWB 253

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
PACKUSDW Pack with Unsigned Saturation
VPACKUSDW Doubleword to Word

Converts four 32-bit signed integers from the first source operand and four 32-bit signed integers from
the second source operand into eight 16-bit unsigned integers and packs the results into the
destination.

Source values greater than FFFFh are saturated to FFFFh; source values less than 0000h are saturated
to 0000h.

Packs converted values from the first source operand into the low-order words of the destination;
packs converted values from the second source operand into the high-order words of the destination.

There are legacy and extended forms of the instruction:
PACKUSDW

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPACKUSDW
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PACKUSDW is an SSE4.1 instruction and VPACKUSDW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
(see the CPUID Specification, order# 25481).

Mnemonic Opcode Description

PACKUSDW xmm1, xmm2/mem128 66 OF 38 2B /r Converts 32-bit signed integers in xmm1 and xmm2
or mem128 into 16-bit unsigned integers with
saturation. Writes packed results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPACKUSDW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 2B /r

Related Instructions
(V)PACKSSDW, (V)PACKSSWB, (V)PACKUSWB

Instruction Reference PACKUSDW, VPACKUSDW 254

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PACKUSDW, VPACKUSDW 255

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
PACKUSWB Pack with Unsigned Saturation
VPACKUSWB Word to Byte

Converts eight 16-bit signed integers from the first source operand and eight 16-bit signed integers
from the second source operand into sixteen 8-bit unsigned integers and packs the results into the
destination.

When a source value is greater than 7Fh it is saturated to FFh; when source value is less than 00h, it is
saturated to 00h.

Packs converted values from the first source operand into the low-order bytes of the destination; packs
converted values from the second source operand into the high-order bytes of the destination.

There are legacy and extended forms of the instruction:
PACKUSWB

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPACKUSWB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PACKUSWRB is an SSE2 instruction and VPACKUSWB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see
the CPUID Specification, order# 25481).

Mnemonic Opcode Description

PACKUSWB xmm1, xmm2/mem128 66 OF 67 /r Converts 16-bit signed integers in xmm1 and xmm2
or mem128 into 8-bit signed integers with saturation.
Writes packed results to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPACKUSWB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 67 Ir

Related Instructions
(V)PACKSSDW, (V)PACKSSWB, (V)PACKUSDW

Instruction Reference PACKUSWB, VPACKUSWB 256

AMDZU

26568—Rev. 3.11—December 2010

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XfeatureEnabledMask[2:1] ! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PACKUSWB, VPACKUSWB 257

AMDZU

26568—Rev. 3.11—December 2010 AMDG64 Technology
PADDB Packed Add
VPADDB Bytes

Adds 16 packed 8-bit integer values in the first source operand to corresponding values in the second
source operand and writes the integer sums to the corresponding bytes of the destination.

This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:
PADDB

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDB
The extended form of the instruction has 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM
register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDRB is an SSE2 instruction and VPADDB is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] (see the CPUID
Specification, order# 25481).

Mnemonic Opcode Description

PADDB xmm1, xmm2/mem128 66 OF FC /r Adds packed byte integer values in xmm1 and xmm2 or
mem128 Writes the sums to xmm1.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode
VPADDB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 FC/r

Related Instructions
(V)PADDD, (V)PADDQ, (V)PAD