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Preface

About This Book

This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual. This
table lists each volume and its order number.

Audience

This volume (Volume 1) is intended for programmers writing application programs, compilers, or
assemblers. It assumes prior experience in microprocessor programming, although it does not assume
prior experience with the legacy x86 or AMD64 microprocessor architecture.

This volume describes the AMD64 architecture’s resources and functions that are accessible to
application software, including memory, registers, instructions, operands, I/O facilities, and
application-software aspects of control transfers (including interrupts and exceptions) and
performance optimization.

System-programming topics—including the use of instructions running at a current privilege level
(CPL) of 0 (most-privileged)—are described in Volume 2. Details about each instruction are described
in volumes 3, 4, and 5.

Organization

This volume begins with an overview of the architecture and its memory organization and is followed
by chapters that describe the four application-programming models available in the AMD64
architecture:

• General-Purpose Programming—This model uses the integer general-purpose registers (GPRs).
The chapter describing it also describes the basic application environment for exceptions, control
transfers, I/O, and memory optimization that applies to all other application-programming models.

Title Order No.

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569
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• 128-bit Media Programming—This model uses the 128-bit XMM registers and supports integer
and floating-point operations on vector (packed) and scalar data types.

• 64-bit Media Programming—This model uses the 64-bit MMX™ registers and supports integer
and floating-point operations on vector (packed) and scalar data types.

• x87 Floating-Point Programming—This model uses the 80-bit x87 registers and supports floating-
point operations on scalar data types.

Definitions assumed throughout this volume are listed below. The index at the end of this volume
cross-references topics within the volume. For other topics relating to the AMD64 architecture, see the
tables of contents and indexes of the other volumes.

Definitions

Some of the following definitions assume a knowledge of the legacy x86 architecture. See “Related
Documents” on page xxviii for further information about the legacy x86 architecture.

Terms and Notation

1011b

A binary value—in this example, a 4-bit value.

F0EAh

A hexadecimal value—in this example a 2-byte value.

[1,2)

A range that includes the left-most value (in this case, 1) but excludes the right-most value (in this
case, 2).

7–4

A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

128-bit media instructions

Instructions that use the 128-bit XMM registers. These are a combination of the SSE and SSE2
instruction sets.

64-bit media instructions

Instructions that use the 64-bit MMX registers. These are primarily a combination of MMX and
3DNow!™ instruction sets, with some additional instructions from the SSE and SSE2 instruction
sets.

16-bit mode

Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.
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32-bit mode

Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

#GP(0)

Notation indicating a general-protection exception (#GP) with error code of 0.

absolute

Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with relative.

ASID

Address space identifier.

biased exponent

The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte

Eight bits.

clear

To write a bit value of 0. Compare set.

compatibility mode

A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit

To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL

Current privilege level.

CR0–CR4

A register range, from register CR0 through CR4, inclusive, with the low-order register first.

CR0.PE = 1

Notation indicating that the PE bit of the CR0 register has a value of 1.
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direct

Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

dirty data

Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

displacement

A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

doubleword

Two words, or four bytes, or 32 bits.

double quadword

Eight words, or 16 bytes, or 128 bits. Also called octword.

DS:rSI

The contents of a memory location whose segment address is in the DS register and whose offset
relative to that segment is in the rSI register.

EFER.LME = 0

Notation indicating that the LME bit of the EFER register has a value of 0.

effective address size

The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size

The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element

See vector.

exception

An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except 128-bit
media SIMD floating-point exceptions and x87 floating-point exceptions, control is transferred to
the handler (or service routine) for that exception, as defined by the exception’s vector. For
floating-point exceptions defined by the IEEE 754 standard, there are both masked and unmasked
responses. When unmasked, the exception handler is called, and when masked, a default response
is provided instead of calling the handler.
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FF /0

Notation indicating that FF is the first byte of an opcode, and a subopcode in the ModR/M byte has
a value of 0.

flush

An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

GDT

Global descriptor table.

GIF

Global interrupt flag.

IDT

Interrupt descriptor table.

IGN

Ignore. Field is ignored.

indirect

Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB

The virtual-8086 mode interrupt-redirection bitmap.

IST

The long-mode interrupt-stack table.

IVT

The real-address mode interrupt-vector table.

LDT

Local descriptor table.

legacy x86

The legacy x86 architecture. See “Related Documents” on page xxviii for descriptions of the
legacy x86 architecture.

legacy mode

An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.
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long mode

An operating mode unique to the AMD64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

lsb

Least-significant bit.

LSB

Least-significant byte.

main memory

Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask

(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ

Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs.

memory

Unless otherwise specified, main memory.

ModRM

A byte following an instruction opcode that specifies address calculation based on mode (Mod),
register (R), and memory (M) variables.

moffset

A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb

Most-significant bit.

MSB

Most-significant byte.

multimedia instructions

A combination of 128-bit media instructions and 64-bit media instructions.

octword

Same as double quadword.
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offset

Same as displacement.

overflow

The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed

See vector.

PAE

Physical-address extensions.

physical memory

Actual memory, consisting of main memory and cache.

probe

A check for an address in a processor’s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

protected mode

A submode of legacy mode.

quadword

Four words, or eight bytes, or 64 bits.

RAZ

Read as zero (0), regardless of what is written.

real-address mode

See real mode.

real mode

A short name for real-address mode, a submode of legacy mode.

relative

Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved

Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software.

Reserved fields may be further qualified as MBZ, RAZ, SBZ or IGN (see definitions).
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Software must not depend on the state of a reserved field, nor upon the ability of such fields to
return to a previously written state.

If a reserved field is not marked with one of the above qualifiers, software must not change the state
of that field; it must reload that field with the same values returned from a prior read.

REX

An instruction prefix that specifies a 64-bit operand size and provides access to additional
registers.

RIP-relative addressing

Addressing relative to the 64-bit RIP instruction pointer.

scalar

An atomic value existing independently of any specification of location, direction, etc., as opposed
to vectors.

set

To write a bit value of 1. Compare clear.

SIB

A byte following an instruction opcode that specifies address calculation based on scale (S), index
(I), and base (B).

SIMD

Single instruction, multiple data. See vector.

SSE

Streaming SIMD extensions instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE2

Extensions to the SSE instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE3

Further extensions to the SSE instruction set. See 128-bit media instructions.

SSE4A

Further extensions to the SSE instruction set. See 128-bit media instructions.

sticky bit

A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TOP

The x87 top-of-stack pointer.
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TSS

Task-state segment.

underflow

The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector

(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most of the 128-bit and 64-bit media instructions use vectors as operands. Vectors are also called
packed or SIMD (single-instruction multiple-data) operands.

(2) An index into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

virtual-8086 mode

A submode of legacy mode.

VMCB

Virtual machine control block.

VMM

Virtual machine monitor.

word

Two bytes, or 16 bits.

x86

See legacy x86.

Registers

In the following list of registers, the names are used to refer either to a given register or to the contents
of that register:

AH–DH

The high 8-bit AH, BH, CH, and DH registers. Compare AL–DL.

AL–DL

The low 8-bit AL, BL, CL, and DL registers. Compare AH–DH.

AL–r15B

The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R8B–R15B registers, available in 64-bit
mode.

BP

Base pointer register.



xxvi Preface

AMD64 Technology 24592—Rev. 3.15—November 2009

CRn

Control register number n.

CS

Code segment register.

eAX–eSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. Compare rAX–rSP.

EFER

Extended features enable register.

eFLAGS

16-bit or 32-bit flags register. Compare rFLAGS.

EFLAGS

32-bit (extended) flags register.

eIP

16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP

32-bit (extended) instruction-pointer register.

FLAGS

16-bit flags register.

GDTR

Global descriptor table register.

GPRs

General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8–R15.

IDTR

Interrupt descriptor table register.

IP

16-bit instruction-pointer register.

LDTR

Local descriptor table register.
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MSR

Model-specific register.

r8–r15

The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W registers, or the 32-bit R8D–R15D
registers, or the 64-bit R8–R15 registers.

rAX–rSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX

64-bit version of the EAX register.

RBP

64-bit version of the EBP register.

RBX

64-bit version of the EBX register.

RCX

64-bit version of the ECX register.

RDI

64-bit version of the EDI register.

RDX

64-bit version of the EDX register.

rFLAGS

16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS

64-bit flags register. Compare rFLAGS.

rIP

16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

RIP

64-bit instruction-pointer register.

RSI

64-bit version of the ESI register.



xxviii Preface

AMD64 Technology 24592—Rev. 3.15—November 2009

RSP

64-bit version of the ESP register.

SP

Stack pointer register.

SS

Stack segment register.

TPR

Task priority register (CR8), a new register introduced in the AMD64 architecture to speed
interrupt management.

TR

Task register.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytes increase from right to left.
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1 Overview of the AMD64 Architecture

1.1 Introduction

The AMD64 architecture is a simple yet powerful 64-bit, backward-compatible extension of the
industry-standard (legacy) x86 architecture. It adds 64-bit addressing and expands register resources to
support higher performance for recompiled 64-bit programs, while supporting legacy 16-bit and 32-bit
applications and operating systems without modification or recompilation. It is the architectural basis
on which new processors can provide seamless, high-performance support for both the vast body of
existing software and 64-bit software required for higher-performance applications.

The need for a 64-bit x86 architecture is driven by applications that address large amounts of virtual
and physical memory, such as high-performance servers, database management systems, and CAD
tools. These applications benefit from both 64-bit addresses and an increased number of registers. The
small number of registers available in the legacy x86 architecture limits performance in computation-
intensive applications. Increasing the number of registers provides a performance boost to many such
applications.

1.1.1 AMD64 Features

The AMD64 architecture introduces these features:

• Register Extensions (see Figure 1-1 on page 2):

- 8 additional general-purpose registers (GPRs).

- All 16 GPRs are 64 bits wide.

- 8 128-bit XMM registers.

- Uniform byte-register addressing for all GPRs.

- An instruction prefix (REX) accesses the extended registers.

• Long Mode (see Table 1-1 on page 2):

- Up to 64 bits of virtual address.

- 64-bit instruction pointer (RIP).

- Instruction-pointer-relative data-addressing mode.

- Flat address space.
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Figure 1-1. Application-Programming Register Set

Table 1-1. Operating Modes

Operating Mode
Operating

System Required

Application
Recompile
Required

Defaults
Register

Extensions

Typical

Address
Size
(bits)

Operand
Size
(bits)

GPR
Width (bits)

Long
Mode

64-Bit
Mode

64-bit OS

yes 64
32

yes 64

Compatibility
Mode

no
32

no
32

16 16 16

Legacy
Mode

Protected
Mode

Legacy 32-bit OS
no

32 32

no

32
16 16

Virtual-8086
Mode

16 16 16
Real
Mode

Legacy 16-bit OS

513-101.eps

Flags Register

Instruction Pointer

General-Purpose
Registers (GPRs)

128-Bit Media
Registers

64-Bit Media and
Floating-Point Registers

Legacy x86 registers, supported in all modes Application-programming registers also include the
128-bit media control-and-status register and the
x87 tag-word, control-word, and status-word registers 

63 0 63 0

63 0

127 0

63 0

Register extensions, supported in 64-bit mode

RAX
RBX
RCX
RDX
RBP
RSI
RDI
RSP
R8
R9
R10
R11
R12
R13
R14
R15

MMX0/FPR0
MMX1/FPR1
MMX2/FPR2
MMX3/FPR3
MMX4/FPR4
MMX5/FPR5
MMX6/FPR6
MMX7/FPR7

XMM0
XMM1
XMM2
XMM3
XMM4
XMM5
XMM6
XMM7
XMM8
XMM9
XMM10
XMM11
XMM12
XMM13
XMM14
XMM15

0 RFLAGS

RIP

EFLAGS

EIP
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1.1.2 Registers

Table 1-2 compares the register and stack resources available to application software, by operating
mode. The left set of columns shows the legacy x86 resources, which are available in the AMD64
architecture’s legacy and compatibility modes. The right set of columns shows the comparable
resources in 64-bit mode. Gray shading indicates differences between the modes. These register
differences (not including stack-width difference) represent the register extensions shown in
Figure 1-1.

As Table 1-2 shows, the legacy x86 architecture (called legacy mode in the AMD64 architecture)
supports eight GPRs. In reality, however, the general use of at least four registers (EBP, ESI, EDI, and
ESP) is compromised because they serve special purposes when executing many instructions. The
AMD64 architecture’s addition of eight GPRs—and the increased width of these registers from 32 bits
to 64 bits—allows compilers to substantially improve software performance. Compilers have more
flexibility in using registers to hold variables. Compilers can also minimize memory traffic—and thus
boost performance—by localizing work within the GPRs.

Table 1-2. Application Registers and Stack, by Operating Mode

Register
or Stack

Legacy and Compatibility Modes 64-Bit Mode1

Name Number Size (bits) Name Number Size (bits)

General-Purpose

Registers (GPRs)2

EAX, EBX, ECX,
EDX, EBP, ESI,

EDI, ESP
8 32

RAX, RBX, RCX,
RDX, RBP, RSI,

RDI, RSP,
R8–R15

16 64

256-bit YMM
Registers

YMM0–YMM7 8 256 YMM0–YMM15 16 256

128-Bit XMM
Registers

XMM0–XMM7 8 128 XMM0–XMM15 16 128

64-Bit MMX
Registers

MMX0–MMX73 8 64 MMX0–MMX73 8 64

x87 Registers FPR0–FPR73 8 80 FPR0–FPR73 8 80

Instruction Pointer2 EIP 1 32 RIP 1 64

Flags2 EFLAGS 1 32 RFLAGS 1 64

Stack — 16 or 32 — 64

Note:
1. Gray-shaded entries indicate differences between the modes. These differences (except stack-width difference) are

the AMD64 architecture’s register extensions.
2. This list of GPRs shows only the 32-bit registers. The 16-bit and 8-bit mappings of the 32-bit registers are also

accessible, as described in “Registers” on page 23.
3. The MMX0–MMX7 registers are mapped onto the FPR0–FPR7 physical registers, as shown in Figure 1-1. The x87

stack registers, ST(0)–ST(7), are the logical mappings of the FPR0–FPR7 physical registers.
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1.1.3 Instruction Set

The AMD64 architecture supports the full legacy x86 instruction set, with additional instructions to
support long mode (see Table 1-1 on page 2 for a summary of operating modes). The application-
programming instructions are organized into three subsets, as follows:

• General-Purpose Instructions—These are the basic x86 integer instructions used in virtually all
programs. Most of these instructions load, store, or operate on data located in the general-purpose
registers (GPRs) or memory. Some of the instructions alter sequential program flow by branching
to other program locations.

• 128-Bit and 256-bit Media Instructions—These are the streaming SIMD extension (SSE, SSE2,
SSE3, SSSE3, SSE4, SSE4A, AVX) instructions that load, store, or operate on data located
primarily in the 128-bit XMM registers. They perform integer and floating-point operations on
vector (packed) and scalar data types. Because the vector instructions can independently and
simultaneously perform a single operation on multiple sets of data, they are called single-
instruction, multiple-data (SIMD) instructions. They are useful for high-performance media and
scientific applications that operate on blocks of data.

• 64-Bit Media Instructions—These are the multimedia extension (MMX™ technology) and AMD
3DNow!™ technology instructions. These instructions load, store, or operate on data located
primarily in the 64-bit MMX registers. Like their 128-bit counterparts, described above, they
perform integer and floating-point operations on vector (packed) and scalar data types. Thus, they
are also SIMD instructions and are useful in media applications that operate on blocks of data.
AMD no longer recommends the use of 3DNow! instructions, which have been superceded by
their more efficient 128-bit media counterparts. Relevant recommendations are provided in
Chapter 5, “64-Bit Media Programming” on page 193, and in the AMD64 Programmer’s Manual
Volume 4: 64-Bit Media and x87 Floating-Point Instructions.

• x87 Floating-Point Instructions—These are the floating-point instructions used in legacy x87
applications. They load, store, or operate on data located in the x87 registers.

Some of these application-programming instructions bridge two or more of the above subsets. For
example, there are instructions that move data between the general-purpose registers and the XMM or
MMX registers, and many of the integer vector (packed) instructions can operate on either XMM or
MMX registers, although not simultaneously. If instructions bridge two or more subsets, their
descriptions are repeated in all subsets to which they apply.

1.1.4 Media Instructions

Media applications—such as image processing, music synthesis, speech recognition, full-motion
video, and 3D graphics rendering—share certain characteristics:

• They process large amounts of data.

• They often perform the same sequence of operations repeatedly across the data.

• The data are often represented as small quantities, such as 8 bits for pixel values, 16 bits for audio
samples, and 32 bits for object coordinates in floating-point format.
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The 128-bit and 64-bit media instructions are designed to accelerate these applications. The
instructions use a form of vector (or packed) parallel processing known as single-instruction, multiple
data (SIMD) processing. This vector technology has the following characteristics:

• A single register can hold multiple independent pieces of data. For example, a single 128-bit XMM
register can hold 16 8-bit integer data elements, or four 32-bit single-precision floating-point data
elements.

• The vector instructions can operate on all data elements in a register, independently and
simultaneously. For example, a PADDB instruction operating on byte elements of two vector
operands in 128-bit XMM registers performs 16 simultaneous additions and returns 16
independent results in a single operation.

128-bit and 64-bit media instructions take SIMD vector technology a step further by including special
instructions that perform operations commonly found in media applications. For example, a graphics
application that adds the brightness values of two pixels must prevent the add operation from wrapping
around to a small value if the result overflows the destination register, because an overflow result can
produce unexpected effects such as a dark pixel where a bright one is expected. The 128-bit and 64-bit
media instructions include saturating-arithmetic instructions to simplify this type of operation. A
result that otherwise would wrap around due to overflow or underflow is instead forced to saturate at
the largest or smallest value that can be represented in the destination register.

1.1.5 Floating-Point Instructions

The AMD64 architecture provides three floating-point instruction subsets, using three distinct register
sets:

• 128-Bit Media Instructions support 32-bit single-precision and 64-bit double-precision floating-
point operations, in addition to integer operations. Operations on both vector data and scalar data
are supported, with a dedicated floating-point exception-reporting mechanism. These floating-
point operations comply with the IEEE-754 standard.

• 64-Bit Media Instructions (the subset of 3DNow! technology instructions) support single-
precision floating-point operations. Operations on both vector data and scalar data are supported,
but these instructions do not support floating-point exception reporting.

• x87 Floating-Point Instructions support single-precision, double-precision, and 80-bit extended-
precision floating-point operations. Only scalar data are supported, with a dedicated floating-point
exception-reporting mechanism. The x87 floating-point instructions contain special instructions
for performing trigonometric and logarithmic transcendental operations. The single-precision and
double-precision floating-point operations comply with the IEEE-754 standard.

Maximum floating-point performance can be achieved using the 128-bit media instructions. One of
these vector instructions can support up to four single-precision (or two double-precision) operations
in parallel. In 64-bit mode, the AMD64 architecture doubles the number of legacy XMM registers
from 8 to 16.

Applications gain additional benefits using the 64-bit media and x87 instructions. The separate register
sets supported by these instructions relieve pressure on the XMM registers available to the 128-bit
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media instructions. This provides application programs with three distinct sets of floating-point
registers. In addition, certain high-end implementations of the AMD64 architecture may support 128-
bit media, 64-bit media, and x87 instructions with separate execution units.

1.2 Modes of Operation

Table 1-1 on page 2 summarizes the modes of operation supported by the AMD64 architecture. In
most cases, the default address and operand sizes can be overridden with instruction prefixes. The
register extensions shown in the second-from-right column of Table 1-1 are those illustrated in
Figure 1-1 on page 2.

1.2.1 Long Mode

Long mode is an extension of legacy protected mode. Long mode consists of two submodes: 64-bit
mode and compatibility mode. 64-bit mode supports all of the features and register extensions of the
AMD64 architecture. Compatibility mode supports binary compatibility with existing 16-bit and 32-
bit applications. Long mode does not support legacy real mode or legacy virtual-8086 mode, and it
does not support hardware task switching.

Throughout this document, references to long mode refer to both 64-bit mode and compatibility mode.
If a function is specific to either of these submodes, then the name of the specific submode is used
instead of the name long mode.

1.2.2 64-Bit Mode

64-bit mode—a submode of long mode—supports the full range of 64-bit virtual-addressing and
register-extension features. This mode is enabled by the operating system on an individual code-
segment basis. Because 64-bit mode supports a 64-bit virtual-address space, it requires a 64-bit
operating system and tool chain. Existing application binaries can run without recompilation in
compatibility mode, under an operating system that runs in 64-bit mode, or the applications can also be
recompiled to run in 64-bit mode.

Addressing features include a 64-bit instruction pointer (RIP) and an RIP-relative data-addressing
mode. This mode accommodates modern operating systems by supporting only a flat address space,
with single code, data, and stack space.

Register Extensions. 64-bit mode implements register extensions through a group of instruction
prefixes, called REX prefixes. These extensions add eight GPRs (R8–R15), widen all GPRs to 64 bits,
and add eight 128-bit XMM registers (XMM8–XMM15).

The REX instruction prefixes also provide a byte-register capability that makes the low byte of any of
the sixteen GPRs available for byte operations. This results in a uniform set of byte, word, doubleword,
and quadword registers that is better suited to compiler register-allocation.

64-Bit Addresses and Operands. In 64-bit mode, the default virtual-address size is 64 bits
(implementations can have fewer). The default operand size for most instructions is 32 bits. For most
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instructions, these defaults can be overridden on an instruction-by-instruction basis using instruction
prefixes. REX prefixes specify the 64-bit operand size and register extensions.

RIP-Relative Data Addressing. 64-bit mode supports data addressing relative to the 64-bit
instruction pointer (RIP). The legacy x86 architecture supports IP-relative addressing only in control-
transfer instructions. RIP-relative addressing improves the efficiency of position-independent code
and code that addresses global data.

Opcodes. A few instruction opcodes and prefix bytes are redefined to allow register extensions and
64-bit addressing. These differences are described in “General-Purpose Instructions in 64-Bit Mode”
in Volume 3 and “Differences Between Long Mode and Legacy Mode” in Volume 3.

1.2.3 Compatibility Mode

Compatibility mode—the second submode of long mode—allows 64-bit operating systems to run
existing 16-bit and 32-bit x86 applications. These legacy applications run in compatibility mode
without recompilation.

Applications running in compatibility mode use 32-bit or 16-bit addressing and can access the first
4GB of virtual-address space. Legacy x86 instruction prefixes toggle between 16-bit and 32-bit
address and operand sizes.

As with 64-bit mode, compatibility mode is enabled by the operating system on an individual code-
segment basis. Unlike 64-bit mode, however, x86 segmentation functions the same as in the legacy x86
architecture, using 16-bit or 32-bit protected-mode semantics. From the application viewpoint,
compatibility mode looks like the legacy x86 protected-mode environment. From the operating-
system viewpoint, however, address translation, interrupt and exception handling, and system data
structures use the 64-bit long-mode mechanisms.

1.2.4 Legacy Mode

Legacy mode preserves binary compatibility not only with existing 16-bit and 32-bit applications but
also with existing 16-bit and 32-bit operating systems. Legacy mode consists of the following three
submodes:

• Protected Mode—Protected mode supports 16-bit and 32-bit programs with memory
segmentation, optional paging, and privilege-checking. Programs running in protected mode can
access up to 4GB of memory space.

• Virtual-8086 Mode—Virtual-8086 mode supports 16-bit real-mode programs running as tasks
under protected mode. It uses a simple form of memory segmentation, optional paging, and limited
protection-checking. Programs running in virtual-8086 mode can access up to 1MB of memory
space.

• Real Mode—Real mode supports 16-bit programs using simple register-based memory
segmentation. It does not support paging or protection-checking. Programs running in real mode
can access up to 1MB of memory space.
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Legacy mode is compatible with existing 32-bit processor implementations of the x86 architecture.
Processors that implement the AMD64 architecture boot in legacy real mode, just like processors that
implement the legacy x86 architecture.

Throughout this document, references to legacy mode refer to all three submodes—protected mode,
virtual-8086 mode, and real mode. If a function is specific to either of these submodes, then the name
of the specific submode is used instead of the name legacy mode.
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2 Memory Model

This chapter describes the memory characteristics that apply to application software in the various
operating modes of the AMD64 architecture. These characteristics apply to all instructions in the
architecture. Several additional system-level details about memory and cache management are
described in Volume 2.

2.1 Memory Organization

2.1.1 Virtual Memory

Virtual memory consists of the entire address space available to programs. It is a large linear-address
space that is translated by a combination of hardware and operating-system software to a smaller
physical-address space, parts of which are located in memory and parts on disk or other external
storage media.

Figure 2-1 on page 10 shows how the virtual-memory space is treated in the two submodes of long
mode:

• 64-bit mode—This mode uses a flat segmentation model of virtual memory. The 64-bit virtual-
memory space is treated as a single, flat (unsegmented) address space. Program addresses access
locations that can be anywhere in the linear 64-bit address space. The operating system can use
separate selectors for code, stack, and data segments for memory-protection purposes, but the base
address of all these segments is always 0. (For an exception to this general rule, see “FS and GS as
Base of Address Calculation” on page 17.)

• Compatibility mode—This mode uses a protected, multi-segment model of virtual memory, just as
in legacy protected mode. The 32-bit virtual-memory space is treated as a segmented set of address
spaces for code, stack, and data segments, each with its own base address and protection
parameters. A segmented space is specified by adding a segment selector to an address.
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Figure 2-1. Virtual-Memory Segmentation

Operating systems have used segmented memory as a method to isolate programs from the data they
used, in an effort to increase the reliability of systems running multiple programs simultaneously.
However, most modern operating systems do not use the segmentation features available in the legacy
x86 architecture. Instead, these operating systems handle segmentation functions entirely in software.
For this reason, the AMD64 architecture dispenses with most of the legacy segmentation functions in
64-bit mode. This allows 64-bit operating systems to be coded more simply, and it supports more
efficient management of multi-tasking environments than is possible in the legacy x86 architecture.

2.1.2 Segment Registers

Segment registers hold the selectors used to access memory segments. Figure 2-2 on page 11 shows
the application-visible portion of the segment registers. In legacy and compatibility modes, all segment
registers are accessible to software. In 64-bit mode, only the CS, FS, and GS segments are recognized
by the processor, and software can use the FS and GS segment-base registers as base registers for
address calculation, as described in “FS and GS as Base of Address Calculation” on page 17. For
references to the DS, ES, or SS segments in 64-bit mode, the processor assumes that the base for each
of these segments is zero, neither their segment limit nor attributes are checked, and the processor
simply checks that all such addresses are in canonical form, as described in “64-Bit Canonical
Addresses” on page 15.
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Figure 2-2. Segment Registers

For details on segmentation and the segment registers, see “Segmented Virtual Memory” in Volume 2.

2.1.3 Physical Memory

Physical memory is the installed memory (excluding cache memory) in a particular computer system
that can be accessed through the processor’s bus interface. The maximum size of the physical memory
space is determined by the number of address bits on the bus interface. In a virtual-memory system, the
large virtual-address space (also called linear-address space) is translated to a smaller physical-
address space by a combination of segmentation and paging hardware and software.

Segmentation is illustrated in Figure 2-1 on page 10. Paging is a mechanism for translating linear
(virtual) addresses into fixed-size blocks called pages, which the operating system can move, as
needed, between memory and external storage media (typically disk). The AMD64 architecture
supports an expanded version of the legacy x86 paging mechanism, one that is able to translate the full
64-bit virtual-address space into the physical-address space supported by the particular
implementation.

2.1.4 Memory Management

Memory management strategies translate addresses generated by programs into addresses in physical
memory using segmentation and/or paging. Memory management is not visible to application
programs. It is handled by the operating system and processor hardware. The following description
gives a very brief overview of these functions. Details are given in “System-Management Instructions”
in Volume 2.
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Long-Mode Memory Management. Figure 2-3 shows the flow, from top to bottom, of memory
management functions performed in the two submodes of long mode.

Figure 2-3. Long-Mode Memory Management

In 64-bit mode, programs generate virtual (linear) addresses that can be up to 64 bits in size. The
virtual addresses are passed to the long-mode paging function, which generates physical addresses that
can be up to 52 bits in size. (Specific implementations of the architecture can support smaller virtual-
address and physical-address sizes.)

In compatibility mode, legacy 16-bit and 32-bit applications run using legacy x86 protected-mode
segmentation semantics. The 16-bit or 32-bit effective addresses generated by programs are combined
with their segments to produce 32-bit virtual (linear) addresses that are zero-extended to a maximum
of 64 bits. The paging that follows is the same long-mode paging function used in 64-bit mode. It
translates the virtual addresses into physical addresses. The combination of segment selector and
effective address is also called a logical address or far pointer. The virtual address is also called the
linear address.

Legacy-Mode Memory Management. Figure 2-4 on page 13 shows the memory-management
functions performed in the three submodes of legacy mode.
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Figure 2-4. Legacy-Mode Memory Management

The memory-management functions differ, depending on the submode, as follows:

• Protected Mode—Protected mode supports 16-bit and 32-bit programs with table-based memory
segmentation, paging, and privilege-checking. The segmentation function takes 32-bit effective
addresses and 16-bit segment selectors and produces 32-bit linear addresses into one of 16K
memory segments, each of which can be up to 4GB in size. Paging is optional. The 32-bit physical
addresses are either produced by the paging function or the linear addresses are used without
modification as physical addresses.

• Virtual-8086 Mode—Virtual-8086 mode supports 16-bit programs running as tasks under
protected mode. 20-bit linear addresses are formed in the same way as in real mode, but they can
optionally be translated through the paging function to form 32-bit physical addresses that access
up to 4GB of memory space.

• Real Mode—Real mode supports 16-bit programs using register-based shift-and-add
segmentation, but it does not support paging. Sixteen-bit effective addresses are zero-extended and
added to a 16-bit segment-base address that is left-shifted four bits, producing a 20-bit linear
address. The linear address is zero-extended to a 32-bit physical address that can access up to 1MB
of memory space.
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2.2 Memory Addressing

2.2.1 Byte Ordering

Instructions and data are stored in memory in little-endian byte order. Little-endian ordering places the
least-significant byte of the instruction or data item at the lowest memory address and the most-
significant byte at the highest memory address.

Figure 2-5 shows a generalization of little-endian memory and register images of a quadword data
type. The least-significant byte is at the lowest address in memory and at the right-most byte location
of the register image.

Figure 2-5. Byte Ordering

Figure 2-6 on page 15 shows the memory image of a 10-byte instruction. Instructions are byte data
types. They are read from memory one byte at a time, starting with the least-significant byte (lowest
address). For example, the following instruction specifies the 64-bit instruction MOV RAX,
1122334455667788 instruction that consists of the following ten bytes:

48 B8 8877665544332211

48 is a REX instruction prefix that specifies a 64-bit operand size, B8 is the opcode that—together with
the REX prefix—specifies the 64-bit RAX destination register, and 8877665544332211 is the 8-byte
immediate value to be moved, where 88 represents the eighth (least-significant) byte and 11 represents
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the first (most-significant) byte. In memory, the REX prefix byte (48) would be stored at the lowest
address, and the first immediate byte (11) would be stored at the highest instruction address.

Figure 2-6. Example of 10-Byte Instruction in Memory

2.2.2 64-Bit Canonical Addresses

Long mode defines 64 bits of virtual address, but implementations of the AMD64 architecture may
support fewer bits of virtual address. Although implementations might not use all 64 bits of the virtual
address, they check bits 63 through the most-significant implemented bit to see if those bits are all
zeros or all ones. An address that complies with this property is said to be in canonical address form. If
a virtual-memory reference is not in canonical form, the implementation causes a general-protection
exception or stack fault.

2.2.3 Effective Addresses

Programs provide effective addresses to the hardware prior to segmentation and paging translations.
Long-mode effective addresses are a maximum of 64 bits wide, as shown in Figure 2-3 on page 12.
Programs running in compatibility mode generate (by default) 32-bit effective addresses, which the
hardware zero-extends to 64 bits. Legacy-mode effective addresses, with no address-size override, are
32 or 16 bits wide, as shown in Figure 2-4 on page 13. These sizes can be overridden with an address-
size instruction prefix, as described in “Instruction Prefixes” on page 71.

There are five methods for generating effective addresses, depending on the specific instruction
encoding:

• Absolute Addresses—These addresses are given as displacements (or offsets) from the base address
of a data segment. They point directly to a memory location in the data segment.
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• Instruction-Relative Addresses—These addresses are given as displacements (or offsets) from the
current instruction pointer (IP), also called the program counter (PC). They are generated by
control-transfer instructions. A displacement in the instruction encoding, or one read from
memory, serves as an offset from the address that follows the transfer. See “RIP-Relative
Addressing” on page 18 for details about RIP-relative addressing in 64-bit mode.

• ModR/M Addressing—These addresses are calculated using a scale, index, base, and displacement.
Instruction encodings contain two bytes—MODR/M and optional SIB (scale, index, base) and a
variable length displacement—that specify the variables for the calculation. The base and index
values are contained in general-purpose registers specified by the SIB byte. The scale and
displacement values are specified directly in the instruction encoding. Figure 2-7 shows the
components of a complex-address calculation. The resultant effective address is added to the data-
segment base address to form a linear address, as described in “Segmented Virtual Memory” in
Volume 2. “Instruction Formats” in Volume 3 gives further details on specifying this form of
address. The encoding of instructions specifies how the address is calculated.

Figure 2-7. Complex Address Calculation (Protected Mode)

• Stack Addresses—PUSH, POP, CALL, RET, IRET, and INT instructions implicitly use the stack
pointer, which contains the address of the procedure stack. See “Stack Operation” on page 19 for
details about the size of the stack pointer.

• String Addresses—String instructions generate sequential addresses using the rDI and rSI registers,
as described in “Implicit Uses of GPRs” on page 30.

In 64-bit mode, with no address-size override, the size of effective-address calculations is 64 bits. An
effective-address calculation uses 64-bit base and index registers and sign-extends displacements to 64
bits. Due to the flat address space in 64-bit mode, virtual addresses are equal to effective addresses.
(For an exception to this general rule, see “FS and GS as Base of Address Calculation” on page 17.)

Long-Mode Zero-Extension of 16-Bit and 32-Bit Addresses. In long mode, all 16-bit and 32-bit
address calculations are zero-extended to form 64-bit addresses. Address calculations are first

+
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truncated to the effective-address size of the current mode (64-bit mode or compatibility mode), as
overridden by any address-size prefix. The result is then zero-extended to the full 64-bit address width.

Because of this, 16-bit and 32-bit applications running in compatibility mode can access only the low
4GB of the long-mode virtual-address space. Likewise, a 32-bit address generated in 64-bit mode can
access only the low 4GB of the long-mode virtual-address space.

Displacements and Immediates. In general, the maximum size of address displacements and
immediate operands is 32 bits. They can be 8, 16, or 32 bits in size, depending on the instruction or, for
displacements, the effective address size. In 64-bit mode, displacements are sign-extended to 64 bits
during use, but their actual size (for value representation) remains a maximum of 32 bits. The same is
true for immediates in 64-bit mode, when the operand size is 64 bits. However, support is provided in
64-bit mode for some 64-bit displacement and immediate forms of the MOV instruction.

FS and GS as Base of Address Calculation. In 64-bit mode, the FS and GS segment-base registers
(unlike the DS, ES, and SS segment-base registers) can be used as non-zero data-segment base
registers for address calculations, as described in “Segmented Virtual Memory” in Volume 2. 64-bit
mode assumes all other data-segment registers (DS, ES, and SS) have a base address of 0.

2.2.4 Address-Size Prefix

The default address size of an instruction is determined by the default-size (D) bit and long-mode (L)
bit in the current code-segment descriptor (for details, see “Segmented Virtual Memory” in Volume 2).
Application software can override the default address size in any operating mode by using the 67h
address-size instruction prefix byte. The address-size prefix allows mixing 32-bit and 64-bit addresses
on an instruction-by-instruction basis.

Table 2-1 on page 18 shows the effects of using the address-size prefix in all operating modes. In 64-
bit mode, the default address size is 64 bits. The address size can be overridden to 32 bits. 16-bit
addresses are not supported in 64-bit mode. In compatibility and legacy modes, the address-size prefix
works the same as in the legacy x86 architecture.
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2.2.5 RIP-Relative Addressing

RIP-relative addressing—that is, addressing relative to the 64-bit instruction pointer (also called
program counter)—is available in 64-bit mode. The effective address is formed by adding the
displacement to the 64-bit RIP of the next instruction.

In the legacy x86 architecture, addressing relative to the instruction pointer (IP or EIP) is available
only in control-transfer instructions. In the 64-bit mode, any instruction that uses ModRM addressing
(see “ModRM and SIB Bytes” in Volume 3) can use RIP-relative addressing. The feature is
particularly useful for addressing data in position-independent code and for code that addresses global
data.

Programs usually have many references to data, especially global data, that are not register-based. To
load such a program, the loader typically selects a location for the program in memory and then adjusts
the program’s references to global data based on the load location. RIP-relative addressing of data
makes this adjustment unnecessary.

Range of RIP-Relative Addressing. Without RIP-relative addressing, instructions encoded with a
ModRM byte address memory relative to zero. With RIP-relative addressing, instructions with a
ModRM byte can address memory relative to the 64-bit RIP using a signed 32-bit displacement. This
provides an offset range of ±2 GBytes from the RIP.

Effect of Address-Size Prefix on RIP-Relative Addressing. RIP-relative addressing is enabled by
64-bit mode, not by a 64-bit address-size. Conversely, use of the address-size prefix does not disable

Table 2-1. Address-Size Prefixes

Operating Mode
Default

Address
Size (Bits)

Effective
Address Size

(Bits)

Address-
Size Prefix

(67h)1

Required?

Long Mode

64-Bit Mode 64
64 no

32 yes

Compatibility Mode

32
32 no

16 yes

16
32 yes

16 no

Legacy Mode
(Protected, Virtual-8086, or Real
Mode)

32
32 no

16 yes

16
32 yes

16 no

Note:
1. “No” indicates that the default address size is used.
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RIP-relative addressing. The effect of the address-size prefix is to truncate and zero-extend the
computed effective address to 32 bits, like any other addressing mode.

Encoding. For details on instruction encoding of RIP-relative addressing, see in “RIP-Relative
Addressing” in Volume 3.

2.3 Pointers

Pointers are variables that contain addresses rather than data. They are used by instructions to
reference memory. Instructions access data using near and far pointers. Stack pointers locate the
current stack.

2.3.1 Near and Far Pointers

Near pointers contain only an effective address, which is used as an offset into the current segment. Far
pointers contain both an effective address and a segment selector that specifies one of several
segments. Figure 2-8 illustrates the two types of pointers.

Figure 2-8. Near and Far Pointers

In 64-bit mode, the AMD64 architecture supports only the flat-memory model in which there is only
one data segment, so the effective address is used as the virtual (linear) address and far pointers are not
needed. In compatibility mode and legacy protected mode, the AMD64 architecture supports multiple
memory segments, so effective addresses can be combined with segment selectors to form far pointers,
and the terms logical address (segment selector and effective address) and far pointer are synonyms.
Near pointers can also be used in compatibility mode and legacy mode.

2.4 Stack Operation

A stack is a portion of a stack segment in memory that is used to link procedures. Software conventions
typically define stacks using a stack frame, which consists of two registers—a stack-frame base
pointer (rBP) and a stack pointer (rSP)—as shown in Figure 2-9 on page 20. These stack pointers can
be either near pointers or far pointers.

The stack-segment (SS) register, points to the base address of the current stack segment. The stack
pointers contain offsets from the base address of the current stack segment. All instructions that
address memory using the rBP or rSP registers cause the processor to access the current stack segment.
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Figure 2-9. Stack Pointer Mechanism

In typical APIs, the stack-frame base pointer and the stack pointer point to the same location before a
procedure call (the top-of-stack of the prior stack frame). After data is pushed onto the stack, the stack-
frame base pointer remains where it was and the stack pointer advances downward to the address
below the pushed data, where it becomes the new top-of-stack.

In legacy and compatibility modes, the default stack pointer size is 16 bits (SP) or 32 bits (ESP),
depending on the default-size (B) bit in the stack-segment descriptor, and multiple stacks can be
maintained in separate stack segments. In 64-bit mode, stack pointers are always 64 bits wide (RSP).

Further application-programming details on the stack mechanism are described in “Control Transfers”
on page 76. System-programming details on the stack segments are described in “Segmented Virtual
Memory” in Volume 2.

2.5 Instruction Pointer

The instruction pointer is used in conjunction with the code-segment (CS) register to locate the next
instruction in memory. The instruction-pointer register contains the displacement (offset)—from the
base address of the current CS segment, or from address 0 in 64-bit mode—to the next instruction to be
executed. The pointer is incremented sequentially, except for branch instructions, as described in
“Control Transfers” on page 76.

In legacy and compatibility modes, the instruction pointer is a 16-bit (IP) or 32-bit (EIP) register. In
64-bit mode, the instruction pointer is extended to a 64-bit (RIP) register to support 64-bit offsets. The
case-sensitive acronym, rIP, is used to refer to any of these three instruction-pointer sizes, depending
on the software context.

Figure 2-10 on page 21 shows the relationship between RIP, EIP, and IP. The 64-bit RIP can be used
for RIP-relative addressing, as described in “RIP-Relative Addressing” on page 18.
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Figure 2-10. Instruction Pointer (rIP) Register

The contents of the rIP are not directly readable by software. However, the rIP is pushed onto the stack
by a call instruction.

The memory model described in this chapter is used by all of the programming environments that
make up the AMD64 architecture. The next four chapters of this volume describe the application
programming environments, which include:

• General-purpose programming (Chapter 3 on page 23).

• 128-bit media programming (Chapter 4 on page 105).

• 64-bit media programming (Chapter 5 on page 193).

• x87 floating-point programming (Chapter 6 on page 237).
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3 General-Purpose Programming

The general-purpose programming model includes the general-purpose registers (GPRs), integer
instructions and operands that use the GPRs, program-flow control methods, memory optimization
methods, and I/O. This programming model includes the original x86 integer-programming
architecture, plus 64-bit extensions and a few additional instructions. Only the application-
programming instructions and resources are described in this chapter. Integer instructions typically
used in system programming, including all of the privileged instructions, are described in Volume 2,
along with other system-programming topics.

The general-purpose programming model is used to some extent by almost all programs, including
programs consisting primarily of 128-bit media instructions, 64-bit media instructions, x87 floating-
point instructions, or system instructions. For this reason, an understanding of the general-purpose
programming model is essential for any programming work using the AMD64 instruction set
architecture.

3.1 Registers

Figure 3-1 on page 24 shows an overview of the registers used in general-purpose application
programming. They include the general-purpose registers (GPRs), segment registers, flags register,
and instruction-pointer register. The number and width of available registers depends on the operating
mode.

The registers and register ranges shaded light gray in Figure 3-1 on page 24 are available only in 64-bit
mode. Those shaded dark gray are available only in legacy mode and compatibility mode. Thus, in 64-
bit mode, the 32-bit general-purpose, flags, and instruction-pointer registers available in legacy mode
and compatibility mode are extended to 64-bit widths, eight new GPRs are available, and the DS, ES,
and SS segment registers are ignored.

When naming registers, if reference is made to multiple register widths, a lower-case r notation is
used. For example, the notation rAX refers to the 16-bit AX, 32-bit EAX, or 64-bit RAX register,
depending on an instruction’s effective operand size.
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Figure 3-1. General-Purpose Programming Registers

3.1.1 Legacy Registers

In legacy and compatibility modes, all of the legacy x86 registers are available. Figure 3-2 on page 25
shows a detailed view of the GPR, flag, and instruction-pointer registers.
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Figure 3-2. General Registers in Legacy and Compatibility Modes

The legacy GPRs include:

• Eight 8-bit registers (AH, AL, BH, BL, CH, CL, DH, DL).

• Eight 16-bit registers (AX, BX, CX, DX, DI, SI, BP, SP).

• Eight 32-bit registers (EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP).

The size of register used by an instruction depends on the effective operand size or, for certain
instructions, the opcode, address size, or stack size. The 16-bit and 32-bit registers are encoded as 0
through 7 in Figure 3-2. For opcodes that specify a byte operand, registers encoded as 0 through 3 refer
to the low-byte registers (AL, BL, CL, DL) and registers encoded as 4 through 7 refer to the high-byte
registers (AH, BH, CH, DH).

The 16-bit FLAGS register, which is also the low 16 bits of the 32-bit EFLAGS register, shown in
Figure 3-2, contains control and status bits accessible to application software, as described in
Section 3.1.4, “Flags Register,” on page 33. The 16-bit IP or 32-bit EIP instruction-pointer register
contains the address of the next instruction to be executed, as described in Section 2.5, “Instruction
Pointer,” on page 20.
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3.1.2 64-Bit-Mode Registers

In 64-bit mode, eight new GPRs are added to the eight legacy GPRs, all 16 GPRs are 64 bits wide, and
the low bytes of all registers are accessible. Figure 3-3 on page 27 shows the GPRs, flags register, and
instruction-pointer register available in 64-bit mode. The GPRs include:

• Sixteen 8-bit low-byte registers (AL, BL, CL, DL, SIL, DIL, BPL, SPL, R8B, R9B, R10B, R11B,
R12B, R13B, R14B, R15B).

• Four 8-bit high-byte registers (AH, BH, CH, DH), addressable only when no REX prefix is used.

• Sixteen 16-bit registers (AX, BX, CX, DX, DI, SI, BP, SP, R8W, R9W, R10W, R11W, R12W,
R13W, R14W, R15W).

• Sixteen 32-bit registers (EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D, R9D, R10D, R11D,
R12D, R13D, R14D, R15D).

• Sixteen 64-bit registers (RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8, R9, R10, R11, R12,
R13, R14, R15).

The size of register used by an instruction depends on the effective operand size or, for certain
instructions, the opcode, address size, or stack size. For most instructions, access to the extended GPRs
requires a REX prefix (Section 3.5.2, “REX Prefixes,” on page 74). The four high-byte registers (AH,
BH, CH, DH) available in legacy mode are not addressable when a REX prefix is used.

In general, byte and word operands are stored in the low 8 or 16 bits of GPRs without modifying their
high 56 or 48 bits, respectively. Doubleword operands, however, are normally stored in the low 32 bits
of GPRs and zero-extended to 64 bits.

The 64-bit RFLAGS register, shown in Figure 3-3 on page 27, contains the legacy EFLAGS in its low
32-bit range. The high 32 bits are reserved. They can be written with anything but they always read as
zero (RAZ). The 64-bit RIP instruction-pointer register contains the address of the next instruction to
be executed, as described in Section 3.1.5, “Instruction Pointer Register,” on page 36.
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Figure 3-3. General Registers in 64-Bit Mode

Figure 3-4 on page 28 illustrates another way of viewing the 64-bit-mode GPRs, showing how the
legacy GPRs overlap the extended GPRs. Gray-shaded bits are not modified in 64-bit mode.
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Figure 3-4. GPRs in 64-Bit Mode
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Default Operand Size. For most instructions, the default operand size in 64-bit mode is 32 bits. To
access 16-bit operand sizes, an instruction must contain an operand-size prefix (66h), as described in
Section 3.2.2, “Operand Sizes and Overrides,” on page 39. To access the full 64-bit operand size, most
instructions must contain a REX prefix.

For details on operand size, see Section 3.2.2, “Operand Sizes and Overrides,” on page 39.

Byte Registers. 64-bit mode provides a uniform set of low-byte, low-word, low-doubleword, and
quadword registers that is well-suited for register allocation by compilers. Access to the four new low-
byte registers in the legacy-GPR range (SIL, DIL, BPL, SPL), or any of the low-byte registers in the
extended registers (R8B–R15B), requires a REX instruction prefix. However, the legacy high-byte
registers (AH, BH, CH, DH) are not accessible when a REX prefix is used.

Zero-Extension of 32-Bit Results. As Figure 3-3 on page 27 and Figure 3-4 on page 28 show, when
performing 32-bit operations with a GPR destination in 64-bit mode, the processor zero-extends the
32-bit result into the full 64-bit destination. 8-bit and 16-bit operations on GPRs preserve all unwritten
upper bits of the destination GPR. This is consistent with legacy 16-bit and 32-bit semantics for
partial-width results.

Software should explicitly sign-extend the results of 8-bit, 16-bit, and 32-bit operations to the full 64-
bit width before using the results in 64-bit address calculations.

The following four code examples show how 64-bit, 32-bit, 16-bit, and 8-bit ADDs work. In these
examples, “48” is a REX prefix specifying 64-bit operand size, and “01C3” and “00C3” are the opcode
and ModRM bytes of each instruction (see “Opcode Syntax” in Volume 3 for details on the opcode and
ModRM encoding).

Example 1: 64-bit Add:

Before:RAX =0002_0001_8000_2201
RBX =0002_0002_0123_3301

48 01C3 ADD RBX,RAX ;48 is a REX prefix for size.

Result:RBX = 0004_0003_8123_5502

Example 2: 32-bit Add:

Before:RAX = 0002_0001_8000_2201
RBX = 0002_0002_0123_3301

01C3 ADD EBX,EAX ;32-bit add

Result:RBX = 0000_0000_8123_5502
(32-bit result is zero extended)

Example 3: 16-bit Add:

Before:RAX = 0002_0001_8000_2201
RBX = 0002_0002_0123_3301
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66 01C3 ADD BX,AX ;66 is 16-bit size override

Result:RBX = 0002_0002_0123_5502
(bits 63:16 are preserved)

Example 4: 8-bit Add:

Before:RAX = 0002_0001_8000_2201
RBX = 0002_0002_0123_3301

00C3 ADD BL,AL ;8-bit add

Result:RBX = 0002_0002_0123_3302
(bits 63:08 are preserved)

GPR High 32 Bits Across Mode Switches. The processor does not preserve the upper 32 bits of the
64-bit GPRs across switches from 64-bit mode to compatibility or legacy modes. When using 32-bit
operands in compatibility or legacy mode, the high 32 bits of GPRs are undefined. Software must not
rely on these undefined bits, because they can change from one implementation to the next or even on
a cycle-to-cycle basis within a given implementation. The undefined bits are not a function of the data
left by any previously running process.

3.1.3 Implicit Uses of GPRs

Most instructions can use any of the GPRs for operands. However, as Figure 3-1 on page 31 shows,
some instructions use some GPRs implicitly. Details about implicit use of GPRs are described in
“General-Purpose Instruction Reference” in Volume 3.

Table 3-1 on page 31 shows implicit register uses only for application instructions. Certain system
instructions also make implicit use of registers. These system instructions are described in “System
Instruction Reference” in Volume 3.
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Table 3-1. Implicit Uses of GPRs

Registers1
Name Implicit Uses

Low 8-Bit 16-Bit 32-Bit 64-Bit

AL AX EAX RAX2 Accumulator

• Operand for decimal
arithmetic, multiply, divide,
string, compare-and-
exchange, table-translation,
and I/O instructions.

• Special accumulator encoding
for ADD, XOR, and MOV
instructions.

• Used with EDX to hold double-
precision operands.

• CPUID processor-feature
information.

BL BX EBX RBX2 Base

• Address generation in 16-bit
code.

• Memory address for XLAT
instruction.

• CPUID processor-feature
information.

CL CX ECX RCX2 Count

• Bit index for shift and rotate
instructions.

• Iteration count for loop and
repeated string instructions.

• Jump conditional if zero.
• CPUID processor-feature

information.

DL DX EDX RDX2 I/O Address

• Operand for multiply and divide
instructions.

• Port number for I/O
instructions.

• Used with EAX to hold double-
precision operands.

• CPUID processor-feature
information.

SIL2 SI ESI RSI2 Source Index

• Memory address of source
operand for string instructions.

• Memory index for 16-bit
addresses.

Note:
1. Gray-shaded registers have no implicit uses.
2. Accessible only in 64-bit mode.
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Arithmetic Operations. Several forms of the add, subtract, multiply, and divide instructions use AL
or rAX implicitly. The multiply and divide instructions also use the concatenation of rDX:rAX for
double-sized results (multiplies) or quotient and remainder (divides).

Sign-Extensions. The instructions that double the size of operands by sign extension (for example,
CBW, CWDE, CDQE, CWD, CDQ, CQO) use rAX register implicitly for the operand. The CWD,
CDQ, and CQO instructions also uses the rDX register.

Special MOVs. The MOV instruction has several opcodes that implicitly use the AL or rAX register
for one operand.

String Operations. Many types of string instructions use the accumulators implicitly. Load string,
store string, and scan string instructions use AL or rAX for data and rDI or rSI for the offset of a
memory address.

I/O-Address-Space Operations. The I/O and string I/O instructions use rAX to hold data that is
received from or sent to a device located in the I/O-address space. DX holds the device I/O-address
(the port number).

Table Translations. The table translate instruction (XLATB) uses AL for an memory index and rBX
for memory base address.

Compares and Exchanges. Compare and exchange instructions (CMPXCHG) use the AL or rAX
register for one operand.

DIL2 DI EDI RDI2
Destination

Index

• Memory address of destination
operand for string instructions.

• Memory index for 16-bit
addresses.

BPL2 BP EBP RBP2 Base Pointer
• Memory address of stack-

frame base pointer.

SPL2 SP ESP RSP2 Stack Pointer
• Memory address of last stack

entry (top of stack).

R8B–R10B2 R8W–R10W2 R8D–R10D2 R8–R102 None No implicit uses

R11B2 R11W2 R11D2 R112 None
• Holds the value of RFLAGS on

SYSCALL/SYSRET.

R12B–R15B2 R12W–R15W2 R12D–R15D2 R12–R152 None No implicit uses

Table 3-1. Implicit Uses of GPRs (continued)

Registers1
Name Implicit Uses

Low 8-Bit 16-Bit 32-Bit 64-Bit

Note:
1. Gray-shaded registers have no implicit uses.
2. Accessible only in 64-bit mode.
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Decimal Arithmetic. The decimal arithmetic instructions (AAA, AAD, AAM, AAS, DAA, DAS)
that adjust binary-coded decimal (BCD) operands implicitly use the AL and AH register for their
operations.

Shifts and Rotates. Shift and rotate instructions can use the CL register to specify the number of bits
an operand is to be shifted or rotated.

Conditional Jumps. Special conditional-jump instructions use the rCX register instead of flags. The
JCXZ and JrCXZ instructions check the value of the rCX register and pass control to the target
instruction when the value of rCX register reaches 0.

Repeated String Operations. With the exception of I/O string instructions, all string operations use
rSI as the source-operand pointer and rDI as the destination-operand pointer. I/O string instructions
use rDX to specify the input-port or output-port number. For repeated string operations (those
preceded with a repeat-instruction prefix), the rSI and rDI registers are incremented or decremented as
the string elements are moved from the source location to the destination. Repeat-string operations
also use rCX to hold the string length, and decrement it as data is moved from one location to the other.

Stack Operations. Stack operations make implicit use of the rSP register, and in some cases, the rBP
register. The rSP register is used to hold the top-of-stack pointer (or simply, stack pointer). rSP is
decremented when items are pushed onto the stack, and incremented when they are popped off the
stack. The ENTER and LEAVE instructions use rBP as a stack-frame base pointer. Here, rBP points to
the last entry in a data structure that is passed from one block-structured procedure to another.

The use of rSP or rBP as a base register in an address calculation implies the use of SS (stack segment)
as the default segment. Using any other GPR as a base register without a segment-override prefix
implies the use of the DS data segment as the default segment.

The push all and pop all instructions (PUSHA, PUSHAD, POPA, POPAD) implicitly use all of the
GPRs.

CPUID Information. The CPUID instruction makes implicit use of the EAX, EBX, ECX, and EDX
registers. Software loads a function code into EAX, executes the CPUID instruction, and then reads the
associated processor-feature information in EAX, EBX, ECX, and EDX.

3.1.4 Flags Register

Figure 3-5 on page 34 shows the 64-bit RFLAGS register and the flag bits visible to application
software. Bits 15–0 are the FLAGS register (accessed in legacy real and virtual-8086 modes), bits
31–0 are the EFLAGS register (accessed in legacy protected mode and compatibility mode), and bits
63–0 are the RFLAGS register (accessed in 64-bit mode). The name rFLAGS refers to any of the three
register widths, depending on the current software context.
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Figure 3-5. rFLAGS Register—Flags Visible to Application Software

The low 16 bits (FLAGS portion) of rFLAGS are accessible by application software and hold the
following flags:

• One control flag (the direction flag DF).

• Six status flags (carry flag CF, parity flag PF, auxiliary carry flag AF, zero flag ZF, sign flag SF,
and overflow flag OF).

The direction flag (DF) flag controls the direction of string operations. The status flags provide result
information from logical and arithmetic operations and control information for conditional move and
jump instructions.

Bits 31–16 of the rFLAGS register contain flags that are accessible only to system software. These
flags are described in “System Registers” in Volume 2. The highest 32 bits of RFLAGS are reserved.
In 64-bit mode, writes to these bits are ignored. They are read as zeros (RAZ). The rFLAGS register is
initialized to 02h on reset, so that all of the programmable bits are cleared to zero.

The effects that rFLAGS bit-values have on instructions are summarized in the following places:

• Conditional Moves (CMOVcc)—Table 3-4 on page 43.

• Conditional Jumps (Jcc)—Table 3-5 on page 55.

• Conditional Sets (SETcc)—Table 3-6 on page 59.

The effects that instructions have on rFLAGS bit-values are summarized in “Instruction Effects on
RFLAGS” in Volume 3.
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The sections below describe each application-visible flag. All of these flags are readable and writable.
For example, the POPF, POPFD, POPFQ, IRET, IRETD, and IRETQ instructions write all flags. The
carry and direction flags are writable by dedicated application instructions. Other application-visible
flags are written indirectly by specific instructions. Reserved bits and bits whose writability is
prevented by the current values of system flags, current privilege level (CPL), or the current operating
mode, are unaffected by the POPFx instructions.

Carry Flag (CF). Bit 0. Hardware sets the carry flag to 1 if the last integer addition or subtraction
operation resulted in a carry (for addition) or a borrow (for subtraction) out of the most-significant bit
position of the result. Otherwise, hardware clears the flag to 0.

The increment and decrement instructions—unlike the addition and subtraction instructions—do not
affect the carry flag. The bit shift and bit rotate instructions shift bits of operands into the carry flag.
Logical instructions like AND, OR, XOR clear the carry flag. Bit-test instructions (BTx) set the value
of the carry flag depending on the value of the tested bit of the operand.

Software can set or clear the carry flag with the STC and CLC instructions, respectively. Software can
complement the flag with the CMC instruction.

Parity Flag (PF). Bit 2. Hardware sets the parity flag to 1 if there is an even number of 1 bits in the
least-significant byte of the last result of certain operations. Otherwise (i.e., for an odd number of 1
bits), hardware clears the flag to 0. Software can read the flag to implement parity checking.

Auxiliary Carry Flag (AF). Bit 4. Hardware sets the auxiliary carry flag if an arithmetic operation or
a binary-coded decimal (BCD) operation generates a carry (in the case of an addition) or a borrow (in
the case of a subtraction) out of bit 3 of the result. Otherwise, AF is cleared to zero.

The main application of this flag is to support decimal arithmetic operations. Most commonly, this flag
is used internally by correction commands for decimal addition (AAA) and subtraction (AAS).

Zero Flag (ZF). Bit 6. Hardware sets the zero flag to 1 if the last arithmetic operation resulted in a
value of zero. Otherwise (for a non-zero result), hardware clears the flag to 0. The compare and test
instructions also affect the zero flag.

The zero flag is typically used to test whether the result of an arithmetic or logical operation is zero, or
to test whether two operands are equal.

Sign Flag (SF). Bit 7. Hardware sets the sign flag to 1 if the last arithmetic operation resulted in a
negative value. Otherwise (for a positive-valued result), hardware clears the flag to 0. Thus, in such
operations, the value of the sign flag is set equal to the value of the most-significant bit of the result.
Depending on the size of operands, the most-significant bit is bit 7 (for bytes), bit 15 (for words), bit 31
(for doublewords), or bit 63 (for quadwords).

Direction Flag (DF). Bit 10. The direction flag determines the order in which strings are processed.
Software can set the direction flag to 1 to specify decrementing the data pointer for the next string
instruction (LODSx, STOSx, MOVSx, SCASx, CMPSx, OUTSx, or INSx). Clearing the direction flag
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to 0 specifies incrementing the data pointer. The pointers are stored in the rSI or rDI register. Software
can set or clear the flag with the STD and CLD instructions, respectively.

Overflow Flag (OF). Bit 11. Hardware sets the overflow flag to 1 to indicate that the most-significant
(sign) bit of the result of the last signed integer operation differed from the signs of both source
operands. Otherwise, hardware clears the flag to 0. A set overflow flag means that the magnitude of the
positive or negative result is too big (overflow) or too small (underflow) to fit its defined data type.

The OF flag is undefined after the DIV instruction and after a shift of more than one bit. Logical
instructions clear the overflow flag.

3.1.5 Instruction Pointer Register

The instruction pointer register—IP, EIP, or RIP, or simply rIP for any of the three depending on the
context—is used in conjunction with the code-segment (CS) register to locate the next instruction in
memory. See Section 2.5, “Instruction Pointer,” on page 20 for details.

3.2 Operands

Operands are either referenced by an instruction's encoding or included as an immediate value in the
instruction encoding. Depending on the instruction, referenced operands can be located in registers,
memory locations, or I/O ports.

3.2.1 Data Types

Figure 3-6 on page 37 shows the register images of the general-purpose data types. In the general-
purpose programming environment, these data types can be interpreted by instruction syntax or the
software context as the following types of numbers and strings:

• Signed (two's-complement) integers.

• Unsigned integers.

• BCD digits.

• Packed BCD digits.

• Strings, including bit strings.

The double quadword data type is supported in the RDX:RAX registers by the MUL, IMUL, DIV,
IDIV, and CQO instructions. Software can interpret the data types in ways other than those shown in
Figure 3-6 on page 37 but the AMD64 instruction set does not directly support such interpretations
and software must handle them entirely on its own.

Table 3-2 on page 37 shows the range of representable values for the general-purpose data types.
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Figure 3-6. General-Purpose Data Types

Signed and Unsigned Integers. The architecture supports signed and unsigned 1 byte, 2 bytes, 4
byte and 8 byte integers. The sign bit is stored in the most significant bit.

Table 3-2. Representable Values of General-Purpose Data Types

Data Type Byte Word Doubleword Quadword
Double

Quadword2

Signed Integers1 -27 to +(27 -1) -215 to +(215 -1) -231 to +(231 -1) -263 to +(263 -1) -2127 to +(2127 -1)

Note:
1. The sign bit is the most-significant bit (e.g., bit 7 for a byte, bit 15 for a word, etc.).
2. The double quadword data type is supported in the RDX:RAX registers by the MUL, IMUL, DIV, IDIV, and CQO

instructions.
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Binary-Coded-Decimal (BCD) Digits. BCD digits have values ranging from 0 to 9. These values can
be represented in binary encoding with four bits. For example, 0000b represents the decimal number 0
and 1001b represents the decimal number 9. Values ranging from 1010b to 1111b are invalid for this
data type. Because a byte contains eight bits, two BCD digits can be stored in a single byte. This is
referred to as packed-BCD. If a single BCD digit is stored per byte, it is referred to as unpacked-BCD.
In the x87 floating-point programming environment (described in Section 6, “x87 Floating-Point
Programming,” on page 237) an 80-bit packed BCD data type is also supported, along with
conversions between floating-point and BCD data types, so that data expressed in the BCD format can
be operated on as floating-point values.

Integer add, subtract, multiply, and divide instructions can be used to operate on single (unpacked)
BCD digits. The result must be adjusted to produce a correct BCD representation. For unpacked BCD
numbers, the ASCII-adjust instructions are provided to simplify that correction. In the case of division,
the adjustment must be made prior to executing the integer-divide instruction.

Similarly, integer add and subtract instructions can be used to operate on packed-BCD digits. The
result must be adjusted to produce a correct packed-BCD representation. Decimal-adjust instructions
are provided to simplify packed-BCD result corrections.

Strings. Strings are a continuous sequence of a single data type. The string instructions can be used to
operate on byte, word, doubleword, or quadword data types. The maximum length of a string of any
data type is 232–1 bytes, in legacy or compatibility modes, or 264–1 bytes in 64-bit mode. One of the
more common types of strings used by applications are byte data-type strings known as ASCII strings,
which can be used to represent character data.

Bit strings are also supported by instructions that operate specifically on bit strings. In general, bit
strings can start and end at any bit location within any byte, although the BTx bit-string instructions
assume that strings start on a byte boundary. The length of a bit string can range in size from a single
bit up to 232–1 bits, in legacy or compatibility modes, or 264-–1 bits in 64-bit mode.

Unsigned Integers
0 to +28-1
(0 to 255)

0 to +216-1
(0 to 65,535)

0 to +232-1
(0 to 4.29 x 109)

0 to +264-1
(0 to 1.84 x 1019)

0 to +2128-1
(0 to 3.40 x 1038)

Packed BCD
Digits

00 to 99 multiple packed BCD-digit bytes

BCD Digit 0 to 9 multiple BCD-digit bytes

Table 3-2. Representable Values of General-Purpose Data Types (continued)

Data Type Byte Word Doubleword Quadword
Double

Quadword2

Note:
1. The sign bit is the most-significant bit (e.g., bit 7 for a byte, bit 15 for a word, etc.).
2. The double quadword data type is supported in the RDX:RAX registers by the MUL, IMUL, DIV, IDIV, and CQO

instructions.
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3.2.2 Operand Sizes and Overrides

Default Operand Size. In legacy and compatibility modes, the default operand size is either 16 bits
or 32 bits, as determined by the default-size (D) bit in the current code-segment descriptor (for details,
see “Segmented Virtual Memory” in Volume 2). In 64-bit mode, the default operand size for most
instructions is 32 bits.

Application software can override the default operand size by using an operand-size instruction prefix.
Table 3-3 shows the instruction prefixes for operand-size overrides in all operating modes. In 64-bit
mode, the default operand size for most instructions is 32 bits. A REX prefix (see Section 3.5.2, “REX
Prefixes,” on page 74) specifies a 64-bit operand size, and a 66h prefix specifies a 16-bit operand size.
The REX prefix takes precedence over the 66h prefix.

There are several exceptions to the 32-bit operand-size default in 64-bit mode, including near branches
and instructions that implicitly reference the RSP stack pointer. For example, the near CALL, near
JMP, Jcc, LOOPcc, POP, and PUSH instructions all default to a 64-bit operand size in 64-bit mode.
Such instructions do not need a REX prefix for the 64-bit operand size. For details, see “General-
Purpose Instructions in 64-Bit Mode” in Volume 3.

Effective Operand Size. The term effective operand size describes the operand size for the current
instruction, after accounting for the instruction’s default operand size and any operand-size override or
REX prefix that is used with the instruction.

Table 3-3. Operand-Size Overrides

Operating Mode
Default

Operand
Size (Bits)

Effective
Operand

Size
(Bits)

Instruction Prefix

66h1 REX

Long
Mode

64-Bit
Mode

322

64 x yes

32 no no

16 yes no

Compatibility
Mode

32
32 no

Not
Applicable

16 yes

16
32 yes

16 no

Legacy Mode
(Protected, Virtual-8086,
or Real Mode)

32
32 no

16 yes

16
32 yes

16 no

Note:
1. A “no” indicates that the default operand size is used. An “x” means “don’t care.”
2. Near branches, instructions that implicitly reference the stack pointer, and certain

other instructions default to 64-bit operand size. See “General-Purpose Instructions
in 64-Bit Mode” in Volume 3
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Immediate Operand Size. In legacy mode and compatibility modes, the size of immediate operands
can be 8, 16, or 32 bits, depending on the instruction. In 64-bit mode, the maximum size of an
immediate operand is also 32 bits, except that 64-bit immediates can be copied into a 64-bit GPR using
the MOV instruction.

When the operand size of a MOV instruction is 64 bits, the processor sign-extends immediates to 64
bits before using them. Support for true 64-bit immediates is accomplished by expanding the
semantics of the MOV reg, imm16/32 instructions. In legacy and compatibility modes, these
instructions—opcodes B8h through BFh—copy a 16-bit or 32-bit immediate (depending on the
effective operand size) into a GPR. In 64-bit mode, if the operand size is 64 bits (requires a REX
prefix), these instructions can be used to copy a true 64-bit immediate into a GPR.

3.2.3 Operand Addressing

Operands for general-purpose instructions are referenced by the instruction's syntax or they are
incorporated in the instruction as an immediate value. Referenced operands can be in registers,
memory, or I/O ports.

Register Operands. Most general-purpose instructions that take register operands reference the
general-purpose registers (GPRs). A few general-purpose instructions reference operands in the
RFLAGS register, XMM registers, or MMX™ registers.

The type of register addressed is specified in the instruction syntax. When addressing GPRs or XMM
registers, the REX instruction prefix can be used to access the extended GPRs or XMM registers, as
described in Section 3.5, “Instruction Prefixes,” on page 71.

Memory Operands. Many general-purpose instructions can access operands in memory. Section 2.2,
“Memory Addressing,” on page 14 describes the general methods and conditions for addressing
memory operands.

I/O Ports. Operands in I/O ports are referenced according to the conventions described in Section 3.8,
“Input/Output,” on page 90.

Immediate Operands. In certain instructions, a source operand—called an immediate operand, or
simply immediate—is included as part of the instruction rather than being accessed from a register or
memory location. For details on the size of immediate operands, see “Immediate Operand Size” on
page 40.

3.2.4 Data Alignment

A data access is aligned if its address is a multiple of its operand size, in bytes. The following examples
illustrate this definition:

• Byte accesses are always aligned. Bytes are the smallest addressable parts of memory.

• Word (two-byte) accesses are aligned if their address is a multiple of 2.

• Doubleword (four-byte) accesses are aligned if their address is a multiple of 4.

• Quadword (eight-byte) accesses are aligned if their address is a multiple of 8.
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The AMD64 architecture does not impose data-alignment requirements for accessing data in memory.
However, depending on the location of the misaligned operand with respect to the width of the data bus
and other aspects of the hardware implementation (such as store-to-load forwarding mechanisms), a
misaligned memory access can require more bus cycles than an aligned access. For maximum
performance, avoid misaligned memory accesses.

Performance on many hardware implementations will benefit from observing the following operand-
alignment and operand-size conventions:

• Avoid misaligned data accesses.

• Maintain consistent use of operand size across all loads and stores. Larger operand sizes
(doubleword and quadword) tend to make more efficient use of the data bus and any data-
forwarding features that are implemented by the hardware.

• When using word or byte stores, avoid loading data from the same doubleword of memory, other
than the identical start addresses of the stores.

3.3 Instruction Summary

This section summarizes the functions of the general-purpose instructions. The instructions are
organized by functional group—such as, data-transfer instructions, arithmetic instructions, and so on.
Details on individual instructions are given in the alphabetically organized “General-Purpose
Instruction Reference” in Volume 3.

3.3.1 Syntax

Each instruction has a mnemonic syntax used by assemblers to specify the operation and the operands
to be used for source and destination (result) data. Figure 3-7 shows an example of the mnemonic
syntax for a compare (CMP) instruction. In this example, the CMP mnemonic is followed by two
operands, a 32-bit register or memory operand and an 8-bit immediate operand.

Figure 3-7. Mnemonic Syntax Example

513-139.eps

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand

CMP   reg/mem32,   imm8
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In most instructions that take two operands, the first (left-most) operand is both a source operand and
the destination operand. The second (right-most) operand serves only as a source. Instructions can
have one or more prefixes that modify default instruction functions or operand properties. These
prefixes are summarized in Section 3.5, “Instruction Prefixes,” on page 71. Instructions that access
64-bit operands in a general-purpose register (GPR) or any of the extended GPR or XMM registers
require a REX instruction prefix.

Unless otherwise stated in this section, the word register means a general-purpose register (GPR).
Several instructions affect the flag bits in the RFLAGS register. “Instruction Effects on RFLAGS” in
Volume 3 summarizes the effects that instructions have on rFLAGS bits.

3.3.2 Data Transfer

The data-transfer instructions copy data between registers and memory.

Move

• MOV—Move

• MOVSX—Move with Sign-Extend

• MOVZX—Move with Zero-Extend

• MOVD—Move Doubleword or Quadword

• MOVNTI—Move Non-Temporal Doubleword or Quadword

MOVx copies a byte, word, doubleword, or quadword from a register or memory location to a register
or memory location. The source and destination cannot both be memory locations. An immediate
constant can be used as a source operand with the MOV instruction. For MOV, the destination must be
of the same size as the source, but the MOVSX and MOVZX instructions copy values of smaller size to
a larger size by using sign-extension or zero-extension. The MOVD instruction copies a doubleword or
quadword between a general-purpose register or memory and an XMM or MMX register.

The MOV instruction is in many aspects similar to the assignment operator in high-level languages.
The simplest example of their use is to initialize variables. To initialize a register to 0, rather than using
a MOV instruction it may be more efficient to use the XOR instruction with identical destination and
source operands.

The MOVNTI instruction stores a doubleword or quadword from a register into memory as “non-
temporal” data, which assumes a single access (as opposed to frequent subsequent accesses of
“temporal data”). The operation therefore minimizes cache pollution. The exact method by which
cache pollution is minimized depends on the hardware implementation of the instruction. For further
information, see Section 3.9, “Memory Optimization,” on page 92.

Conditional Move

• CMOVcc—Conditional Move If condition

The CMOVcc instructions conditionally copy a word, doubleword, or quadword from a register or
memory location to a register location. The source and destination must be of the same size.
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The CMOVcc instructions perform the same task as MOV but work conditionally, depending on the
state of status flags in the RFLAGS register. If the condition is not satisfied, the instruction has no
effect and control is passed to the next instruction. The mnemonics of CMOVcc instructions indicate
the condition that must be satisfied. Several mnemonics are often used for one opcode to make the
mnemonics easier to remember. For example, CMOVE (conditional move if equal) and CMOVZ
(conditional move if zero) are aliases and compile to the same opcode. Table 3-4 shows the RFLAGS
values required for each CMOVcc instruction.

In assembly languages, the conditional move instructions correspond to small conditional statements
like:

IF a = b THEN x = y

CMOVcc instructions can replace two instructions—a conditional jump and a move. For example, to
perform a high-level statement like:

IF ECX = 5 THEN EAX = EBX

without a CMOVcc instruction, the code would look like:

cmp ecx, 5 ; test if ecx equals 5
jnz Continue ; test condition and skip if not met
mov eax, ebx ; move
Continue: ; continuation

but with a CMOVcc instruction, the code would look like:

cmp ecx, 5 ; test if ecx equals to 5
cmovz eax, ebx ; test condition and move

Replacing conditional jumps with conditional moves also has the advantage that it can avoid branch-
prediction penalties that may be caused by conditional jumps.

Support for CMOVcc instructions depends on the processor implementation. To find out if a processor
is able to perform CMOVcc instructions, use the CPUID instruction.

Table 3-4. rFLAGS for CMOVcc Instructions

Mnemonic Required Flag State Description

CMOVO OF = 1 Conditional move if overflow

CMOVNO OF = 0 Conditional move if not overflow

CMOVB
CMOVC
CMOVNAE

CF = 1
Conditional move if below
Conditional move if carry
Conditional move if not above or equal

CMOVAE
CMOVNB
CMOVNC

CF = 0
Conditional move if above or equal
Conditional move if not below
Conditional move if not carry

CMOVE
CMOVZ

ZF = 1
Conditional move if equal
Conditional move if zero
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Stack Operations

• POP—Pop Stack

• POPA—Pop All to GPR Words

• POPAD—Pop All to GPR Doublewords

• PUSH—Push onto Stack

• PUSHA—Push All GPR Words onto Stack

• PUSHAD—Push All GPR Doublewords onto Stack

• ENTER—Create Procedure Stack Frame

• LEAVE—Delete Procedure Stack Frame

PUSH copies the specified register, memory location, or immediate value to the top of stack. This
instruction decrements the stack pointer by 2, 4, or 8, depending on the operand size, and then copies
the operand into the memory location pointed to by SS:rSP.

POP copies a word, doubleword, or quadword from the memory location pointed to by the SS:rSP
registers (the top of stack) to a specified register or memory location. Then, the rSP register is
incremented by 2, 4, or 8. After the POP operation, rSP points to the new top of stack.

CMOVNE
CMOVNZ

ZF = 0
Conditional move if not equal
Conditional move if not zero

CMOVBE
CMOVNA

CF = 1 or ZF = 1
Conditional move if below or equal
Conditional move if not above

CMOVA
CMOVNBE

CF = 0 and ZF = 0
Conditional move if not below or equal
Conditional move if not below or equal

CMOVS SF = 1 Conditional move if sign

CMOVNS SF = 0 Conditional move if not sign

CMOVP
CMOVPE

PF = 1
Conditional move if parity
Conditional move if parity even

CMOVNP
CMOVPO

PF = 0
Conditional move if not parity
Conditional move if parity odd

CMOVL
CMOVNGE

SF <> OF
Conditional move if less
Conditional move if not greater or equal

CMOVGE
CMOVNL

SF = OF
Conditional move if greater or equal
Conditional move if not less

CMOVLE
CMOVNG

ZF = 1 or SF <> OF
Conditional move if less or equal
Conditional move if not greater

CMOVG
CMOVNLE

ZF = 0 and SF = OF
Conditional move if greater
Conditional move if not less or equal

Table 3-4. rFLAGS for CMOVcc Instructions (continued)

Mnemonic Required Flag State Description
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PUSHA or PUSHAD stores eight word-sized or doubleword-sized registers onto the stack: eAX, eCX,
eDX, eBX, eSP, eBP, eSI and eDI, in that order. The stored value of eSP is sampled at the moment
when the PUSHA instruction started. The resulting stack-pointer value is decremented by 16 or 32.

POPA or POPAD extracts eight word-sized or doubleword-sized registers from the stack: eDI, eSI,
eBP, eSP, eBX, eDX, eCX and eAX, in that order (which is the reverse of the order used in the PUSHA
instruction). The stored eSP value is ignored by the POPA instruction. The resulting stack pointer
value is incremented by 16 or 32.

It is a common practice to use PUSH instructions to pass parameters (via the stack) to functions and
subroutines. The typical instruction sequence used at the beginning of a subroutine looks like:

push ebp ; save current EBP
mov ebp, esp ; set stack frame pointer value
sub esp, N ; allocate space for local variables

The rBP register is used as a stack frame pointer—a base address of the stack area used for parameters
passed to subroutines and local variables. Positive offsets of the stack frame pointed to by rBP provide
access to parameters passed while negative offsets give access to local variables. This technique allows
creating re-entrant subroutines.

The ENTER and LEAVE instructions provide support for procedure calls, and are mainly used in high-
level languages. The ENTER instruction is typically the first instruction of the procedure, and the
LEAVE instruction is the last before the RET instruction.

The ENTER instruction creates a stack frame for a procedure. The first operand, size, specifies the
number of bytes allocated in the stack. The second operand, depth, specifies the number of stack-frame
pointers copied from the calling procedure’s stack (i.e., the nesting level). The depth should be an
integer in the range 0–31.

Typically, when a procedure is called, the stack contains the following four components:

• Parameters passed to the called procedure (created by the calling procedure).

• Return address (created by the CALL instruction).

• Array of stack-frame pointers (pointers to stack frames of procedures with smaller nesting-level
depth) which are used to access the local variables of such procedures.

• Local variables used by the called procedure.

All these data are called the stack frame. The ENTER instruction simplifies management of the last
two components of a stack frame. First, the current value of the rBP register is pushed onto the stack.
The value of the rSP register at that moment is a frame pointer for the current procedure: positive
offsets from this pointer give access to the parameters passed to the procedure, and negative offsets
give access to the local variables which will be allocated later. During procedure execution, the value
of the frame pointer is stored in the rBP register, which at that moment contains a frame pointer of the
calling procedure. This frame pointer is saved in a temporary register. If the depth operand is greater
than one, the array of depth-1 frame pointers of procedures with smaller nesting level is pushed onto
the stack. This array is copied from the stack frame of the calling procedure, and it is addressed by the
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rBP register from the calling procedure. If the depth operand is greater than zero, the saved frame
pointer of the current procedure is pushed onto the stack (forming an array of depth frame pointers).
Finally, the saved value of the frame pointer is copied to the rBP register, and the rSP register is
decremented by the value of the first operand, allocating space for local variables used in the
procedure. See “Stack Operations” on page 44 for a parameter-passing instruction sequence using
PUSH that is equivalent to ENTER.

The LEAVE instruction removes local variables and the array of frame pointers, allocated by the
previous ENTER instruction, from the stack frame. This is accomplished by the following two steps:
first, the value of the frame pointer is copied from the rBP register to the rSP register. This releases the
space allocated by local variables and an array of frame pointers of procedures with smaller nesting
levels. Second, the rBP register is popped from the stack, restoring the previous value of the frame
pointer (or simply the value of the rBP register, if the depth operand is zero). Thus, the LEAVE
instruction is equivalent to the following code:

mov rSP, rBP
pop rBP

3.3.3 Data Conversion

The data-conversion instructions perform various transformations of data, such as operand-size
doubling by sign extension, conversion of little-endian to big-endian format, extraction of sign masks,
searching a table, and support for operations with decimal numbers.

Sign Extension

• CBW—Convert Byte to Word

• CWDE—Convert Word to Doubleword

• CDQE—Convert Doubleword to Quadword

• CWD—Convert Word to Doubleword

• CDQ—Convert Doubleword to Quadword

• CQO—Convert Quadword to Octword

The CBW, CWDE, and CDQE instructions sign-extend the AL, AX, or EAX register to the upper half
of the AX, EAX, or RAX register, respectively. By doing so, these instructions create a double-sized
destination operand in rAX that has the same numerical value as the source operand. The CBW,
CWDE, and CDQE instructions have the same opcode, and the action taken depends on the effective
operand size.

The CWD, CDQ and CQO instructions sign-extend the AX, EAX, or RAX register to all bit positions
of the DX, EDX, or RDX register, respectively. By doing so, these instructions create a double-sized
destination operand in rDX:rAX that has the same numerical value as the source operand. The CWD,
CDQ, and CQO instructions have the same opcode, and the action taken depends on the effective
operand size.
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Flags are not affected by these instructions. The instructions can be used to prepare an operand for
signed division (performed by the IDIV instruction) by doubling its storage size.

Extract Sign Mask

• MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask

• MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask

The MOVMSKPS instruction moves the sign bits of four packed single-precision floating-point values
in an XMM register to the four low-order bits of a general-purpose register, with zero-extension.
MOVMSKPD does a similar operation for two packed double-precision floating-point values: it
moves the two sign bits to the two low-order bits of a general-purpose register, with zero-extension.
The result of either instruction is a sign-bit mask.

Translate

• XLAT—Translate Table Index

The XLAT instruction replaces the value stored in the AL register with a table element. The initial
value in AL serves as an unsigned index into the table, and the start (base) of table is specified by the
DS:rBX registers (depending on the effective address size).

This instruction is not recommended. The following instruction serves to replace it:

MOV AL,[rBX + AL]

ASCII Adjust

• AAA—ASCII Adjust After Addition

• AAD—ASCII Adjust Before Division

• AAM—ASCII Adjust After Multiply

• AAS—ASCII Adjust After Subtraction

The AAA, AAD, AAM, and AAS instructions perform corrections of arithmetic operations with non-
packed BCD values (i.e., when the decimal digit is stored in a byte register). There are no instructions
which directly operate on decimal numbers (either packed or non-packed BCD). However, the ASCII-
adjust instructions correct decimal-arithmetic results. These instructions assume that an arithmetic
instruction, such as ADD, was performed on two BCD operands, and that the result was stored in the
AL or AX register. This result can be incorrect or it can be a non-BCD value (for example, when a
decimal carry occurs). After executing the proper ASCII-adjust instruction, the AX register contains a
correct BCD representation of the result. (The AAD instruction is an exception to this, because it
should be applied before a DIV instruction, as explained below). All of the ASCII-adjust instructions
are able to operate with multiple-precision decimal values.

AAA should be applied after addition of two non-packed decimal digits. AAS should be applied after
subtraction of two non-packed decimal digits. AAM should be applied after multiplication of two non-
packed decimal digits. AAD should be applied before the division of two non-packed decimal
numbers.
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Although the base of the numeration for ASCII-adjust instructions is assumed to be 10, the AAM and
AAD instructions can be used to correct multiplication and division with other bases.

BCD Adjust

• DAA—Decimal Adjust after Addition

• DAS—Decimal Adjust after Subtraction

The DAA and DAS instructions perform corrections of addition and subtraction operations on packed
BCD values. (Packed BCD values have two decimal digits stored in a byte register, with the higher
digit in the higher four bits, and the lower one in the lower four bits.) There are no instructions for
correction of multiplication and division with packed BCD values.

DAA should be applied after addition of two packed-BCD numbers. DAS should be applied after
subtraction of two packed-BCD numbers.

DAA and DAS can be used in a loop to perform addition or subtraction of two multiple-precision
decimal numbers stored in packed-BCD format. Each loop cycle would operate on corresponding
bytes (containing two decimal digits) of operands.

Endian Conversion

• BSWAP—Byte Swap

The BSWAP instruction changes the byte order of a doubleword or quadword operand in a register, as
shown in Figure 3-8. In a doubleword, bits 7–0 are exchanged with bits 31–24, and bits 15–8 are
exchanged with bits 23–16. In a quadword, bits 7–0 are exchanged with bits 63–56, bits 15–8 with bits
55–48, bits 23–16 with bits 47–40, and bits 31–24 with bits 39–32. See the following illustration.

Figure 3-8. BSWAP Doubleword Exchange

A second application of the BSWAP instruction to the same operand restores its original value. The
result of applying the BSWAP instruction to a 16-bit register is undefined. To swap bytes of a 16-bit
register, use the XCHG instruction.

The BSWAP instruction is used to convert data between little-endian and big-endian byte order.

07815162331 24

07815162331 24
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3.3.4 Load Segment Registers

These instructions load segment registers.

• LDS, LES, LFS, LGS, LSS—Load Far Pointer

• MOV segReg—Move Segment Register

• POP segReg—Pop Stack Into Segment Register

The LDS, LES, LFD, LGS, and LSS instructions atomically (with respect to interrupts only, not
contending memory accesses) load the two parts of a far pointer into a segment register and a general-
purpose register. A far pointer is a 16-bit segment selector and a 16-bit or 32-bit offset. The load copies
the segment-selector portion of the pointer from memory into the segment register and the offset
portion of the pointer from memory into a general-purpose register.

The effective operand size determines the size of the offset loaded by the LDS, LES, LFD, LGS, and
LSS instructions. The instructions load not only the software-visible segment selector into the segment
register, but they also cause the hardware to load the associated segment-descriptor information into
the software-invisible (hidden) portion of that segment register.

The MOV segReg and POP segReg instructions load a segment selector from a general-purpose
register or memory (for MOV segReg) or from the top of the stack (for POP segReg) to a segment
register. These instructions not only load the software-visible segment selector into the segment
register but also cause the hardware to load the associated segment-descriptor information into the
software-invisible (hidden) portion of that segment register.

In 64-bit mode, the POP DS, POP ES, and POP SS instructions are invalid.

3.3.5 Load Effective Address

• LEA—Load Effective Address

The LEA instruction calculates and loads the effective address (offset within a given segment) of a
source operand and places it in a general-purpose register.

LEA is related to MOV, which copies data from a memory location to a register, but LEA takes the
address of the source operand, whereas MOV takes the contents of the memory location specified by
the source operand. In the simplest cases, LEA can be replaced with MOV. For example:

lea eax, [ebx]

has the same effect as:

mov eax, ebx

However, LEA allows software to use any valid addressing mode for the source operand. For example:

lea eax, [ebx+edi]

loads the sum of EBX and EDI registers into the EAX register. This could not be accomplished by a
single MOV instruction.
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LEA has a limited capability to perform multiplication of operands in general-purpose registers using
scaled-index addressing. For example:

lea eax, [ebx+ebx*8]

loads the value of the EBX register, multiplied by 9, into the EAX register.

3.3.6 Arithmetic

The arithmetic instructions perform basic arithmetic operations, such as addition, subtraction,
multiplication, and division on integer operands.

Add and Subtract

• ADC—Add with Carry

• ADD—Signed or Unsigned Add

• SBB—Subtract with Borrow

• SUB—Subtract

• NEG—Two’s Complement Negation

The ADD instruction performs addition of two integer operands. There are opcodes that add an
immediate value to a byte, word, doubleword, or quadword register or a memory location. In these
opcodes, if the size of the immediate is smaller than that of the destination, the immediate is first sign-
extended to the size of the destination operand. The arithmetic flags (OF, SF, ZF, AF, CF, PF) are set
according to the resulting value of the destination operand.

The ADC instruction performs addition of two integer operands, plus 1 if the carry flag (CF) is set.

The SUB instruction performs subtraction of two integer operands.

The SBB instruction performs subtraction of two integer operands, and it also subtracts an additional 1
if the carry flag is set.

The ADC and SBB instructions simplify addition and subtraction of multiple-precision integer
operands, because they correctly handle carries (and borrows) between parts of a multiple-precision
operand.

The NEG instruction performs negation of an integer operand. The value of the operand is replaced
with the result of subtracting the operand from zero.

Multiply and Divide

• MUL—Multiply Unsigned

• IMUL—Signed Multiply

• DIV—Unsigned Divide

• IDIV—Signed Divide
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The MUL instruction performs multiplication of unsigned integer operands. The size of operands can
be byte, word, doubleword, or quadword. The product is stored in a destination which is double the
size of the source operands (multiplicand and factor).

The MUL instruction's mnemonic has only one operand, which is a factor. The multiplicand operand is
always assumed to be an accumulator register. For byte-sized multiplies, AL contains the multiplicand,
and the result is stored in AX. For word-sized, doubleword-sized, and quadword-sized multiplies, rAX
contains the multiplicand, and the result is stored in rDX and rAX.

The IMUL instruction performs multiplication of signed integer operands. There are forms of the
IMUL instruction with one, two, and three operands, and it is thus more powerful than the MUL
instruction. The one-operand form of the IMUL instruction behaves similarly to the MUL instruction,
except that the operands and product are signed integer values. In the two-operand form of IMUL, the
multiplicand and product use the same register (the first operand), and the factor is specified in the
second operand. In the three-operand form of IMUL, the product is stored in the first operand, the
multiplicand is specified in the second operand, and the factor is specified in the third operand.

The DIV instruction performs division of unsigned integers. The instruction divides a double-sized
dividend in AH:AL or rDX:rAX by the divisor specified in the operand of the instruction. It stores the
quotient in AL or rAX and the remainder in AH or rDX.

The IDIV instruction performs division of signed integers. It behaves similarly to DIV, with the
exception that the operands are treated as signed integer values.

Division is the slowest of all integer arithmetic operations and should be avoided wherever possible.
One possibility for improving performance is to replace division with multiplication, such as by
replacing i/j/k with i/(j*k). This replacement is possible if no overflow occurs during the computation
of the product. This can be determined by considering the possible ranges of the divisors.

Increment and Decrement

• DEC—Decrement by 1

• INC—Increment by 1

The INC and DEC instructions are used to increment and decrement, respectively, an integer operand
by one. For both instructions, an operand can be a byte, word, doubleword, or quadword register or
memory location.

These instructions behave in all respects like the corresponding ADD and SUB instructions, with the
second operand as an immediate value equal to 1. The only exception is that the carry flag (CF) is not
affected by the INC and DEC instructions.

Apart from their obvious arithmetic uses, the INC and DEC instructions are often used to modify
addresses of operands. In this case it can be desirable to preserve the value of the carry flag (to use it
later), so these instructions do not modify the carry flag.
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3.3.7 Rotate and Shift

The rotate and shift instructions perform cyclic rotation or non-cyclic shift, by a given number of bits
(called the count), in a given byte-sized, word-sized, doubleword-sized or quadword-sized operand.

When the count is greater than 1, the result of the rotate and shift instructions can be considered as an
iteration of the same 1-bit operation by count number of times. Because of this, the descriptions below
describe the result of 1-bit operations.

The count can be 1, the value of the CL register, or an immediate 8-bit value. To avoid redundancy and
make rotation and shifting quicker, the count is masked to the 5 or 6 least-significant bits, depending
on the effective operand size, so that its value does not exceed 31 or 63 before the rotation or shift takes
place.

Rotate

• RCL—Rotate Through Carry Left

• RCR—Rotate Through Carry Right

• ROL—Rotate Left

• ROR—Rotate Right

The RCx instructions rotate the bits of the first operand to the left or right by the number of bits
specified by the source (count) operand. The bits rotated out of the destination operand are rotated into
the carry flag (CF) and the carry flag is rotated into the opposite end of the first operand.

The ROx instructions rotate the bits of the first operand to the left or right by the number of bits
specified by the source operand. Bits rotated out are rotated back in at the opposite end. The value of
the CF flag is determined by the value of the last bit rotated out. In single-bit left-rotates, the overflow
flag (OF) is set to the XOR of the CF flag after rotation and the most-significant bit of the result. In
single-bit right-rotates, the OF flag is set to the XOR of the two most-significant bits. Thus, in both
cases, the OF flag is set to 1 if the single-bit rotation changed the value of the most-significant bit (sign
bit) of the operand. The value of the OF flag is undefined for multi-bit rotates.

Bit-rotation instructions provide many ways to reorder bits in an operand. This can be useful, for
example, in character conversion, including cryptography techniques.

Shift

• SAL—Shift Arithmetic Left

• SAR—Shift Arithmetic Right

• SHL—Shift Left

• SHR—Shift Right

• SHLD—Shift Left Double

• SHRD—Shift Right Double
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The SHx instructions (including SHxD) perform shift operations on unsigned operands. The SAx
instructions operate with signed operands.

SHL and SAL instructions effectively perform multiplication of an operand by a power of 2, in which
case they work as more-efficient alternatives to the MUL instruction. Similarly, SHR and SAR
instructions can be used to divide an operand (signed or unsigned, depending on the instruction used)
by a power of 2.

Although the SAR instruction divides the operand by a power of 2, the behavior is different from the
IDIV instruction. For example, shifting –11 (FFFFFFF5h) by two bits to the right (i.e. divide –11 by
4), gives a result of FFFFFFFDh, or –3, whereas the IDIV instruction for dividing –11 by 4 gives a
result of –2. This is because the IDIV instruction rounds off the quotient to zero, whereas the SAR
instruction rounds off the remainder to zero for positive dividends, and to negative infinity for negative
dividends. This means that, for positive operands, SAR behaves like the corresponding IDIV
instruction, and for negative operands, it gives the same result if and only if all the shifted-out bits are
zeroes, and otherwise the result is smaller by 1.

The SAR instruction treats the most-significant bit (msb) of an operand in a special way: the msb (the
sign bit) is not changed, but is copied to the next bit, preserving the sign of the result. The least-
significant bit (lsb) is shifted out to the CF flag. In the SAL instruction, the msb is shifted out to CF
flag, and the lsb is cleared to 0.

The SHx instructions perform logical shift, i.e. without special treatment of the sign bit. SHL is the
same as SAL (in fact, their opcodes are the same). SHR copies 0 into the most-significant bit, and
shifts the least-significant bit to the CF flag.

The SHxD instructions perform a double shift. These instructions perform left and right shift of the
destination operand, taking the bits to copy into the most-significant bit (for the SHRD instruction) or
into the least-significant bit (for the SHLD instruction) from the source operand. These instructions
behave like SHx, but use bits from the source operand instead of zero bits to shift into the destination
operand. The source operand is not changed.

3.3.8 Compare and Test

The compare and test instructions perform arithmetic and logical comparison of operands and set
corresponding flags, depending on the result of comparison. These instruction are used in conjunction
with conditional instructions such as Jcc or SETcc to organize branching and conditionally executing
blocks in programs. Assembler equivalents of conditional operators in high-level languages
(do…while, if…then…else, and similar) also include compare and test instructions.

Compare

• CMP—Compare

The CMP instruction performs subtraction of the second operand (source) from the first operand
(destination), like the SUB instruction, but it does not store the resulting value in the destination
operand. It leaves both operands intact. The only effect of the CMP instruction is to set or clear the
arithmetic flags (OF, SF, ZF, AF, CF, PF) according to the result of subtraction.
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The CMP instruction is often used together with the conditional jump instructions (Jcc), conditional
SET instructions (SETcc) and other instructions such as conditional loops (LOOPcc) whose behavior
depends on flag state.

Test

• TEST—Test Bits

The TEST instruction is in many ways similar to the AND instruction: it performs logical conjunction
of the corresponding bits of both operands, but unlike the AND instruction it leaves the operands
unchanged. The purpose of this instruction is to update flags for further testing.

The TEST instruction is often used to test whether one or more bits in an operand are zero. In this case,
one of the instruction operands would contain a mask in which all bits are cleared to zero except the
bits being tested. For more advanced bit testing and bit modification, use the BTx instructions.

Bit Scan

• BSF—Bit Scan Forward

• BSR—Bit Scan Reverse

The BSF and BSR instructions search a source operand for the least-significant (BSF) or most-
significant (BSR) bit that is set to 1. If a set bit is found, its bit index is loaded into the destination
operand, and the zero flag (ZF) is set. If no set bit is found, the zero flag is cleared and the contents of
the destination are undefined.

Population and Leading Zero Counts

• POPCNT—Bit Population Count

• LZCNT—Count Leading Zeros

The POPCNT instruction counts the number of bits having a value of 1 in the source operand and
places the total in the destination register, while the LZCNT instruction counts the number of leading
zero bits in a general purpose register or memory source operand.

Bit Test

• BT—Bit Test

• BTC—Bit Test and Complement

• BTR—Bit Test and Reset

• BTS—Bit Test and Set

The BTx instructions copy a specified bit in the first operand to the carry flag (CF) and leave the source
bit unchanged (BT), or complement the source bit (BTC), or clear the source bit to 0 (BTR), or set the
source bit to 1 (BTS).

These instructions are useful for implementing semaphore arrays. Unlike the XCHG instruction, the
BTx instructions set the carry flag, so no additional test or compare instruction is needed. Also,
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because these instructions operate directly on bits rather than larger data types, the semaphore arrays
can be smaller than is possible when using XCHG. In such semaphore applications, bit-test
instructions should be preceded by the LOCK prefix.

Set Byte on Condition

• SETcc—Set Byte if condition

The SETcc instructions store a 1 or 0 value to their byte operand depending on whether their condition
(represented by certain rFLAGS bits) is true or false, respectively. Table 3-5 shows the rFLAGS values
required for each SETcc instruction.

Table 3-5. rFLAGS for SETcc Instructions

Mnemonic Required Flag State Description

SETO OF = 1 Set byte if overflow

SETNO OF = 0 Set byte if not overflow

SETB
SETC
SETNAE

CF = 1
Set byte if below
Set byte if carry
Set byte if not above or equal (unsigned operands)

SETAE
SETNB
SETNC

CF = 0
Set byte if above or equal
Set byte if not below
Set byte if not carry (unsigned operands)

SETE
SETZ

ZF = 1
Set byte if equal
Set byte if zero

SETNE
SETNZ

ZF = 0
Set byte if not equal
Set byte if not zero

SETBE
SETNA

CF = 1 or ZF = 1
Set byte if below or equal
Set byte if not above (unsigned operands)

SETA
SETNBE

CF = 0 and ZF = 0
Set byte if not below or equal
Set byte if not below or equal (unsigned operands)

SETS SF = 1 Set byte if sign

SETNS SF = 0 Set byte if not sign

SETP
SETPE

PF = 1
Set byte if parity
Set byte if parity even

SETNP
SETPO

PF = 0
Set byte if not parity
Set byte if parity odd

SETL
SETNGE

SF <> OF
Set byte if less
Set byte if not greater or equal (signed operands)

SETGE
SETNL

SF = OF
Set byte if greater or equal
Set byte if not less (signed operands)

SETLE
SETNG

ZF = 1 or SF <> OF
Set byte if less or equal
Set byte if not greater (signed operands)

SETG
SETNLE

ZF = 0 and SF = OF
Set byte if greater
Set byte if not less or equal (signed operands)
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SETcc instructions are often used to set logical indicators. Like CMOVcc instructions (page 42),
SETcc instructions can replace two instructions—a conditional jump and a move. Replacing
conditional jumps with conditional sets can help avoid branch-prediction penalties that may be caused
by conditional jumps.

If the logical value True (logical 1) is represented in a high-level language as an integer with all bits set
to 1, software can accomplish such representation by first executing the opposite SETcc instruction—
for example, the opposite of SETZ is SETNZ—and then decrementing the result.

Bounds

• BOUND—Check Array Bounds

The BOUND instruction checks whether the value of the first operand, a signed integer index into an
array, is within the minimal and maximal bound values pointed to by the second operand. The values
of array bounds are often stored at the beginning of the array. If the bounds of the range are exceeded,
the processor generates a bound-range exception.

The primary disadvantage of using the BOUND instruction is its use of the time-consuming exception
mechanism to signal a failure of the bounds test.

3.3.9 Logical

The logical instructions perform bitwise operations.

• AND—Logical AND

• OR—Logical OR

• XOR—Exclusive OR

• NOT—One’s Complement Negation

The AND, OR, and XOR instructions perform their respective logical operations on the corresponding
bits of both operands and store the result in the first operand. The CF flag and OF flag are cleared to 0,
and the ZF flag, SF flag, and PF flag are set according to the resulting value of the first operand.

The NOT instruction performs logical inversion of all bits of its operand. Each zero bit becomes one
and vice versa. All flags remain unchanged.

Apart from performing logical operations, AND and OR can test a register for a zero or non-zero
value, sign (negative or positive), and parity status of its lowest byte. To do this, both operands must be
the same register. The XOR instruction with two identical operands is an efficient way of loading the
value 0 into a register.

3.3.10 String

The string instructions perform common string operations such as copying, moving, comparing, or
searching strings. These instructions are widely used for processing text.
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Compare Strings

• CMPS—Compare Strings

• CMPSB—Compare Strings by Byte

• CMPSW—Compare Strings by Word

• CMPSD—Compare Strings by Doubleword

• CMPSQ—Compare Strings by Quadword

The CMPSx instructions compare the values of two implicit operands of the same size located at
seg:[rSI] and ES:[rDI]. After the copy, both the rSI and rDI registers are auto-incremented (if the DF
flag is 0) or auto-decremented (if the DF flag is 1).

Scan String

• SCAS—Scan String

• SCASB—Scan String as Bytes

• SCASW—Scan String as Words

• SCASD—Scan String as Doubleword

• SCASQ—Scan String as Quadword

The SCASx instructions compare the values of a memory operands in ES:rDI to a value of the same
size in the AL/rAX register. Bits in rFLAGS are set to indicate the outcome of the comparison. After
the comparison, the rDI register is auto-incremented (if the DF flag is 0) or auto-decremented (if the
DF flag is 1).

Move String

• MOVS—Move String

• MOVSB—Move String Byte

• MOVSW—Move String Word

• MOVSD—Move String Doubleword

• MOVSQ—Move String Quadword

The MOVSx instructions copy an operand from the memory location seg:[rSI] to the memory location
ES:[rDI]. After the copy, both the rSI and rDI registers are auto-incremented (if the DF flag is 0) or
auto-decremented (if the DF flag is 1).

Load String

• LODS—Load String

• LODSB—Load String Byte

• LODSW—Load String Word

• LODSD—Load String Doubleword

• LODSQ—Load String Quadword
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The LODSx instructions load a value from the memory location seg:[rSI] to the accumulator register
(AL or rAX). After the load, the rSI register is auto-incremented (if the DF flag is 0) or auto-
decremented (if the DF flag is 1).

Store String

• STOS—Store String

• STOSB—Store String Bytes

• STOSW—Store String Words

• STOSD—Store String Doublewords

• STOSQ—Store String Quadword

The STOSx instructions copy the accumulator register (AL or rAX) to a memory location ES:[rDI].
After the copy, the rDI register is auto-incremented (if the DF flag is 0) or auto-decremented (if the DF
flag is 1).

3.3.11 Control Transfer

Control-transfer instructions, or branches, are used to iterate through loops and move through
conditional program logic.

Jump

• JMP—Jump

JMP performs an unconditional jump to the specified address. There are several ways to specify the
target address.

• Relative Short Jump and Relative Near Jump—The target address is determined by adding an 8-bit
(short jump) or 16-bit or 32-bit (near jump) signed displacement to the rIP of the instruction
following the JMP. The jump is performed within the current code segment (CS).

• Register-Indirect and Memory-Indirect Near Jump—The target rIP value is contained in a register
or in a memory location. The jump is performed within the current CS.

• Direct Far Jump—For all far jumps, the target address is outside the current code segment. Here,
the instruction specifies the 16-bit target-address code segment and the 16-bit or 32-bit offset as an
immediate value. The direct far jump form is invalid in 64-bit mode.

• Memory-Indirect Far Jump—For this form, the target address (CS:rIP) is in a address outside the
current code segment. A 32-bit or 48-bit far pointer in a specified memory location points to the
target address.

The size of the target rIP is determined by the effective operand size for the JMP instruction.

For far jumps, the target selector can specify a code-segment selector, in which case it is loaded into
CS, and a 16-bit or 32-bit target offset is loaded into rIP. The target selector can also be a call-gate
selector or a task-state-segment (TSS) selector, used for performing task switches. In these cases, the
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target offset of the JMP instruction is ignored, and the new values loaded into CS and rIP are taken
from the call gate or from the TSS.

Conditional Jump

• Jcc—Jump if condition

Conditional jump instructions jump to an instruction specified by the operand, depending on the state
of flags in the rFLAGS register. The operands specifies a signed relative offset from the current
contents of the rIP. If the state of the corresponding flags meets the condition, a conditional jump
instruction passes control to the target instruction, otherwise control is passed to the instruction
following the conditional jump instruction. The flags tested by a specific Jcc instruction depend on the
opcode. In several cases, multiple mnemonics correspond to one opcode.

Table 3-6 shows the rFLAGS values required for each Jcc instruction.

Table 3-6. rFLAGS for Jcc Instructions

Mnemonic Required Flag State Description

JO OF = 1 Jump near if overflow

JNO OF = 0 Jump near if not overflow

JB
JC
JNAE

CF = 1
Jump near if below
Jump near if carry
Jump near if not above or equal

JNB
JNC
JAE

CF = 0
Jump near if not below
Jump near if not carry
Jump near if above or equal

JZ
JE

ZF = 1
Jump near if 0
Jump near if equal

JNZ
JNE

ZF = 0
Jump near if not zero
Jump near if not equal

JNA
JBE

CF = 1 or ZF = 1
Jump near if not above
Jump near if below or equal

JNBE
JA

CF = 0 and ZF = 0
Jump near if not below or equal
Jump near if above

JS SF = 1 Jump near if sign

JNS SF = 0 Jump near if not sign

JP
JPE

PF = 1
Jump near if parity
Jump near if parity even

JNP
JPO

PF = 0
Jump near if not parity
Jump near if parity odd

JL
JNGE

SF <> OF
Jump near if less
Jump near if not greater or equal
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Unlike the unconditional jump (JMP), conditional jump instructions have only two forms—near
conditional jumps and short conditional jumps. To create a far-conditional-jump code sequence
corresponding to a high-level language statement like:

IF A = B THEN GOTO FarLabel

where FarLabel is located in another code segment, use the opposite condition in a conditional short
jump before the unconditional far jump. For example:

cmp A,B ; compare operands
jne NextInstr ; continue program if not equal
jmp far ptr WhenNE ; far jump if operands are equal

NextInstr: ; continue program

Three special conditional jump instructions use the rCX register instead of flags. The JCXZ, JECXZ,
and JRCXZ instructions check the value of the CX, ECX, and RCX registers, respectively, and pass
control to the target instruction when the value of rCX register reaches 0. These instructions are often
used to control safe cycles, preventing execution when the value in rCX reaches 0.

Loop

• LOOPcc—Loop if condition

The LOOPcc instructions include LOOPE, LOOPNE, LOOPNZ, and LOOPZ. These instructions
decrement the rCX register by 1 without changing any flags, and then check to see if the loop condition
is met. If the condition is met, the program jumps to the specified target code.

LOOPE and LOOPZ are synonyms. Their loop condition is met if the value of the rCX register is non-
zero and the zero flag (ZF) is set to 1 when the instruction starts. LOOPNE and LOOPNZ are also
synonyms. Their loop condition is met if the value of the rCX register is non-zero and the ZF flag is
cleared to 0 when the instruction starts. LOOP, unlike the other mnemonics, does not check the ZF
flag. Its loop condition is met if the value of the rCX register is non-zero.

Call

• CALL—Procedure Call

The CALL instruction performs a call to a procedure whose address is specified in the operand. The
return address is placed on the stack by the CALL, and points to the instruction immediately following

JGE
JNL

SF = OF
Jump near if greater or equal
Jump near if not less

JNG
JLE

ZF = 1 or SF <> OF
Jump near if not greater
Jump near if less or equal

JNLE
JG

ZF = 0 and SF = OF
Jump near if not less or equal
Jump near if greater

Table 3-6. rFLAGS for Jcc Instructions (continued)

Mnemonic Required Flag State Description
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the CALL. When the called procedure finishes execution and is exited using a return instruction,
control is transferred to the return address saved on the stack.

The CALL instruction has the same forms as the JMP instruction, except that CALL lacks the short-
relative (1-byte offset) form.

• Relative Near Call—These specify an offset relative to the instruction following the CALL
instruction. The operand is an immediate 16-bit or 32-bit offset from the called procedure, within
the same code segment.

• Register-Indirect and Memory-Indirect Near Call—These specify a target address contained in a
register or memory location.

• Direct Far Call—These specify a target address outside the current code segment. The address is
pointed to by a 32-bit or 48-bit far-pointer specified by the instruction, which consists of a 16-bit
code selector and a 16-bit or 32-bit offset. The direct far call form is invalid in 64-bit mode.

• Memory-Indirect Far Call—These specify a target address outside the current code segment. The
address is pointed to by a 32-bit or 48-bit far pointer in a specified memory location.

The size of the rIP is in all cases determined by the operand-size attribute of the CALL instruction.
CALLs push the return address to the stack. The data pushed on the stack depends on whether a near or
far call is performed, and whether a privilege change occurs. See Section 3.7.5, “Procedure Calls,” on
page 79 for further information.

For far CALLs, the selector portion of the target address can specify a code-segment selector (in which
case the selector is loaded into the CS register), or a call-gate selector, (used for calls that change
privilege level), or a task-state-segment (TSS) selector (used for task switches). In the latter two cases,
the offset portion of the CALL instruction’s target address is ignored, and the new values loaded into
CS and rIP are taken from the call gate or TSS.

Return

• RET—Return from Call

The RET instruction returns from a procedure originally called using the CALL instruction. CALL
places a return address (which points to the instruction following the CALL) on the stack. RET takes
the return address from the stack and transfers control to the instruction located at that address.

Like CALL instructions, RET instructions have both a near and far form. An optional immediate
operand for the RET specifies the number of bytes to be popped from the procedure stack for
parameters placed on the stack. See Section 3.7.6, “Returning from Procedures,” on page 81 for
additional information.

Interrupts and Exceptions.

• INT—Interrupt to Vector Number

• INTO—Interrupt to Overflow Vector

• IRET—Interrupt Return Word
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• IRETD—Interrupt Return Doubleword

• IRETQ—Interrupt Return Quadword

The INT instruction implements a software interrupt by calling an interrupt handler. The operand of
the INT instruction is an immediate byte value specifying an index in the interrupt descriptor table
(IDT), which contains addresses of interrupt handlers (see Section 3.7.10, “Interrupts and Exceptions,”
on page 86 for further information on the IDT).

The 1-byte INTO instruction calls interrupt 4 (the overflow exception, #OF), if the overflow flag in
RFLAGS is set to 1, otherwise it does nothing. Signed arithmetic instructions can be followed by the
INTO instruction if the result of the arithmetic operation can potentially overflow. (The 1-byte INT 3
instruction is considered a system instruction and is therefore not described in this volume).

IRET, IRETD, and IRETQ perform a return from an interrupt handler. The mnemonic specifies the
operand size, which determines the format of the return addresses popped from the stack (IRET for 16-
bit operand size, IRETD for 32-bit operand size, and IRETQ for 64-bit operand size). However, some
assemblers can use the IRET mnemonic for all operand sizes. Actions performed by IRET are opposite
to actions performed by an interrupt or exception. In real and protected mode, IRET pops the rIP, CS,
and RFLAGS contents from the stack, and it pops SS:rSP if a privilege-level change occurs or if it
executes from 64-bit mode. In protected mode, the IRET instruction can also cause a task switch if the
nested task (NT) bit in the RFLAGS register is set. For details on using IRET to switch tasks, see “Task
Management” in Volume 2.

3.3.12 Flags

The flags instructions read and write bits of the RFLAGS register that are visible to application
software. “Flags Register” on page 33 illustrates the RFLAGS register.

Push and Pop Flags

• POPF—Pop to FLAGS Word

• POPFD—Pop to EFLAGS Doubleword

• POPFQ—Pop to RFLAGS Quadword

• PUSHF—Push FLAGS Word onto Stack

• PUSHFD—Push EFLAGS Doubleword onto Stack

• PUSHFQ—Push RFLAGS Quadword onto Stack

The push and pop flags instructions copy data between the rFLAGS register and the stack. POPF and
PUSHF copy 16 bits of data between the stack and the FLAGS register (the low 16 bits of EFLAGS),
leaving the high 48 bits of RFLAGS unchanged. POPFD and PUSHFD copy 32 bits between the stack
and the RFLAGS register. POPFQ and PUSHFQ copy 64 bits between the stack and the RFLAGS
register. Only the bits illustrated in Figure 3-5 on page 34 are affected. Reserved bits and bits whose
writability is prevented by the current values of system flags, current privilege level (CPL), or current
operating mode, are unaffected by the POPF, POPFQ, and POPFD instructions.
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For details on stack operations, see “Control Transfers” on page 76.

Set and Clear Flags

• CLC—Clear Carry Flag

• CMC—Complement Carry Flag

• STC—Set Carry Flag

• CLD—Clear Direction Flag

• STD—Set Direction Flag

• CLI—Clear Interrupt Flag

• STI—Set Interrupt Flag

These instructions change the value of a flag in the rFLAGS register that is visible to application
software. Each instruction affects only one specific flag.

The CLC, CMC, and STC instructions change the carry flag (CF). CLC clears the flag to 0, STC sets
the flag to 1, and CMC inverts the flag. These instructions are useful prior to executing instructions
whose behavior depends on the CF flag—for example, shift and rotate instructions.

The CLD and STD instructions change the direction flag (DF) and influence the function of string
instructions (CMPSx, SCASx, MOVSx, LODSx, STOSx, INSx, OUTSx). CLD clears the flag to 0,
and STD sets the flag to 1. A cleared DF flag indicates the forward direction in string sequences, and a
set DF flag indicates the backward direction. Thus, in string instructions, the rSI and/or rDI register
values are auto-incremented when DF = 0 and auto-decremented when DF = 1.

Two other instructions, CLI and STI, clear and set the interrupt flag (IF). CLI clears the flag, causing
the processor to ignore external maskable interrupts. STI sets the flag, allowing the processor to
recognize maskable external interrupts. These instructions are used primarily by system software—
especially, interrupt handlers—and are described in “Exceptions and Interrupts” in Volume 2.

Load and Store Flags

• LAHF—Load Status Flags into AH Register

• SAHF—Store AH into Flags

LAHF loads the lowest byte of the RFLAGS register into the AH register. This byte contains the carry
flag (CF), parity flag (PF), auxiliary flag (AF), zero flag (ZF), and sign flag (SF). SAHF stores the AH
register into the lowest byte of the RFLAGS register.

3.3.13 Input/Output

The I/O instructions perform reads and writes of bytes, words, and doublewords from and to the I/O
address space. This address space can be used to access and manage external devices, and is
independent of the main-memory address space. By contrast, memory-mapped I/O uses the main-
memory address space and is accessed using the MOV instructions rather than the I/O instructions.
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When operating in legacy protected mode or in long mode, the RFLAGS register’s I/O privilege level
(IOPL) field and the I/O-permission bitmap in the current task-state segment (TSS) are used to control
access to the I/O addresses (called I/O ports). See “Input/Output” on page 90 for further information.

General I/O

• IN—Input from Port

• OUT—Output to Port

The IN instruction reads a byte, word, or doubleword from the I/O port address specified by the source
operand, and loads it into the accumulator register (AL or eAX). The source operand can be an
immediate byte or the DX register.

The OUT instruction writes a byte, word, or doubleword from the accumulator register (AL or eAX) to
the I/O port address specified by the destination operand, which can be either an immediate byte or the
DX register.

If the I/O port address is specified with an immediate operand, the range of port addresses accessible
by the IN and OUT instructions is limited to ports 0 through 255. If the I/O port address is specified by
a value in the DX register, all 65,536 ports are accessible.

String I/O

• INS—Input String

• INSB—Input String Byte

• INSW—Input String Word

• INSD—Input String Doubleword

• OUTS—Output String

• OUTSB—Output String Byte

• OUTSW—Output String Word

• OUTSD—Output String Doubleword

The INSx instructions (INSB, INSW, INSD) read a byte, word, or doubleword from the I/O port
specified by the DX register, and load it into the memory location specified by ES:[rDI].

The OUTSx instructions (OUTSB, OUTSW, OUTSD) write a byte, word, or doubleword from an
implicit memory location specified by seg:[rSI], to the I/O port address stored in the DX register.

The INSx and OUTSx instructions are commonly used with a repeat prefix to transfer blocks of data.
The memory pointer address is not incremented or decremented. This usage is intended for peripheral
I/O devices that are expecting a stream of data.

3.3.14 Semaphores

The semaphore instructions support the implementation of reliable signaling between processors in a
multi-processing environment, usually for the purpose of sharing resources.
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• CMPXCHG—Compare and Exchange

• CMPXCHG8B—Compare and Exchange Eight Bytes

• CMPXCHG16B—Compare and Exchange Sixteen Bytes

• XADD—Exchange and Add

• XCHG—Exchange

The CMPXCHG instruction compares a value in the AL or rAX register with the first (destination)
operand, and sets the arithmetic flags (ZF, OF, SF, AF, CF, PF) according to the result. If the compared
values are equal, the source operand is loaded into the destination operand. If they are not equal, the
first operand is loaded into the accumulator. CMPXCHG can be used to try to intercept a semaphore,
i.e. test if its state is free, and if so, load a new value into the semaphore, making its state busy. The test
and load are performed atomically, so that concurrent processes or threads which use the semaphore to
access a shared object will not conflict.

The CMPXCHG8B instruction compares the 64-bit values in the EDX:EAX registers with a 64-bit
memory location. If the values are equal, the zero flag (ZF) is set, and the ECX:EBX value is copied to
the memory location. Otherwise, the ZF flag is cleared, and the memory value is copied to EDX:EAX.

The CMPXCHG16B instruction compares the 128-bit value in the RDX:RAX and RCX:RBX
registers with a 128-bit memory location. If the values are equal, the zero flag (ZF) is set, and the
RCX:RBX value is copied to the memory location. Otherwise, the ZF flag is cleared, and the memory
value is copied to rDX:rAX.

The XADD instruction exchanges the values of its two operands, then it stores their sum in the first
(destination) operand.

A LOCK prefix can be used to make the CMPXCHG, CMPXCHG8B and XADD instructions atomic
if one of the operands is a memory location.

The XCHG instruction exchanges the values of its two operands. If one of the operands is in memory,
the processor’s bus-locking mechanism is engaged automatically during the exchange, whether or not
the LOCK prefix is used.

3.3.15 Processor Information

• CPUID—Processor Identification

The CPUID instruction returns information about the processor implementation and its support for
instruction subsets and architectural features. Software operating at any privilege level can execute the
CPUID instruction to read this information. After the information is read, software can select
procedures that optimize performance for a particular hardware implementation.

Some processor implementations may not support the CPUID instruction. Support for the CPUID
instruction is determined by testing the RFLAGS.ID bit. If software can write this bit, then the CPUID
instruction is supported by the processor implementation. Otherwise, execution of CPUID results in an
invalid-opcode exception.
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See “Feature Detection” on page 74 for details about using the CPUID instruction. For a full
description of the CPUID instruction and its function codes, see “CPUID” in Volume 3 and the
CPUID Specification, order# 25481.

3.3.16 Cache and Memory Management

Applications can use the cache and memory-management instructions to control memory reads and
writes to influence the caching of read/write data. “Memory Optimization” on page 92 describes how
these instructions interact with the memory subsystem.

• LFENCE—Load Fence

• SFENCE—Store Fence

• MFENCE—Memory Fence

• PREFETCHlevel—Prefetch Data to Cache Level level

• PREFETCH—Prefetch L1 Data-Cache Line

• PREFETCHW—Prefetch L1 Data-Cache Line for Write

• CLFLUSH—Cache Line Invalidate

The LFENCE, SFENCE, and MFENCE instructions can be used to force ordering on memory
accesses. The order of memory accesses can be important when the reads and writes are to a memory-
mapped I/O device, and in multiprocessor environments where memory synchronization is required.
LFENCE affects ordering on memory reads, but not writes. SFENCE affects ordering on memory
writes, but not reads. MFENCE orders both memory reads and writes. These instructions do not take
operands. They are simply inserted between the memory references that are to be ordered. For details
about the fence instructions, see “Forcing Memory Order” on page 94.

The PREFETCHlevel, PREFETCH, and PREFETCHW instructions load data from memory into one
or more cache levels. PREFETCHlevel loads a memory block into a specified level in the data-cache
hierarchy (including a non-temporal caching level). The size of the memory block is implementation
dependent. PREFETCH loads a cache line into the L1 data cache. PREFETCHW loads a cache line
into the L1 data cache and sets the cache line’s memory-coherency state to modified, in anticipation of
subsequent data writes to that line. (Both PREFETCH and PREFETCHW are 3DNow!™
instructions.) For details about the prefetch instructions, see “Cache-Control Instructions” on page 99.
For a description of MOESI memory-coherency states, see “Memory System” in Volume 2.

The CLFLUSH instruction writes unsaved data back to memory for the specified cache line from all
processor caches, invalidates the specified cache, and causes the processor to send a bus cycle which
signals external caching devices to write back and invalidate their copies of the cache line. CLFLUSH
provides a finer-grained mechanism than the WBINVD instruction, which writes back and invalidates
all cache lines. Moreover, CLFLUSH can be used at all privilege levels, unlike WBINVD which can be
used only by system software running at privilege level 0.

3.3.17 No Operation

• NOP—No Operation
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The NOP instructions performs no operation (except incrementing the instruction pointer rIP by one).
It is an alternative mnemonic for the XCHG rAX, rAX instruction. Depending on the hardware
implementation, the NOP instruction may use one or more cycles of processor time.

3.3.18 System Calls

System Call and Return

• SYSENTER—System Call

• SYSEXIT—System Return

• SYSCALL—Fast System Call

• SYSRET—Fast System Return

The SYSENTER and SYSCALL instructions perform a call to a routine running at current privilege
level (CPL) 0—for example, a kernel procedure—from a user level program (CPL 3). The addresses of
the target procedure and (for SYSENTER) the target stack are specified implicitly through the model-
specific registers (MSRs). Control returns from the operating system to the caller when the operating
system executes a SYSEXIT or SYSRET instruction. SYSEXIT are SYSRET are privileged
instructions and thus can be issued only by a privilege-level-0 procedure.

The SYSENTER and SYSEXIT instructions form a complementary pair, as do SYSCALL and
SYSRET. SYSENTER and SYSEXIT are invalid in 64-bit mode. In this case, use the faster
SYSCALL and SYSRET instructions.

For details on these on other system-related instructions, see “System-Management Instructions” in
Volume 2 and “System Instruction Reference” in Volume 3.

3.4 General Rules for Instructions in 64-Bit Mode

This section provides details of the general-purpose instructions in 64-bit mode, and how they differ
from the same instructions in legacy and compatibility modes. The differences apply only to general-
purpose instructions. Most of them do not apply to 128-bit media, 64-bit media, or x87 floating-point
instructions.

3.4.1 Address Size

In 64-bit mode, the following rules apply to address size:

• Defaults to 64 bits.

• Can be overridden to 32 bits (by means of opcode prefix 67h).

• Can’t be overridden to 16 bits.
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3.4.2 Canonical Address Format

Bits 63 through the most-significant implemented virtual-address bit must be all zeros or all ones in
any memory reference. See “64-Bit Canonical Addresses” on page 15 for details. (This rule applies to
long mode, which includes both 64-bit mode and compatibility mode.)

3.4.3 Branch-Displacement Size

Branch-address displacements are 8 bits or 32 bits, as in legacy mode, but are sign-extended to 64 bits
prior to using them for address computations. See “Displacements and Immediates” on page 17 for
details.

3.4.4 Operand Size

In 64-bit mode, the following rules apply to operand size:

• 64-Bit Operand Size Option: If an instruction’s operand size (16-bit or 32-bit) in legacy mode
depends on the default-size (D) bit in the current code-segment descriptor and the operand-size
prefix, then the operand-size choices in 64-bit mode are extended from 16-bit and 32-bit to include
64 bits (with a REX prefix), or the operand size is fixed at 64 bits. See “General-Purpose
Instructions in 64-Bit Mode” in Volume 3 for details.

• Default Operand Size: The default operand size for most instructions is 32 bits, and a REX prefix
must be used to change the operand size to 64 bits. However, two groups of instructions default to
64-bit operand size and do not need a REX prefix: (1) near branches and (2) all instructions, except
far branches, that implicitly reference the RSP. See “General-Purpose Instructions in 64-Bit Mode”
in Volume 3 for details.

• Fixed Operand Size: If an instruction’s operand size is fixed in legacy mode, that operand size is
usually fixed at the same size in 64-bit mode. (There are some exceptions.) For example, the
CPUID instruction always operates on 32-bit operands, irrespective of attempts to override the
operand size. See “General-Purpose Instructions in 64-Bit Mode” in Volume 3 for details.

• Immediate Operand Size: The maximum size of immediate operands is 32 bits, as in legacy
mode, except that 64-bit immediates can be MOVed into 64-bit GPRs. When the operand size is 64
bits, immediates are sign-extended to 64 bits prior to using them. See “Immediate Operand Size”
on page 40 for details.

• Shift-Count and Rotate-Count Operand Size: When the operand size is 64 bits, shifts and
rotates use one additional bit (6 bits total) to specify shift-count or rotate-count, allowing 64-bit
shifts and rotates.

3.4.5 High 32 Bits

In 64-bit mode, the following rules apply to extension of results into the high 32 bits when results
smaller than 64 bits are written:

• Zero-Extension of 32-Bit Results: 32-bit results are zero-extended into the high 32 bits of 64-bit
GPR destination registers.
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• No Extension of 8-Bit and 16-Bit Results: 8-bit and 16-bit results leave the high 56 or 48 bits,
respectively, of 64-bit GPR destination registers unchanged.

• Undefined High 32 Bits After Mode Change: The processor does not preserve the upper 32 bits
of the 64-bit GPRs across changes from 64-bit mode to compatibility or legacy modes. In
compatibility and legacy mode, the upper 32 bits of the GPRs are undefined and not accessible to
software.

3.4.6 Invalid and Reassigned Instructions

The following general-purpose instructions are invalid in 64-bit mode:

• AAA—ASCII Adjust After Addition

• AAD—ASCII Adjust Before Division

• AAM—ASCII Adjust After Multiply

• AAS—ASCII Adjust After Subtraction

• BOUND—Check Array Bounds

• CALL (far absolute)—Procedure Call Far

• DAA—Decimal Adjust after Addition

• DAS—Decimal Adjust after Subtraction

• INTO—Interrupt to Overflow Vector

• JMP (far absolute)—Jump Far

• LDS—Load DS Segment Register

• LES—Load ES Segment Register

• POP DS—Pop Stack into DS Segment

• POP ES—Pop Stack into ES Segment

• POP SS—Pop Stack into SS Segment

• POPA, POPAD—Pop All to GPR Words or Doublewords

• PUSH CS—Push CS Segment Selector onto Stack

• PUSH DS—Push DS Segment Selector onto Stack

• PUSH ES—Push ES Segment Selector onto Stack

• PUSH SS—Push SS Segment Selector onto Stack

• PUSHA, PUSHAD—Push All to GPR Words or Doublewords

The following general-purpose instructions are invalid in long mode (64-bit mode and compatibility
mode):

• SYSENTER—System Call (use SYSCALL instead)

• SYSEXIT—System Exit (use SYSRET instead)

The opcodes for the following general-purpose instructions are reassigned in 64-bit mode:



70 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.15—November 2009

• ARPL—Adjust Requestor Privilege Level. Opcode becomes the MOVSXD instruction.

• DEC (one-byte opcode only)—Decrement by 1. Opcode becomes a REX prefix. Use the two-byte
DEC opcode instead.

• INC (one-byte opcode only)—Increment by 1. Opcode becomes a REX prefix. Use the two-byte
INC opcode instead.

3.4.7 Instructions with 64-Bit Default Operand Size

Most instructions default to 32-bit operand size in 64-bit mode. However, the following near branches
instructions and instructions that implicitly reference the stack pointer (RSP) default to 64-bit operand
size in 64-bit mode:

• Near Branches:

- Jcc—Jump Conditional Near

- JMP—Jump Near

- LOOP—Loop

- LOOPcc—Loop Conditional

• Instructions That Implicitly Reference RSP:

- ENTER—Create Procedure Stack Frame

- LEAVE—Delete Procedure Stack Frame

- POP reg/mem—Pop Stack (register or memory)

- POP reg—Pop Stack (register)

- POP FS—Pop Stack into FS Segment Register

- POP GS—Pop Stack into GS Segment Register

- POPF, POPFD, POPFQ—Pop to rFLAGS Word, Doubleword, or Quadword

- PUSH imm32—Push onto Stack (sign-extended doubleword)

- PUSH imm8—Push onto Stack (sign-extended byte)

- PUSH reg/mem—Push onto Stack (register or memory)

- PUSH reg—Push onto Stack (register)

- PUSH FS—Push FS Segment Register onto Stack

- PUSH GS—Push GS Segment Register onto Stack

- PUSHF, PUSHFD, PUSHFQ—Push rFLAGS Word, Doubleword, or Quadword onto Stack

The default 64-bit operand size eliminates the need for a REX prefix with these instructions when
registers RAX–RSP (the first set of eight GPRs) are used as operands. A REX prefix is still required if
R8–R15 (the extended set of eight GPRs) are used as operands, because the prefix is required to
address the extended registers.

The 64-bit default operand size can be overridden to 16 bits using the 66h operand-size override.
However, it is not possible to override the operand size to 32 bits, because there is no 32-bit operand-
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size override prefix for 64-bit mode. For details on the operand-size prefix, see “Instruction Prefixes”
in Volume 3.

For details on near branches, see “Near Branches in 64-Bit Mode” on page 85. For details on
instructions that implicitly reference RSP, see “Stack Operand-Size in 64-Bit Mode” on page 77.

For details on opcodes and operand-size overrides, see “General-Purpose Instructions in 64-Bit Mode”
in Volume 3.

3.5 Instruction Prefixes

An instruction prefix is a byte that precedes an instruction’s opcode and modifies the instruction’s
operation or operands. Instruction prefixes are of two types:

• Legacy Prefixes

• REX Prefixes

Legacy prefixes are organized into five groups, in which each prefix has a unique value. REX prefixes,
which enable use of the AMD64 register extensions in 64-bit mode, are organized as a single group in
which the value of the prefix indicates the combination of register-extension features to be enabled.

3.5.1 Legacy Prefixes

Table 3-7 on page 72 shows the legacy prefixes. These are organized into five groups, as shown in the
left-most column of the table. Each prefix has a unique hexadecimal value. The legacy prefixes can
appear in any order in the instruction, but only one prefix from each of the five groups can be used in a
single instruction. The result of using multiple prefixes from a single group is undefined.

There are several restrictions on the use of prefixes. For example, the address-size prefix changes
address size only for a memory operand, and only a single memory operand can be overridden in an
instruction. In general, the operand-size prefix cannot be used with x87 floating-point instructions, and
when used with 128-bit or 64-bit media instructions that prefix acts in a special way to modify the
opcode. The repeat prefixes cause repetition only with certain string instructions, and when used with
128-bit or 64-bit media instructions the prefixes act in a special way to modify the opcode. The lock
prefix can be used with only a small number of general-purpose instructions.

Table 3-7 on page 72 summarizes the functionality of instruction prefixes. Details about the prefixes
and their restrictions are given in “Instruction Prefixes” in Volume 3.
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Operand-Size and Address-Size Prefixes. The operand-size and address-size prefixes allow
mixing of data and address sizes on an instruction-by-instruction basis. An instruction’s default
address size can be overridden in any operating mode by using the 67h address-size prefix.

Table 3-3 on page 39 shows the operand-size overrides for all operating modes. In 64-bit mode, the
default operand size for most general-purpose instructions is 32 bits. A REX prefix (described in
“REX Prefixes” on page 74) specifies a 64-bit operand size, and a 66h prefix specifies a 16-bit operand
size. The REX prefix takes precedence over the 66h prefix.

Table 2-1 on page 18 shows the address-size overrides for all operating modes. In 64-bit mode, the
default address size is 64 bits. The address size can be overridden to 32 bits. 16-bit addresses are not
supported in 64-bit mode. In compatibility mode, the address-size prefix works the same as in the
legacy x86 architecture.

For further details on these prefixes, see “Operand-Size Override Prefix” and “Address-Size Override
Prefix” in Volume 3.

Table 3-7. Legacy Instruction Prefixes

Prefix Group Mnemonic Prefix Code
(Hex)

Description

Operand-Size
Override

none 661 Changes the default operand size of a memory or register
operand, as shown in Table 3-3 on page 39.

Address-Size
Override

none 67
Changes the default address size of a memory operand,
as shown in Table 2-1 on page 18.

Segment
Override

CS 2E Forces use of the CS segment for memory operands.

DS 3E Forces use of the DS segment for memory operands.

ES 26 Forces use of the ES segment for memory operands.

FS 64 Forces use of the FS segment for memory operands.

GS 65 Forces use of the GS segment for memory operands.

SS 36 Forces use of the SS segment for memory operands.

Lock LOCK F0
Causes certain read-modify-write instructions on memory
to occur atomically.

Repeat

REP

F31

Repeats a string operation (INS, MOVS, OUTS, LODS,
and STOS) until the rCX register equals 0.

REPE or
REPZ

Repeats a compare-string or scan-string operation
(CMPSx and SCASx) until the rCX register equals 0 or
the zero flag (ZF) is cleared to 0.

REPNE or
REPNZ

F21
Repeats a compare-string or scan-string operation
(CMPSx and SCASx) until the rCX register equals 0 or
the zero flag (ZF) is set to 1.

Note:
1. When used with 128-bit or 64-bit media instructions, this prefix acts in a special-purpose way to modify the opcode.
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Segment Override Prefix. The DS segment is the default segment for most memory operands. Many
instructions allow this default data segment to be overridden using one of the six segment-override
prefixes shown in Table 3-7 on page 72. Data-segment overrides will be ignored when accessing data
in the following cases:

• When a stack reference is made that pushes data onto or pops data off of the stack. In those cases,
the SS segment is always used.

• When the destination of a string is memory it is always referenced using the ES segment.

Instruction fetches from the CS segment cannot be overridden. However, the CS segment-override
prefix can be used to access instructions as data objects and to access data stored in the code segment.

For further details on these prefixes, see “Segment-Override Prefixes” in Volume 3.

Lock Prefix. The LOCK prefix causes certain read-modify-write instructions that access memory to
occur atomically. The mechanism for doing so is implementation-dependent (for example, the
mechanism may involve locking of data-cache lines that contain copies of the referenced memory
operands, and/or bus signaling or packet-messaging on the bus). The prefix is intended to give the
processor exclusive use of shared memory operands in a multiprocessor system.

The prefix can only be used with forms of the following instructions that write a memory operand:
ADC, ADD, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHG8B, DEC, INC, NEG, NOT, OR, SBB,
SUB, XADD, XCHG, and XOR. An invalid-opcode exception occurs if LOCK is used with any other
instruction.

For further details on these prefixes, see “Lock Prefix” in Volume 3.

Repeat Prefixes. There are two repeat prefixes byte codes, F3h and F2h. Byte code F3h is the more
general and is usually treated as two distinct instructions by assemblers. Byte code F2h is only used
with CMPSx and SCASx instructions:

• REP (F3h)—This more generalized repeat prefix repeats its associated string instruction the
number of times specified in the counter register (rCX). Repetition stops when the value in rCX
reaches 0. This prefix is used with the INS, LODS, MOVS, OUTS, and STOS instructions.

• REPE or REPZ (F3h)—This version of REP prefix repeats its associated string instruction the
number of times specified in the counter register (rCX). Repetition stops when the value in rCX
reaches 0 or when the zero flag (ZF) is cleared to 0. The prefix can only be used with the CMPSx
and SCASx instructions.

• REPNE or REPNZ (F2h)—The REPNE or REPNZ prefix repeats its associated string instruction
the number of times specified in the counter register (rCX). Repetition stops when the value in rCX
reaches 0 or when the zero flag (ZF) is set to 1. The prefix can only be used with the CMPSx and
SCASx instructions.

The size of the rCX counter is determined by the effective address size. For further details about these
prefixes, including optimization of their use, see “Repeat Prefixes” in Volume 3.
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3.5.2 REX Prefixes

REX prefixes are a new group of instruction-prefix bytes that can be used only in 64-bit mode. They
enable the 64-bit register extensions. REX prefixes specify the following features:

• Use of an extended GPR register, shown in Figure 3-3 on page 27.

• Use of an extended XMM register, shown in Figure 4-12 on page 117.

• Use of a 64-bit (quadword) operand size, as described in “Operands” on page 36.

• Use of extended control and debug registers, as described in Volume 2.

REX prefix bytes have a value in the range 40h to 4Fh, depending on the particular combination of
register extensions desired. With few exceptions, a REX prefix is required to access a 64-bit GPR or
one of the extended GPR or XMM registers. A few instructions (described in “General-Purpose
Instructions in 64-Bit Mode” in Volume 3) default to 64-bit operand size and do not need the REX
prefix to access an extended 64-bit GPR.

An instruction can have only one REX prefix, and one such prefix is all that is needed to express the
full selection of 64-bit-mode register-extension features. The prefix, if used, must immediately
precede the first opcode byte of an instruction. Any other placement of a REX prefix is ignored. The
legacy instruction-size limit of 15 bytes still applies to instructions that contain a REX prefix.

For further details on the REX prefixes, see “REX Prefixes” in Volume 3.

3.6 Feature Detection

The CPUID instruction provides information about the processor implementation and its capabilities.
Software operating at any privilege level can execute the CPUID instruction to collect this information.
After the information is collected, software can select procedures that optimize performance for a
particular hardware implementation. For example, application software can determine whether the
AMD64 architecture’s long mode is supported by the processor, and it can determine the processor
implementation’s performance capabilities.

Support for the CPUID instruction is implementation-dependent, as determined by software’s ability
to write the RFLAGS.ID bit. The following code sample shows how to test for the presence of the
CPUID instruction.

pushfd ; save EFLAGS
pop eax ; store EFLAGS in EAX
mov ebx, eax ; save in EBX for later testing
xor eax, 00200000h ; toggle bit 21
push eax ; push to stack
popfd ; save changed EAX to EFLAGS
pushfd ; push EFLAGS to TOS
pop eax ; store EFLAGS in EAX
cmp eax, ebx ; see if bit 21 has changed
jz NO_CPUID ; if no change, no CPUID
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After software has determined that the processor implementation supports the CPUID instruction,
software can test for support of specific features by loading a function code (value) into the EAX
register and executing the CPUID instruction. Processor feature information is returned in the EAX,
EBX, ECX, and EDX registers, as described fully in “CPUID” in Volume 3.

The architecture supports CPUID information about standard functions and extended functions. In
general, standard functions include the earliest features offered in the x86 architecture. Extended
functions include newer features of the x86 and AMD64 architectures, such as SSE, SSE2, SSE3, and
3DNow! instructions, and long mode.

Standard functions are accessed by loading EAX with the value 0 (standard-function 0) or 1 (standard-
function 1) and executing the CPUID instruction. All software using the CPUID instruction must
execute standard-function 0, which identifies the processor vendor and the largest standard-function
input value supported by the processor implementation. The CPUID standard-function 1 returns the
processor version and standard-feature bits.

Software can test for support of extended functions by first executing the CPUID instruction with the
value 8000_0000h in EAX. The processor returns, in EAX, the largest extended-function input value
defined for the CPUID instruction on the processor implementation. If the value in EAX is greater than
8000_0000h, extended functions are supported, although specific extended functions must be tested
individually.

The following code sample shows how to test for support of any extended functions:

mov eax, 80000000h ; query for extended functions
CPUID ; get extended function limit
cmp eax, 80000000h ; is EAX greater than 80000000?
jbe NO_EXTENDEDMSR ; no extended-feature support

If extended functions are supported, software can test for support of specific extended features. For
example, software can determine whether the processor implementation supports long mode by
executing the CPUID instruction with 8000_0001h in the EAX register, then testing to see if bit 29 in
the EDX register is set to 1. The following code sample shows how to test for long-mode support.

mov eax, 80000001h ; query for function 8000_0001h
CPUID ; get feature bits in EDX
test edx, 20000000h ; test bit 29 in EDX
jnz YES_Long_Mode ; long mode is supported

With a few exceptions, general-purpose instructions are supported in all hardware implementations of
the AMD64 architecture, Exceptional instructions are implemented only if their associated CPUID
function bit is set. The implementation of certain media instructions (such as FXSAVE and
FXRSTOR) and system instructions (such as RDMSR and WRMSR) is also indicated by CPUID
function bits. See “CPUID” in the AMD64 Architecture Programmer’s Manual Volume 3: General
Purpose and System Instructions, order# 24594, and the CPUID Specification, order# 25481, for a full
description of the CPUID instruction, all CPUID standard and extended functions, and the proper
interpretation of returned values.
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3.6.1 Feature Detection in a Virtualized Environment

Software writers must assume that their software may be executed as a guest in a virtualized
environment. A virtualized guest may be migrated between processors of differing capabilities, so the
CPUID indication of a feature's presence must be respected. Operating systems, user programs and
libraries must all ensure that the CPUID instruction indicates a feature is present before using that
feature. The hypervisor is responsible for ensuring consistent CPUID values across the system.

For example, an OS, program, or library typically detects a feature during initialization and then
configures code paths or internal copies of feature indications based on the detection of that feature,
with the feature detection occurring once per initialization. In this case, the feature must be detected by
use of the CPUID instruction rather than by ignoring CPUID and testing for the presence of that
feature.

To ensure guest migration between processors across multiple generations of processors, while
allowing for features to be deprecated in future generations of processors, it is imperative that software
check the CPUID bit once per program or library initialization before using instructions that are
indicated by a CPUID bit; otherwise inconsistent behavior may result.

3.7 Control Transfers

3.7.1 Overview

From the application-program’s viewpoint, program-control flow is sequential—that is, instructions
are addressed and executed sequentially—except when a branch instruction (a call, return, jump,
interrupt, or return from interrupt) is encountered, in which case program flow changes to the branch
instruction’s target address. Branches are used to iterate through loops and move through conditional
program logic. Branches cause a new instruction pointer to be loaded into the rIP register, and
sometimes cause the CS register to point to a different code segment. The CS:rIP values can be
specified as part of a branch instruction, or they can be read from a register or memory.

Branches can also be used to transfer control to another program or procedure running at a different
privilege level. In such cases, the processor automatically checks the source program and target
program privileges to ensure that the transfer is allowed before loading CS:rIP with the new values.

3.7.2 Privilege Levels

The processor’s protected modes include legacy protected mode and long mode (both compatibility
mode and 64-bit mode). In all protected modes and virtual x86 mode, privilege levels are used to
isolate and protect programs and data from each other. The privilege levels are designated with a
numerical value from 0 to 3, with 0 being the most privileged and 3 being the least privileged. Privilege
0 is normally reserved for critical system-software components that require direct access to, and
control over, all processor and system resources. Privilege 3 is used by application software. The
intermediate privilege levels (1 and 2) are used, for example, by device drivers and library routines that
access and control a limited set of processor and system resources.



General-Purpose Programming 77

24592—Rev. 3.15—November 2009 AMD64 Technology

Figure 3-9 shows the relationship of the four privilege-levels to each other. The protection scheme is
implemented using the segmented memory-management mechanism described in “Segmented Virtual
Memory” in Volume 2.

Figure 3-9. Privilege-Level Relationships

3.7.3 Procedure Stack

A procedure stack is often used by control transfer operations, particularly those that change privilege
levels. Information from the calling program is passed to the target program on the procedure stack.
CALL instructions, interrupts, and exceptions all push information onto the procedure stack. The
pushed information includes a return pointer to the calling program and, for call instructions,
optionally includes parameters. When a privilege-level change occurs, the calling program’s stack
pointer (the pointer to the top of the stack) is pushed onto the stack. Interrupts and exceptions also push
a copy of the calling program’s rFLAGs register and, in some cases, an error code associated with the
interrupt or exception.

The RET or IRET control-transfer instructions reverse the operation of CALLs, interrupts, and
exceptions. These return instructions pop the return pointer off the stack and transfer control back to
the calling program. If the calling program’s stack pointer was pushed, it is restored by popping the
saved values off the stack and into the SS and rSP registers.

Stack Alignment. Control-transfer performance can degrade significantly when the stack pointer is
not aligned properly. Stack pointers should be word aligned in 16-bit segments, doubleword aligned in
32-bit segments, and quadword aligned in 64-bit mode.

Stack Operand-Size in 64-Bit Mode. In 64-bit mode, the stack pointer size is always 64 bits. The
stack size is not controlled by the default-size (B) bit in the SS descriptor, as it is in compatibility and
legacy modes, nor can it be overridden by an instruction prefix. Address-size overrides are ignored for
implicit stack references.

513-236.eps Application Programs
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Except for far branches, all instructions that implicitly reference the stack pointer default to 64-bit
operand size in 64-bit mode. Table 3-8 on page 79 lists these instructions.

The default 64-bit operand size eliminates the need for a REX prefix with these instructions. However,
a REX prefix is still required if R8–R15 (the extended set of eight GPRs) are used as operands,
because the prefix is required to address the extended registers. Pushes and pops of 32-bit stack values
are not possible in 64-bit mode with these instructions, because there is no 32-bit operand-size
override prefix for 64-bit mode.

3.7.4 Jumps

Jump instructions provide a simple means for transferring program control from one location to
another. Jumps do not affect the procedure stack, and return instructions cannot transfer control back to
the instruction following a jump. Two general types of jump instruction are available: unconditional
(JMP) and conditional (Jcc).

There are two types of unconditional jumps (JMP):

• Near Jumps—When the target address is within the current code segment.

• Far Jumps—When the target address is outside the current code segment.

Although unconditional jumps can be used to change code segments, they cannot be used to change
privilege levels.

Conditional jumps (Jcc) test the state of various bits in the rFLAGS register (or rCX) and jump to a
target location based on the results of that test. Only near forms of conditional jumps are available, so
Jcc cannot be used to transfer control to another code segment.
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3.7.5 Procedure Calls

The CALL instruction transfers control unconditionally to a new address, but unlike jump instructions,
it saves a return pointer (CS:rIP) on the stack. The called procedure can use the RET instruction to pop
the return pointers to the calling procedure from the stack and continue execution with the instruction
following the CALL.

There are four types of CALL:

• Near Call—When the target address is within the current code segment.

• Far Call—When the target address is outside the current code segment.

• Interprivilege-Level Far Call—A far call that changes privilege level.

• Task Switch—A call to a target address in another task.

Near Call. When a near CALL is executed, only the calling procedure’s rIP (the return offset) is
pushed onto the stack. After the rIP is pushed, control is transferred to the new rIP value specified by

Table 3-8. Instructions that Implicitly Reference RSP in 64-Bit Mode

Mnemonic
Opcode

(hex)
Description

Operand Size (bits)

Default
Possible

Overrides1

CALL E8, FF /2 Call Procedure Near

64 16

ENTER C8 Create Procedure Stack Frame

LEAVE C9 Delete Procedure Stack Frame

POP reg/mem 8F /0 Pop Stack (register or memory)

POP reg 58 to 5F Pop Stack (register)

POP FS 0F A1 Pop Stack into FS Segment Register

POP GS 0F A9 Pop Stack into GS Segment Register

POPF
POPFQ

9D Pop to EFLAGS Word or Quadword

PUSH imm32 68 Push onto Stack (sign-extended doubleword)

PUSH imm8 6A Push onto Stack (sign-extended byte)

PUSH reg/mem FF /6 Push onto Stack (register or memory)

PUSH reg 50–57 Push onto Stack (register)

PUSH FS 0F A0 Push FS Segment Register onto Stack

PUSH GS 0F A8 Push GS Segment Register onto Stack

PUSHF
PUSHFQ

9C Push rFLAGS Word or Quadword onto Stack

RET C2, C3 Return From Call (near)

Note:
1. There is no 32-bit operand-size override prefix in 64-bit mode.



80 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.15—November 2009

the CALL instruction. Parameters can be pushed onto the stack by the calling procedure prior to
executing the CALL instruction. Figure 3-10 shows the stack pointer before (old rSP value) and after
(new rSP value) the CALL. The stack segment (SS) is not changed.

Figure 3-10. Procedure Stack, Near Call

Far Call, Same Privilege. A far CALL changes the code segment, so the full return pointer (CS:rIP)
is pushed onto the stack. After the return pointer is pushed, control is transferred to the new CS:rIP
value specified by the CALL instruction. Parameters can be pushed onto the stack by the calling
procedure prior to executing the CALL instruction. Figure 3-11 shows the stack pointer before (old
rSP value) and after (new rSP value) the CALL. The stack segment (SS) is not changed.

Figure 3-11. Procedure Stack, Far Call to Same Privilege

Far Call, Greater Privilege. A far CALL to a more-privileged procedure performs a stack switch
prior to transferring control to the called procedure. Switching stacks isolates the more-privileged
procedure’s stack from the less-privileged procedure’s stack, and it provides a mechanism for saving
the return pointer back to the procedure that initiated the call.

Calls to more-privileged software can only take place through a system descriptor called a call-gate
descriptor. Call-gate descriptors are created and maintained by system software. In 64-bit mode, only
indirect far calls (those whose target memory address is in a register or other memory location) are
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supported. Absolute far calls (those that reference the base of the code segment) are not supported in
64-bit mode.

When a call to a more-privileged procedure occurs, the processor locates the new procedure’s stack
pointer from its task-state segment (TSS). The old stack pointer (SS:rSP) is pushed onto the new stack,
and (in legacy mode only) any parameters specified by the count field in the call-gate descriptor are
copied from the old stack to the new stack (long mode does not support this automatic parameter
copying). The return pointer (CS:rIP) is then pushed, and control is transferred to the new procedure.
Figure 3-12 shows an example of a stack switch resulting from a call to a more-privileged procedure.
“Segmented Virtual Memory” in Volume 2 provides additional information on privilege-changing
CALLs.

Figure 3-12. Procedure Stack, Far Call to Greater Privilege

Task Switch. In legacy mode, when a call to a new task occurs, the processor suspends the currently-
executing task and stores the processor-state information at the point of suspension in the current task’s
task-state segment (TSS). The new task’s state information is loaded from its TSS, and the processor
resumes execution within the new task.

In long mode, hardware task switching is disabled. Task switching is fully described in “Segmented
Virtual Memory” in Volume 2.

3.7.6 Returning from Procedures

The RET instruction reverses the effect of a CALL instruction. The return address is popped off the
procedure stack, transferring control unconditionally back to the calling procedure at the instruction
following the CALL. A return that changes privilege levels also switches stacks.
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The three types of RET are:

• Near Return—Transfers control back to the calling procedure within the current code segment.

• Far Return—Transfers control back to the calling procedure outside the current code segment.

• Interprivilege-Level Far Return—A far return that changes privilege levels.

All of the RET instruction types can be used with an immediate operand indicating the number of
parameter bytes present on the stack. These parameters are released from the stack—that is, the stack
pointer is adjusted by the value of the immediate operand—but the parameter bytes are not actually
popped off of the stack (i.e., read into a register or memory location).

Near Return. When a near RET is executed, the calling procedure’s return offset is popped off of the
stack and into the rIP register. Execution begins from the newly-loaded offset. If an immediate operand
is included with the RET instruction, the stack pointer is adjusted by the number of bytes indicated.
Figure 3-13 shows the stack pointer before (old rSP value) and after (new rSP value) the RET. The
stack segment (SS) is not changed.

Figure 3-13. Procedure Stack, Near Return

Far Return, Same Privilege. A far RET changes the code segment, so the full return pointer is
popped off the stack and into the CS and rIP registers. Execution begins from the newly-loaded
segment and offset. If an immediate operand is included with the RET instruction, the stack pointer is
adjusted by the number of bytes indicated. Figure 3-14 on page 83 shows the stack pointer before (old
rSP value) and after (new rSP value) the RET. The stack segment (SS) is not changed.
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Figure 3-14. Procedure Stack, Far Return from Same Privilege

Far Return, Less Privilege. Privilege-changing far RETs can only return to less-privileged code
segments, otherwise a general-protection exception occurs. The full return pointer is popped off the
stack and into the CS and rIP registers, and execution begins from the newly-loaded segment and
offset. A far RET that changes privilege levels also switches stacks. The return procedure’s stack
pointer is popped off the stack and into the SS and rSP registers. If an immediate operand is included
with the RET instruction, the newly-loaded stack pointer is adjusted by the number of bytes indicated.
Figure 3-15 shows the stack pointer before (old SS:rSP value) and after (new SS:rSP value) the RET.
“Segmented Virtual Memory” in Volume 2 provides additional information on privilege-changing
RETs.

Figure 3-15. Procedure Stack, Far Return from Less Privilege
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3.7.7 System Calls

A disadvantage of far CALLs and far RETs is that they use segment-based protection and privilege-
checking. This involves significant overhead associated with loading new segment selectors and their
corresponding descriptors into the segment registers. The overhead includes not only the time required
to load the descriptors from memory but also the time required to perform the privilege, type, and limit
checks. Privilege-changing CALLs to the operating system are slowed further by the control transfer
through a gate descriptor.

SYSCALL and SYSRET. SYSCALL and SYSRET are low-latency system-call and system-return
control-transfer instructions. They can be used in protected mode. These instructions eliminate
segment-based privilege checking by using pre-determined target and return code segments and stack
segments. The operating system sets up and maintains the predetermined segments using special
registers within the processor, so the segment descriptors do not need to be fetched from memory when
the instructions are used. The simplifications made to privilege checking allow SYSCALL and
SYSRET to complete in far fewer processor clock cycles than CALL and RET.

SYSRET can only be used to return from CPL = 0 procedures and is not available to application
software. SYSCALL can be used by applications to call operating system service routines running at
CPL = 0. The SYSCALL instruction does not take operands. Linkage conventions are initialized and
maintained by the operating system. “System-Management Instructions” in Volume 2 contains
detailed information on the operation of SYSCALL and SYSRET.

SYSENTER and SYSEXIT. The SYSENTER and SYSEXIT instructions provide similar capabilities
to SYSCALL and SYSRET. However, these instructions can be used only in legacy mode and are not
supported in long mode. SYSCALL and SYSRET are the preferred instructions for calling privileged
software. See “System-Management Instructions” in Volume 2 for further information on SYSENTER
and SYSEXIT.

3.7.8 General Considerations for Branching

Branching causes delays which are a function of the hardware-implementation’s branch-prediction
capabilities. Sequential flow avoids the delays caused by branching but is still exposed to delays
caused by cache misses, memory bus bandwidth, and other factors.

In general, branching code should be replaced with sequential code whenever practical. This is
especially important if the branch body is small (resulting in frequent branching) and when branches
depend on random data (resulting in frequent mispredictions of the branch target). In certain hardware
implementations, far branches (as opposed to near branches) may not be predictable by the hardware,
and recursive functions (those that call themselves) may overflow a return-address stack.

All calls and returns should be paired for optimal performance. Hardware implementations that
include a return-address stack can lose stack synchronization if calls and returns are not paired.
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3.7.9 Branching in 64-Bit Mode

Near Branches in 64-Bit Mode. The long-mode architecture expands the near-branch mechanisms
to accommodate branches in the full 64-bit virtual-address space. In 64-bit mode, the operand size for
all near branches defaults to 64 bits, so these instructions update the full 64-bit RIP.

Table 3-9 lists the near-branch instructions.

The default 64-bit operand size eliminates the need for a REX prefix with these instructions when
registers RAX–RSP (the first set of eight GPRs) are used as operands. A REX prefix is still required if
R8–R15 (the extended set of eight GPRs) are used as operands, because the prefix is required to
address the extended registers.

The following aspects of near branches are controlled by the effective operand size:

• Truncation of the instruction pointer.

• Size of a stack pop or push, resulting from a CALL or RET.

• Size of a stack-pointer increment or decrement, resulting from a CALL or RET.

• Indirect-branch operand size.

In 64-bit mode, all of the above actions are forced to 64 bits. However, the size of the displacement
field for relative branches is still limited to 32 bits.

The operand size of near branches is fixed at 64 bits without the need for a REX prefix. However, the
address size of near branches is not forced in 64-bit mode. Such addresses are 64 bits by default, but
they can be overridden to 32 bits by a prefix.

Table 3-9. Near Branches in 64-Bit Mode

Mnemonic Opcode (hex) Description

Operand Size (bits)

Default
Possible

Overrides1

CALL E8, FF /2 Call Procedure Near

64 16

Jcc
70 to 7F,

0F 80 to 0F 8F
Jump Conditional

JCXZ
JECXZ
JRCXZ

E3 Jump on CX/ECX/RCX Zero

JMP EB, E9, FF /4 Jump Near

LOOP E2 Loop

LOOPcc E0, E1 Loop if Zero/Equal or Not Zero/Equal

RET C2, C3 Return From Call (near)

Note:
1. There is no 32-bit operand-size override prefix in 64-bit mode.
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Branches to 64-Bit Offsets. Because immediates are generally limited to 32 bits, the only way a full
64-bit absolute RIP can be specified in 64-bit mode is with an indirect branch. For this reason, direct
forms of far branches are invalid in 64-bit mode.

3.7.10 Interrupts and Exceptions

Interrupts and exceptions are a form of control transfer operation. They are used to call special system-
service routines, called interrupt handlers, which are designed to respond to the interrupt or exception
condition. Pointers to the interrupt handlers are stored by the operating system in an interrupt-
descriptor table, or IDT. In legacy real mode, the IDT contains an array of 4-byte far pointers to
interrupt handlers. In legacy protected mode, the IDT contains an array of 8-byte gate descriptors. In
long mode, the gate descriptors are 16 bytes. Interrupt gates, task gates, and trap gates can be stored in
the IDT, but not call gates.

Interrupt handlers are usually privileged software because they typically require access to restricted
system resources. System software is responsible for creating the interrupt gates and storing them in
the IDT. “Exceptions and Interrupts” in Volume 2 contains detailed information on the interrupt
mechanism and the requirements on system software for managing the mechanism.

The IDT is indexed using the interrupt number, or vector. How the vector is specified depends on the
source, as described below. The first 32 of the available 256 interrupt vectors are reserved for internal
use by the processor—for exceptions (as described below) and other purposes.

Interrupts are caused either by software or hardware. The INT, INT3, and INTO instructions
implement a software interrupt by calling an interrupt handler directly. These are general-purpose
(privilege-level-3) instructions. The operand of the INT instruction is an immediate byte value
specifying the interrupt vector used to index the IDT. INT3 and INTO are specific forms of software
interrupts used to call interrupt 3 and interrupt 4, respectively. External interrupts are produced by
system logic which passes the IDT index to the processor via input signals. External interrupts can be
either maskable or non-maskable.

Exceptions usually occur as a result of software execution errors or other internal-processor errors.
Exceptions can also occur in non-error situations, such as debug-program single-stepping or address-
breakpoint detection. In the case of exceptions, the processor produces the IDT index based on the
detected condition. The handlers for interrupts and exceptions are identical for a given vector.

The processor’s response to an exception depends on the type of the exception. For all exceptions
except 128-bit-media and x87 floating-point exceptions, control automatically transfers to the handler
(or service routine) for that exception, as defined by the exceptions vector. For 128-bit-media and x87
floating-point exceptions, there is both a masked and unmasked response. When unmasked, these
exceptions invoke their exception handler. When masked, a default masked response is provided
instead of invoking the exception handler.

Exceptions and software-initiated interrupts occur synchronously with respect to the processor clock.
There are three types of exceptions:
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• Faults—A fault is a precise exception that is reported on the boundary before the interrupted
instruction. Generally, faults are caused by an undesirable error condition involving the interrupted
instruction, although some faults (such as page faults) are common and normal occurrences. After
the service routine completes, the machine state prior to the faulting instruction is restored, and the
instruction is retried.

• Traps—A trap is a precise exception that is reported on the boundary following the interrupted
instruction. The instruction causing the exception finishes before the service routine is invoked.
Software interrupts and certain breakpoint exceptions used in debugging are traps.

• Aborts—Aborts are imprecise exceptions. The instruction causing the exception, and possibly an
indeterminate additional number of instructions, complete execution before the service routine is
invoked. Because they are imprecise, aborts typically do not allow reliable program restart.

Table 3-10 shows the interrupts and exceptions that can occur, together with their vector numbers,
mnemonics, source, and causes. For a detailed description of interrupts and exceptions, see
“Exceptions and Interrupts” in Volume 2.

Control transfers to interrupt handlers are similar to far calls, except that for the former, the rFLAGS
register is pushed onto the stack before the return address. Interrupts and exceptions to several of the
first 32 interrupts can also push an error code onto the stack. No parameters are passed by an interrupt.
As with CALLs, interrupts that cause a privilege change also perform a stack switch.

Table 3-10. Interrupts and Exceptions

Vector Interrupt (Exception) Mnemonic Source Cause

Generated
By General-

Purpose
Instructions

0 Divide-By-Zero-Error #DE Software DIV, IDIV instructions yes

1 Debug #DB Internal
Instruction accesses and
data accesses

yes

2 Non-Maskable-Interrupt NMI External External NMI signal no

3 Breakpoint #BP Software INT3 instruction yes

4 Overflow #OF Software INTO instruction yes

5 Bound-Range #BR Software BOUND instruction yes

6 Invalid-Opcode #UD Internal Invalid instructions yes

7 Device-Not-Available #NM Internal x87 instructions no

8 Double-Fault #DF Internal Interrupt during an interrupt yes

9
Coprocessor-Segment-
Overrun

— External Unsupported (reserved)

10 Invalid-TSS #TS Internal
Task-state segment access
and task switch

yes

11 Segment-Not-Present #NP Internal
Segment access through a
descriptor

yes
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Interrupt to Same Privilege in Legacy Mode. When an interrupt to a handler running at the same
privilege occurs, the processor pushes a copy of the rFLAGS register, followed by the return pointer
(CS:rIP), onto the stack. If the interrupt generates an error code, it is pushed onto the stack as the last
item. Control is then transferred to the interrupt handler. Figure 3-16 on page 89 shows the stack
pointer before (old rSP value) and after (new rSP value) the interrupt. The stack segment (SS) is not
changed.

12 Stack #SS Internal
SS register loads and stack
references

yes

13 General-Protection #GP Internal
Memory accesses and
protection checks

yes

14 Page-Fault #PF Internal
Memory accesses when
paging enabled

yes

15 Reserved —

16
x87 Floating-Point
Exception-Pending

#MF Software
x87 floating-point and 64-bit
media floating-point
instructions

no

17 Alignment-Check #AC Internal Memory accesses yes

18 Machine-Check #MC
Internal
External

Model specific yes

19 SIMD Floating-Point #XF Internal
128-bit media floating-point
instructions

no

20—31
Reserved (Internal and
External)

—

32—255
External Interrupts
(Maskable)

— External External interrupt signalling no

0—255 Software Interrupts — Software INT instruction yes

Table 3-10. Interrupts and Exceptions (continued)

Vector Interrupt (Exception) Mnemonic Source Cause

Generated
By General-

Purpose
Instructions
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Figure 3-16. Procedure Stack, Interrupt to Same Privilege

Interrupt to More Privilege or in Long Mode. When an interrupt to a more-privileged handler
occurs or the processor is operating in long mode the processor locates the handler’s stack pointer from
the TSS. The old stack pointer (SS:rSP) is pushed onto the new stack, along with a copy of the
rFLAGS register. The return pointer (CS:rIP) to the interrupted program is then copied to the stack. If
the interrupt generates an error code, it is pushed onto the stack as the last item. Control is then
transferred to the interrupt handler. Figure 3-17 shows an example of a stack switch resulting from an
interrupt with a change in privilege.

Figure 3-17. Procedure Stack, Interrupt to Higher Privilege

Interrupt Returns. The IRET, IRETD, and IRETQ instructions are used to return from an interrupt
handler. Prior to executing an IRET, the interrupt handler must pop the error code off of the stack if one
was pushed by the interrupt or exception. IRET restores the interrupted program’s rIP, CS, and
rFLAGS by popping their saved values off of the stack and into their respective registers. If a privilege
change occurs or IRET is executed in 64-bit mode, the interrupted program’s stack pointer (SS:rSP) is
also popped off of the stack. Control is then transferred back to the interrupted program.
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3.8 Input/Output

I/O devices allow the processor to communicate with the outside world, usually to a human or to
another system. In fact, a system without I/O has little utility. Typical I/O devices include a keyboard,
mouse, LAN connection, printer, storage devices, and monitor. The speeds these devices must operate
at vary greatly, and usually depend on whether the communication is to a human (slow) or to another
machine (fast). There are exceptions. For example, humans can consume graphics data at very high
rates.

There are two methods for communicating with I/O devices in AMD64 processor implementations.
One method involves accessing I/O through ports located in I/O-address space (“I/O Addressing” on
page 90), and the other method involves accessing I/O devices located in the memory-address space
(“Memory Organization” on page 9). The address spaces are separate and independent of each other.

I/O-address space was originally introduced as an optimized means for accessing I/O-device control
ports. Then, systems usually had few I/O devices, devices tended to be relatively low-speed, device
accesses needed to be strongly ordered to guarantee proper operation, and device protection
requirements were minimal or non-existent. Memory-mapped I/O has largely supplanted I/O-address
space access as the preferred means for modern operating systems to interface with I/O devices.
Memory-mapped I/O offers greater flexibility in protection, vastly more I/O ports, higher speeds, and
strong or weak ordering to suit the device requirements.

3.8.1 I/O Addressing

Access to I/O-address space is provided by the IN and OUT instructions, and the string variants of
these instructions, INS and OUTS. The operation of these instructions are described in “Input/Output”
on page 63. Although not required, processor implementations generally transmit I/O-port addresses
and I/O data over the same external signals used for memory addressing and memory data. Different
bus-cycles generated by the processor differentiate I/O-address space accesses from memory-address
space accesses.

I/O-Address Space. Figure 3-18 on page 91 shows the 64 Kbyte I/O-address space. I/O ports can be
addressed as bytes, words, or doublewords. As with memory addressing, word-I/O and doubleword-
I/O ports are simply two or four consecutively-addressed byte-I/O ports. Word and doubleword I/O
ports can be aligned on any byte boundary, but there is typically a performance penalty for unaligned
accesses. Performance is optimized by aligning word-I/O ports on word boundaries, and doubleword-
I/O ports on doubleword boundaries.
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Figure 3-18. I/O Address Space

Memory-Mapped I/O. Memory-mapped I/O devices are attached to the system memory bus and
respond to memory transactions as if they were memory devices, such as DRAM. Access to memory-
mapped I/O devices can be performed using any instruction that accesses memory, but typically MOV
instructions are used to transfer data between the processor and the device. Some I/O devices may have
restrictions on read-modify-write accesses.

Any location in memory can be used as a memory-mapped I/O address. System software can use the
paging facilities to virtualize memory devices and protect them from unauthorized access. See
“System-Management Instructions” in Volume 2 for a discussion of memory virtualization and
paging.

3.8.2 I/O Ordering

The order of read and write accesses between the processor and an I/O device is usually important for
properly controlling device operation. Accesses to I/O-address space and memory-address space differ
in the default ordering enforced by the processor and the ability of software to control ordering.

I/O-Address Space. The processor always orders I/O-address space operations strongly, with respect
to other I/O and memory operations. Software cannot modify the I/O ordering enforced by the
processor. IN instructions are not executed until all previous writes to I/O space and memory have
completed. OUT instructions delay execution of the following instruction until all writes—including
the write performed by the OUT—have completed. Unlike memory writes, writes to I/O addresses are
never buffered by the processor.

The processor can use more than one bus transaction to access an unaligned, multi-byte I/O port.
Unaligned accesses to I/O-address space do not have a defined bus transaction ordering, and that
ordering can change from one implementation to another. If the use of an unaligned I/O port is
required, and the order of bus transactions to that port is important, software should decompose the
access into multiple, smaller aligned accesses.

Memory-Mapped I/O. To maximize software performance, processor implementations can execute
instructions out of program order. This can cause the sequence of memory accesses to also be out of
program order, called weakly ordered. As described in “Accessing Memory” on page 93, the processor
can perform memory reads in any order, it can perform reads without knowing whether it requires the
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result (speculation), and it can reorder reads ahead of writes. In the case of writes, multiple writes to
memory locations in close proximity to each other can be combined into a single write or a burst of
multiple writes. Writes can also be delayed, or buffered, by the processor.

Application software that needs to force memory ordering to memory-mapped I/O devices can do so
using the read/write barrier instructions: LFENCE, SFENCE, and MFENCE. These instructions are
described in “Forcing Memory Order” on page 94. Serializing instructions, I/O instructions, and
locked instructions can also be used as read/write barriers, but they modify program state and are an
inferior method for enforcing strong-memory ordering.

Typically, the operating system controls access to memory-mapped I/O devices. The AMD64
architecture provides facilities for system software to specify the types of accesses and their ordering
for entire regions of memory. These facilities are also used to manage the cacheability of memory
regions. See “System-Management Instructions” in Volume 2 for further information.

3.8.3 Protected-Mode I/O

In protected mode, access to the I/O-address space is governed by the I/O privilege level (IOPL) field
in the rFLAGS register, and the I/O-permission bitmap in the current task-state segment (TSS).

I/O-Privilege Level. RFLAGS.IOPL governs access to IOPL-sensitive instructions. All of the I/O
instructions (IN, INS, OUT, and OUTS) are IOPL-sensitive. IOPL-sensitive instructions cannot be
executed by a program unless the program’s current-privilege level (CPL) is numerically less (more
privileged) than or equal to the RFLAGS.IOPL field, otherwise a general-protection exception (#GP)
occurs.

Only software running at CPL = 0 can change the RFLAGS.IOPL field. Two instructions, POPF and
IRET, can be used to change the field. If application software (or any software running at CPL>0)
attempts to change RFLAGS.IOPL, the attempt is ignored.

System software uses RFLAGS.IOPL to control the privilege level required to access I/O-address
space devices. Access can be granted on a program-by-program basis using different copies of
RFLAGS for every program, each with a different IOPL. RFLAGS.IOPL acts as a global control over
a program’s access to I/O-address space devices. System software can grant less-privileged programs
access to individual I/O devices (overriding RFLAGS.IOPL) by using the I/O-permission bitmap
stored in a program’s TSS. For details about the I/O-permission bitmap, see “I/O-Permission Bitmap”
in Volume 2.

3.9 Memory Optimization

Generally, application software is unaware of the memory hierarchy implemented within a particular
system design. The application simply sees a homogenous address space within a single level of
memory. In reality, both system and processor implementations can use any number of techniques to
speed up accesses into memory, doing so in a manner that is transparent to applications. Application
software can be written to maximize this speed-up even though the methods used by the hardware are
not visible to the application. This section gives an overview of the memory hierarchy and access
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techniques that can be implemented within a system design, and how applications can optimize their
use.

3.9.1 Accessing Memory

Implementations of the AMD64 architecture commit the results of each instruction—i.e., store the
result of the executed instruction in software-visible resources, such as a register (including flags), the
data cache, an internal write buffer, or memory—in program order, which is the order specified by the
instruction sequence in a program. Transparent to the application, implementations can execute
instructions in any order and temporarily hold out-of-order results until the instructions are committed.
Implementations can also speculatively execute instructions—executing instructions before knowing
their results will be used (for example, executing both sides of a branch). By executing instructions
out-of-order and speculatively, a processor can boost application performance by executing
instructions that are ready, rather than delaying them behind instructions that are waiting for data.
However, the processor commits results in program order (the order expected by software).

When executing instructions out-of-order and speculatively, processor implementations often find it
useful to also allow out-of-order and speculative memory accesses. However, such memory accesses
are potentially visible to software and system devices. The following sections describe the
architectural rules for memory accesses. See “Memory System” in Volume 2 for information on how
system software can further specify the flexibility of memory accesses.

Read Ordering. The ordering of memory reads does not usually affect program execution because
the ordering does not usually affect the state of software-visible resources. The rules governing read
ordering are:

• Out-of-order reads are allowed. Out-of-order reads can occur as a result of out-of-order instruction
execution. The processor can read memory out-of-order to prevent stalling instructions that are
executed out-of-order.

• Speculative reads are allowed. A speculative read occurs when the processor begins executing a
memory-read instruction before it knows whether the instruction’s result will actually be needed.
For example, the processor can predict a branch to occur and begin executing instructions
following the predicted branch, before it knows whether the prediction is valid. When one of the
speculative instructions reads data from memory, the read itself is speculative.

• Reads can usually be reordered ahead of writes. Reads are generally given a higher priority by the
processor than writes because instruction execution stalls if the read data required by an instruction
is not immediately available. Allowing reads ahead of writes usually maximizes software
performance.

Reads can be reordered ahead of writes, except that a read cannot be reordered ahead of a prior
write if the read is from the same location as the prior write. In this case, the read instruction stalls
until the write instruction is committed. This is because the result of the write instruction is
required by the read instruction for software to operate correctly.
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Some system devices might be sensitive to reads. Normally, applications do not have direct access to
system devices, but instead call an operating-system service routine to perform the access on the
application’s behalf. In this case, it is system software’s responsibility to enforce strong read-ordering.

Write Ordering. Writes affect program order because they affect the state of software-visible
resources. The rules governing write ordering are restrictive:

• Generally, out-of-order writes are not allowed. Write instructions executed out-of-order cannot
commit (write) their result to memory until all previous instructions have completed in program
order. The processor can, however, hold the result of an out-of-order write instruction in a private
buffer (not visible to software) until that result can be committed to memory.

System software can create non-cacheable write-combining regions in memory when the order of
writes is known to not affect system devices. When writes are performed to write-combining
memory, they can appear to complete out of order relative to other writes. See “Memory System”
in Volume 2 for additional information.

• Speculative writes are not allowed. As with out-of-order writes, speculative write instructions
cannot commit their result to memory until all previous instructions have completed in program
order. Processors can hold the result in a private buffer (not visible to software) until the result can
be committed.

Atomicity of accesses. Single load or store operations (from instructions that do just a single load or
store) are naturally atomic on any AMD64 processor as long as they do not cross an aligned 8-byte
boundary. Accesses up to eight bytes in size which do cross such a boundary may be performed
atomically using certain instructions with a lock prefix, such as XCHG, CMPXCHG or
CMPXCHG8B, as long as all such accesses are done using the same technique. (Note that misaligned
locked accesses may be subject to heavy performance penalties.) CMPXCHG16B can be used to
perform 16-byte atomic accesses in 64-bit mode (with certain alignment restrictions).

3.9.2 Forcing Memory Order

Special instructions are provided for application software to force memory ordering in situations
where such ordering is important. These instructions are:

• Load Fence—The LFENCE instruction forces ordering of memory loads (reads). All memory
loads preceding the LFENCE (in program order) are completed prior to completing memory loads
following the LFENCE. Memory loads cannot be reordered around an LFENCE instruction, but
other non-serializing instructions (such as memory writes) can be reordered around the LFENCE.

• Store Fence—The SFENCE instruction forces ordering of memory stores (writes). All memory
stores preceding the SFENCE (in program order) are completed prior to completing memory
stores following the SFENCE. Memory stores cannot be reordered around an SFENCE instruction,
but other non-serializing instructions (such as memory loads) can be reordered around the
SFENCE.

• Memory Fence—The MFENCE instruction forces ordering of all memory accesses (reads and
writes). All memory accesses preceding the MFENCE (in program order) are completed prior to
completing any memory access following the MFENCE. Memory accesses cannot be reordered
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around an MFENCE instruction, but other non-serializing instructions that do not access memory
can be reordered around the MFENCE.

Although they serve different purposes, other instructions can be used as read/write barriers when the
order of memory accesses must be strictly enforced. These read/write barrier instructions force all
prior reads and writes to complete before subsequent reads or writes are executed. Unlike the fence
instructions listed above, these other instructions alter the software-visible state. This makes these
instructions less general and more difficult to use as read/write barriers than the fence instructions,
although their use may reduce the total number of instructions executed. The following instructions are
usable as read/write barriers:

• Serializing instructions—Serializing instructions force the processor to commit the serializing
instruction and all previous instructions before the next instruction is fetched from memory. The
serializing instructions available to applications are CPUID and IRET. A serializing instruction is
committed when the following operations are complete:

- The instruction has executed.

- All registers modified by the instruction are updated.

- All memory updates performed by the instruction are complete.

- All data held in the write buffers have been written to memory. (Write buffers are described in
“Write Buffering” on page 97).

• I/O instructions—Reads from and writes to I/O-address space use the IN and OUT instructions,
respectively. When the processor executes an I/O instruction, it orders it with respect to other loads
and stores, depending on the instruction:

- IN instructions (IN, INS, and REP INS) are not executed until all previous stores to memory
and I/O-address space are complete.

- Instructions following an OUT instruction (OUT, OUTS, or REP OUTS) are not executed until
all previous stores to memory and I/O-address space are complete, including the store
performed by the OUT.

• Locked instructions—A locked instruction is one that contains the LOCK instruction prefix. A
locked instruction is used to perform an atomic read-modify-write operation on a memory
operand, so it needs exclusive access to the memory location for the duration of the operation.
Locked instructions order memory accesses in the following way:

- All previous loads and stores (in program order) are completed prior to executing the locked
instruction.

- The locked instruction is completed before allowing loads and stores for subsequent
instructions (in program order) to occur.

Only certain instructions can be locked. See “Lock Prefix” in Volume 3 for a list of instructions that
can use the LOCK prefix.



96 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.15—November 2009

3.9.3 Caches

Depending on the instruction, operands can be encoded in the instruction opcode or located in
registers, I/O ports, or memory locations. An operand that is located in memory can actually be
physically present in one or more locations within a system’s memory hierarchy.

Memory Hierarchy. A system’s memory hierarchy may have some or all of the following levels:

• Main Memory—Main memory is external to the processor chip and is the memory-hierarchy level
farthest from the processor’s execution units. All physical-memory addresses are present in main
memory, which is implemented using relatively slow, but high-density memory devices.

• External Caches—External caches are external to the processor chip, but are implemented using
lower-capacity, higher-performance memory devices than system memory. The system uses
external caches to hold copies of frequently-used instructions and data found in main memory. A
subset of the physical-memory addresses can be present in the external caches at any time. A
system can contain any number of external caches, or none at all.

• Internal Caches—Internal caches are present on the processor chip itself, and are the closest
memory-hierarchy level to the processor’s execution units. Because of their presence on the
processor chip, access to internal caches is very fast. Internal caches contain copies of the most
frequently-used instructions and data found in main memory and external caches, and their
capacities are relatively small in comparison to external caches. A processor implementation can
contain any number of internal caches, or none at all. Implementations often contain a first-level
instruction cache and first-level data (operand) cache, and they may also contain a higher-capacity
(and slower) second-level internal cache for storing both instructions and data.

Figure 3-19 on page 97 shows an example of a four-level memory hierarchy that combines main
memory, external third-level (L3) cache, and internal second-level (L2) and two first-level (L1) caches.
As the figure shows, the first-level and second-level caches are implemented on the processor chip, and
the third-level cache is external to the processor. The first-level cache is a split cache, with separate
caches used for instructions and data. The second-level and third-level caches are unified (they contain
both instructions and data). Memory at the highest levels of the hierarchy have greater capacity (larger
size), but have slower access, than memory at the lowest levels.

Using caches to store frequently used instructions and data can result in significantly improved
software performance by avoiding accesses to the slower main memory. Applications function
identically on systems without caches and on systems with caches, although cacheless systems
typically execute applications more slowly. Application software can, however, be optimized to make
efficient use of caches when they are present, as described later in this section.
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Figure 3-19. Memory Hierarchy Example

Write Buffering. Processor implementations can contain write-buffers attached to the internal
caches. Write buffers can also be present on the interface used to communicate with the external
portions of the memory hierarchy. Write buffers temporarily hold data writes when main memory or
the caches are busy responding to other memory-system accesses. The existence of write buffers is
transparent to software. However, some of the instructions used to optimize memory-hierarchy
performance can affect the write buffers, as described in “Forcing Memory Order” on page 94.

3.9.4 Cache Operation

Although the existence of caches is transparent to application software, a simple understanding how
caches are accessed can assist application developers in optimizing their code to run efficiently when
caches are present.

Caches are divided into fixed-size blocks, called cache lines. Typically, implementations have either
32-byte or 64-byte cache lines. The processor allocates a cache line to correspond to an identically-
sized region in main memory. After a cache line is allocated, the addresses in the corresponding region
of main memory are used as addresses into the cache line. It is the processor’s responsibility to keep
the contents of the allocated cache line coherent with main memory. Should another system device
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access a memory address that is cached, the processor maintains coherency by providing the correct
data back to the device and main memory.

When a memory-read occurs as a result of an instruction fetch or operand access, the processor first
checks the cache to see if the requested information is available. A read hit occurs if the information is
available in the cache, and a read miss occurs if the information is not available. Likewise, a write hit
occurs if a memory write can be stored in the cache, and a write miss occurs if it cannot be stored in the
cache.

A read miss or write miss can result in the allocation of a cache line, followed by a cache-line fill. Even
if only a single byte is needed, all bytes in a cache line are loaded from memory by a cache-line fill.
Typically, a cache-line fill must write over an existing cache line in a process called a cache-line
replacement. In this case, if the existing cache line is modified, the processor performs a cache-line
writeback to main memory prior to performing the cache-line fill.

Cache-line writebacks help maintain coherency between the caches and main memory. Internally, the
processor can also maintain cache coherency by internally probing (checking) the other caches and
write buffers for a more recent version of the requested data. External devices can also check a
processor’s caches and write buffers for more recent versions of data by externally probing the
processor. All coherency operations are performed in hardware and are completely transparent to
applications.

Cache Coherency and MOESI. Implementations of the AMD64 architecture maintain coherency
between memory and caches using a five-state protocol known as MOESI. The five MOESI states are
modified, owned, exclusive, shared, and invalid. See “Memory System” in Volume 2 for additional
information on MOESI and cache coherency.

Self-Modifying Code. Software that writes into a code segment is classified as self-modifying code.
To avoid cache-coherency problems due to self-modifying code, implementations of the AMD64
architecture invalidate an instruction cache line during a memory write if the instruction cache line
corresponds to a code-segment memory location. By invalidating the instruction cache line, the
processor is forced to write the modified instruction into main memory. A subsequent fetch of the
modified instruction goes to main memory to get the coherent version of the instruction.

3.9.5 Cache Pollution

Because cache sizes are limited, caches should be filled only with data that is frequently used by an
application. Data that is used infrequently, or not at all, is said to pollute the cache because it occupies
otherwise useful cache lines. Ideally, the best data to cache is data that adheres to the principle of
locality. This principle has two components: temporal locality and spatial locality.

• Temporal locality refers to data that is likely to be used more than once in a short period of time. It
is useful to cache temporal data because subsequent accesses can retrieve the data quickly. Non-
temporal data is assumed to be used once, and then not used again for a long period of time, or ever.
Caching of non-temporal data pollutes the cache and should be avoided.
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Cache-control instructions (“Cache-Control Instructions” on page 99) are available to applications
to minimize cache pollution caused by non-temporal data.

• Spatial locality refers to data that resides at addresses adjacent to or very close to the data being
referenced. Typically, when data is accessed, it is likely the data at nearby addresses will be
accessed in a short period of time. Caches perform cache-line fills in order to take advantage of
spatial locality. During a cache-line fill, the referenced data and nearest neighbors are loaded into
the cache. If the characteristics of spacial locality do not fit the data used by an application, then the
cache becomes polluted with a large amount of unreferenced data.

Applications can avoid problems with this type of cache pollution by using data structures with
good spatial-locality characteristics.

Another form of cache pollution is stale data. Data that adheres to the principle of locality can become
stale when it is no longer used by the program, or won’t be used again for a long time. Applications can
use the CLFLUSH instruction to remove stale data from the cache.

3.9.6 Cache-Control Instructions

General control and management of the caches is performed by system software and not application
software. System software uses special registers to assign memory types to physical-address ranges,
and page-attribute tables are used to assign memory types to virtual address ranges. Memory types
define the cacheability characteristics of memory regions and how coherency is maintained with main
memory. See “Memory System” in Volume 2 for additional information on memory typing.

Instructions are available that allow application software to control the cacheability of data it uses on a
more limited basis. These instructions can be used to boost an application’s performance by
prefetching data into the cache, and by avoiding cache pollution. Run-time analysis tools and
compilers may be able to suggest the use of cache-control instructions for critical sections of
application code.

Cache Prefetching. Applications can prefetch entire cache lines into the caching hierarchy using one
of the prefetch instructions. The prefetch should be performed in advance, so that the data is available
in the cache when needed. Although load instructions can mimic the prefetch function, they do not
offer the same performance advantage, because a load instruction may cause a subsequent instruction
to stall until the load completes, but a prefetch instruction will never cause such a stall. Load
instructions also unnecessarily require the use of a register, but prefetch instructions do not.

The instructions available in the AMD64 architecture for cache-line prefetching include one SSE
instruction and two 3DNow! instructions:

• PREFETCHlevel—(an SSE instruction) Prefetches read/write data into a specific level of the
cache hierarchy. If the requested data is already in the desired cache level or closer to the processor
(lower cache-hierarchy level), the data is not prefetched. If the operand specifies an invalid
memory address, no exception occurs, and the instruction has no effect. Attempts to prefetch data
from non-cacheable memory, such as video frame buffers, or data from write-combining memory,
are also ignored. The exact actions performed by the PREFETCHlevel instructions depend on the
processor implementation. Current AMD processor families map all PREFETCHlevel instructions
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to a PREFETCH. Refer to the Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors, order# 25112, for details relating to a particular processor family, brand or model.

- PREFETCHT0—Prefetches temporal data into the entire cache hierarchy.

- PREFETCHT1—Prefetches temporal data into the second-level (L2) and higher-level caches,
but not into the L1 cache.

- PREFETCHT2—Prefetches temporal data into the third-level (L3) and higher-level caches,
but not into the L1 or L2 cache.

- PREFETCHNTA—Prefetches non-temporal data into the processor, minimizing cache
pollution. The specific technique for minimizing cache pollution is implementation-dependent
and can include such techniques as allocating space in a software-invisible buffer, allocating a
cache line in a single cache or a specific way of a cache, etc.

• PREFETCH—(a 3DNow! instruction) Prefetches read data into the L1 data cache. Data can be
written to such a cache line, but doing so can result in additional delay because the processor must
signal externally to negotiate the right to change the cache line’s cache-coherency state for the
purpose of writing to it.

• PREFETCHW—(a 3DNow! instruction) Prefetches write data into the L1 data cache. Data can be
written to the cache line without additional delay, because the data is already prefetched in the
modified cache-coherency state. Data can also be read from the cache line without additional delay.
However, prefetching write data takes longer than prefetching read data if the processor must wait
for another caching master to first write-back its modified copy of the requested data to memory
before the prefetch request is satisfied.

The PREFETCHW instruction provides a hint to the processor that the cache line is to be modified,
and is intended for use when the cache line will be written to shortly after the prefetch is performed.
The processor can place the cache line in the modified state when it is prefetched, but before it is
actually written. Doing so can save time compared to a PREFETCH instruction, followed by a
subsequent cache-state change due to a write.

To prevent a false-store dependency from stalling a prefetch instruction, prefetched data should be
located at least one cache-line away from the address of any surrounding data write. For example, if
the cache-line size is 32 bytes, avoid prefetching from data addresses within 32 bytes of the data
address in a preceding write instruction.

Non-Temporal Stores. Non-temporal store instructions are provided to prevent memory writes from
being stored in the cache, thereby reducing cache pollution. These non-temporal store instructions are
specific to the type of register they write:

• GPR Non-Temporal Stores—MOVNTI.

• XMM Non-Temporal Stores—MASKMOVDQU, MOVNTDQ, MOVNTPD, and MOVNTPS.

• MMX Non-Temporal Stores—MASKMOVQ and MOVNTQ.

Removing Stale Cache Lines. When cache data becomes stale, it occupies space in the cache that
could be used to store frequently-accessed data. Applications can use the CLFLUSH instruction to free
a stale cache-line for use by other data. CLFLUSH writes the contents of a cache line to memory and
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then invalidates the line in the cache and in all other caches in the cache hierarchy that contain the line.
Once invalidated, the line is available for use by the processor and can be filled with other data.

3.10 Performance Considerations

In addition to typical code optimization techniques, such as those affecting loops and the inlining of
function calls, the following considerations may help improve the performance of application
programs written with general-purpose instructions.

These are implementation-independent performance considerations. Other considerations depend on
the hardware implementation. For information about such implementation-dependent considerations
and for more information about application performance in general, see the data sheets and the
software-optimization guides relating to particular hardware implementations.

3.10.1 Use Large Operand Sizes

Loading, storing, and moving data with the largest relevant operand size maximizes the memory
bandwidth of these instructions.

3.10.2 Use Short Instructions

Use the shortest possible form of an instruction (the form with fewest opcode bytes). This increases
the number of instructions that can be decoded at any one time, and it reduces overall code size.

3.10.3 Align Data

Data alignment directly affects memory-access performance. Data alignment is particularly important
when accessing streaming (also called non-temporal) data—data that will not be reused and therefore
should not be cached. Data alignment is also important in cases where data that is written by one
instruction is subsequently read by a subsequent instruction soon after the write.

3.10.4 Avoid Branches

Branching can be very time-consuming. If the body of a branch is small, the branch may be
replaceable with conditional move (CMOVcc) instructions, or with 128-bit or 64-bit media
instructions that simulate predicated parallel execution or parallel conditional moves.

3.10.5 Prefetch Data

Memory latency can be substantially reduced—especially for data that will be used multiple times—
by prefetching such data into various levels of the cache hierarchy. Software can use the PREFETCHx
instructions very effectively in such cases. One PREFETCHx per cache line should be used.

Some of the best places to use prefetch instructions are inside loops that process large amounts of data.
If the loop goes through less than one cache line of data per iteration, partially unroll the loop. Try to
use virtually all of the prefetched data. This usually requires unit-stride memory accesses—those in
which all accesses are to contiguous memory locations.
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For data that will be used only once in a procedure, consider using non-temporal accesses. Such
accesses are not burdened by the overhead of cache protocols.

3.10.6 Keep Common Operands in Registers

Keep frequently used values in registers rather than in memory. This avoids the comparatively long
latencies for accessing memory.

3.10.7 Avoid True Dependencies

Spread out true dependencies (write-read or flow dependencies) to increase the opportunities for
parallel execution. This spreading out is not necessary for anti-dependencies and output dependencies.

3.10.8 Avoid Store-to-Load Dependencies

Store-to-load dependencies occur when data is stored to memory, only to be read back shortly
thereafter. Hardware implementations of the architecture may contain means of accelerating such
store-to-load dependencies, allowing the load to obtain the store data before it has been written to
memory. However, this acceleration might be available only when the addresses and operand sizes of
the store and the dependent load are matched, and when both memory accesses are aligned.
Performance is typically optimized by avoiding such dependencies altogether and keeping the data,
including temporary variables, in registers.

3.10.9 Optimize Stack Allocation

When allocating space on the stack for local variables and/or outgoing parameters within a procedure,
adjust the stack pointer and use moves rather than pushes. This method of allocation allows random
access to the outgoing parameters, so that they can be set up when they are calculated instead of being
held in a register or memory until the procedure call. This method also reduces stack-pointer
dependencies.

3.10.10 Consider Repeat-Prefix Setup Time

The repeat instruction prefixes have a setup overhead. If the repeated count is variable, the overhead
can sometimes be avoided by substituting a simple loop to move or store the data. Repeated string
instructions can be expanded into equivalent sequences of inline loads and stores. For details, see
“Repeat Prefixes” in Volume 3.

3.10.11 Replace GPR with Media Instructions

Some integer-based programs can be made to run faster by using 128-bit media or 64-bit media
instructions. These instructions have their own register sets. Because of this, they relieve register
pressure on the GPR registers. For loads, stores, adds, shifts, etc., media instructions may be good
substitutes for general-purpose integer instructions. GPR registers are freed up, and the media
instructions increase opportunities for parallel operations.
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3.10.12 Organize Data in Memory Blocks

Organize frequently accessed constants and coefficients into cache-line-size blocks and prefetch them.
Procedures that access data arranged in memory-bus-sized blocks, or memory-burst-sized blocks, can
make optimum use of the available memory bandwidth.

3.11 Cross-Modifying Code

Software that writes into a code segment running simultaneously on another processor with the intent
that the other processor execute the written data as code is classified as cross-modifying code. 

To avoid cache-coherency issues when using cross-modifying code, the processor doing the store
should provide synchronization between the processors using a semaphore. See Section 3.3.14,
“Semaphores,” on page 64. The use of cross-modifying code can result in performance degradation.

Synchronization for cross-modifying code is not required, however, when the code modification is
performed by a single store that is entirely within an aligned 8-bytes of memory.
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4 128-Bit Media and Scientific Programming

This chapter describes the 128-bit media and scientific programming model. This model includes all
instructions that access the 128-bit XMM registers—called the 128-bit media instructions. These
instructions perform integer and floating-point operations primarily on vector operands (a few of the
instructions take scalar operands). They can speed up certain types of procedures—typically high-
performance media and scientific procedures—by substantial factors, depending on data-element size
and the regularity and locality of data accesses to memory.

4.1 Overview

4.1.1 Origins

The 128-bit media instruction set includes instructions originally introduced as the streaming SIMD
extensions (SSE), and instructions added in subsequent extensions (SSE2, SSE3, and SSE4A). For
details on the instruction set origin of each instruction, see “Instruction Subsets vs. CPUID Feature
Sets” in Volume 3.

4.1.2 Compatibility

The 128-bit media instructions can be executed in any of the architecture’s operating modes. Existing
SSE, SSE2, SSE3, and SSE4A binary programs run in legacy and compatibility modes without
modification. The support provided by the AMD64 architecture for such binaries is identical to that
provided by legacy x86 architectures.

To run in 64-bit mode, legacy 128-bit media programs must be recompiled. The recompilation has no
side effects on such programs, other than to provide access to the following additional resources:

• Access to the eight extended XMM registers (for a total of 16 XMM registers).

• Access to the eight extended general-purpose registers (for a total of 16 GPRs).

• Access to the extended 64-bit width of all GPRs.

• Access to the 64-bit virtual address space.

• Access to the RIP-relative addressing mode.

The 128-bit media instructions use data registers, a control and status register (MXCSR), rounding
control, and an exception reporting and response mechanism that are distinct from and functionally
independent of those used by the x87 floating-point instructions. Because of this, 128-bit media
programming support usually requires exception handlers that are distinct from those used for x87
exceptions. This support is provided by virtually all legacy operating systems for the x86 architecture.
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4.2 Capabilities

The 128-bit media instructions are designed to support media and scientific applications. The vector
operands used by these instructions allow applications to operate in parallel on multiple elements of
vectors. The elements can be integers (from bytes to quadwords) or floating-point (either single-
precision or double-precision). Arithmetic operations produce signed, unsigned, and/or saturating
results.

The availability of several types of vector move instructions and (in 64-bit mode) twice the legacy
number of XMM registers (a total of 16 such registers) can eliminate substantial memory-access
overhead, making a substantial difference in performance.

4.2.1 Types of Applications

Typical media applications well-suited to the 128-bit media programming model include a broad range
of audio, video, and graphics programs. For example, music synthesis, speech synthesis, speech
recognition, audio and video compression (encoding) and decompression (decoding), 2D and 3D
graphics, streaming video (up to high-definition TV), and digital signal processing (DSP) kernels are
all likely to experience higher performance using 128-bit media instructions than using other types of
instructions in AMD64 architecture.

Such applications commonly use small-sized integer or single-precision floating-point data elements
in repetitive loops, in which the typical operations are inherently parallel. For example, 8-bit and 16-bit
data elements are commonly used for pixel information in graphics applications, in which each of the
RGB pixel components (red, green, blue, and alpha) are represented by an 8-bit or 16-bit integer. 16-
bit data elements are also commonly used for audio sampling.

The 128-bit media instructions allow multiple data elements like these to be packed into 128-bit vector
operands located in XMM registers or memory. The instructions operate in parallel on each of the
elements in these vectors. For example, 16 elements of 8-bit data can be packed into a 128-bit vector
operand, so that all 16 byte elements are operated on simultaneously, and in pairs of source operands,
by a single instruction.

The 128-bit media instructions also support a broad spectrum of scientific applications. For example,
their ability to operate in parallel on double-precision floating-point vector elements makes them well-
suited to computations like dense systems of linear equations, including matrix and vector-space
operations with real and complex numbers. In professional CAD applications, for example, high-
performance physical-modeling algorithms can be implemented to simulate processes such as heat
transfer or fluid dynamics.

4.2.2 Integer Vector Operations

Most of the 128-bit media arithmetic instructions perform parallel operations on pairs of vectors.
Vector operations are also called packed or SIMD (single-instruction, multiple-data) operations. They
take vector operands consisting of multiple elements, and all elements are operated on in parallel.
Figure 4-1 on page 107 shows an example of parallel operations on pairs of 16 byte-sized integers in
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the source operands. The result of the operation replaces the first source operand. There are also
instructions that operate on vectors of words, doublewords, or quadwords.

Figure 4-1. Parallel Operations on Vectors of Integer Elements

4.2.3 Floating-Point Vector Operations

There are almost as many 128-bit floating-point instructions as integer instructions. Figure 4-2 shows
an example of parallel operations on vectors containing four 32-bit single-precision floating-point
values. There are also instructions that operate on vectors containing two 64-bit double-precision
floating-point values.

Figure 4-2. Parallel Operations on Vectors of Floating-Point Elements

Integer and floating-point instructions can be freely intermixed in the same procedure. The floating-
point instructions allow media applications such as 3D graphics to accelerate geometry, clipping, and
lighting calculations. Pixel data are typically integer-based, although both integer and floating-point

operand 1

.   .   .   .   .   .   .   .   .   .   .   .   .   ..   .   .   .   .   .   .   .   .   .   .   .   .   .

.   .   .   .   .   .   .   .   .   .   .   .   .   .

127 0
operand 2

127 0

operation
operation

513-163.epsresult127 0

513-164.eps

.               ..               .

.               .

operation
operation

result

operand 1
127 0

127 0

operand 2
127 0

FP single FP single FP single FP single FP single FP single FP single FP single

FP single FP single FP single FP single



108 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.15—November 2009

instructions are often required to operate completely on the data. For example, software can change the
viewing perspective of a 3D scene through transformation matrices by using floating-point
instructions in the same procedure that contains integer operations on other aspects of the graphics
data.

It is typically much easier to write 128-bit media programs using floating-point instructions. Such
programs perform better than x87 floating-point programs, because the XMM register file is flat rather
than stack-oriented, there are twice as many registers (in 64-bit mode), and 128-bit media instructions
can operate on two or four times the number of floating-point operands as can x87 instructions. This
ability to operate in parallel on multiple pairs of floating-point elements often makes it possible to
remove local temporary variables that would otherwise be needed in x87 floating-point code.

4.2.4 Data Conversion and Reordering

There are instructions that support data conversion of vector elements, including conversions between
integer and floating-point data types—located in XMM registers, MMX™ registers, GPR registers, or
memory—and conversions of element-ordering or precision. For example, the unpack instructions
take two vector operands and interleave their low or high elements. Figure 4-3 shows an unpack and
interleave operation on word-sized elements (PUNCKLWD). If the left-hand source operand has
elements whose value is zero, the operation converts each element in the low half of the right-hand
operand to a data type of twice its original precision—useful, for example, in multiply operations in
which results may overflow or underflow.

Figure 4-3. Unpack and Interleave Operation

There are also pack instructions, such as PACKSSDW shown in Figure 4-4 on page 109, that convert
each element in a pair of vectors to lower precision by selecting the elements in the low half of each
vector. Vector-shift instructions are also supported. They can scale each element in a vector to higher
or lower values.
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Figure 4-4. Pack Operation

Figure 4-5 shows one of many types of shuffle operation (PSHUFD). Here, the second operand is a
vector containing doubleword elements, and an immediate byte provides shuffle control for up to 256
permutations of the elements. Shuffles are useful, for example, in color imaging when computing
alpha saturation of RGB values. In this case, a shuffle instruction can replicate an alpha value in a
register so that parallel comparisons with three RGB values can be performed.

Figure 4-5. Shuffle Operation

There is an instruction that inserts a single word from a general-purpose register or memory into an
XMM register, at a specified location, leaving the other words in the XMM register unmodified.
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4.2.5 Block Operations

Move instructions—along with unpack instructions—are among the most frequently used instructions
in 128-bit media procedures. Figure 4-6 on page 111 shows the combined set of move operations
supported by the integer and floating-point move instructions. These instructions provide a fast way to
copy large amounts of data between registers or between registers and memory. They support block
copies and sequential processing of contiguous data.

When moving between XMM registers, or between an XMM register and memory, each integer move
instruction can copy up to 16 bytes of data. When moving between an XMM register and an MMX or
GPR register, an integer move instruction can move 8 bytes of data. The floating-point
move instructions can copy vectors of four single-precision or two double-precision floating-point
operands in parallel.

Streaming-store versions of the move instructions permit bypassing the cache when storing data that is
accessed only once. This maximizes memory-bus utilization and minimizes cache pollution. There is
also a streaming-store integer move-mask instruction that stores bytes from one vector, as selected by
mask values in a second vector. Figure 4-7 on page 112 shows the MASKMOVDQU operation. It can
be used, for example, to handle end cases in block copies and block fills based on streaming stores.
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Figure 4-6. Move Operations
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Figure 4-7. Move Mask Operation

4.2.6 Matrix and Special Arithmetic Operations

The instruction set provides a broad assortment of vector add, subtract, multiply, divide, and square-
root operations for use on matrices and other data structures common to media and scientific
applications. It also provides special arithmetic operations including multiply-add, average, sum-of-
absolute differences, reciprocal square-root, and reciprocal estimation.

Media applications often multiply and accumulate vector and matrix data. In 3D-graphics geometry,
for example, objects are typically represented by triangles, each of whose vertices are located in 3D
space by a matrix of coordinate values, and matrix transforms are performed to simulate object
movement.

128-bit media integer and floating-point instructions can perform several types of matrix-vector or
matrix-matrix operations, such as addition, subtraction, multiplication, and accumulation, to effect 3D
tranforms of vertices. Efficient matrix multiplication is further supported with instructions that can
first transpose the elements of matrix rows and columns. These transpositions can make subsequent
accesses to memory or cache more efficient when performing arithmetic matrix operations.

Figure 4-8 on page 113 shows a vector multiply-add instruction (PMADDWD) that multiplies vectors
of 16-bit integer elements to yield intermediate results of 32-bit elements, which are then summed
pair-wise to yield four 32-bit elements. This operation can be used with one source operand (for
example, a coefficient) taken from memory and the other source operand (for example, the data to be
multiplied by that coefficient) taken from an XMM register. It can also be used together with a vector-
add operation to accumulate dot product results (also called inner or scalar products), which are used
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in many media algorithms such as those required for finite impulse response (FIR) filters, one of the
commonly used DSP algorithms.

Figure 4-8. Multiply-Add Operation

There is also a sum-of-absolute-differences instruction (PSADBW), shown in Figure 4-9 on page 114.
This is useful, for example, in computing motion-estimation algorithms for video compression.
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Figure 4-9. Sum-of-Absolute-Differences Operation

There is an instruction for computing the average of unsigned bytes or words. The instruction is useful
for MPEG decoding, in which motion compensation involves many byte-averaging operations
between and within macroblocks. In addition to speeding up these operations, the instruction also frees
up registers and make it possible to unroll the averaging loops.

Some of the arithmetic and pack instructions produce vector results in which each element saturates
independently of the other elements in the result vector. Such results are clamped (limited) to the
maximum or minimum value representable by the destination data type when the true result exceeds
that maximum or minimum representable value. Saturating data is useful for representing physical-
world data, such as sound and color. It is used, for example, when combining values for pixel coloring.

4.2.7 Branch Removal

Branching is a time-consuming operation that, unlike most 128-bit media vector operations, does not
exhibit parallel behavior (there is only one branch target, not multiple targets, per branch instruction).
In many media applications, a branch involves selecting between only a few (often only two) cases.
Such branches can be replaced with 128-bit media vector compare and vector logical instructions that
simulate predicated execution or conditional moves.

Figure 4-10 on page 115 shows an example of a non-branching sequence that implements a two-way
multiplexer—one that is equivalent to the ternary operator “?:” in C and C++. The comparable code
sequence is explained in “Compare and Write Mask” on page 153.
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The sequence in Figure 4-10 begins with a vector compare instruction that compares the elements of
two source operands in parallel and produces a mask vector containing elements of all 1s or 0s. This
mask vector is ANDed with one source operand and ANDed-Not with the other source operand to
isolate the desired elements of both operands. These results are then ORed to select the relevant
elements from each operand. A similar branch-removal operation can be done using floating-point
source operands.

Figure 4-10. Branch-Removal Sequence

The min/max compare instructions, for example, are useful for clamping, such as color clamping in 3D
graphics, without the need for branching. Figure 4-11 on page 116 illustrates a move-mask instruction
(PMOVMSKB) that copies sign bits to a general-purpose register (GPR). The instruction can extract
bits from mask patterns, or zero values from quantized data, or sign bits—resulting in a byte that can
be used for data-dependent branching.
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Figure 4-11. Move Mask Operation

4.3 Registers

Operands for most 128-bit media instructions are located in XMM registers or memory. Operation of
the 128-bit media instructions is supported by the MXCSR control and status register. A few 128-bit
media instructions—those that perform data conversion or move operations—can have operands
located in MMX™ registers or general-purpose registers (GPRs).

4.3.1 XMM Registers

Sixteen 128-bit XMM data registers, xmm0–xmm15, support the 128-bit media instructions.
Figure 4-12 on page 117 shows these registers. They can hold operands for both vector and scalar
operations with integer and floating-point data types. The high eight XMM registers, xmm8–xmm15,
are available to software running in 64-bit mode for instructions that use a REX prefix (see “REX
Prefixes” on page 74).
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Figure 4-12. 128-Bit Media Registers

Upon power-on reset, all 16 XMM registers are cleared to +0.0. However, initialization by means of
the #INIT external input signal does not change the state of the XMM registers.

4.3.2 MXCSR Register

Figure 4-13 on page 118 shows a detailed view of the 128-bit media-instruction control and status
register (MXCSR). All bits in this register are read/write. The fields within the MXCSR apply only to
operations performed by 128-bit media instructions. Software can load the register from memory
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using the FXRSTOR or LDMXCSR instructions, and it can store the register to memory using the
FXSAVE or STMXCSR instructions.

Figure 4-13. 128-Bit Media Control and Status Register (MXCSR)

On power-on reset, all bits are initialized to the values provided in Figure 4-13. However, initialization
by means of the #INIT external input signal does not change the state of the XMM registers.
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denormals are zeros (DAZ) bit, the processor does not set the DE bit. (See “Denormalized (Tiny)
Numbers” on page 128.)

Zero-Divide Exception (ZE). Bit 2. The processor sets this bit to 1 when a non-zero number is
divided by zero.

Overflow Exception (OE). Bit 3. The processor sets this bit to 1 when the absolute value of a
rounded result is larger than the largest representable normalized floating-point number for the
destination format. (See “Normalized Numbers” on page 128.)

Underflow Exception (UE). Bit 4. The processor sets this bit to 1 when the absolute value of a
rounded non-zero result is too small to be represented as a normalized floating-point number for the
destination format. (See “Normalized Numbers” on page 128.)

When masked by the UM bit (bit 11), the processor only reports a UE exception if the UE occurs
together with a precision exception (PE). Also, see bit 15, the flush-to-zero (FZ) bit.

Precision Exception (PE). Bit 5. The processor sets this bit to 1 when a floating-point result, after
rounding, differs from the infinitely precise result and thus cannot be represented exactly in the
specified destination format. The PE exception is also called the inexact-result exception.

Denormals Are Zeros (DAZ). Bit 6. Software can set this bit to 1 to enable the DAZ mode, if the
hardware implementation supports this mode. In the DAZ mode, when the processor encounters
source operands in the denormalized format it converts them to signed zero values, with the sign of the
denormalized source operand, before operating on them, and the processor does not set the
denormalized-operand exception (DE) bit, regardless of whether such exceptions are masked or
unmasked.

Support for the DAZ bit is indicated by the MXCSR Mask field in the FXSAVE memory image, as
described in “FXSAVE and FXRSTOR Instructions” in Volume 2. The DAZ mode does not comply
with the IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754).

Exception Masks (PM, UM, OM, ZM, DM, IM). Bits 12–7. Software can set these bits to mask, or
clear this bits to unmask, the corresponding six types of SIMD floating-point exceptions (PE, UE, OE,
ZE, DE, IE). A bit masks its exception type when set to 1, and unmasks it when cleared to 0.

In general, masking a type of exception causes the processor to handle all subsequent instances of the
exception type in a default way (the UE exception has an unusual behavior). Unmasking the exception
type causes the processor to branch to the SIMD floating-point exception service routine when an
exception occurs. For details about the processor’s responses to masked and unmasked exceptions, see
“SIMD Floating-Point Exception Masking” on page 184.

Floating-Point Rounding Control (RC). Bit 14–13. Software uses these bits to specify the rounding
method for 128-bit media floating-point operations. The choices are:

• 00 = round to nearest (default)

• 01 = round down



120 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.15—November 2009

• 10 = round up

• 11 = round toward zero

For details, see “Floating-Point Rounding” on page 132.

Flush-to-Zero (FZ). Bit 15. If the rounded result is tiny and the underflow mask is set, the FTZ bit
causes the result to be flushed to zero. This naturally causes the result to be inexact, which causes both
PE and UE to be set. The sign returned with the zero is the sign of the true result. The FTZ bit does not
have any effect if the underflow mask is 0.

This response does not comply with the IEEE 754 standard, but it may offer higher performance than
can be achieved by responding to an underflow in this circumstance. The FZ bit is only effective if the
UM bit is set to 1. If the UM bit is cleared to 0, the FZ bit is ignored. For details, see Table 4-14 on
page 185.

Misaligned Exception Mask (MM). Bit 17. If the misaligned exception mask (MM) is set to 1, a 16-
byte misaligned memory access on most packed SSE instructions will not cause a #GP exception, but
will be subject to alignment checking (#AC) instead. When MM is set and alignment-checking is
enabled, a #AC exception is generated, if the memory operand is not 16-byte aligned. The
corresponding MXCSR_MASK bit (17) is 1, regardless of whether MM is set or not. For details on
MXCSR and MXCSR_MASK, see “128-Bit, 64-Bit, and x87 Programming” in the AMD64
Architecture Programmer’s Manual Volume 2: System Programming, order #24593. For details on
alignment handling, see “Data Alignment” on page 123.

Support for misaligned SSE mode is indicated by ECX bit 7 of CPUID function 8000_0001h.

4.3.3 Other Data Registers

Some 128-bit media instructions that perform data transfer, data conversion or data reordering
operations (“Data Transfer” on page 135, “Data Conversion” on page 139, and “Data Reordering” on
page 140) can access operands in the MMX or general-purpose registers (GPRs). When addressing
GPRs registers in 64-bit mode, the REX instruction prefix can be used to access the extended GPRs, as
described in “REX Prefixes” on page 74.

For a description of the GPR registers, see “Registers” on page 23. For a description of the MMX
registers, see “MMX™ Registers” on page 200.

4.3.4 rFLAGS Registers

The COMISS, COMISD, UCOMISS, and UCOMISD instructions, described in “Compare” on
page 171, write flag bits in the rFLAGS register. For a description of the rFLAGS register, see “Flags
Register” on page 33.
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4.4 Operands

Operands for a 128-bit media instruction are either referenced by the instruction's opcode or included
as an immediate value in the instruction encoding. Depending on the instruction, referenced operands
can be located in registers or memory. The data types of these operands include vector and scalar
floating-point, and vector and scalar integer.

4.4.1 Data Types

Figure 4-14 on page 122 shows the register images of the 128-bit media data types. These data types
can be interpreted by instruction syntax and/or the software context as one of the following types of
values:

• Vector (packed) single-precision (32-bit) floating-point numbers.

• Vector (packed) double-precision (64-bit) floating-point numbers.

• Vector (packed) signed (two's-complement) integers.

• Vector (packed) unsigned integers.

• Scalar signed (two's-complement) integers.

• Scalar unsigned integers.

Hardware does not check or enforce the data types for instructions. Software is responsible for
ensuring that each operand for an instruction is of the correct data type. If data produced by a previous
instruction is of a type different from that used by the current instruction, and the current instruction
sources such data, the current instruction may incur a latency penalty, depending on the hardware
implementation.
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Figure 4-14. 128-Bit Media Data Types
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Software can interpret the data types in ways other than those shown in Figure 4-14 on page 122—
such as bit fields or fractional numbers—but the 128-bit media instructions do not directly support
such interpretations and software must handle them entirely on its own.

4.4.2 Operand Sizes and Overrides

Operand sizes for 128-bit media instructions are determined by instruction opcodes. Some of these
opcodes include an operand-size override prefix, but this prefix acts in a special way to modify the
opcode and is considered an integral part of the opcode. The general use of the 66h operand-size
override prefix described in “Instruction Prefixes” on page 71 does not apply to 128-bit media
instructions.

For details on the use of operand-size override prefixes in 128-bit media instructions, see the opcodes
in “128-Bit Media Instruction Reference” in Volume 4.

4.4.3 Operand Addressing

Depending on the 128-bit media instruction, referenced operands may be in registers or memory.

Register Operands. Most 128-bit media instructions can access source and destination operands in
XMM registers. A few of these instructions access the MMX registers, GPR registers, rFLAGS
register, or MXCSR register. The type of register addressed is specified in the instruction syntax.
When addressing GPR or XMM registers, the REX instruction prefix can be used to access the
extended GPR or XMM registers, as described in “Instruction Prefixes” on page 175.

Memory Operands. Most 128-bit media instructions can read memory for source operands, and
some of the instructions can write results to memory. “Memory Addressing” on page 14, describes the
general methods for addressing memory operands.

Immediate Operands. Immediate operands are used in certain data-conversion, vector-shift, and
vector-compare instructions. Such instructions take 8-bit immediates, which provide control for the
operation.

I/O Ports. I/O ports in the I/O address space cannot be directly addressed by 128-bit media
instructions, and although memory-mapped I/O ports can be addressed by such instructions, doing so
may produce unpredictable results, depending on the hardware implementation of the architecture.

4.4.4 Data Alignment

Generally, 128-bit media instructions that access a 128-bit operand in memory trigger a general-
protection exception (#GP) if the operand is not aligned to a 16-byte boundary. For instance, 128-bit
media instructions that manipulate scalar operands never trigger a #GP, nor do the following
instructions:

• MASKMOVDQU—Masked Move Double Quadword Unaligned.

• MOVDQU—Move Unaligned Double Quadword.

• MOVUPD—Move Unaligned Packed Double-Precision Floating-Point.
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• MOVUPS—Move Unaligned Packed Single-Precision Floating-Point.

• LDDQU—Load Unaligned Double Quadword

When alignment checking is enabled (CR0.AM = 1 and rFLAGS.AC = 1) and the MXCSR misaligned
exception mask (MM) bit is set to 1, a 16-byte misaligned memory access on most packed SSE
instructions will not cause a #GP exception, but a #AC exception is generated instead. On the other
hand, if MM is cleared to 0, then a 16-byte misaligned memory access will cause a #GP exception.
Keep in mind that the corresponding MXCSR_MASK bit (17) is 1, regardless of whether MM is set or
not. For details on MXCSR and MXCSR_MASK, see “128-Bit, 64-Bit, and x87 Programming” in the
AMD64 Architecture Programmer’s Manual Volume 2: System Programming, order #24593.

The FXSAVE, FXRSTOR, MOVAPD, MOVAPS, and MOVDQA, MOVNTDQ, MOVNTPD and
MOVNTPS instructions do not support misaligned accesses. These instructions always generate a #GP
exception if misaligned on a 16-byte boundary.

While the architecture does not impose data-alignment requirements for 128-bit media instructions,
the consequence of storing operands at unaligned locations is that accesses to those operands may
require more processor and bus cycles than for aligned accesses. See “Data Alignment” on page 40 for
details.

Support for misaligned SSE mode is indicated by ECX bit 7 of CPUID function 8000_0001h.

4.4.5 Integer Data Types

The 128-bit media instructions that support operations on integer data types are summarized in
“Instruction Summary—Integer Instructions” on page 133. The characteristics of these data types are
described below.

Sign. Many of the 128-bit media instructions have variants for operating on signed or unsigned
integers. For signed integers, the sign bit is the most-significant bit—bit 7 for a byte, bit 15 for a word,
bit 31 for a doubleword, bit 63 for a quadword, or bit 127 for a double quadword. Arithmetic
instructions that are not specifically named as unsigned perform signed two’s-complement arithmetic.

Range of Representable Values. Table 4-1 on page 125 shows the range of representable values for
the integer data types.
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Saturation. Saturating (also called limiting or clamping) instructions limit the value of a result to the
maximum or minimum value representable by the applicable data type. Saturating versions of integer
vector-arithmetic instructions operate on byte-sized and word-sized elements. These instructions—for
example, PACKx, PADDSx, PADDUSx, PSUBSx, and PSUBUSx—saturate signed or unsigned data
at the vector-element level when the element reaches its maximum or minimum representable value.
Saturation avoids overflow or underflow errors.

The examples in Table 4-2 illustrate saturating and non-saturating results with word operands.
Saturation for other data-type sizes follows similar rules. Once saturated, the saturated value is treated
like any other value of its type. For example, if 0001h is subtracted from the saturated value, 7FFFh,
the result is 7FFEh.

Arithmetic instructions not specifically designated as saturating perform non-saturating, twos-
complement arithmetic.

Other Fixed-Point Operands. The architecture provides specific support only for integer fixed-point
operands—those in which an implied binary point is always located to the right of bit 0. Nevertheless,

Table 4-1. Range of Values in 128-Bit Media Integer Data Types

Data-Type
Interpretation

Byte Word Doubleword Quadword
Double

Quadword

Unsigned
integers

Base-2
(exact)

0 to +28–1 0 to +216–1 0 to +232–1 0 to +264–1 0 to +2128–1

Base-10
(approx.)

0 to 255 0 to 65,535 0 to 4.29 * 109 0 to 1.84 * 1019 0 to 3.40 * 1038

Signed

integers1

Base-2
(exact)

–27 to +(27 –1) –215 to
+(215–1) –231 to +(231 –1) –263 to +(263 –1) –2127 to +(2127–1)

Base-10
(approx.)

-128 to +127 -32,768 to
+32,767

-2.14 * 109 to
+2.14 * 109

–9.22 * 1018

to +9.22 * 1018
–1.70 * 1038

to +1.70 * 1038

Note:
1. The sign bit is the most-significant bit (bit 7 for a byte, bit 15 for a word, bit 31 for doubleword, bit 63 for quadword,

bit 127 for double quadword.).

Table 4-2. Saturation Examples

Operation
Non-Saturated

Infinitely Precise
Result

Saturated
Signed Result

Saturated
Unsigned Result

7000h + 2000h 9000h 7FFFh 9000h

7000h + 7000h E000h 7FFFh E000h

F000h + F000h 1E000h E000h FFFFh

9000h + 9000h 12000h 8000h FFFFh

7FFFh + 0100h 80FFh 7FFFh 80FFh

7FFFh + FF00h 17EFFh 7EFFh FFFFh
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software may use fixed-point operands in which the implied binary point is located in any position. In
such cases, software is responsible for managing the interpretation of such implied binary points, as
well as any redundant sign bits that may occur during multiplication.

4.4.6 Floating-Point Data Types

The 128-bit media floating-point instructions take vector or scalar operands, depending on the
instruction. The vector instructions operate in parallel on up to four, or four pairs, of single-precision
floating-point values or up to two, or two pairs, of double-precision floating-point values. The scalar
instructions operate on only one, or one pair, of single-precision or double-precision operands.

Floating-Point Data Types. The floating-point data types, shown in Figure 4-15 on page 126,
include 32-bit single precision and 64-bit double precision. Both formats are fully compatible with the
IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754). The 128-bit media
instructions operate internally on floating-point data types in the precision specified by each
instruction.

Figure 4-15. 128-Bit Media Floating-Point Data Types

Both of the floating-point data types consist of a sign (0 = positive, 1 = negative), a biased exponent
(base-2), and a significand, which represents the integer and fractional parts of the number. The integer
bit (also called the J bit) is implied (called a hidden integer bit). The value of an implied integer bit can
be inferred from number encodings, as described in “Floating-Point Number Encodings” on page 130.
The bias of the exponent is a constant that makes the exponent always positive and allows
reciprocation, without overflow, of the smallest normalized number representable by that data type.

Specifically, the data types are formatted as follows:

063Double Precision

31 0Single Precision 2223

S
Biased

Exponent

5152

Biased
ExponentS

30

62

S = Sign Bit

S = Sign Bit

Significand
(also Fraction)
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(also Fraction)
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• Single-Precision Format—This format includes a 1-bit sign, an 8-bit biased exponent whose value
is 127, and a 23-bit significand. The integer bit is implied, making a total of 24 bits in the
significand.

• Double-Precision Format—This format includes a 1-bit sign, an 11-bit biased exponent whose
value is 1023, and a 52-bit significand. The integer bit is implied, making a total of 53 bits in the
significand.

Table 4-3 on page 127 shows the range of finite values representable by the two floating-point data
types.

For example, in the single-precision format, the largest normal number representable has an exponent
of FEh and a significand of 7FFFFFh, with a numerical value of 2127 * (2 – 2–23). Results that overflow
above the maximum representable value return either the maximum representable normalized number
(see “Normalized Numbers” on page 128) or infinity, with the sign of the true result, depending on the
rounding mode specified in the rounding control (RC) field of the MXCSR register. Results that
underflow below the minimum representable value return either the minimum representable
normalized number or a denormalized number (see “Denormalized (Tiny) Numbers” on page 128),
with the sign of the true result, or a result determined by the SIMD floating-point exception handler,
depending on the rounding mode and the underflow-exception mask (UM) in the MXCSR register (see
“Unmasked Responses” on page 187).

Compatibility with x87 Floating-Point Data Types. The results produced by 128-bit media
floating-point instructions comply fully with the IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std 754), because these instructions represent data in the single-precision or double-
precision data types throughout their operations. The x87 floating-point instructions, however, by
default perform operations in the double-extended-precision format. Because of this, x87 instructions
operating on the same source operands as 128-bit media floating-point instructions may return results
that are slightly different in their least-significant bits.

4.4.7 Floating-Point Number Representation

A 128-bit media floating-point value can be one of five types, as follows:

• Normal

• Denormal (Tiny)

• Zero

Table 4-3. Range of Values in Normalized Floating-Point Data Types

Data Type
Range of Normalized1 Values

Base 2 (exact) Base 10 (approximate)

Single Precision 2–126 to 2127 * (2 – 2–23) 1.17 * 10–38 to +3.40 * 1038

Double Precision 2–1022 to 21023 * (2 – 2–52) 2.23 * 10–308 to +1.79 * 10308

Note:
1. See “Floating-Point Number Representation” on page 127 for a definition of “normalized”.
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• Infinity

• Not a Number (NaN)

In common engineering and scientific usage, floating-point numbers—also called real numbers—are
represented in base (radix) 10. A non-zero number consists of a sign, a normalized significand, and a
signed exponent, as in:

+2.71828 e0

Both large and small numbers are representable in this notation, subject to the limits of data-type
precision. For example, a million in base-10 notation appears as +1.00000 e6 and -0.0000383 is
represented as -3.83000 e-5. A non-zero number can always be written in normalized form—that is,
with a leading non-zero digit immediately before the decimal point. Thus, a normalized significand in
base-10 notation is a number in the range [1,10). The signed exponent specifies the number of
positions that the decimal point is shifted.

Unlike the common engineering and scientific usage described above, 128-bit media floating-point
numbers are represented in base (radix) 2. Like its base-10 counterpart, a normalized base-2
significand is written with its leading non-zero digit immediately to the left of the radix point. In base-
2 arithmetic, a non-zero digit is always a one, so the range of a binary significand is [1,2):

+1.fraction ±exponent

The leading non-zero digit is called the integer bit. As shown in Figure 4-15 on page 126, the integer
bit is omitted (and called the hidden integer bit) in the single-precision and the double-precision
floating-point formats, because its implied value is always 1 in a normalized significand (0 in a
denormalized significand), and the omission allows an extra bit of precision.

The following sections describe the number representations.

Normalized Numbers. Normalized floating-point numbers are the most frequent operands for 128-
bit media instructions. These are finite, non-zero, positive or negative numbers in which the integer bit
is 1, the biased exponent is non-zero and non-maximum, and the fraction is any representable value.
Thus, the significand is within the range of [1, 2). Whenever possible, the processor represents a
floating-point result as a normalized number.

Denormalized (Tiny) Numbers. Denormalized numbers (also called tiny numbers) are smaller than
the smallest representable normalized numbers. They arise through an underflow condition, when the
exponent of a result lies below the representable minimum exponent. These are finite, non-zero,
positive or negative numbers in which the integer bit is 0, the biased exponent is 0, and the fraction is
non-zero.

The processor generates a denormalized-operand exception (DE) when an instruction uses a
denormalized source operand. The processor may generate an underflow exception (UE) when an
instruction produces a rounded, non-zero result that is too small to be represented as a normalized
floating-point number in the destination format, and thus is represented as a denormalized number. If a
result, after rounding, is too small to be represented as the minimum denormalized number, it is
represented as zero. (See “Exceptions” on page 177 for specific details.)
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Denormalization may correct the exponent by placing leading zeros in the significand. This may cause
a loss of precision, because the number of significant bits in the fraction is reduced by the leading
zeros. In the single-precision floating-point format, for example, normalized numbers have biased
exponents ranging from 1 to 254 (the unbiased exponent range is from –126 to +127). A true result
with an exponent of, say, –130, undergoes denormalization by right-shifting the significand by the
difference between the normalized exponent and the minimum exponent, as shown in Table 4-4 on
page 129.

Zero. The floating-point zero is a finite, positive or negative number in which the integer bit is 0, the
biased exponent is 0, and the fraction is 0. The sign of a zero result depends on the operation being
performed and the selected rounding mode. It may indicate the direction from which an underflow
occurred, or it may reflect the result of a division by +∞ or –∞.

Infinity. Infinity is a positive or negative number, +∞ and –∞, in which the integer bit is 1, the biased
exponent is maximum, and the fraction is 0. The infinities are the maximum numbers that can be
represented in floating-point format. Negative infinity is less than any finite number and positive
infinity is greater than any finite number (i.e., the affine sense).

An infinite result is produced when a non-zero, non-infinite number is divided by 0 or multiplied by
infinity, or when infinity is added to infinity or to 0. Arithmetic on infinities is exact. For example,
adding any floating-point number to +∞ gives a result of +∞. Arithmetic comparisons work correctly
on infinities. Exceptions occur only when the use of an infinity as a source operand constitutes an
invalid operation.

Not a Number (NaN). NaNs are non-numbers, lying outside the range of representable floating-point
values. The integer bit is 1, the biased exponent is maximum, and the fraction is non-zero. NaNs are of
two types:

• Signaling NaN (SNaN)

• Quiet NaN (QNaN)

A QNaN is a NaN with the most-significant fraction bit set to 1, and an SNaN is a NaN with the most-
significant fraction bit cleared to 0. When the processor encounters an SNaN as a source operand for
an instruction, an invalid-operation exception (IE) occurs and a QNaN is produced as the result, if the
exception is masked. In general, when the processor encounters a QNaN as a source operand for an
instruction, the processor does not generate an exception but generates a QNaN as the result.

The processor never generates an SNaN as a result of a floating-point operation. When an invalid-
operation exception (IE) occurs due to an SNaN operand, the invalid-operation exception mask (IM)

Table 4-4. Example of Denormalization

Significand (base 2) Exponent Result Type

1.0011010000000000 –130 True result

0.0001001101000000 –126 Denormalized result
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bit determines the processor’s response, as described in “SIMD Floating-Point Exception Masking” on
page 184.

When a floating-point operation or exception produces a QNaN result, its value is determined by the
rules in Table 4-5.

4.4.8 Floating-Point Number Encodings

Supported Encodings. Table 4-6 on page 131 shows the floating-point encodings of supported
numbers and non-numbers. The number categories are ordered from large to small. In this affine
ordering, positive infinity is larger than any positive normalized number, which in turn is larger than
any positive denormalized number, which is larger than positive zero, and so forth. Thus, the ordinary
rules of comparison apply between categories as well as within categories, so that comparison of any
two numbers is well-defined.

The actual exponent field length is 8 or 11 bits, and the fraction field length is 23 or 52 bits, depending
on operand precision. The single-precision and double-precision formats do not include the integer bit
in the significand (the value of the integer bit can be inferred from number encodings). Exponents of
both types are encoded in biased format, with respective biasing constants of 127 and 1023.

Table 4-5. NaN Results

Source Operands
(in either order) NaN Result1

QNaN
Any non-NaN floating-point value, or
single-operand instructions

Value of QNaN

SNaN
Any non-NaN floating-point value, or
single-operand instructions Value of SNaN converted to a QNaN2

QNaN QNaN
Value of operand 1

QNaN SNaN

SNaN QNaN
Value of operand 1 converted to a QNaN2

SNaN SNaN

Invalid-Operation Exception (IE) occurs without QNaN
or SNaN source operands

Floating-point indefinite value3 (a special
form of QNaN)

Note:
1. The NaN result is produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.
3. See “Indefinite Values” on page 131.
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Indefinite Values. Floating-point and integer data type each have a unique encoding that represents
an indefinite value. The processor returns an indefinite value when a masked invalid-operation
exception (IE) occurs.

For example, if a floating-point division operation is attempted using source operands that are both
zero, and IE exceptions are masked, the floating-point indefinite value is returned as the result. Or, if a

Table 4-6. Supported Floating-Point Encodings

Classification Sign
Biased

Exponent1
Significand2

Positive
Non-Numbers

SNaN 0 111 ... 111

1.011 ... 111

to

1.000 ... 001

QNaN 0 111 ... 111

1.111 ... 111

to

1.100 ... 000

Positive
Floating-Point
Numbers

Positive Infinity (+∞) 0 111 ... 111 1.000 ... 000

Positive Normal 0

111 ... 110

to

000 ... 001

1.111 ... 111

to

1.000 ... 000

Positive Denormal 0 000 ... 000

0.111 ... 111

to

0.000 ... 001

Positive Zero 0 000 ... 000 0.000 ... 000

Negative
Floating-Point
Numbers

Negative Zero 1 000 ... 000 0.000 ... 000

Negative Denormal 1 000 ... 000

0.000 ... 001

to

0.111 ... 111

Negative Normal 1

000 ... 001

to

111 ... 110

1.000 ... 000

to

1.111 ... 111

Negative Infinity (–∞) 1 111 ... 111 1.000 ... 000

Negative
Non-Numbers

SNaN 1 111 ... 111

1.000 ... 001

to

1.011 ... 111

QNaN3 1 111 ... 111

1.100 ... 000

to

1.111 ... 111

Note:
1. The actual exponent field length is 8 or 11 bits, depending on operand precision.
2. The “1.” and “0.” prefixes represent the implicit integer bit. The actual fraction field

length is 23 or 52 bits, depending on operand precision.
3. The floating-point indefinite value is a QNaN with a negative sign and a significand

whose value is 1.100 ... 000.
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floating-point-to-integer data conversion overflows its destination integer data type, and IE exceptions
are masked, the integer indefinite value is returned as the result.

Table 4-7 shows the encodings of the indefinite values for each data type. For floating-point numbers,
the indefinite value is a special form of QNaN. For integers, the indefinite value is the largest
representable negative twos-complement number, 80...00h. (This value is the largest representable
negative number, except when a masked IE exception occurs, in which case it is generated as the
indefinite value.)

4.4.9 Floating-Point Rounding

Bits 14–13 of the MXCSR control and status register (“MXCSR Register” on page 117) comprise the
floating-point rounding control (RC) field, which specifies how the results of floating-point
computations are rounded. Rounding modes apply to most arithmetic operations. When rounding
occurs, the processor generates a precision exception (PE). Rounding is not applied to operations that
produce NaN results.

The IEEE 754 standard defines the four rounding modes as shown in Table 4-8.

Round to nearest is the default rounding mode. It provides a statistically unbiased estimate of the true
result, and is suitable for most applications. The other rounding modes are directed roundings: round
up (toward +∞), round down (toward –∞), and round toward zero. Round up and round down are used

Table 4-7. Indefinite-Value Encodings

Data Type Indefinite Encoding

Single-Precision Floating-Point FFC0_0000h

Double-Precision Floating-Point FFF8_0000_0000_0000h

16-Bit Integer 8000h

32-Bit Integer 8000_0000h

64-Bit Integer 8000_0000_0000_0000h

Table 4-8. Types of Rounding

RC Value Mode Type of Rounding

00
(default)

Round to nearest
The rounded result is the representable value closest to the infinitely
precise result. If equally close, the even value (with least-significant bit 0)
is taken.

01 Round down
The rounded result is closest to, but no greater than, the infinitely precise
result.

10 Round up
The rounded result is closest to, but no less than, the infinitely precise
result.

11 Round toward zero
The rounded result is closest to, but no greater in absolute value than, the
infinitely precise result.
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in interval arithmetic, in which upper and lower bounds bracket the true result of a computation.
Round toward zero takes the smaller in magnitude, that is, always truncates.

The processor produces a floating-point result defined by the IEEE standard to be infinitely precise.
This result may not be representable exactly in the destination format, because only a subset of the
continuum of real numbers finds exact representation in any particular floating-point format.
Rounding modifies such a result to conform to the destination format, thereby making the result
inexact and also generating a precision exception (PE), as described in “SIMD Floating-Point
Exception Causes” on page 178.

Suppose, for example, the following 24-bit result is to be represented in single-precision format, where
“E2 1010” represents the biased exponent:

1.0011 0101 0000 0001 0010 0111 E2 1010

This result has no exact representation, because the least-significant 1 does not fit into the single-
precision format, which allows for only 23 bits of fraction. The rounding control field determines the
direction of rounding. Rounding introduces an error in a result that is less than one unit in the last place
(ulp), that is, the least-significant bit position of the floating-point representation.

4.5 Instruction Summary—Integer Instructions

This section summarizes functions of the integer instructions in the 128-bit media instruction subset.
These include integer instructions that use an XMM register for source or destination and data-
conversion instructions that convert from integers to floating-point formats. For a summary of the
floating-point instructions in the 128-bit media instruction subset, including data-conversion
instructions that convert from floating-point to integer formats, see “Instruction Summary—Floating-
Point Instructions” on page 156.

The instructions are organized here by functional group—such as data-transfer, vector arithmetic, and
so on. Software running at any privilege level can use any of these instructions, if the CPUID
instruction reports support for the instructions (see “Feature Detection” on page 176). More detail on
individual instructions is given in the alphabetically organized “128-Bit Media Instruction Reference”
in Volume 4.

4.5.1 Syntax

Each instruction has a mnemonic syntax used by assemblers to specify the operation and the operands
to be used for source and destination (result) data. The majority of 128-bit media integer instructions
have the following syntax:

MNEMONIC xmm1, xmm2/mem128

Figure 4-16 on page 134 shows an example of the mnemonic syntax for a packed add bytes (PADDB)
instruction.
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Figure 4-16. Mnemonic Syntax for Typical Instruction

This example shows the PADDB mnemonic followed by two operands, a 128-bit XMM register
operand and another 128-bit XMM register or 128-bit memory operand. In most instructions that take
two operands, the first (left-most) operand is both a source operand and the destination operand. The
second (right-most) operand serves only as a source. Some instructions can have one or more prefixes
that modify default properties, as described in “Instruction Prefixes” on page 175.

Mnemonics. The following characters are used as prefixes in the mnemonics of integer instructions:

• CVT—Convert

• CVTT—Convert with truncation

• P—Packed (vector)

• PACK—Pack elements of 2x data size to 1x data size

• PUNPCK—Unpack and interleave elements

• UNPCK—Unpack and interleave elements

In addition to the above prefix characters, the following characters are used elsewhere in the
mnemonics of integer instructions:

• B—Byte

• D—Doubleword

• DQ—Double quadword

• H—High

• L—Low, or Left

• PD—Packed double-precision floating-point

• PI—Packed integer

• PS—Packed single-precision floating-point

• Q—Quadword

• R—Right

513-147.eps

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand

PADDB   xmm1,   xmm2/mem128
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• S—Signed, or Saturation, or Shift

• SD—Scalar double-precision floating-point

• SI—Signed integer

• SS—Scalar single-precision floating-point, or Signed saturation

• U—Unsigned, or Unordered, or Unaligned

• US—Unsigned saturation

• W—Word

• x—One or more variable characters in the mnemonic

For example, the mnemonic for the instruction that packs four words into eight unsigned bytes is
PACKUSWB. In this mnemonic, the US designates an unsigned result with saturation, and the WB
designates the source as words and the result as bytes.

4.5.2 Data Transfer

The data-transfer instructions copy operands between a memory location, an XMM register, an MMX
register, or a GPR. The MOV mnemonic, which stands for move, is a misnomer. A copy function is
actually performed instead of a move. A new copy of the source value is created at the destination
address, and the original copy remains unchanged at its source location.

Move.

• MOVD—Move Doubleword or Quadword

• MOVQ—Move Quadword

• MOVDQA—Move Aligned Double Quadword

• MOVDQU—Move Unaligned Double Quadword

• MOVDQ2Q—Move Quadword to Quadword

• MOVQ2DQ—Move Quadword to Quadword

• LDDQU—Load Double Quadword Unaligned

The MOVD instruction copies a 32-bit or 64-bit value from a GPR register or memory location to the
low-order 32 or 64 bits of an XMM register, or from the low-order 32 or 64 bits of an XMM register to
a 32-bit or 64-bit GPR or memory location. If the source operand is a GPR or memory location, the
source is zero-extended to 128 bits in the XMM register. If the source is an XMM register, only the
low-order 32 or 64 bits of the source are copied to the destination.

The MOVQ instruction copies a 64-bit value from memory to the low quadword of an XMM register,
or from the low quadword of an XMM register to memory, or between the low quadwords of two
XMM registers. If the source is in memory and the destination is an XMM register, the source is zero-
extended to 128 bits in the XMM register.

The MOVDQA instruction copies a 128-bit value from memory to an XMM register, or from an XMM
register to memory, or between two XMM registers. If either the source or destination is a memory
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location, the memory address must be aligned. The MOVDQU instruction does the same, except for
unaligned operands. The LDDQU instruction is virtually identical in operation to the MOVDQU
instruction. The LDDQU instruction moves a double quadword of data from a 128-bit memory
operand into a destination XMM register.

The MOVDQ2Q instruction copies the low-order 64-bit value in an XMM register to an MMX
register. The MOVQ2DQ instruction copies a 64-bit value from an MMX register to the low-order 64
bits of an XMM register, with zero-extension to 128 bits.

Figure 4-17 on page 137 shows the capabilities of the various integer move instructions. These
instructions move large amounts of data. When copying between XMM registers, or between an XMM
register and memory, a move instruction can copy up to 16 bytes of data. When copying between an
XMM register and an MMX or GPR register, a move instruction can copy up to 8 bytes of data. The
MOVx instructions—along with the PUNPCKx instructions—are often among the most frequently
used instructions in 128-bit media integer and floating-point procedures.

The move instructions are in many respects similar to the assignment operator in high-level languages.
The simplest example of their use is for initializing variables. To initialize a register to 0, however,
rather than using a MOVx instruction it may be more efficient to use the PXOR instruction with
identical destination and source operands.

Move Non-Temporal. The move non-temporal instructions are streaming-store instructions. They
minimize pollution of the cache.

• MOVNTDQ—Move Non-Temporal Double Quadword

• MASKMOVDQU—Masked Move Double Quadword Unaligned

The MOVNTDQ instruction stores its second operand (a 128-bit XMM register value) into its first
operand (a 128-bit memory location). MOVNTDQ indicates to the processor that its data is non-
temporal, which assumes that the referenced data will be used only once and is therefore not subject to
cache-related overhead (as opposed to temporal data, which assumes that the data will be accessed
again soon and should be cached). The non-temporal instructions use weakly-ordered, write-
combining buffering of write data, and they minimize cache pollution. The exact method by which
cache pollution is minimized depends on the hardware implementation of the instruction. For further
information, see “Memory Optimization” on page 92.
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Figure 4-17. Integer Move Operations

MASKMOVDQU is also a non-temporal instruction. It stores bytes from the first operand, as selected
by the mask value in the second operand (0 = no write and 1 = write), to a memory location specified
in the rDI and DS registers. The first and second operands are both XMM registers. The address may
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be unaligned. Figure 4-18 shows the MASKMOVDQU operation. It is useful for the handling of end
cases in block copies and block fills based on streaming stores.

Figure 4-18. MASKMOVDQU Move Mask Operation

Move Mask.

• PMOVMSKB—Packed Move Mask Byte

The PMOVMSKB instruction moves the most-significant bit of each byte in an XMM register to the
low-order word of a 32-bit or 64-bit general-purpose register, with zero-extension. The instruction is
useful for extracting bits from mask patterns, or zero values from quantized data, or sign bits—
resulting in a byte that can be used for data-dependent branching. Figure 4-19 on page 139 shows the
PMOVMSKB operation.

operand 1

.   .   .   .   .   .   .   .   .   .   .   .   .   .

.   .   .   .   .   .   .   .   .   .   .   .   .   .

127 0
operand 2

127 0

select

select

store address
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Figure 4-19. PMOVMSKB Move Mask Operation

4.5.3 Data Conversion

The integer data-conversion instructions convert integer operands to floating-point operands. These
instructions take 128-bit integer source operands. For data-conversion instructions that take 128-bit
floating-point source operands, see “Data Conversion” on page 162. For data-conversion instructions
that take 64-bit source operands, see “Data Conversion” on page 211 and “Data Conversion” on
page 224.

Convert Integer to Floating-Point. These instructions convert integer data types in XMM registers
or memory into floating-point data types in XMM registers.

• CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point

• CVTDQ2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point

The CVTDQ2PS instruction converts four 32-bit signed integer values in the second operand to four
single-precision floating-point values and writes the converted values in another XMM register. If the
result of the conversion is an inexact value, the value is rounded. The CVTDQ2PD instruction is
analogous to CVTDQ2PS except that it converts two 64-bit signed integer values to two double-
precision floating-point values.

Convert MMX Integer to Floating-Point. These instructions convert integer data types in MMX
registers or memory into floating-point data types in XMM registers.

• CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point

• CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point

The CVTPI2PS instruction converts two 32-bit signed integer values in an MMX register or a 64-bit
memory location to two single-precision floating-point values and writes the converted values in the
low-order 64 bits of an XMM register. The high-order 64 bits of the XMM register are not modified.

The CVTPI2PD instruction is analogous to CVTPI2PS except that it converts two 32-bit signed
integer values to two double-precision floating-point values and writes the converted values in the full
128 bits of an XMM register.
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Before executing a CVTPI2x instruction, software should ensure that the MMX registers are properly
initialized so as to prevent conflict with their aliased use by x87 floating-point instructions. This may
require clearing the MMX state, as described in “Accessing Operands in MMX™ Registers” on
page 188.

For a description of 128-bit media instructions that convert in the opposite direction—floating-point to
integer in MMX registers—see “Convert Floating-Point to MMX™ Integer” on page 163. For a
summary of instructions that operate on MMX registers, see Chapter 5, “64-Bit Media Programming.”

Convert GPR Integer to Floating-Point. These instructions convert integer data types in GPR
registers or memory into floating-point data types in XMM registers.

• CVTSI2SS—Convert Signed Doubleword or Quadword Integer to Scalar Single-Precision
Floating-Point

• CVTSI2SD—Convert Signed Doubleword or Quadword Integer to Scalar Double-Precision
Floating-Point

The CVTSI2SS instruction converts a 32-bit or 64-bit signed integer value in a general-purpose
register or memory location to a single-precision floating-point value and writes the converted value in
the low-order 32 bits of an XMM register. The three high-order doublewords in the destination XMM
register are not modified.

The CVTSI2SD instruction converts a 32-bit or 64-bit signed integer value in a general-purpose
register or memory location to a double-precision floating-point value and writes the converted value
in the low-order 64 bits of an XMM register. The high-order 64 bits in the destination XMM register
are not modified.

4.5.4 Data Reordering

The integer data-reordering instructions pack, unpack, interleave, extract, insert, and shuffle the
elements of vector operands.

Pack with Saturation. These instructions pack larger data types into smaller data types, thus halving
the precision of each element in a vector operand.

• PACKSSDW—Pack with Saturation Signed Doubleword to Word

• PACKSSWB—Pack with Saturation Signed Word to Byte

• PACKUSWB—Pack with Saturation Signed Word to Unsigned Byte

The PACKSSDW instruction converts each of the four signed doubleword integers in its two source
operands (an XMM register, and another XMM register or 128-bit memory location) into signed word
integers and packs the converted values into the destination operand (an XMM register). The
PACKSSWB instruction does the analogous conversion between word elements in the source vectors
and byte elements in the destination vector. The PACKUSWB instruction does the same as
PACKSSWB except that it converts signed word integers into unsigned (rather than signed) bytes.
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Figure 4-20 shows an example of a PACKSSDW instruction. The operation merges vector elements of
2x size into vector elements of 1x size, thus reducing the precision of the vector-element data types.
Any results that would otherwise overflow or underflow are saturated (clamped) at the maximum or
minimum representable value, respectively, as described in “Saturation” on page 125.

Figure 4-20. PACKSSDW Pack Operation

Conversion from higher-to-lower precision is often needed, for example, by multiplication operations
in which the higher-precision format is used for source operands in order to prevent possible overflow,
and the lower-precision format is the desired format for the next operation.

Unpack and Interleave. These instructions interleave vector elements from the high or low halves of
two integer source operands. They can be used to double the precision of operands.

• PUNPCKHBW—Unpack and Interleave High Bytes

• PUNPCKHWD—Unpack and Interleave High Words

• PUNPCKHDQ—Unpack and Interleave High Doublewords

• PUNPCKHQDQ—Unpack and Interleave High Quadwords

• PUNPCKLBW—Unpack and Interleave Low Bytes

• PUNPCKLWD—Unpack and Interleave Low Words

• PUNPCKLDQ—Unpack and Interleave Low Doublewords

• PUNPCKLQDQ—Unpack and Interleave Low Quadwords

The PUNPCKHBW instruction copies the eight high-order bytes from its two source operands (an
XMM register, and another XMM register or 128-bit memory location) and interleaves them into the
128-bit destination operand (an XMM register). The bytes in the low-order half of the source operands
are ignored. The PUNPCKHWD, PUNPCKHDQ, and PUNPCKHQDQ instructions perform
analogous operations for words, doublewords, and quadwords in the source operands, packing them
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into interleaved words, interleaved doublewords, and interleaved quadwords in the destination
operand.

The PUNPCKLBW, PUNPCKLWD, PUNPCKLDQ, and PUNPCKLQDQ instructions are analogous
to their high-element counterparts except that they take elements from the low quadword of each
source vector and ignore elements in the high quadword. Depending on the hardware implementation,
if the source operand for PUNPCKLx and PUNPCKHx instructions is in memory, only the low 64 bits
of the operand may be loaded.

Figure 4-21 shows an example of the PUNPCKLWD instruction. The elements are taken from the low
half of the source operands. In this register image, elements from operand2 are placed to the left of
elements from operand1.

Figure 4-21. PUNPCKLWD Unpack and Interleave Operation

If operand 2 is a vector consisting of all zero-valued elements, the unpack instructions perform the
function of expanding vector elements of 1x size into vector elements of 2x size. Conversion from
lower-to-higher precision is often needed, for example, prior to multiplication operations in which the
higher-precision format is used for source operands in order to prevent possible overflow during
multiplication.

If both source operands are of identical value, the unpack instructions can perform the function of
duplicating adjacent elements in a vector.

The PUNPCKx instructions can be used in a repeating sequence to transpose rows and columns of an
array. For example, such a sequence could begin with PUNPCKxWD and be followed by
PUNPCKxQD. These instructions can also be used to convert pixel representation from RGB format
to color-plane format, or to interleave interpolation elements into a vector.

As noted above, and depending on the hardware implementation, the width of the memory access
performed by the memory-operand forms of PUNPCKLBW, PUNPCKLWD, PUNPCKLDQ, and
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PUNPCKLQDQ may be 64 bits, but the width of the memory access of the memory-operand forms of
PUNPCKHBW, PUNPCKHWD, PUNPCKHDQ, and PUNPCKHQDQ may be 128 bits. Thus, the
alignment constraints for PUNPCKLx instructions may be less restrictive than the alignment
constraints for PUNPCKHx instructions. For details, see the documentation for particular hardware
implementations of the architecture.

Another advantage of using PUNPCKLx rather than PUNPCKHx—also depending on the hardware
implementation—is that it may help avoid potential size mismatches if a particular hardware
implementation uses load-to-store forwarding. In such cases, store data from either a quadword store
or the lower quadword of a double-quadword store could be forwarded to PUNPCKLx instructions,
but only store data from a double-quadword store could be forwarded to PUNPCKHx instructions.

The PUNPCKx instructions—along with the MOVx instructions—are often among the most
frequently used instructions in 128-bit media integer and floating-point procedures.

Extract and Insert. These instructions copy a word element from a vector, in a manner specified by
an immediate operand.

• EXTRQ—Extract Field from Register

• INSERTQ—Insert Field

• PEXTRW—Packed Extract Word

• PINSRW—Packed Insert Word

The EXTRQ instruction extracts specified bits from the lower 64 bits of the destination XMM register.
The extracted bits are saved in the least-significant bit positions of the destination and the remaining
bits in the lower 64 bits of the destination register are cleared to 0. The upper 64 bits of the destination
register are undefined.

The INSERTQ instruction inserts a specified number of bits from the lower 64 bits of the source
operand into a specified bit position of the lower 64 bits of the destination operand. No other bits in the
lower 64 bits of the destination are modified. The upper 64 bits of the destination are undefined.

The PEXTRW instruction extracts a 16-bit value from an XMM register, as selected by the immediate-
byte operand, and writes it to the low-order word of a 32-bit or 64-bit general-purpose register, with
zero-extension to 32 or 64 bits. PEXTRW is useful for loading computed values, such as table-lookup
indices, into general-purpose registers where the values can be used for addressing tables in memory.

The PINSRW instruction inserts a 16-bit value from the low-order word of a general-purpose register
or from a 16-bit memory location into an XMM register. The location in the destination register is
selected by the immediate-byte operand. The other words in the destination register operand are not
modified. Figure 4-22 on page 144 shows the operation.
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Figure 4-22. PINSRW Operation

Shuffle. These instructions reorder the elements of a vector.

• PSHUFD—Packed Shuffle Doublewords

• PSHUFHW—Packed Shuffle High Words

• PSHUFLW—Packed Shuffle Low Words

The PSHUFD instruction fills each doubleword of the first operand (an XMM register) by copying any
one of the doublewords in the second operand (an XMM register or 128-bit memory location). The
ordering of the shuffle can occur in one of 256 possible ways, as specified by the third operand, an
immediate byte. Figure 4-23 on page 145 shows one of the 256 possible shuffle operations.
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Figure 4-23. PSHUFD Shuffle Operation

The PSHUFHW and PSHUFLW instructions are analogous to PSHUFD, except that they fill each
word of the high or low quadword, respectively, of the first operand by copying any one of the four
words in the high or low quadword of the second operand. Figure 4-24 shows the PSHUFHW
operation. PSHUFHW and PSHUFLW are useful, for example, in color imaging when computing
alpha saturation of RGB values. In this case, PSHUFxW can replicate an alpha value in a register so
that parallel comparisons with three RGB values can be performed.

Figure 4-24. PSHUFHW Shuffle Operation

4.5.5 Arithmetic

The integer vector-arithmetic instructions perform an arithmetic operation on the elements of two
source vectors. Figure 4-25 on page 146 shows a typical arithmetic operation on vectors of bytes. Such
instructions performs 16 arithmetic operations in parallel.
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Figure 4-25. Arithmetic Operation on Vectors of Bytes

Addition.

• PADDB—Packed Add Bytes

• PADDW—Packed Add Words

• PADDD—Packed Add Doublewords

• PADDQ—Packed Add Quadwords

• PADDSB—Packed Add with Saturation Bytes

• PADDSW—Packed Add with Saturation Words

• PADDUSB—Packed Add Unsigned with Saturation Bytes

• PADDUSW—Packed Add Unsigned with Saturation Words

The PADDB, PADDW, PADDD, and PADDQ instructions add each packed 8-bit (PADDB), 16-bit
(PADDW), 32-bit (PADDD), or 64-bit (PADDQ) integer element in the second operand to the
corresponding, same-sized integer element in the first operand and write the integer result to the
corresponding, same-sized element of the destination. Figure 4-25 shows a PADDB operation. These
instructions operate on both signed and unsigned integers. However, if the result overflows, the carry is
ignored and only the low-order byte, word, doubleword, or quadword of each result is written to the
destination. The PADDD instruction can be used together with PMADDWD (page 149) to implement
dot products.

The PADDSB and PADDSW instructions add each 8-bit (PADDSB) or 16-bit (PADDSW) signed
integer element in the second operand to the corresponding, same-sized signed integer element in the
first operand and write the signed integer result to the corresponding, same-sized element of the
destination. For each result in the destination, if the result is larger than the largest, or smaller than the
smallest, representable 8-bit (PADDSB) or 16-bit (PADDSW) signed integer, the result is saturated to
the largest or smallest representable value, respectively.
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The PADDUSB and PADDUSW instructions perform saturating-add operations analogous to the
PADDSB and PADDSW instructions, except on unsigned integer elements.

Subtraction.

• PSUBB—Packed Subtract Bytes

• PSUBW—Packed Subtract Words

• PSUBD—Packed Subtract Doublewords

• PSUBQ—Packed Subtract Quadword

• PSUBSB—Packed Subtract with Saturation Bytes

• PSUBSW—Packed Subtract with Saturation Words

• PSUBUSB—Packed Subtract Unsigned and Saturate Bytes

• PSUBUSW—Packed Subtract Unsigned and Saturate Words

The subtraction instructions perform operations analogous to the addition instructions.

The PSUBB, PSUBW, PSUBD, and PSUBQ instructions subtract each 8-bit (PSUBB), 16-bit
(PSUBW), 32-bit (PSUBD), or 64-bit (PSUBQ) integer element in the second operand from the
corresponding, same-sized integer element in the first operand and write the integer result to the
corresponding, same-sized element of the destination. For vectors of n number of elements, the
operation is:

operand1[i] = operand1[i] - operand2[i]

where: i = 0 to n – 1

These instructions operate on both signed and unsigned integers. However, if the result underflows, the
borrow is ignored and only the low-order byte, word, doubleword, or quadword of each result is
written to the destination.

The PSUBSB and PSUBSW instructions subtract each 8-bit (PSUBSB) or 16-bit (PSUBSW) signed
integer element in the second operand from the corresponding, same-sized signed integer element in
the first operand and write the signed integer result to the corresponding, same-sized element of the
destination. For each result in the destination, if the result is larger than the largest, or smaller than the
smallest, representable 8-bit (PSUBSB) or 16-bit (PSUBSW) signed integer, the result is saturated to
the largest or smallest representable value, respectively.

The PSUBUSB and PSUBUSW instructions perform saturating-add operations analogous to the
PSUBSB and PSUBSW instructions, except on unsigned integer elements.

Multiplication.

• PMULHW—Packed Multiply High Signed Word

• PMULLW—Packed Multiply Low Signed Word

• PMULHUW—Packed Multiply High Unsigned Word

• PMULUDQ—Packed Multiply Unsigned Doubleword and Store Quadword
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The PMULHW instruction multiplies each 16-bit signed integer value in the first operand by the
corresponding 16-bit integer in the second operand, producing a 32-bit intermediate result. The
instruction then writes the high-order 16 bits of the 32-bit intermediate result of each multiplication to
the corresponding word of the destination. The PMULLW instruction performs the same
multiplication as PMULHW but writes the low-order 16 bits of the 32-bit intermediate result to the
corresponding word of the destination.

Figure 4-26 shows the PMULHW and PMULLW operations. The difference between the two is
whether the high or low half of each intermediate-element result is copied to the destination result.

Figure 4-26. PMULxW Multiply Operation

The PMULHUW instruction performs the same multiplication as PMULHW but on unsigned
operands. Without this instruction, it is difficult to perform unsigned integer multiplies using 128-bit
media instructions. The instruction is useful in 3D rasterization, which operates on unsigned pixel
values.

The PMULUDQ instruction, unlike the other PMULx instructions, preserves the full precision of
results by multiplying only half of the source-vector elements. It multiplies the 32-bit unsigned integer
values in the first (low-order) and third doublewords of the source operands, writes the full 64-bit
result of the low-order multiply to the low-order doubleword of the destination, and writes a
corresponding result of the high-order multiply to the high-order doubleword of the destination.
Figure 4-27 on page 149 shows a PMULUDQ operation.
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Figure 4-27. PMULUDQ Multiply Operation

See “Shift” on page 152 for shift instructions that can be used to perform multiplication and division
by powers of 2.

Multiply-Add. This instruction multiplies the elements of two source vectors and add their
intermediate results in a single operation.

• PMADDWD—Packed Multiply Words and Add Doublewords

The PMADDWD instruction multiplies each 16-bit signed value in the first operand by the
corresponding 16-bit signed value in the second operand. The instruction then adds the adjacent 32-bit
intermediate results of each multiplication, and writes the 32-bit result of each addition into the
corresponding doubleword of the destination. For vectors of n number of source elements (src), m
number of destination elements (dst), and n = 2m, the operation is:

dst[j] = ((src1[i] * src2[i]) + (src1[i+1] * src2[i+1]))

where: i = 0 to n – 1
i = 2j

PMADDWD thus performs four signed multiply-adds in parallel. Figure 4-28 on page 150 shows the
operation.
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Figure 4-28. PMADDWD Multiply-Add Operation

PMADDWD can be used with one source operand (for example, a coefficient) taken from memory and
the other source operand (for example, the data to be multiplied by that coefficient) taken from an
XMM register. The instruction can also be used together with the PADDD instruction (page 146) to
compute dot products. Scaling can be done, before or after the multiply, using a vector-shift instruction
(page 152).

If all four of the 16-bit source operands used to produce a 32-bit multiply-add result have the value
8000h, the result is represented as 8000_0000h, because the maximum negative 16-bit value of 8000h
multiplied by itself equals 4000_0000h, and 4000_0000h added to 4000_0000h equals 8000_0000h.
The result of multiplying two negative numbers should be a positive number, but 8000_0000h is the
maximum possible 32-bit negative number rather than a positive number.

Average.

• PAVGB—Packed Average Unsigned Bytes

• PAVGW—Packed Average Unsigned Words

The PAVGx instructions compute the rounded average of each unsigned 8-bit (PAVGB) or 16-bit
(PAVGW) integer value in the first operand and the corresponding, same-sized unsigned integer in the
second operand and write the result in the corresponding, same-sized element of the destination. The
rounded average is computed by adding each pair of operands, adding 1 to the temporary sum, and
then right-shifting the temporary sum by one bit-position. For vectors of n number of elements, the
operation is:
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operand1[i] = ((operand1[i] + operand2[i]) + 1) ÷ 2

where: i = 0 to n – 1

The PAVGB instruction is useful for MPEG decoding, in which motion compensation performs many
byte-averaging operations between and within macroblocks. In addition to speeding up these
operations, PAVGB can free up registers and make it possible to unroll the averaging loops.

Sum of Absolute Differences.

• PSADBW—Packed Sum of Absolute Differences of Bytes into a Word

The PSADBW instruction computes the absolute values of the differences of corresponding 8-bit
signed integer values in the two quadword halves of both source operands, sums the differences for
each quadword half, and writes the two unsigned 16-bit integer results in the destination. The sum for
the high-order half is written in the least-significant word of the destination’s high-order quadword,
with the remaining bytes cleared to all 0s. The sum for the low-order half is written in the least-
significant word of the destination’s low-order quadword, with the remaining bytes cleared to all 0s.

Figure 4-29 shows the PSADBW operation. Sums of absolute differences are useful, for example, in
computing the L1 norm in motion-estimation algorithms for video compression.

Figure 4-29. PSADBW Sum-of-Absolute-Differences Operation
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4.5.6 Shift

The vector-shift instructions are useful for scaling vector elements to higher or lower precision,
packing and unpacking vector elements, and multiplying and dividing vector elements by powers of 2.

Left Logical Shift.

• PSLLW—Packed Shift Left Logical Words

• PSLLD—Packed Shift Left Logical Doublewords

• PSLLQ—Packed Shift Left Logical Quadwords

• PSLLDQ—Packed Shift Left Logical Double Quadword

The PSLLW, PSLLD, and PSLLQ instructions left-shift each of the 16-bit, 32-bit, or 64-bit values,
respectively, in the first operand by the number of bits specified in the second operand. The
instructions then write each shifted value into the corresponding, same-sized element of the
destination. The low-order bits that are emptied by the shift operation are cleared to 0. The first
operand is an XMM register. The second operand can be an XMM register, 128-bit memory location,
or immediate byte.

In integer arithmetic, left logical shifts effectively multiply unsigned operands by positive powers of 2.
Thus, for vectors of n number of elements, the operation is:

operand1[i] = operand1[i] * 2operand2

where: i = 0 to n – 1

The PSLLDQ instruction differs from the other three left-shift instructions because it operates on bytes
rather than bits. It left-shifts the 128-bit (double quadword) value in an XMM register by the number
of bytes specified in an immediate byte value.

Right Logical Shift.

• PSRLW—Packed Shift Right Logical Words

• PSRLD—Packed Shift Right Logical Doublewords

• PSRLQ—Packed Shift Right Logical Quadwords

• PSRLDQ—Packed Shift Right Logical Double Quadword

The PSRLW, PSRLD, and PSRLQ instructions right-shift each of the 16-bit, 32-bit, or 64-bit values,
respectively, in the first operand by the number of bits specified in the second operand. The
instructions then write each shifted value into the corresponding, same-sized element of the
destination. The high-order bits that are emptied by the shift operation are cleared to 0. The first
operand is an XMM register. The second operand can be an XMM register, 128-bit memory location,
or immediate byte.

In integer arithmetic, right logical bit-shifts effectively divide unsigned operands by positive powers of
2, or they divide positive signed operands by positive powers of 2. Thus, for vectors of n number of
elements, the operation is:
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operand1[i] = operand1[i] ÷ 2operand2

where: i = 0 to n – 1

The PSRLDQ instruction differs from the other three right-shift instructions because it operates on
bytes rather than bits. It right-shifts the 128-bit (double quadword) value in an XMM register by the
number of bytes specified in an immediate byte value. PSRLDQ can be used, for example, to move the
high 8 bytes of an XMM register to the low 8 bytes of the register. In some implementations, however,
PUNPCKHQDQ may be a better choice for this operation.

Right Arithmetic Shift.

• PSRAW—Packed Shift Right Arithmetic Words

• PSRAD—Packed Shift Right Arithmetic Doublewords

The PSRAx instructions right-shift each of the 16-bit (PSRAW) or 32-bit (PSRAD) values in the first
operand by the number of bits specified in the second operand. The instructions then write each shifted
value into the corresponding, same-sized element of the destination. The high-order bits that are
emptied by the shift operation are filled with the sign bit of the initial value.

In integer arithmetic, right arithmetic shifts effectively divide signed operands by positive powers of 2.
Thus, for vectors of n number of elements, the operation is:

operand1[i] = operand1[i] ÷ 2operand2

where: i = 0 to n – 1

4.5.7 Compare

The integer vector-compare instructions compare two operands, and they either write a mask or they
write the maximum or minimum value.

Compare and Write Mask.

• PCMPEQB—Packed Compare Equal Bytes

• PCMPEQW—Packed Compare Equal Words

• PCMPEQD—Packed Compare Equal Doublewords

• PCMPGTB—Packed Compare Greater Than Signed Bytes

• PCMPGTW—Packed Compare Greater Than Signed Words

• PCMPGTD—Packed Compare Greater Than Signed Doublewords

The PCMPEQx and PCMPGTx instructions compare corresponding bytes, words, or doublewords in
the two source operands. The instructions then write a mask of all 1s or 0s for each compare into the
corresponding, same-sized element of the destination. Figure 4-30 on page 154 shows a PCMPEQB
compare operation. It performs 16 compares in parallel.
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Figure 4-30. PCMPEQB Compare Operation

For the PCMPEQx instructions, if the compared values are equal, the result mask is all 1s. If the values
are not equal, the result mask is all 0s. For the PCMPGTx instructions, if the signed value in the first
operand is greater than the signed value in the second operand, the result mask is all 1s. If the value in
the first operand is less than or equal to the value in the second operand, the result mask is all 0s.

By specifying the same register for both operands, PCMPEQx can be used to set the bits in an XMM
register to all 1s.

Figure 4-10 on page 115 shows an example of a non-branching sequence that implements a two-way
multiplexer—one that is equivalent to the following sequence of ternary operators in C or C++:

r0 = a0 > b0 ? a0 : b0
r1 = a1 > b1 ? a1 : b1
r2 = a2 > b2 ? a2 : b2
r3 = a3 > b3 ? a3 : b3
r4 = a4 > b4 ? a4 : b4
r5 = a5 > b5 ? a5 : b5
r6 = a6 > b6 ? a6 : b6
r7 = a7 > b7 ? a7 : b7

Assuming xmm0 contains the vector a, and xmm1 contains the vector b, the above C sequence can be
implemented with the following assembler sequence:

MOVQ xmm3, xmm0
PCMPGTW xmm3, xmm1 ; a > b ? 0xffff : 0
PAND xmm0, xmm3 ; a > b ? a: 0
PANDN xmm3, xmm1 ; a > b ? 0 : b
POR xmm0, xmm3 ; r = a > b ? a: b

513-168.epsresult

operand 1
127 0

127 0

operand 2
127 0

imm8

compare

all 1s or 0s all 1s or 0s

compare

.   .   .   .   .   .   .   .   .   .   .   .   .   ..   .   .   .   .   .   .   .   .   .   .   .   .   .

.   .   .   .   .   .   .   .   .   .   .   .   .   .



128-Bit Media and Scientific Programming 155

24592—Rev. 3.15—November 2009 AMD64 Technology

In the above sequence, PCMPGTW, PAND, PANDN, and POR operate, in parallel, on all four
elements of the vectors.

Compare and Write Minimum or Maximum.

• PMAXUB—Packed Maximum Unsigned Bytes

• PMINUB—Packed Minimum Unsigned Bytes

• PMAXSW—Packed Maximum Signed Words

• PMINSW—Packed Minimum Signed Words

The PMAXUB and PMINUB instructions compare each of the 8-bit unsigned integer values in the
first operand with the corresponding 8-bit unsigned integer values in the second operand. The
instructions then write the maximum (PMAXUB) or minimum (PMINUB) of the two values for each
comparison into the corresponding byte of the destination.

The PMAXSW and PMINSW instructions perform operations analogous to the PMAXUB and
PMINUB instructions, except on 16-bit signed integer values.

4.5.8 Logical

The vector-logic instructions perform Boolean logic operations, including AND, OR, and exclusive
OR.

And

• PAND—Packed Logical Bitwise AND

• PANDN—Packed Logical Bitwise AND NOT

The PAND instruction performs a logical bitwise AND of the values in the first and second operands
and writes the result to the destination.

The PANDN instruction inverts the first operand (creating a ones-complement of the operand), ANDs
it with the second operand, and writes the result to the destination. Table 4-9 shows an example.

Table 4-9. Example PANDN Bit Values

Operand1 Bit
Operand1 Bit

(Inverted)
Operand2 Bit

PANDN
Result Bit

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0
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Or

• POR—Packed Logical Bitwise OR

The POR instruction performs a logical bitwise OR of the values in the first and second operands and
writes the result to the destination.

Exclusive Or

• PXOR—Packed Logical Bitwise Exclusive OR

The PXOR instruction performs a logical bitwise exclusive OR of the values in the first and second
operands and writes the result to the destination. PXOR can be used to clear all bits in an XMM
register by specifying the same register for both operands.

4.5.9 Save and Restore State

These instructions save and restore the entire processor state for 128-bit media instructions.

Save and Restore 128-Bit, 64-Bit, and x87 State

• FXSAVE—Save XMM, MMX, and x87 State.

• FXRSTOR—Restore XMM, MMX, and x87 State.

The FXSAVE and FXRSTOR instructions save and restore the entire 512-byte processor state for 128-
bit media instructions, 64-bit media instructions, and x87 floating-point instructions. The architecture
supports two memory formats for FXSAVE and FXRSTOR, a 512-byte 32-bit legacy format and a
512-byte 64-bit format. Selection of the 32-bit or 64-bit format is determined by the effective operand
size for the FXSAVE and FXRSTOR instructions. For details, see “FXSAVE and FXRSTOR
Instructions” in Volume 2.

Save and Restore Control and Status

• STMXCSR—Store MXCSR Control/Status Register

• LDMXCSR—Load MXCSR Control/Status Register

The STMXCSR and LDMXCSR instructions save and restore the 32-bit contents of the MXCSR
register. For further information, see “MXCSR Register” on page 117.

4.6 Instruction Summary—Floating-Point Instructions

This section summarizes the functions of the floating-point instructions in the 128-bit media
instruction subset. These include floating-point instructions that use an XMM register for source or
destination and data-conversion instructions that convert from floating-point to integer formats. For a
summary of the integer instructions in the 128-bit media instruction subset, including data-conversion
instructions that convert from integer to floating-point formats, see “Instruction Summary—Integer
Instructions” on page 133.
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For a summary of the 64-bit media floating-point instructions, see “Instruction Summary—Floating-
Point Instructions” on page 223. For a summary of the x87 floating-point instructions, see “Instruction
Summary” on page 261.

The instructions are organized here by functional group—such as data-transfer, vector arithmetic, and
so on. Software running at any privilege level can use any of these instructions, if the CPUID
instruction reports support for the instructions (see “Feature Detection” on page 176). More detail on
individual instructions is given in the alphabetically organized “128-Bit Media Instruction Reference”
in Volume 4.

4.6.1 Syntax

The 128-bit media floating-point instructions have the same syntax rules as those for the 128-bit media
integer instructions, described in “Syntax” on page 133. For an illustration of typical syntax, see
Figure 4-16 on page 134.

4.6.2 Data Transfer

The data-transfer instructions copy operands between 32-bit, 64-bit, or 128-bit memory locations and
XMM registers. The MOV mnemonic, which stands for move, is a misnomer. A copy function is
actually performed instead of a move. A new copy of the source value is created at the destination
address, and the original copy remains unchanged at its source location.

Move

• MOVAPS—Move Aligned Packed Single-Precision Floating-Point

• MOVAPD—Move Aligned Packed Double-Precision Floating-Point

• MOVUPS—Move Unaligned Packed Single-Precision Floating-Point

• MOVUPD—Move Unaligned Packed Double-Precision Floating-Point

• MOVHPS—Move High Packed Single-Precision Floating-Point

• MOVHPD—Move High Packed Double-Precision Floating-Point

• MOVLPS—Move Low Packed Single-Precision Floating-Point

• MOVLPD—Move Low Packed Double-Precision Floating-Point

• MOVHLPS—Move Packed Single-Precision Floating-Point High to Low

• MOVLHPS—Move Packed Single-Precision Floating-Point Low to High

• MOVSS—Move Scalar Single--Precision Floating-Point

• MOVSD—Move Scalar Double-Precision Floating-Point

• MOVDDUP—Move Double-Precision and Duplicate

• MOVSLDUP—Move Single-Precision High and Duplicate

• MOVSHDUP—Move Single-Precision Low and Duplicate

Figure 4-31 on page 159 shows the capabilities of the various floating-point move instructions.
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The MOVAPx instructions copy a vector of four single-precision floating-point values (MOVAPS) or a
vector of two double-precision floating-point values (MOVAPD) from the second operand to the first
operand—i.e., from an XMM register or 128-bit memory location or to another XMM register, or vice
versa. A general-protection exception occurs if a memory operand is not aligned on a 16-byte
boundary.

The MOVUPx instructions perform operations analogous to the MOVAPx instructions, except that
unaligned memory operands do not cause a general-protection exception.
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Figure 4-31. Floating-Point Move Operations

The MOVHPS and MOVHPD instructions copy a vector of two single-precision floating-point values
(MOVHPS) or one double-precision floating-point value (MOVHPD) from a 64-bit memory location
to the high-order 64 bits of an XMM register, or from the high-order 64 bits of an XMM register to a
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64-bit memory location. In the memory-to-register case, the low-order 64 bits of the destination XMM
register are not modified.

The MOVLPS and MOVLPD instructions copy a vector of two single-precision floating-point values
(MOVLPS) or one double-precision floating-point value (MOVLPD) from a 64-bit memory location
to the low-order 64 bits of an XMM register, or from the low-order 64 bits of an XMM register to a 64-
bit memory location. In the memory-to-register case, the high-order 64 bits of the destination XMM
register are not modified.

The MOVHLPS instruction copies a vector of two single-precision floating-point values from the
high-order 64 bits of an XMM register to the low-order 64 bits of another XMM register. The high-
order 64 bits of the destination XMM register are not modified. The MOVLHPS instruction performs
an analogous operation except in the opposite direct (low-order to high-order), and the low-order 64
bits of the destination XMM register are not modified.

The MOVSS instruction copies a scalar single-precision floating-point value from the low-order 32
bits of an XMM register or a 32-bit memory location to the low-order 32 bits of another XMM register,
or vice versa. If the source operand is an XMM register, the high-order 96 bits of the destination XMM
register are not modified. If the source operand is a 32-bit memory location, the high-order 96 bits of
the destination XMM register are cleared to all 0s.

The MOVSD instruction copies a scalar double-precision floating-point value from the low-order 64
bits of an XMM register or a 64-bit memory location to the low-order 64 bits of another XMM register,
or vice versa. If the source operand is an XMM register, the high-order 64 bits of the destination XMM
register are not modified. If the source operand is a memory location, the high-order 64 bits of the
destination XMM register are cleared to all 0s.

The above MOVSD instruction should not be confused with the same-mnemonic MOVSD (move
string doubleword) instruction in the general-purpose instruction set. Assemblers distinguish the two
instructions by their operand data types.

Move with Duplication. These instructions move two copies of the affected data segments from the
source XMM register or 128-bit memory operand to the target destination register.

The MOVDDUP moves one copy of the lower quadword of the source operand into each quadword
half of the destination operand.

The MOVSLDUP instruction moves two copies of the first doubleword of the source operand into the
first two doubleword segments of the destination operand and moves two copies of the third
doubleword of the source operand into the third and fourth doubleword segments of the destination
operand.

The MOVSHDUP instruction moves two copies of the second doubleword of the source operand into
the first two doubleword segments of the destination operand and moves two copies of the fourth
doubleword of the source operand into the upper two doubleword segments of the destination operand.
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Move Non-Temporal. The move non-temporal instructions are streaming-store instructions. They
minimize pollution of the cache.

• MOVNTPD—Move Non-Temporal Packed Double-Precision Floating-Point

• MOVNTPS—Move Non-Temporal Packed Single-Precision Floating-Point

• MOVNTSD—Move Non-Temporal Scalar Double-Precision Floating-Point

• MOVNTSS—Move Non-Temporal Scalar Single-Precision Floating-Point

The MOVNTPx instructions copy four packed single-precision floating-point (MOVNTPS) or two
packed double-precision floating-point (MOVNTPD) values from an XMM register into a 128-bit
memory location.

The MOVNTSx instructions store one double precision floating point XMM register value into a 64 bit
memory location or one single precision floating point XMM register value into a 32-bit memory
location.

These instructions indicate to the processor that their data is non-temporal, which assumes that the
data they reference will be used only once and is therefore not subject to cache-related overhead (as
opposed to temporal data, which assumes that the data will be accessed again soon and should be
cached). The non-temporal instructions use weakly-ordered, write-combining buffering of write data,
and they minimize cache pollution. The exact method by which cache pollution is minimized depends
on the hardware implementation of the instruction. For further information, see “Memory
Optimization” on page 92.

Move Mask

• MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask

• MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask

The MOVMSKPS instruction copies the sign bits of four single-precision floating-point values in an
XMM register to the four low-order bits of a 32-bit or 64-bit general-purpose register, with zero-
extension. The MOVMSKPD instruction copies the sign bits of two double-precision floating-point
values in an XMM register to the two low-order bits of a general-purpose register, with zero-extension.
The result of either instruction is a sign-bit mask that can be used for data-dependent branching. Figure
4-32 shows the MOVMSKPS operation.
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Figure 4-32. MOVMSKPS Move Mask Operation

4.6.3 Data Conversion

The floating-point data-conversion instructions convert floating-point operands to integer operands.

These data-conversion instructions take 128-bit floating-point source operands. For data-conversion
instructions that take 128-bit integer source operands, see “Data Conversion” on page 139. For data-
conversion instructions that take 64-bit source operands, see “Data Conversion” on page 211 and
“Data Conversion” on page 224.

Convert Floating-Point to Floating-Point. These instructions convert floating-point data types in
XMM registers or memory into different floating-point data types in XMM registers.

• CVTPS2PD—Convert Packed Single-Precision Floating-Point to Packed Double-Precision
Floating-Point

• CVTPD2PS—Convert Packed Double-Precision Floating-Point to Packed Single-Precision
Floating-Point

• CVTSS2SD—Convert Scalar Single-Precision Floating-Point to Scalar Double-Precision
Floating-Point

• CVTSD2SS—Convert Scalar Double-Precision Floating-Point to Scalar Single-Precision
Floating-Point

The CVTPS2PD instruction converts two single-precision floating-point values in the low-order 64
bits of the second operand (an XMM register or a 64-bit memory location) to two double-precision
floating-point values in the destination operand (an XMM register).

The CVTPD2PS instruction converts two double-precision floating-point values in the second operand
to two single-precision floating-point values in the low-order 64 bits of the destination. The high-order
64 bits in the destination XMM register are cleared to all 0s. If the result of the conversion is an inexact
value, the value is rounded.
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The CVTSS2SD instruction converts a single-precision floating-point value in the low-order 32 bits of
the second operand to a double-precision floating-point value in the low-order 64 bits of the
destination. The high-order 64 bits in the destination XMM register are not modified.

The CVTSD2SS instruction converts a double-precision floating-point value in the low-order 64 bits
of the second operand to a single-precision floating-point value in the low-order 64 bits of the
destination. The three high-order doublewords in the destination XMM register are not modified. If the
result of the conversion is an inexact value, the value is rounded.

Convert Floating-Point to XMM Integer. These instructions convert floating-point data types in
XMM registers or memory into integer data types in XMM registers.

• CVTPS2DQ—Convert Packed Single-Precision Floating-Point to Packed Doubleword Integers

• CVTPD2DQ—Convert Packed Double-Precision Floating-Point to Packed Doubleword Integers

• CVTTPS2DQ—Convert Packed Single-Precision Floating-Point to Packed Doubleword Integers,
Truncated

• CVTTPD2DQ—Convert Packed Double-Precision Floating-Point to Packed Doubleword
Integers, Truncated

The CVTPS2DQ and CVTTPS2DQ instructions convert four single-precision floating-point values in
the second operand to four 32-bit signed integer values in the destination. For the CVTPS2DQ
instruction, if the result of the conversion is an inexact value, the value is rounded, but for the
CVTTPS2DQ instruction such a result is truncated (rounded toward zero).

The CVTPD2DQ and CVTTPD2DQ instructions convert two double-precision floating-point values
in the second operand to two 32-bit signed integer values in the destination. The high-order 64 bits in
the destination XMM register are cleared to all 0s. For the CVTPD2DQ instruction, if the result of the
conversion is an inexact value, the value is rounded, but for the CVTTPD2DQ instruction such a result
is truncated (rounded toward zero).

For a description of 128-bit media instructions that convert in the opposite direction—integer to
floating-point—see “Convert Integer to Floating-Point” on page 139.

Convert Floating-Point to MMX™ Integer. These instructions convert floating-point data types in
XMM registers or memory into integer data types in MMX registers.

• CVTPS2PI—Convert Packed Single-Precision Floating-Point to Packed Doubleword Integers

• CVTPD2PI—Convert Packed Double-Precision Floating-Point to Packed Doubleword Integers

• CVTTPS2PI—Convert Packed Single-Precision Floating-Point to Packed Doubleword Integers,
Truncated

• CVTTPD2PI—Convert Packed Double-Precision Floating-Point to Packed Doubleword Integers,
Truncated

The CVTPS2PI and CVTTPS2PI instructions convert two single-precision floating-point values in the
low-order 64 bits of an XMM register or a 64-bit memory location to two 32-bit signed integer values
in an MMX register. For the CVTPS2PI instruction, if the result of the conversion is an inexact value,
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the value is rounded, but for the CVTTPS2PI instruction such a result is truncated (rounded toward
zero).

The CVTPD2PI and CVTTPD2PI instructions convert two double-precision floating-point values in
an XMM register or a 128-bit memory location to two 32-bit signed integer values in an MMX register.
For the CVTPD2PI instruction, if the result of the conversion is an inexact value, the value is rounded,
but for the CVTTPD2PI instruction such a result is truncated (rounded toward zero).

Before executing a CVTxPS2PI or CVTxPD2PI instruction, software should ensure that the MMX
registers are properly initialized so as to prevent conflict with their aliased use by x87 floating-point
instructions. This may require clearing the MMX state, as described in “Accessing Operands in
MMX™ Registers” on page 188.

For a description of 128-bit media instructions that convert in the opposite direction—integer in MMX
registers to floating-point in XMM registers—see “Convert MMX Integer to Floating-Point” on
page 139. For a summary of instructions that operate on MMX registers, see Chapter 5, “64-Bit Media
Programming.”

Convert Floating-Point to GPR Integer. These instructions convert floating-point data types in
XMM registers or memory into integer data types in GPR registers.

• CVTSS2SI—Convert Scalar Single-Precision Floating-Point to Signed Doubleword or Quadword
Integer

• CVTSD2SI—Convert Scalar Double-Precision Floating-Point to Signed Doubleword or
Quadword Integer

• CVTTSS2SI—Convert Scalar Single-Precision Floating-Point to Signed Doubleword or
Quadword Integer, Truncated

• CVTTSD2SI—Convert Scalar Double-Precision Floating-Point to Signed Doubleword or
Quadword Integer, Truncated

The CVTSS2SI and CVTTSS2SI instructions convert a single-precision floating-point value in the
low-order 32 bits of an XMM register or a 32-bit memory location to a 32-bit or 64-bit signed integer
value in a general-purpose register. For the CVTSS2SI instruction, if the result of the conversion is an
inexact value, the value is rounded, but for the CVTTSS2SI instruction such a result is truncated
(rounded toward zero).

The CVTSD2SI and CVTTSD2SI instructions convert a double-precision floating-point value in the
low-order 64 bits of an XMM register or a 64-bit memory location to a 32-bit or 64-bit signed integer
value in a general-purpose register. For the CVTSD2SI instruction, if the result of the conversion is an
inexact value, the value is rounded, but for the CVTTSD2SI instruction such a result is truncated
(rounded toward zero).

For a description of 128-bit media instructions that convert in the opposite direction—integer in GPR
registers to floating-point in XMM registers—see “Convert GPR Integer to Floating-Point” on
page 140. For a summary of instructions that operate on GPR registers, see Chapter 3, “General-
Purpose Programming.”
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4.6.4 Data Reordering

The floating-point data-reordering instructions unpack and interleave, or shuffle the elements of vector
operands.

Unpack and Interleave. These instructions interleave vector elements from the high or low halves of
two floating-point source operands.

• UNPCKHPS—Unpack High Single-Precision Floating-Point

• UNPCKHPD—Unpack High Double-Precision Floating-Point

• UNPCKLPS—Unpack Low Single-Precision Floating-Point

• UNPCKLPD—Unpack Low Double-Precision Floating-Point

The UNPCKHPx instructions copy the high-order two single-precision floating-point values
(UNPCKHPS) or one double-precision floating-point value (UNPCKHPD) in the first and second
operands and interleave them into the 128-bit destination. The low-order 64 bits of the source operands
are ignored.

The UNPCKLPx instructions are analogous to their high-element counterparts except that they take
elements from the low quadword of each source vector and ignore elements in the high quadword.

Depending on the hardware implementation, if the source operand for UNPCKHPx or UNPCKLPx is
in memory, only the low 64 bits of the operand may be loaded.

Figure 4-33 shows the UNPCKLPS instruction. The elements are taken from the low half of the source
operands. In this register image, elements from operand2 are placed to the left of elements from
operand1.

Figure 4-33. UNPCKLPS Unpack and Interleave Operation

Shuffle. These instructions reorder the elements of a vector.

• SHUFPS—Shuffle Packed Single-Precision Floating-Point
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• SHUFPD—Shuffle Packed Double-Precision Floating-Point

The SHUFPS instruction moves any two of the four single-precision floating-point values in the first
operand to the low-order quadword of the destination and moves any two of the four single-precision
floating-point values in the second operand to the high-order quadword of the destination. In each
case, the value of the destination is determined by a field in the immediate-byte operand.

Figure 4-34 shows the SHUFPS shuffle operation. SHUFPS is useful, for example, in color imaging
when computing alpha saturation of RGB values. In this case, SHUFPS can replicate an alpha value in
a register so that parallel comparisons with three RGB values can be performed.

Figure 4-34. SHUFPS Shuffle Operation

The SHUFPD instruction moves either of the two double-precision floating-point values in the first
operand to the low-order quadword of the destination and moves either of the two double-precision
floating-point values in the second operand to the high-order quadword of the destination.

4.6.5 Arithmetic

The floating-point vector-arithmetic instructions perform an arithmetic operation on two floating-
point operands.

Addition

• ADDPS—Add Packed Single-Precision Floating-Point

• ADDPD— Add Packed Double-Precision Floating-Point

• ADDSS—Add Scalar Single-Precision Floating-Point

• ADDSD—Add Scalar Double-Precision Floating-Point
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The ADDPS instruction adds each of four single-precision floating-point values in the first operand to
the corresponding single-precision floating-point values in the second operand and writes the result in
the corresponding quadword of the destination. The ADDPD instruction performs an analogous
operation for two double-precision floating-point values.

Figure 4-35 on page 167 shows a typical arithmetic operation on vectors of floating-point single-
precision elements—in this case an ADDPS instruction. The instruction performs four arithmetic
operations in parallel.

Figure 4-35. ADDPS Arithmetic Operation

The ADDSS instruction adds the single-precision floating-point value in the low-order doubleword of
the first operand to the single-precision floating-point value in the low-order doubleword of the second
operand and writes the result in the low-order doubleword of the destination. The three high-order
doublewords of the destination are not modified.

The ADDSD instruction adds the double-precision floating-point value in the low-order quadword of
the first operand to the double-precision floating-point value in the low-order quadword of the second
operand and writes the result in the low-order quadword of the destination. The high-order quadword
of the destination is not modified.

Horizontal Addition

• HADDPS—Horizontal Add Packed Single-Precision Floating-Point

• HADDPD—Horizontal Subtract Packed Double-Precision Floating-Point

The HADDPS instruction adds the single-precision floating point values in the first and second
doublewords of the destination operand and stores the sum in the first doubleword of the destination
operand. It adds the single-precision floating point values in the third and fourth doublewords of the
destination operand and stores the sum in the second doubleword of the destination operand. It adds
the single-precision floating point values in the first and second doublewords of the source operand
and stores the sum in the third doubleword of the destination operand. It adds single-precision floating
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point values in the third and fourth doublewords of the source operand and stores the sum in the fourth
doubleword of the destination operand.

The HADDPD instruction adds the two double-precision floating point values in the quadword halves
of the destination operand and stores the sum in the first quadword of the destination. It adds the values
in the two quadword halves of the source register and stores the sum in the second quadword of the
destination register.

Subtraction

• SUBPS—Subtract Packed Single-Precision Floating-Point

• SUBPD—Subtract Packed Double-Precision Floating-Point

• SUBSS—Subtract Scalar Single-Precision Floating-Point

• SUBSD—Subtract Scalar Double-Precision Floating-Point

The SUBPS instruction subtracts each of four single-precision floating-point values in the second
operand from the corresponding single-precision floating-point value in the first operand and writes
the result in the corresponding quadword of the destination. The SUBPD instruction performs an
analogous operation for two double-precision floating-point values.

For vectors of n number of elements, the operations are:

operand1[i] = operand1[i] - operand2[i]

where: i = 0 to n – 1

The SUBSS instruction subtracts the single-precision floating-point value in the low-order
doubleword of the second operand from the corresponding single-precision floating-point value in the
low-order doubleword of the first operand and writes the result in the low-order doubleword of the
destination. The three high-order doublewords of the destination are not modified.

The SUBSD instruction subtracts the double-precision floating-point value in the low-order quadword
of the second operand from the corresponding double-precision floating-point value in the low-order
quadword of the first operand and writes the result in the low-order quadword of the destination. The
high-order quadword of the destination is not modified.

Horizontal Subtraction

• HSUBPS—Horizontal Subtract Packed Single-Precision Floating-Point

• HSUBPD—Horizontal Subtract Packed Double-Precision Floating-Point

The HSUBPS instruction subtracts the packed-singled precision operand in the second doubleword of
the destination register from that in the first doubleword of the destination register and stores the result
in the first doubleword of the destination register. It subtracts the fourth doubleword of the destination
operand from the third doubleword of the destination operand and stores the result in the second
doubleword of the destination. It subtracts the packed-singled precision operand in the second
doubleword of the source register from that in the first doubleword of the source register and stores the
result in the third doubleword of the destination register. It subtracts the fourth doubleword of the
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source operand from the third doubleword of the source operand and stores the result in the fourth
doubleword of the destination.

The HSUBPD instruction subtracts the second quadword of the destination register from the first
quadword of the destination operand and stores the difference in the first quadword of the destination
register. The difference from the subtraction of the first quadword of the source operand from the
second quadword of the source operand is stored in the second quadword of the destination operand.

Simultaneous Addition and Subtraction

• ADDSUBPS—Add/Subtract Packed Single-Precision Floating-Point

• ADDSUBPD—Add/Subtract Packed Double-Precision Floating-Point

The ADDSUBPS instruction adds the second and fourth doublewords of the source operand to the
second and fourth doublewords, respectively, of the destination operand and stores the resulting sums
in the second and fourth doublewords of the destination operand; subtracts the first and third
doublewords of the first operand from the first and third doublewords of the destination operand and
stores the resulting differences in the first and third doublewords of the destination operand.

The ADDSUBPD instruction subtracts the first quadword of the source operand from the first
quadword of the destination operand and stores the difference in the first quadword of the destination
operand; adds the second quadword of the source operand to the second quadword of the destination
operand and stores the sum in the second quadword of the destination operand.

Multiplication

• MULPS—Multiply Packed Single-Precision Floating-Point

• MULPD—Multiply Packed Double-Precision Floating-Point

• MULSS—Multiply Scalar Single-Precision Floating-Point

• MULSD—Multiply Scalar Double-Precision Floating-Point

The MULPS instruction multiplies each of four single-precision floating-point values in the first
operand by the corresponding single-precision floating-point value in the second operand and writes
the result in the corresponding doubleword of the destination. The MULPD instruction performs an
analogous operation for two double-precision floating-point values.

The MULSS instruction multiplies the single-precision floating-point value in the low-order
doubleword of the first operand by the single-precision floating-point value in the low-order
doubleword of the second operand and writes the result in the low-order doubleword of the destination.
The three high-order doublewords of the destination are not modified.

The MULSD instruction multiplies the double-precision floating-point value in the low-order
quadword of the first operand by the double-precision floating-point value in the low-order quadword
of the second operand and writes the result in the low-order quadword of the destination. The high-
order quadword of the destination is not modified.
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Division

• DIVPS—Divide Packed Single-Precision Floating-Point

• DIVPD—Divide Packed Double-Precision Floating-Point

• DIVSS—Divide Scalar Single-Precision Floating-Point

• DIVSD—Divide Scalar Double-Precision Floating-Point

The DIVPS instruction divides each of the four single-precision floating-point values in the first
operand by the corresponding single-precision floating-point value in the second operand and writes
the result in the corresponding quadword of the destination. The DIVPD instruction performs an
analogous operation for two double-precision floating-point values. For vectors of n number of
elements, the operations are:

operand1[i] = operand1[i] ÷ operand2[i]

where: i = 0 to n – 1

The DIVSS instruction divides the single-precision floating-point value in the low-order doubleword
of the first operand by the single-precision floating-point value in the low-order doubleword of the
second operand and writes the result in the low-order doubleword of the destination. The three high-
order doublewords of the destination are not modified.

The DIVSD instruction divides the double-precision floating-point value in the low-order quadword of
the first operand by the double-precision floating-point value in the low-order quadword of the second
operand and writes the result in the low-order quadword of the destination. The high-order quadword
of the destination is not modified.

If accuracy requirements allow, convert floating-point division by a constant to a multiply by the
reciprocal. Divisors that are powers of two and their reciprocals are exactly representable, and
therefore do not cause an accuracy issue, except for the rare cases in which the reciprocal overflows or
underflows.

Square Root

• SQRTPS—Square Root Packed Single-Precision Floating-Point

• SQRTPD—Square Root Packed Double-Precision Floating-Point

• SQRTSS—Square Root Scalar Single-Precision Floating-Point

• SQRTSD—Square Root Scalar Double-Precision Floating-Point

The SQRTPS instruction computes the square root of each of four single-precision floating-point
values in the second operand (an XMM register or 128-bit memory location) and writes the result in
the corresponding doubleword of the destination. The SQRTPD instruction performs an analogous
operation for two double-precision floating-point values.

The SQRTSS instruction computes the square root of the low-order single-precision floating-point
value in the second operand (an XMM register or 32-bit memory location) and writes the result in the
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low-order doubleword of the destination. The three high-order doublewords of the destination XMM
register are not modified.

The SQRTSD instruction computes the square root of the low-order double-precision floating-point
value in the second operand (an XMM register or 64-bit memory location) and writes the result in the
low-order quadword of the destination. The high-order quadword of the destination XMM register is
not modified.

Reciprocal Square Root

• RSQRTPS—Reciprocal Square Root Packed Single-Precision Floating-Point

• RSQRTSS—Reciprocal Square Root Scalar Single-Precision Floating-Point

The RSQRTPS instruction computes the approximate reciprocal of the square root of each of four
single-precision floating-point values in the second operand (an XMM register or 128-bit memory
location) and writes the result in the corresponding doubleword of the destination.

The RSQRTSS instruction computes the approximate reciprocal of the square root of the low-order
single-precision floating-point value in the second operand (an XMM register or 32-bit memory
location) and writes the result in the low-order doubleword of the destination. The three high-order
doublewords in the destination XMM register are not modified.

For both RSQRTPS and RSQRTSS, the maximum relative error is less than or equal to 1.5 * 2–12.

Reciprocal Estimation

• RCPPS—Reciprocal Packed Single-Precision Floating-Point

• RCPSS—Reciprocal Scalar Single-Precision Floating-Point

The RCPPS instruction computes the approximate reciprocal of each of the four single-precision
floating-point values in the second operand (an XMM register or 128-bit memory location) and writes
the result in the corresponding doubleword of the destination.

The RCPSS instruction computes the approximate reciprocal of the low-order single-precision
floating-point value in the second operand (an XMM register or 32-bit memory location) and writes
the result in the low-order doubleword of the destination. The three high-order doublewords in the
destination are not modified.

For both RCPPS and RCPSS, the maximum relative error is less than or equal to 1.5 * 2–12.

4.6.6 Compare

The floating-point vector-compare instructions compare two operands, and they either write a mask, or
they write the maximum or minimum value, or they set flags. Compare instructions can be used to
avoid branches. Figure 4-10 on page 115 shows an example of using compare instructions.

Compare and Write Mask

• CMPPS—Compare Packed Single-Precision Floating-Point
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• CMPPD—Compare Packed Double-Precision Floating-Point

• CMPSS—Compare Scalar Single-Precision Floating-Point

• CMPSD—Compare Scalar Double-Precision Floating-Point

The CMPPS instruction compares each of four single-precision floating-point values in the first
operand with the corresponding single-precision floating-point value in the second operand and writes
the result in the corresponding 32 bits of the destination. The type of comparison is specified by the
three low-order bits of the immediate-byte operand. The result of each compare is a 32-bit value of all
1s (TRUE) or all 0s (FALSE). Some compare operations that are not directly supported by the
immediate-byte encodings can be implemented by swapping the contents of the source and destination
operands before executing the compare.

The CMPPD instruction performs an analogous operation for two double-precision floating-point
values. The CMPSS instruction performs an analogous operation for the single-precision floating-
point values in the low-order 32 bits of the source operands. The three high-order doublewords of the
destination are not modified. The CMPSD instruction performs an analogous operation for the double-
precision floating-point values in the low-order 64 bits of the source operands. The high-order 64 bits
of the destination XMM register are not modified.

Figure 4-36 shows a CMPPD compare operation.

Figure 4-36. CMPPD Compare Operation

Compare and Write Minimum or Maximum

• MAXPS—Maximum Packed Single-Precision Floating-Point

• MAXPD—Maximum Packed Double-Precision Floating-Point

• MAXSS—Maximum Scalar Single-Precision Floating-Point
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• MAXSD—Maximum Scalar Double-Precision Floating-Point

• MINPS—Minimum Packed Single-Precision Floating-Point

• MINPD—Minimum Packed Double-Precision Floating-Point

• MINSS—Minimum Scalar Single-Precision Floating-Point

• MINSD—Minimum Scalar Double-Precision Floating-Point

The MAXPS and MINPS instructions compare each of four single-precision floating-point values in
the first operand with the corresponding single-precision floating-point value in the second operand
and writes the maximum or minimum, respectively, of the two values in the corresponding doubleword
of the destination. The MAXPD and MINPD instructions perform analogous operations on pairs of
double-precision floating-point values.

The MAXSS and MINSS instructions compare the single-precision floating-point value in the low-
order 32 bits of the first operand with the single-precision floating-point value in the low-order 32 bits
of the second operand and writes the maximum or minimum, respectively, of the two values in the low-
order 32 bits of the destination. The three high-order doublewords of the destination XMM register are
not modified.

The MAXSD and MINSD instructions compare the double-precision floating-point value in the low-
order 64 bits of the first operand with the double-precision floating-point value in the low-order 64 bits
of the second operand and writes the maximum or minimum, respectively, of the two values in the low-
order quadword of the destination. The high-order quadword of the destination XMM register is not
modified.

The MINx and MAXx instructions are useful for clamping (saturating) values, such as color values in
3D geometry and rasterization.

Compare and Write rFLAGS

• COMISS—Compare Ordered Scalar Single-Precision Floating-Point

• COMISD—Compare Ordered Scalar Double-Precision Floating-Point

• UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point

• UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point

The COMISS instruction performs an ordered compare of the single-precision floating-point value in
the low-order 32 bits of the first operand with the single-precision floating-point value in the low-order
32 bits of the second operand and sets the zero flag (ZF), parity flag (PF), and carry flag (CF) bits in
the rFLAGS register to reflect the result of the compare. The OF, AF, and SF bits in rFLAGS are set to
zero.

The COMISD instruction performs an analogous operation on the double-precision floating-point
values in the low-order 64 bits of the source operands. The UCOMISS and UCOMISD instructions
perform an analogous, but unordered, compare operations. Figure 4-37 on page 174 shows a COMISD
compare operation.
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Figure 4-37. COMISD Compare Operation

The difference between an ordered and unordered comparison has to do with the conditions under
which a floating-point invalid-operation exception (IE) occurs. In an ordered comparison (COMISS or
COMISD), an IE exception occurs if either of the source operands is either type of NaN (QNaN or
SNaN). In an unordered comparison, the exception occurs only if a source operand is an SNaN. For a
description of NaNs, see “Floating-Point Number Representation” on page 127. For a description of
exceptions, see “Exceptions” on page 177.

4.6.7 Logical

The vector-logic instructions perform Boolean logic operations, including AND, OR, and exclusive
OR.

And

• ANDPS—Logical Bitwise AND Packed Single-Precision Floating-Point

• ANDPD—Logical Bitwise AND Packed Double-Precision Floating-Point

• ANDNPS—Logical Bitwise AND NOT Packed Single-Precision Floating-Point

• ANDNPD—Logical Bitwise AND NOT Packed Double-Precision Floating-Point

The ANDPS instruction performs a logical bitwise AND of the four packed single-precision floating-
point values in the first operand and the corresponding four single-precision floating-point values in
the second operand and writes the result in the destination. The ANDPD instruction performs an
analogous operation on two packed double-precision floating-point values. The ANDNPS and
ANDNPD instructions invert the elements of the first source vector (creating a one’s complement of
each element), AND them with the elements of the second source vector, and write the result to the
destination.

Or

• ORPS—Logical Bitwise OR Packed Single-Precision Floating-Point
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• ORPD—Logical Bitwise OR Packed Double-Precision Floating-Point

The ORPS instruction performs a logical bitwise OR of four single-precision floating-point values in
the first operand and the corresponding four single-precision floating-point values in the second
operand and writes the result in the destination. The ORPD instruction performs an analogous
operation on pairs of two double-precision floating-point values.

Exclusive Or

• XORPS—Logical Bitwise Exclusive OR Packed Single-Precision Floating-Point

• XORPD—Logical Bitwise Exclusive OR Packed Double-Precision Floating-Point

The XORPS instruction performs a logical bitwise exclusive OR of four single-precision floating-
point values in the first operand and the corresponding four single-precision floating-point values in
the second operand and writes the result in the destination. The XORPD instruction performs an
analogous operation on pairs of two double-precision floating-point values.

4.7 Instruction Effects on Flags

The STMXCSR and LDMXCSR instructions, described in “Save and Restore State” on page 156,
read and write flags in the MXCSR register. For a description of the MXCSR register, see “MXCSR
Register” on page 117.

The COMISS, COMISD, UCOMISS, and UCOMISD instructions, described in “Compare” on
page 171, write flag bits in the rFLAGS register. For a description of the rFLAGS register, see “Flags
Register” on page 33.

4.8 Instruction Prefixes

Instruction prefixes, in general, are described in “Instruction Prefixes” on page 71. The following
restrictions apply to the use of instruction prefixes with 128-bit media instructions.

4.8.1 Supported Prefixes

The following prefixes can be used with 128-bit media instructions:

• Address-Size Override—The 67h prefix affects only operands in memory. The prefix is ignored by
all other 128-bit media instructions.

• Operand-Size Override—The 66h prefix is used to form the opcodes of certain 128-bit media
instructions. The prefix is ignored by all other 128-bit media instructions.

• Segment Overrides—The 2Eh (CS), 36h (SS), 3Eh (DS), 26h (ES), 64h (FS), and 65h (GS)
prefixes affect only operands in memory. In 64-bit mode, the contents of the CS, DS, ES, SS
segment registers are ignored.
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• REP—The F2 and F3h prefixes do not function as repeat prefixes for 128-bit media instructions.
Instead, they are used to form the opcodes of certain 128-bit media instructions. The prefixes are
ignored by all other 128-bit media instructions.

• REX—The REX prefixes affect operands that reference a GPR or XMM register when running in
64-bit mode. It allows access to the full 64-bit width of any of the 16 extended GPRs and to any of
the 16 extended XMM registers. The REX prefix also affects the FXSAVE and FXRSTOR
instructions, in which it selects between two types of 512-byte memory-image format, as described
in “Media and x87 Processor State” in Volume 2. The prefix is ignored by all other 128-bit media
instructions.

4.8.2 Special-Use and Reserved Prefixes

The following prefixes are used as opcode bytes in some 128-bit media instructions and are reserved in
all other 128-bit media instructions:

• Operand-Size Override—The 66h prefix.

• REP—The F2 and F3h prefixes.

4.8.3 Prefixes That Cause Exceptions

The following prefixes cause an exception:

• LOCK—The F0h prefix causes an invalid-opcode exception when used with 128-bit media
instructions.

4.9 Feature Detection

Before executing 128-bit media instructions, software should determine whether the processor
supports the technology by executing the CPUID instruction. “Feature Detection” on page 74
describes how software uses the CPUID instruction to detect feature support. For full support of the
128-bit media instructions documented here, the following features require detection:

• SSE, indicated by EDX bit 25 returned by CPUID function 0000_0001h.

• SSE2, indicated by EDX bit 26 returned by CPUID function 0000_0001h.

• SSE3, indicated by ECX bit 0 returned by CPUID function 0000_0001h.

• SSE4A, indicated by ECX bit 6 returned by CPUID function 8000_0001h.

• FXSAVE and FXRSTOR, indicated by EDX bit 24 returned by CPUID functions 0000_0001h and
8000_0001h.

• Misaligned SSE memory access mode is indicated by ECX bit 7 returned by CPUID function
8000_0001h. (See “Misaligned Exception Mask (MM)” on page 120 for further details.

Software that runs in long mode should also check for the following support:

• Long Mode, indicated by bit 29 of CPUID function 8000_0001h.
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See “Processor Feature Identification” in Volume 2 for a full description of the CPUID instruction and
its function codes.

In addition, the operating system must support the FXSAVE and FXRSTOR instructions (by having
set CR4.OSFXSR = 1), and it may wish to support SIMD floating-point exceptions (by having set
CR4.OSXMMEXCPT = 1). For details, see “System-Control Registers” in Volume 2.

4.10 Exceptions

Types of Exceptions. 128-bit media instructions can generate two types of exceptions:

• General-Purpose Exceptions, described below in “General-Purpose Exceptions”

• SIMD Floating-Point Exception, described below in “SIMD Floating-Point Exception Causes” on
page 178

Relation to x87 Exceptions. Although the 128-bit media instructions and the x87 floating-point
instructions each have certain exceptions with the same names, the exception-reporting and exception-
handling methods used by the two instruction subsets are distinct and independent of each other. If
procedures using both types of instructions are run in the same operating environment, separate
services routines should be provided for the exceptions of each type of instruction subset.

4.10.1 General-Purpose Exceptions

The sections below list general-purpose exceptions generated and not generated by 128-bit media
instructions. For a summary of the general-purpose exception mechanism, see “Interrupts and
Exceptions” on page 86. For details about each exception and its potential causes, see “Exceptions and
Interrupts” in Volume 2.

Exceptions Generated. The 128-bit media instructions can generate the following general-purpose
exceptions:

• #DB—Debug Exception (Vector 1)

• #UD—Invalid-Opcode Exception (Vector 6)

• #NM—Device-Not-Available Exception (Vector 7)

• #DF—Double-Fault Exception (Vector 8)

• #SS—Stack Exception (Vector 12)

• #GP—General-Protection Exception (Vector 13)

• #PF—Page-Fault Exception (Vector 14)

• #MF—x87 Floating-Point Exception-Pending (Vector 16)

• #AC—Alignment-Check Exception (Vector 17)

• #MC—Machine-Check Exception (Vector 18)

• #XF—SIMD Floating-Point Exception (Vector 19)
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A device-not-available exception (#NM) can occur if an attempt is made to execute a 128-bit media
instruction when the task switch bit (TS) of the control register (CR0) is set to 1 (CR0.TS = 1).

An invalid-opcode exception (#UD) can occur if:

• a CPUID feature flag indicates that a feature is not supported (see “Feature Detection” on
page 176), or

• an FXSAVE or FXRSTOR instruction is executed when the floating-point software-emulation
(EM) bit in control register 0 is set to 1 (CR0.EM = 1), or

• a SIMD floating-point exception occurs when the operating-system XMM exception support bit
(OSXMMEXCPT) in control register 4 is cleared to 0 (CR4.OSXMMEXCPT = 0).

Only the following 128-bit media instructions, all of which can access an MMX register, can cause an
#MF exception:

• Data Conversion: CVTPD2PI, CVTPS2PI, CPTPI2PD, CVTPI2PS, CVTTPD2PI, CVTTPS2PI.

• Data Transfer: MOVDQ2Q, MOVQ2DQ.

For details on the system control-register bits, see “System-Control Registers” in Volume 2. For details
on the machine-check mechanism, see “Machine Check Mechanism” in Volume 2.

For details on #XF exceptions, see “SIMD Floating-Point Exception Causes” on page 178.

Exceptions Not Generated. The 128-bit media instructions do not generate the following general-
purpose exceptions:

• #DE—Divide-by-zero-error exception (Vector 0)

• Non-Maskable-Interrupt Exception (Vector 2)

• #BP—Breakpoint Exception (Vector 3)

• #OF—Overflow exception (Vector 4)

• #BR—Bound-range exception (Vector 5)

• Coprocessor-segment-overrun exception (Vector 9)

• #TS—Invalid-TSS exception (Vector 10)

• #NP—Segment-not-present exception (Vector 11)

• #MC—Machine-check exception (Vector 18)

For details on all general-purpose exceptions, see “Exceptions and Interrupts” in Volume 2.

4.10.2 SIMD Floating-Point Exception Causes

The SIMD floating-point exception is the logical OR of the six floating-point exceptions (IE, DE, ZE,
OE, UE, PE) that are reported (signalled) in the MXCSR register’s exception flags (“MXCSR
Register” on page 117). Each of these six exceptions can be either masked or unmasked by software,
using the mask bits in the MXCSR register.
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Exception Vectors. The SIMD floating-point exception is listed above as #XF (Vector 19) but it
actually causes either an #XF exception or a #UD (Vector 6) exception, if an unmasked IE, DE, ZE,
OE, UE, or PE exception is reported. The choice of exception vector is determined by the operating-
system XMM exception support bit (OSXMMEXCPT) in control register 4 (CR4):

• When CR4.OSXMMEXCPT = 1, a #XF exception occurs.

• When CR4.OSXMMEXCPT = 0, a #UD exception occurs.

SIMD floating-point exceptions are precise. If an exception occurs when it is masked, the processor
responds in a default way that does not invoke the SIMD floating-point exception service routine. If an
exception occurs when it is unmasked, the processor suspends processing of the faulting instruction
precisely and invokes the exception service routine.

Exception Types and Flags. SIMD floating-point exceptions are differentiated into six types, five
of which are mandated by the IEEE 754 standard. These six types and their bit-flags in the MXCSR
register are shown in Table 4-10. The causes and handling of such exceptions are described below.

The sections below describe the causes for the SIMD floating-point exceptions. The pseudocode
equations in these descriptions assume logical TRUE = 1 and the following definitions:

Maxnormal

The largest normalized number that can be represented in the destination format. This is equal to
the format’s largest representable finite, positive or negative value. (Normal numbers are described
in “Normalized Numbers” on page 128.)

Minnormal

The smallest normalized number that can be represented in the destination format. This is equal to
the format’s smallest precisely representable positive or negative value with an unbiased exponent
of 1.

Table 4-10. SIMD Floating-Point Exception Flags

Exception and
Mnemonic MXCSR Bit1

Comparable IEEE 754
Exception

Invalid-operation exception (IE) 0 Invalid Operation

Denormalized operation exception (DE) 1 none

Zero-divide exception (ZE) 2 Division by Zero

Overflow exception (OE) 3 Overflow

Underflow exception (UE) 4 Underflow

Precision exception (PE) 5 Inexact

Note:
1. See “MXCSR Register” on page 117 for a summary of each exception.
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Resultinfinite

A result of infinite precision, which is representable when the width of the exponent and the width
of the significand are both infinite.

Resultround

A result, after rounding, whose unbiased exponent is infinitely wide and whose significand is the
width specified for the destination format. (Rounding is described in “Floating-Point Rounding”
on page 132.)

Resultround, denormal

A result, after rounding and denormalization. (Denormalization is described in “Denormalized
(Tiny) Numbers” on page 128.)

Masked and unmasked responses to the exceptions are described in “SIMD Floating-Point Exception
Masking” on page 184. The priority of the exceptions is described in “SIMD Floating-Point Exception
Priority” on page 182.

Invalid-Operation Exception (IE). The IE exception occurs due to one of the attempted invalid
operations shown in Table 4-11.

Table 4-11. Invalid-Operation Exception (IE) Causes

Operation Condition

Any Arithmetic Operation, and
CVTPS2PD, CVTPD2PS, CVTSS2SD, CVTSD2SS

A source operand is an SNaN

MAXPS, MAXPD, MAXSS, MAXSD
MINPS, MINPD, MINSS, MINSD
CMPPS, CMPPD, CMPSS, CMPSD
COMISS, COMISD

A source operand is a NaN (QNaN or SNaN)

ADDPS, ADDPD, ADDSS, ADDSD, ADDSUBPS.
ADDSUBPD, HADDPS, HADDPD

Source operands are infinities with opposite signs

SUBPS, SUBPD, SUBSS, SUBSD, ADDSUBPS,
ADDSUBPD, HSUBPS, HSUBPD

Source operands are infinities with same sign

MULPS, MULPD, MULSS, MULSD Source operands are zero and infinity

DIVPS, DIVPD, DIVSS, DIVSD Source operands are both infinity or both zero

SQRTPS, SQRTPD, SQRTSS, SQRTSD
Source operand is less than zero (except ±0, which
returns ±0)

Data conversion from floating-point to integer
(CVTPS2PI, CVTPD2PI, CVTSS2SI, CVTSD2SI,
CVTPS2DQ, CVTPD2DQ, CVTTPS2PI, CVTTPD2PI,
CVTTPD2DQ, CVTTPS2DQ, CVTTSS2SI,
CVTTSD2SI)

Source operand is a NaN, infinite, or not
representable in destination data type
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Denormalized-Operand Exception (DE). The DE exception occurs when one of the source
operands of an instruction is in denormalized form, as described in “Denormalized (Tiny) Numbers”
on page 128.

Zero-Divide Exception (ZE). The ZE exception occurs when and instruction attempts to divide zero
into a non-zero finite dividend.

Overflow Exception (OE). The OE exception occurs when the value of a rounded floating-point
result is larger than the largest representable normalized positive or negative floating-point number in
the destination format. Specifically:

OE = Resultround > Maxnormal

An overflow can occur through computation or through conversion of higher-precision numbers to
lower-precision numbers.

Underflow Exception (UE). The UE exception occurs when the value of a rounded, non-zero
floating-point result is too small to be represented as a normalized positive or negative floating-point
number in the destination format. Such a result is called a tiny number, associated with the “Precision
Exception (PE)” described immediately below.

If UE exceptions are masked by the underflow mask (UM) bit, a UE exception occurs only if the
denormalized form of the rounded result is imprecise. Specifically:

UE = ((UM=0 and (Resultround < Minnormal) or
((UM=1 and (Resultround, denormal ) != Resultinfinite)

Underflows can occur, for example, by taking the reciprocal of the largest representable number, or by
converting small numbers in double-precision format to a single-precision format, or simply through
repeated division. The flush-to-zero (FZ) bit in the MXCSR offers additional control of underflows
that are masked. See “MXCSR Register” on page 117 for details.

Precision Exception (PE). The PE exception, also called the inexact-result exception, occurs when a
rounded floating-point result differs from the infinitely precise result and thus cannot be represented
precisely in the destination format. This exception is caused by—among other things—rounding of
underflow or overflow results according to the rounding control (RC) field in the MXCSR, as
described in “Floating-Point Rounding” on page 132.

If an overflow or underflow occurs and the OE or UE exceptions are masked by the overflow mask
(OM) or underflow mask (UM) bit, a PE exception occurs only if the rounded result (for OE) or the
denormalized form of the rounded result (for UE) is imprecise. Specifically:

PE = ((Resultround, denormal or Resultround ) != Resultinfinite) or
(OM=1 and (Resultround > Maxnormal)) or
(UM=1 and (Resultround, denormal < Minnormal))

Software that does not require exact results normally masks this exception.



182 128-Bit Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.15—November 2009

4.10.3 SIMD Floating-Point Exception Priority

Figure 4-12 on page 182 shows the priority with which the processor recognizes multiple,
simultaneous SIMD floating-point exceptions and operations involving QNaN operands. Each
exception type is characterized by its timing, as follows:

• Pre-Computation—an exception that is recognized before an instruction begins its operation.

• Post-Computation—an exception that is recognized after an instruction completes its operation.

For masked (but not unmasked) post-computation exceptions, a result may be written to the
destination, depending on the type of exception. Operations involving QNaNs do not necessarily cause
exceptions, but the processor handles them with the priority shown in Table 4-12 relative to the
handling of exceptions.

Figure 4-38 on page 183 shows the prioritized procedure used by the processor to detect and report
SIMD floating-point exceptions. Each of the two types of exceptions—pre-computation and post-
computation—is handled independently and completely in the sequence shown. If there are no
unmasked exceptions, the processor responds to masked exceptions. Because of this two-step process,
up to two exceptions—one pre-computation, one post-computation—can be caused by a single
instruction.

Table 4-12. Priority of SIMD Floating-Point Exceptions

Priority Exception or Operation Timing

1
Invalid-operation exception (IE) when accessing
SNaN operand

Pre-Computation

2 Operation involving a QNaN operand1 —

3
Any other type of invalid-operation exception (IE) Pre-Computation

Zero-divide exception (ZE) Pre-Computation

4 Denormalized operation exception (DE) Pre-Computation

5
Overflow exception (OE) Post-Computation

Underflow exception (UE) Post-Computation

6 Precision (inexact) exception (PE) Post-Computation

Note:
1. Operations involving QNaN operands do not, in themselves, cause exceptions but they are

handled with this priority relative to the handling of exceptions.
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Figure 4-38. SIMD Floating-Point Detection Process
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4.10.4 SIMD Floating-Point Exception Masking

The six floating-point exception flags have corresponding exception-flag masks in the MXCSR
register, as shown in Table 4-13.

Each mask bit, when set to 1, inhibits invocation of the exception handler for that exception and
instead causes a default response. Thus, an unmasked exception is one that invokes its exception
handler when it occurs, whereas a masked exception continues normal execution using the default
response for the exception type. During power-on initialization, all exception-mask bits in the MXCSR
register are set to 1 (masked).

Masked Responses. The occurrence of a masked exception does not invoke its exception handler
when the exception condition occurs. Instead, the processor handles masked exceptions in a default
way, as shown in Table 4-14 on page 185.

Table 4-13. SIMD Floating-Point Exception Masks

Exception Mask
and Mnemonic

MXCSR Bit
Comparable IEEE 754

Exception

Invalid-operation exception mask (IM) 7 Invalid Operation

Denormalized-operand exception mask (DM) 8 none

Zero-divide exception mask (ZM) 9 Division by Zero

Overflow exception mask (OM) 10 Overflow

Underflow exception mask (UM) 11 Underflow

Precision exception mask (PM) 12 Inexact
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Table 4-14. Masked Responses to SIMD Floating-Point Exceptions

Exception Operation1 Processor Response2

Invalid-
operation
exception (IE)

Any of the following, in which one or both operands is an
SNaN:
• Addition (ADDPS, ADDPD, ADDSS, ADDSD,

ADDSUBPD, ADDSUBPS, HADDPS, HADDPD), or
• Subtraction (SUBPS, SUBPD, SUBSS, SUBSD,

ADDSUBPD, ADDSUBPS, HSUBPD, HSUBPS), or
• Multiplication (MULPS, MULPD, MULSS, MULSD), or
• Division (DIVPS, DIVPD, DIVSS, DIVSD), or
• Square-root (SQRTPS, SQRTPD, SQRTSS, SQRTSD),

or
• Data conversion of floating-point to floating-point

(CVTPS2PD, CVTPD2PS, CVTSS2SD, CVTSD2SS).

Return a QNaN, based on
the rules in Table 4-5 on
page 130.

• Addition of infinities with opposite sign (ADDPS, ADDPD,
ADDSS, ADDSD, ADDSUBPS, ADDSUBPD, HADDPD,
HADDPS), or

• Subtraction of infinities with same sign (SUBPS, SUBPD,
SUBSS, SUBSD, ADDSUBPS, ADDSUBPD, HSUBPS,
HSUBPD), or

• Multiplication of zero by infinity (MULPS, MULPD,
MULSS, MULSD), or

• Division of zero by zero or infinity by infinity (DIVPS,
DIVPD, DIVSS, DIVSD), or

• Square-root in which the operand is non-zero negative
(SQRTPS, SQRTPD, SQRTSS, SQRTSD).

Return the floating-point
indefinite value.

Any of the following, in which one or both operands is a
NaN:
• Maximum or Minimum (MAXPS, MAXPD, MAXSS,

MAXSD MINPS, MINPD, MINSS, MINSD)

Return second source
operand.

Compare, in which one or
both operands is a NaN
(CMPPS, CMPPD, CMPSS,
CMPSD).

Compare is unordered or not-
equal

Return mask of all 1s.

All other compares Return mask of all 0s.

Note:
1. For complete details about operations, see “SIMD Floating-Point Exception Causes” on page 178.
2. In all cases, the processor sets the associated exception flag in MXCSR. For details about number representation,

see “Floating-Point Number Representation” on page 127 and “Floating-Point Number Encodings” on page 130.
3. This response does not comply with the IEEE 754 standard, but it offers higher performance.
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Invalid-
operation
exception (IE)

Ordered or unordered scalar compare, in which one or both
operands is a NaN (COMISS, COMISD, UCOMISS,
UCOMISD).

Sets the result in rFLAGS to
“unordered.”
Clear the overflow (OF), sign
(SF), and auxiliary carry
(AF) flags in rFLAGS.

Data conversion from floating-point to integer, in which
source operand is a NaN, infinity, or is larger than the
representable value of the destination (CVTPS2PI,
CVTPD2PI, CVTSS2SI, CVTSD2SI, CVTPS2DQ,
CVTPD2DQ, CVTTPS2PI, CVTTPD2PI, CVTTPD2DQ,
CVTTPS2DQ, CVTTSS2SI, CVTTSD2SI).

Return the integer indefinite
value.

Denormalized-
operand
exception (DE)

One or both operands is denormal
Return the result using the
denormal operand(s).

Zero-divide
exception (ZE)

Divide (DIVx) zero with non-zero finite dividend
Return signed infinity, with
sign bit = XOR of the
operand sign bits.

Overflow
exception (OE)

Overflow when rounding
mode = round to nearest

Sign of result is positive Return +∞.

Sign of result is negative Return –∞.

Overflow when rounding
mode = round toward +∞

Sign of result is positive Return +∞.

Sign of result is negative
Return finite negative
number with largest
magnitude.

Overflow when rounding
mode = round toward -∞

Sign of result is positive
Return finite positive
number with largest
magnitude.

Sign of result is negative Return –∞.

Overflow when rounding
mode = round toward 0

Sign of result is positive
Return finite positive
number with largest
magnitude.

Sign of result is negative
Return finite negative
number with largest
magnitude.

Underflow
exception (UE)

Inexact denormalized result

MXCSR flush-to-zero (FZ)
bit = 0

Set PE flag and return
denormalized result.

MXCSR flush-to-zero (FZ)
bit = 1

Set PE flag and return zero,

with sign of true result.3

Table 4-14. Masked Responses to SIMD Floating-Point Exceptions (continued)

Exception Operation1 Processor Response2

Note:
1. For complete details about operations, see “SIMD Floating-Point Exception Causes” on page 178.
2. In all cases, the processor sets the associated exception flag in MXCSR. For details about number representation,

see “Floating-Point Number Representation” on page 127 and “Floating-Point Number Encodings” on page 130.
3. This response does not comply with the IEEE 754 standard, but it offers higher performance.
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Unmasked Responses. If the processor detects an unmasked exception, it sets the associated
exception flag in the MXCSR register and invokes the SIMD floating-point exception handler. The
processor does not write a result or change any of the source operands for any type of unmasked
exception. The exception handler must determine which exception occurred (by examining the
exception flags in the MXCSR register) and take appropriate action.

In all cases of unmasked exceptions, before calling the exception handler, the processor examines the
CR4.OSXMMEXCPT bit to see if it is set to 1. If it is set, the processor calls the #XF exception (vector
19). If it is cleared, the processor calls the #UD exception (vector 6). See “System-Control Registers”
in Volume 2 for details.

For details about the operations that can cause unmasked exceptions, see “SIMD Floating-Point
Exception Causes” on page 178 and Table 4-14 on page 185.

Using NaNs in IE Diagnostic Exceptions. Both SNaNs and QNaNs can be encoded with many
different values to carry diagnostic information. By means of appropriate masking and unmasking of
the invalid-operation exception (IE), software can use signaling NaNs to invoke an exception handler.
Within the constraints imposed by the encoding of SNaNs and QNaNs, software may freely assign the
bits in the significand of a NaN. See “Not a Number (NaN)” on page 129 for format details.

For example, software can pre-load each element of an array with a signaling NaN that encodes the
array index. When an application accesses an uninitialized array element, the invalid-operation
exception is invoked and the service routine can identify that element. A service routine can store
debug information in memory as the exceptions occur. The routine can create a QNaN that references
its associated debug area in memory. As the program runs, the service routine can create a different
QNaN for each error condition, so that a single test-run can identify a collection of errors.

Precision
exception (PE)

Inexact normalized or
denormalized result

Without OE or UE exception Return rounded result.

With masked OE or UE
exception

Respond as for OE or UE
exception.

With unmasked OE or UE
exception

Respond as for OE or UE
exception, and invoke SIMD
exception handler.

Table 4-14. Masked Responses to SIMD Floating-Point Exceptions (continued)

Exception Operation1 Processor Response2

Note:
1. For complete details about operations, see “SIMD Floating-Point Exception Causes” on page 178.
2. In all cases, the processor sets the associated exception flag in MXCSR. For details about number representation,

see “Floating-Point Number Representation” on page 127 and “Floating-Point Number Encodings” on page 130.
3. This response does not comply with the IEEE 754 standard, but it offers higher performance.
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4.11 Saving, Clearing, and Passing State

4.11.1 Saving and Restoring State

In general, system software should save and restore 128-bit media state between task switches or other
interventions in the execution of 128-bit media procedures. Virtually all modern operating systems
running on x86 processors implement preemptive multitasking that handle saving and restoring of
state across task switches, independent of hardware task-switch support. However, application
procedures are also free to save and restore 128-bit media state at any time they deem useful.

Software running at any privilege level may save and restore 128-bit media state by executing the
FXSAVE instruction, which saves not only 128-bit media state but also x87 floating-point state.
Alternatively, software may use multiple move instructions for saving only the contents of selected
128-bit media data registers, or the STMXCSR instruction for saving the MXCSR register state. For
details, see “Save and Restore State” on page 156.

4.11.2 Parameter Passing

128-bit media procedures can use MOVx instructions to pass data to other such procedures. This can
be done directly, via the XMM registers, or indirectly by storing data on the procedure stack. When
storing to the stack, software should use the rSP register for the memory address and, after the save,
explicitly decrement rSP by 16 for each 128-bit XMM register parameter stored on the stack.
Likewise, to load a 128-bit XMM register from the stack, software should increment rSP by 16 after
the load. There is a choice of MOVx instructions designed for aligned and unaligned moves, as
described in “Data Transfer” on page 135 and “Data Transfer” on page 157.

The processor does not check the data type of instruction operands prior to executing instructions. It
only checks them at the point of execution. For example, if the processor executes an arithmetic
instruction that takes double-precision operands but is provided with single-precision operands by
MOVx instructions, the processor will first convert the operands from single precision to double
precision prior to executing the arithmetic operation, and the result will be correct. However, the
required conversion may cause degradation of performance.

Because of this possibility of data-type mismatching between MOVx instructions used to pass
parameters and the instructions in the called procedure that subsequently operate on the moved data,
the calling procedure should save its own state prior to the call. The called procedure cannot determine
the caller’s data types, and thus it cannot optimize its choice of instructions for storing a caller’s state.

For further information, see the software optimization documentation for particular hardware
implementations.

4.11.3 Accessing Operands in MMX™ Registers

Software may freely mix 128-bit media instructions (integer or floating-point) with 64-bit media
instructions (integer or floating-point) and general-purpose instructions in a single procedure. There
are no restrictions on transitioning from 128-bit media procedures to x87 procedures, except when a
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128-bit media procedure accesses an MMX register by means of a data-transfer or data-conversion
instruction.

In such cases, software should separate such procedures or dynamic link libraries (DLLs) from x87
floating-point procedures or DLLs by clearing the MMX state with the EMMS instruction, as
described in “Exit Media State” on page 209. For further details, see “Mixing Media Code with x87
Code” on page 233.

4.12 Performance Considerations

In addition to typical code optimization techniques, such as those affecting loops and the inlining of
function calls, the following considerations may help improve the performance of application
programs written with 128-bit media instructions.

These are implementation-independent performance considerations. Other considerations depend on
the hardware implementation. For information about such implementation-dependent considerations
and for more information about application performance in general, see the data sheets and the
software-optimization guides relating to particular hardware implementations.

4.12.1 Use Small Operand Sizes

The performance advantages available with 128-bit media operations is to some extent a function of
the data sizes operated upon. The smaller the data size, the more data elements that can be packed into
single 128-bit vectors. The parallelism of computation increases as the number of elements per vector
increases.

4.12.2 Reorganize Data for Parallel Operations

Much of the performance benefit from the 128-bit media instructions comes from the parallelism
inherent in vector operations. It can be advantageous to reorganize data before performing arithmetic
operations so that its layout after reorganization maximizes the parallelism of the arithmetic
operations.

The speed of memory access is particularly important for certain types of computation, such as
graphics rendering, that depend on the regularity and locality of data-memory accesses. For example,
in matrix operations, performance is high when operating on the rows of the matrix, because row bytes
are contiguous in memory, but lower when operating on the columns of the matrix, because column
bytes are not contiguous in memory and accessing them can result in cache misses. To improve
performance for operations on such columns, the matrix should first be transposed. Such
transpositions can, for example, be done using a sequence of unpacking or shuffle instructions.

4.12.3 Remove Branches

Branch can be replaced with 128-bit media instructions that simulate predicated execution or
conditional moves, as described in “Branch Removal” on page 114. The branch can be replaced with
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128-bit media instructions that simulate predicated execution or conditional moves. Figure 4-10 on
page 115 shows an example of a non-branching sequence that implements a two-way multiplexer.

Where possible, break long dependency chains into several shorter dependency chains that can be
executed in parallel. This is especially important for floating-point instructions because of their longer
latencies.

4.12.4 Use Streaming Stores

The MOVNTDQ, MOVNTDQA and MASKMOVDQU instructions store streaming (non-temporal)
data to memory. These instructions indicate to the processor that the data they reference will be used
only once and is therefore not subject to cache-related overhead (such as write-allocation). A typical
case benefitting from streaming stores occurs when data written by the processor is never read by the
processor, such as data written to a graphics frame buffer.

4.12.5 Align Data

Data alignment is particularly important for performance when data written by one instruction is read
by a subsequent instruction soon after the write, or when accessing streaming (non-temporal) data.
These cases may occur frequently in 128-bit media procedures.

Accesses to data stored at unaligned locations may benefit from on-the-fly software alignment or from
repetition of data at different alignment boundaries, as required by different loops that process the data.

4.12.6 Organize Data for Cacheability

Pack small data structures into cache-line-size blocks. Organize frequently accessed constants and
coefficients into cache-line-size blocks and prefetch them. Procedures that access data arranged in
memory-bus-sized blocks, or memory-burst-sized blocks, can make optimum use of the available
memory bandwidth.

For data that will be used only once in a procedure, consider using non-cacheable memory. Accesses to
such memory are not burdened by the overhead of cache protocols.

4.12.7 Prefetch Data

Media applications typically operate on large data sets. Because of this, they make intensive use of the
memory bus. Memory latency can be substantially reduced—especially for data that will be used only
once—by prefetching such data into various levels of the cache hierarchy. Software can use the
PREFETCHx instructions very effectively in such cases, as described in “Cache and Memory
Management” on page 66.

Some of the best places to use prefetch instructions are inside loops that process large amounts of data.
If the loop goes through less than one cache line of data per iteration, partially unroll the loop. Try to
use virtually all of the prefetched data. This usually requires unit-stride memory accesses—those in
which all accesses are to contiguous memory locations. Exactly one PREFETCHx instruction per
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cache line must be used. For further details, see the Optimization Guide for AMD Athlon™ 64 and
AMD Opteron™ Processors, order# 25112.

4.12.8 Use 128-Bit Media Code for Moving Data

Movements of data between memory, GPR, XMM, and MMX registers can take advantage of the
parallel vector operations supported by the 128-bit media MOVx instructions. Figure 4-6 on page 111
illustrates the range of move operations available.

4.12.9 Retain Intermediate Results in XMM Registers

Keep intermediate results in the XMM registers as much as possible, especially if the intermediate
results are used shortly after they have been produced. Avoid spilling intermediate results to memory
and reusing them shortly thereafter. In 64-bit mode, the architecture’s 16 XMM registers offer twice
the number of legacy XMM registers.

4.12.10 Replace GPR Code with 128-Bit Media Code.

In 64-bit mode, the AMD64 architecture provides twice the number of general-purpose registers
(GPRs) as the legacy x86 architecture, thereby reducing potential pressure on GPRs. Nevertheless,
general-purpose instructions do not operate in parallel on vectors of elements, as do 128-bit media
instructions. Thus, 128-bit media code supports parallel operations and can perform better with
algorithms and data that are organized for parallel operations.

4.12.11 Replace x87 Code with 128-Bit Media Code

One of the most useful advantages of 128-bit media instructions is the ability to intermix integer and
floating-point instructions in the same procedure, using a register set that is separate from the GPR,
MMX, and x87 register sets. Code written with 128-bit media floating-point instructions can operate
in parallel on four times as many single-precision floating-point operands as can x87 floating-point
code. This achieves potentially four times the computational work of x87 instructions that take single-
precision operands. Also, the higher density of 128-bit media floating-point operands may make it
possible to remove local temporary variables that would otherwise be needed in x87 floating-point
code. 128-bit media code is also easier to write than x87 floating-point code, because the XMM
register file is flat, rather than stack-oriented, and in 64-bit mode there are twice the number of XMM
registers as x87 registers. Moreover, when integer and floating-point instructions must be used
together, 128-bit media floating-point instructions avoid the potential need to save and restore state
between integer operations and floating-point procedures.
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5 64-Bit Media Programming

This chapter describes the 64-bit media programming model. This model includes all instructions that
access the MMX™ registers, including the MMX and 3DNow!™ instructions, as well as some SSE
and SSE2 instructions.

The 64-bit media instructions perform integer and floating-point operations primarily on vector
operands (a few of the instructions take scalar operands). The MMX integer operations produce
signed, unsigned, and/or saturating results. The 3DNow! floating-point operations take single-
precision operands and produce saturating results without generating floating-point exceptions. The
instructions that take vector operands can speed up certain types of procedures by significant factors,
depending on data-element size and the regularity and locality of data accesses to memory.

The term 64-bit is used in two different contexts within the AMD64 architecture: the 64-bit media
instructions, described in this chapter, and the 64-bit operating mode, described in “64-Bit Mode” on
page 6.

5.1 Origins

The 64-bit media instructions were introduced in the following extensions to the legacy x86
architecture:

• MMX Instructions—These are primarily integer instructions that take vector operands in 64-bit
MMX registers or memory locations.

• 3DNow! Instructions—These are primarily floating-point instructions, most of which take vector
operands in MMX registers or memory locations.

• SSE, SSE2, SSE3, and SSE4A Instructions—These are the streaming SIMD extensions (SSE),
SSE2, SSE3, and SSE4A instructions. Some of them perform conversions between operands in the
64-bit MMX register set and other register sets.

For details on the extension-set origin of each instruction, see “Instruction Subsets vs. CPUID Feature
Sets” in Volume 3.

5.2 Compatibility

64-bit media instructions can be executed in any of the architecture’s operating modes. Existing MMX
and 3DNow! binary programs run in legacy and compatibility modes without modification. The
support provided by the AMD64 architecture for such binaries is identical to that provided by legacy
x86 architectures.

To run in 64-bit mode, 64-bit media programs must be recompiled. The recompilation has no side
effects on such programs, other than to make available the extended general-purpose registers and 64-
bit virtual address space.
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The MMX and 3DNow! instructions introduce no additional registers, status bits, or other processor
state to the legacy x86 architecture. Instead, they use the x87 floating-point registers that have long
been a part of most x86 architectures. Because of this, 64-bit media procedures require no special
operating-system support or exception handlers. When state-saves are required between procedures,
the same instructions that system software uses to save and restore x87 floating-point state also save
and restore the 64-bit media-programming state.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. Relevant recommendations are provided below and in the
AMD64 Programmer’s Manual Volume 4: 64-Bit Media and x87 Floating-Point Instructions.

5.3 Capabilities

The 64-bit media instructions are designed to support multimedia and communication applications
that operate on vectors of small-sized data elements. For example, 8-bit and 16-bit integer data
elements are commonly used for pixel information in graphics applications, and 16-bit integer data
elements are used for audio sampling. The 64-bit media instructions allow multiple data elements like
these to be packed into single 64-bit vector operands located in an MMX register or in memory. The
instructions operate in parallel on each of the elements in these vectors. For example, 8-bit integer data
can be packed in vectors of eight elements in a single 64-bit register, so that a single instruction can
operated on all eight byte elements simultaneously.

Typical applications of the 64-bit media integer instructions include music synthesis, speech synthesis,
speech recognition, audio and video compression (encoding) and decompression (decoding), 2D and
3D graphics (including 3D texture mapping), and streaming video. Typical applications of the 64-bit
media floating-point instructions include digital signal processing (DSP) kernels and front-end 3D
graphics algorithms, such as geometry, clipping, and lighting.

These types of applications are referred to as media applications. Such applications commonly use
small data elements in repetitive loops, in which the typical operations are inherently parallel. In 256-
color video applications, for example, 8-bit operands in 64-bit MMX registers can be used to compute
transformations on eight pixels per instruction.

5.3.1 Parallel Operations

Most of the 64-bit media instructions perform parallel operations on vectors of operands. Vector
operations are also called packed or SIMD (single-instruction, multiple-data) operations. They take
operands consisting of multiple elements and operate on all elements in parallel. Figure 5-1 on
page 195 shows an example of an integer operation on two vectors, each containing 16-bit (word)
elements. There are also 64-bit media instructions that operate on vectors of byte or doubleword
elements.
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Figure 5-1. Parallel Integer Operations on Elements of Vectors

5.3.2 Data Conversion and Reordering

The 64-bit media instructions support conversions of various integer data types to floating-point data
types, and vice versa.

There are also instructions that reorder vector-element ordering or the bit-width of vector elements.
For example, the unpack instructions take two vector operands and interleave their low or high
elements. Figure 5-2 on page 196 shows an unpack operation (PUNPCKLWD) that interleaves low-
order elements of each source operand. If each element of operand 2 has the value zero, the operation
zero-extends each element of operand 1 to twice its original width. This may be useful, for example,
prior to an arithmetic operation in which the data-conversion result must be paired with another source
operand containing vector elements that are twice the width of the pre-conversion (half-size) elements.
There are also pack instructions that convert each element of 2x size in a pair of vectors to elements of
1x size, with saturation at maximum and minimum values.
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Figure 5-2. Unpack and Interleave Operation

Figure 5-3 shows a shuffle operation (PSHUFW), in which one of the operands provides vector data,
and an immediate byte provides shuffle control for up to 256 permutations of the data.

Figure 5-3. Shuffle Operation (1 of 256)

5.3.3 Matrix Operations

Media applications often multiply and accumulate vector and matrix data. In 3D graphics applications,
for example, objects are typically represented by triangles, each of whose vertices are located in 3D
space by a matrix of coordinate values, and matrix transforms are performed to simulate object
movement.

The 64-bit media integer and floating-point instructions can perform several types of matrix-vector or
matrix-matrix operations, such as addition, subtraction, multiplication, and accumulation. The integer
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instructions can also perform multiply-accumulate operations. Efficient matrix multiplication is
further supported with instructions that can first transpose the elements of matrix rows and columns.
These transpositions can make subsequent accesses to memory or cache more efficient when
performing arithmetic matrix operations.

Figure 5-4 shows a vector multiply-add instruction (PMADDWD) that multiplies vectors of 16-bit
integer elements to yield intermediate results of 32-bit elements, which are then summed pair-wise to
yield two 32-bit elements.

Figure 5-4. Multiply-Add Operation

The operation shown in Figure 5-4 can be used together with transpose and vector-add operations (see
“Addition” on page 216) to accumulate dot product results (also called inner or scalar products),
which are used in many media algorithms.

5.3.4 Saturation

Several of the 64-bit media integer instructions and most of the 64-bit media floating-point instructions
produce vector results in which each element saturates independently of the other elements in the
result vector. Such results are clamped (limited) to the maximum or minimum value representable by
the destination data type when the true result exceeds that maximum or minimum representable value.

Saturation avoids the need for code that tests for potential overflow or underflow. Saturating data is
useful for representing physical-world data, such as sound and color. It is used, for example, when
combining values for pixel coloring.
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5.3.5 Branch Removal

Branching is a time-consuming operation that, unlike most 64-bit media vector operations, does not
exhibit parallel behavior (there is only one branch target, not multiple targets, per branch instruction).
In many media applications, a branch involves selecting between only a few (often only two) cases.
Such branches can be replaced with 64-bit media vector compare and vector logical instructions that
simulate predicated execution or conditional moves.

Figure 5-5 shows an example of a non-branching sequence that implements a two-way multiplexer—
one that is equivalent to the ternary operator “?:” in C and C++. The comparable code sequence is
explained in “Compare and Write Mask” on page 220.

The sequence in Figure 5-5 begins with a vector compare instruction that compares the elements of
two source operands in parallel and produces a mask vector containing elements of all 1s or 0s. This
mask vector is ANDed with one source operand and ANDed-Not with the other source operand to
isolate the desired elements of both operands. These results are then ORed to select the relevant
elements from each operand. A similar branch-removal operation can be done using floating-point
source operands.

Figure 5-5. Branch-Removal Sequence
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5.3.6 Floating-Point (3DNow!™) Vector Operations

Floating-point vector instructions using the MMX registers were introduced by AMD with the
3DNow! technology. These instructions take 64-bit vector operands consisting of two 32-bit single-
precision floating-point numbers, shown as FP single in Figure 5-6.

Figure 5-6. Floating-Point (3DNow!™ Instruction) Operations

The AMD64 architecture’s 3DNow! floating-point instructions provide a unique advantage over
legacy x87 floating-point instructions: They allow integer and floating-point instructions to be
intermixed in the same procedure, using only the MMX registers. This avoids the need to switch
between integer MMX procedures and x87 floating-point procedures—a switch that may involve
time-consuming state saves and restores—while at the same time leaving the 128-bit XMM register
resources free for other applications.

The 3DNow! instructions allow applications such as 3D graphics to accelerate front-end geometry,
clipping, and lighting calculations. Picture and pixel data are typically integer data types, although
both integer and floating-point instructions are often required to operate completely on the data. For
example, software can change the viewing perspective of a 3D scene through transformation matrices
by using floating-point instructions in the same procedure that contains integer operations on other
aspects of the graphics data.

3DNow! programs typically perform better than x87 floating-point code, because the MMX register
file is flat rather than stack-oriented and because 3DNow! instructions can operate on twice as many
operands as x87 floating-point instructions. This ability to operate in parallel on twice as many
floating-point values in the same register space often makes it possible to remove local temporary
variables in 3DNow! code that would otherwise be needed in x87 floating-point code.

63 31 032

FP single FP single
63 31 032

FP single FP single

63 31 032

FP single FP single

513-124.eps

63 0 63 0

op op



200 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.15—November 2009

5.4 Registers

5.4.1 MMX™ Registers

Eight 64-bit MMX registers, mmx0–mmx7, support the 64-bit media instructions. Figure 5-7 shows
these registers. They can hold operands for both vector and scalar operations on integer (MMX) and
floating-point (3DNow!) data types.

Figure 5-7. 64-Bit Media Registers

The MMX registers are mapped onto the low 64 bits of the 80-bit x87 floating-point physical data
registers, FPR0–FPR7, described in “Registers” on page 238. However, the x87 stack register
structure, ST(0)–ST(7), is not used by MMX instructions. The x87 tag bits, top-of-stack pointer
(TOP), and high bits of the 80-bit FPR registers are changed when 64-bit media instructions are
executed. For details about the x87-related actions performed by hardware during execution of 64-bit
media instructions, see “Actions Taken on Executing 64-Bit Media Instructions” on page 232.

5.4.2 Other Registers

Some 64-bit media instructions that perform data transfer, data conversion or data reordering
operations (“Data Transfer” on page 209, “Data Conversion” on page 211, and “Data Conversion” on
page 224) can access operands in the general-purpose registers (GPRs) or XMM registers. When
addressing GPRs or XMM registers in 64-bit mode, the REX instruction prefix can be used to access
the extended GPRs or XMM registers, as described in “REX Prefixes” on page 74. For a description of
the GPR registers, see “Registers” on page 23. For a description of the XMM registers, see “XMM
Registers” on page 116.
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5.5 Operands

Operands for a 64-bit media instruction are either referenced by the instruction's opcode or included as
an immediate value in the instruction encoding. Depending on the instruction, referenced operands can
be located in registers or memory. The data types of these operands include vector and scalar integer,
and vector floating-point.

5.5.1 Data Types

Figure 5-8 on page 202 shows the register images of the 64-bit media data types. These data types can
be interpreted by instruction syntax and/or the software context as one of the following types of values:

• Vector (packed) single-precision (32-bit) floating-point numbers.

• Vector (packed) signed (two's-complement) integers.

• Vector (packed) unsigned integers.

• Scalar signed (two's-complement) integers.

• Scalar unsigned integers.

Hardware does not check or enforce the data types for instructions. Software is responsible for
ensuring that each operand for an instruction is of the correct data type. Software can interpret the data
types in ways other than those shown in Figure 5-8 on page 202—such as bit fields or fractional
numbers—but the 64-bit media instructions do not directly support such interpretations and software
must handle them entirely on its own.
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Figure 5-8. 64-Bit Media Data Types
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5.5.2 Operand Sizes and Overrides

Operand sizes for 64-bit media instructions are determined by instruction opcodes. Some of these
opcodes include an operand-size override prefix, but this prefix acts in a special way to modify the
opcode and is considered an integral part of the opcode. The general use of the 66h operand-size
override prefix described in “Instruction Prefixes” on page 71 does not apply to 64-bit media
instructions.

For details on the use of operand-size override prefixes in 64-bit media instructions, see the opcodes in
“64-Bit Media Instruction Reference” in Volume 5.

5.5.3 Operand Addressing

Depending on the 64-bit media instruction, referenced operands may be in registers or memory.

Register Operands. Most 64-bit media instructions can access source and destination operands
located in MMX registers. A few of these instructions access the XMM or GPR registers. When
addressing GPR or XMM registers in 64-bit mode, the REX instruction prefix can be used to access
the extended GPR or XMM registers, as described in “Instruction Prefixes” on page 228.

The 64-bit media instructions do not access the rFLAGS register, and none of the bits in that register
are affected by execution of the 64-bit media instructions.

Memory Operands. Most 64-bit media instructions can read memory for source operands, and a few
of the instructions can write results to memory. “Memory Addressing” on page 14, describes the
general methods and conditions for addressing memory operands.

Immediate Operands. Immediate operands are used in certain data-conversion and vector-shift
instructions. Such instructions take 8-bit immediates, which provide control for the operation.

I/O Ports. I/O ports in the I/O address space cannot be directly addressed by 64-bit media
instructions, and although memory-mapped I/O ports can be addressed by such instructions, doing so
may produce unpredictable results, depending on the hardware implementation of the architecture. See
the data sheet or software-optimization documentation for particular hardware implementations.

5.5.4 Data Alignment

Those 64-bit media instructions that access a 128-bit operand in memory incur a general-protection
exception (#GP) if the operand is not aligned to a 16-byte boundary. These instructions include:

• CVTPD2PI—Convert Packed Double-Precision Floating-Point to Packed Doubleword Integers.

• CVTTPD2PI—Convert Packed Double-Precision Floating-Point to Packed Doubleword Integers,
Truncated.

• FXRSTOR—Restore XMM, MMX, and x87 State.

• FXSAVE—Save XMM, MMX, and x87 State.
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For other 64-bit media instructions, the architecture does not impose data-alignment requirements for
accessing 64-bit media data in memory. Specifically, operands in physical memory do not need to be
stored at addresses that are even multiples of the operand size in bytes. However, the consequence of
storing operands at unaligned locations is that accesses to those operands may require more processor
and bus cycles than for aligned accesses. See “Data Alignment” on page 40 for details.

5.5.5 Integer Data Types

Most of the MMX instructions support operations on the integer data types shown in Figure 5-8 on
page 202. These instructions are summarized in “Instruction Summary—Integer Instructions” on
page 207. The characteristics of these data types are described below.

Sign. Many of the 64-bit media instructions have variants for operating on signed or unsigned
integers. For signed integers, the sign bit is the most-significant bit—bit 7 for a byte, bit 15 for a word,
bit 31 for a doubleword, or bit 63 for a quadword. Arithmetic instructions that are not specifically
named as unsigned perform signed two’s-complement arithmetic.

Maximum and Minimum Representable Values. Table 5-1 shows the range of representable values
for the integer data types.

Saturation. Saturating (also called limiting or clamping) instructions limit the value of a result to the
maximum or minimum value representable by the destination data type. Saturating versions of integer
vector-arithmetic instructions operate on byte-sized and word-sized elements. These instructions—for
example, PADDSx, PADDUSx, PSUBSx, and PSUBUSx—saturate signed or unsigned data
independently for each element in a vector when the element reaches its maximum or minimum
representable value. Saturation avoids overflow or underflow errors.

The examples in Table 5-2 on page 205 illustrate saturating and non-saturating results with word
operands. Saturation for other data-type sizes follows similar rules. Once saturated, the saturated value
is treated like any other value of its type. For example, if 0001h is subtracted from the saturated value,
7FFFh, the result is 7FFEh.

Table 5-1. Range of Values in 64-Bit Media Integer Data Types

Data-Type Interpretation Byte Word Doubleword Quadword

Unsigned
integers

Base-2 (exact) 0 to +28–1 0 to +216–1 0 to +232–1 0 to +264–1

Base-10 (approx.) 0 to 255 0 to 65,535 0 to 4.29 * 109 0 to 1.84 * 1019

Signed integers1
Base-2 (exact) –27 to +(27–1)

–215 to
+(215–1)

–231 to +(231–1) –263 to +(263–1)

Base-10 (approx.) –128 to +127
–32,768 to
+32,767

–2.14 * 109 to
+2.14 * 109

–9.22 * 1018

to +9.22 * 1018
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Arithmetic instructions not specifically designated as saturating perform non-saturating, two’s-
complement arithmetic.

Rounding. There is a rounding version of the integer vector-multiply instruction, PMULHRW, that
multiplies pairs of signed-integer word elements and then adds 8000h to the lower word of the
doubleword result, thus rounding the high-order word which is returned as the result.

Other Fixed-Point Operands. The architecture provides specific support only for integer fixed-point
operands—those in which an implied binary point is located to the right of bit 0. Nevertheless,
software may use fixed-point operands in which the implied binary point is located in any position. In
such cases, software is responsible for managing the interpretation of such implied binary points, as
well as any redundant sign bits that may occur during multiplication.

5.5.6 Floating-Point Data Types

All 64-bit media 3DNow! instructions, except PFRCP and PFRSQRT, take 64-bit vector operands.
They operate in parallel on two single-precision (32-bit) floating-point values contained in those
vectors.

Figure 5-9 shows the format of the vector operands. The characteristics of the single-precision
floating-point data types are described below. The 64-bit floating-point media instructions are
summarized in “Instruction Summary—Floating-Point Instructions” on page 223.

Figure 5-9. 64-Bit Floating-Point (3DNow!™) Vector Operand

Table 5-2. Saturation Examples

Operation
Non-Saturated

Infinitely Precise
Result

Saturated
Signed Result

Saturated
Unsigned Result

7000h + 2000h 9000h 7FFFh 9000h

7000h + 7000h E000h 7FFFh E000h

F000h + F000h 1E000h E000h FFFFh

9000h + 9000h 12000h 8000h FFFFh

7FFFh + 0100h 80FFh 7FFFh 80FFh

7FFFh + FF00h 17EFFh 7EFFh FFFFh

63 62 03231 3055 54 23 22
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Single-Precision Format. The single-precision floating-point format supported by 64-bit media
instructions is the same format as the normalized IEEE 754 single-precision format. This format
includes a sign bit, an 8-bit biased exponent, and a 23-bit significand with one hidden integer bit for a
total of 24 bits in the significand. The hidden integer bit is assumed to have a value of 1, and the
significand field is also the fraction. The bias of the exponent is 127. However, the 3DNow! format
does not support other aspects of the IEEE 754 standard, such as multiple rounding modes,
representation of numbers other than normalized numbers, and floating-point exceptions.

Range of Representable Values and Saturation. Table 5-3 shows the range of representable
values for 64-bit media floating-point data. Table 5-4 shows the exponent ranges. The largest
representable positive normal number has an exponent of FEh and a significand of 7FFFFFh, with a
numerical value of 2127 * (2 – 2–23). The smallest representable negative normal number has an
exponent of 01h and a significand of 000000h, with a numerical value of 2–126.

Results that, after rounding, overflow above the maximum-representable positive or negative number
are saturated (limited or clamped) at the maximum positive or negative number. Results that underflow
below the minimum-representable positive or negative number are treated as zero.

Floating-Point Rounding. In contrast to the IEEE standard, which requires four rounding modes, the
64-bit media floating-point instructions support only one rounding mode, depending on the
instruction. All such instructions use round-to-nearest, except certain floating-point-to-integer
conversion instructions (“Data Conversion” on page 224) which use round-to-zero.

No Support for Infinities, NaNs, and Denormals. 64-bit media floating-point instructions support
only normalized numbers. They do not support infinity, NaN, and denormalized number
representations. Operations on such numbers produce undefined results, and no exceptions are

Table 5-3. Range of Values in 64-Bit Media Floating-Point Data Types

Data-Type Interpretation Doubleword Quadword

Floating-point
Base-2 (exact) 2–126 to 2127 * (2 – 2–23) Two single-precision floating-

point doublewordsBase-10 (approx.) 1.17 * 10–38 to +3.40 * 1038

Table 5-4. 64-Bit Floating-Point Exponent Ranges

Biased Exponent Description

FFh Unsupported1

00h Zero

00h<x<FFh Normal

01h 2 (1–127) lowest possible exponent

FEh 2 (254–127) largest possible exponent

Note:
1. Unsupported numbers can be used as source operands but produce undefined

results.
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generated. If all source operands are normalized numbers, these instructions never produce infinities,
NaNs, or denormalized numbers as results.

This aspect of 64-bit media floating-point operations does not comply with the IEEE 754 standard.
Software must use only normalized operands and ensure that computations remain within valid
normalized-number ranges.

No Support for Floating-Point Exceptions. The 64-bit media floating-point instructions do not
generate floating-point exceptions. Software must ensure that in-range operands are provided to these
instructions.

5.6 Instruction Summary—Integer Instructions

This section summarizes the functions of the integer (MMX and a few SSE and SSE2) instructions in
the 64-bit media instruction subset. These include integer instructions that use an MMX register for
source or destination and data-conversion instructions that convert from integers to floating-point
formats. For a summary of the floating-point instructions in the 64-bit media instruction subset,
including data-conversion instructions that convert from floating-point to integer formats, see
“Instruction Summary—Floating-Point Instructions” on page 223.

The instructions are organized here by functional group—such as data-transfer, vector arithmetic, and
so on. Software running at any privilege level can use any of these instructions, if the CPUID
instruction reports support for the instructions (see “Feature Detection” on page 229). More detail on
individual instructions is given in the alphabetically organized “64-Bit Media Instruction Reference”
in Volume 5.

5.6.1 Syntax

Each instruction has a mnemonic syntax used by assemblers to specify the operation and the operands
to be used for source and destination (result) data. The majority of 64-bit media integer instructions
have the following syntax:

MNEMONIC mmx1, mmx2/mem64

Figure 5-10 on page 208 shows an example of the mnemonic syntax for a packed add bytes (PADDB)
instruction.
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Figure 5-10. Mnemonic Syntax for Typical Instruction

This example shows the PADDB mnemonic followed by two operands, a 64-bit MMX register
operand and another 64-bit MMX register or 64-bit memory operand. In most instructions that take
two operands, the first (left-most) operand is both a source operand and the destination operand. The
second (right-most) operand serves only as a source. Some instructions can have one or more prefixes
that modify default properties, as described in “Instruction Prefixes” on page 228.

Mnemonics. The following characters are used as prefixes in the mnemonics of integer instructions:

• CVT—Convert

• CVTT—Convert with truncation

• P—Packed (vector)

• PACK—Pack elements of 2x data size to 1x data size

• PUNPCK—Unpack and interleave elements

In addition to the above prefix characters, the following characters are used elsewhere in the
mnemonics of integer instructions:

• B—Byte

• D—Doubleword

• DQ—Double quadword

• ID—Integer doubleword

• IW—Integer word

• PD—Packed double-precision floating-point

• PI—Packed integer

• PS—Packed single-precision floating-point

• Q—Quadword

• S—Signed

• SS—Signed saturation
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• U—Unsigned

• US—Unsigned saturation

• W—Word

• x—One or more variable characters in the mnemonic

For example, the mnemonic for the instruction that packs four words into eight unsigned bytes is
PACKUSWB. In this mnemonic, the PACK designates 2x-to-1x conversion of vector elements, the US
designates unsigned results with saturation, and the WB designates vector elements of the source as
words and those of the result as bytes.

5.6.2 Exit Media State

The exit media state instructions are used to isolate the use of processor resources between 64-bit
media instructions and x87 floating-point instructions.

• EMMS—Exit Media State

• FEMMS—Fast Exit Media State

These instructions initialize the contents of the x87 floating-point stack registers—called clearing the
MMX state. Software should execute one of these instructions before leaving a 64-bit media procedure.

The EMMS and FEMMS instructions both clear the MMX state, as described in “Mixing Media Code
with x87 Code” on page 233. The instructions differ in one respect: FEMMS leaves the data in the x87
stack registers undefined. By contrast, EMMS leaves the data in each such register as it was defined by
the last x87 or 64-bit media instruction that wrote to the register. The FEMMS instruction is supported
for backward-compatibility. Software that must be compatible with both AMD and non-AMD
processors should use the EMMS instruction.

5.6.3 Data Transfer

The data-transfer instructions copy operands between a 32-bit or 64-bit memory location, an MMX
register, an XMM register, or a GPR. The MOV mnemonic, which stands for move, is a misnomer. A
copy function is actually performed instead of a move.

Move

• MOVD—Move Doubleword

• MOVQ—Move Quadword

• MOVDQ2Q—Move Double Quadword to Quadword

• MOVQ2DQ—Move Quadword to Double Quadword

The MOVD instruction copies a 32-bit or 64-bit value from a general-purpose register (GPR) or
memory location to an MMX register, or from an MMX register to a GPR or memory location. If the
source operand is 32 bits and the destination operand is 64 bits, the source is zero-extended to 64 bits
in the destination. If the source is 64 bits and the destination is 32 bits, only the low-order 32 bits of the
source are copied to the destination.
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The MOVQ instruction copies a 64-bit value from an MMX register or 64-bit memory location to
another MMX register, or from an MMX register to another MMX register or 64-bit memory location.

The MOVDQ2Q instruction copies the low-order 64-bit value in an XMM register to an MMX
register.

The MOVQ2DQ instruction copies a 64-bit value from an MMX register to the low-order 64 bits of an
XMM register, with zero-extension to 128 bits.

The MOVD and MOVQ instructions—along with the PUNPCKx instructions—are often among the
most frequently used instructions in 64-bit media procedures (both integer and floating-point). The
move instructions are similar to the assignment operator in high-level languages.

Move Non-Temporal. The move non-temporal instructions are called streaming-store instructions.
They minimize pollution of the cache. The assumption is that the data they reference will be used only
once, and is therefore not subject to cache-related overhead such as write-allocation. For further
information, see “Memory Optimization” on page 92.

• MOVNTQ—Move Non-Temporal Quadword

• MASKMOVQ—Mask Move Quadword

The MOVNTQ instruction stores a 64-bit MMX register value into a 64-bit memory location. The
MASKMOVQ instruction stores bytes from the first operand, as selected by the mask value (most-
significant bit of each byte) in the second operand, to a memory location specified in the rDI and DS
registers. The first operand is an MMX register, and the second operand is another MMX register. The
size of the store is determined by the effective address size. Figure 5-11 on page 211 shows the
MASKMOVQ operation.
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Figure 5-11. MASKMOVQ Move Mask Operation

The MOVNTQ and MASKMOVQ instructions use weakly-ordered, write-combining buffering of
write data and they minimize cache pollution. The exact method by which cache pollution is
minimized depends on the hardware implementation of the instruction. For further information, see
“Memory Optimization” on page 92.

A typical case benefitting from streaming stores occurs when data written by the processor is never
read by the processor, such as data written to a graphics frame buffer. MASKMOVQ is useful for the
handling of end cases in block copies and block fills based on streaming stores.

Move Mask

• PMOVMSKB—Packed Move Mask Byte

The PMOVMSKB instruction moves the most-significant bit of each byte in an MMX register to the
low-order byte of a 32-bit or 64-bit general-purpose register, with zero-extension. It is useful for
extracting bits from a mask, or extracting zero-point values from quantized data such as signal
samples, resulting in a byte that can be used for data-dependent branching.

5.6.4 Data Conversion

The integer data-conversion instructions convert operands from integer formats to floating-point
formats. They take 64-bit integer source operands. For data-conversion instructions that take 32-bit
and 64-bit floating-point source operands, see “Data Conversion” on page 224. For data-conversion
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instructions that take 128-bit source operands, see “Data Conversion” on page 139 and “Data
Conversion” on page 162.

Convert Integer to Floating-Point. These instructions convert integer data types into floating-point
data types.

• CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point

• CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point

• PI2FW—Packed Integer To Floating-Point Word Conversion

• PI2FD—Packed Integer to Floating-Point Doubleword Conversion

The CVTPI2Px instructions convert two 32-bit signed integer values in the second operand (an MMX
register or 64-bit memory location) to two single-precision (CVTPI2PS) or double-precision
(CVTPI2PD) floating-point values. The instructions then write the converted values into the low-order
64 bits of an XMM register (CVTPI2PS) or the full 128 bits of an XMM register (CVTPI2PD). The
CVTPI2PS instruction does not modify the high-order 64 bits of the XMM register.

The PI2Fx instructions are 3DNow! instructions. They convert two 16-bit (PI2FW) or 32-bit (PI2FD)
signed integer values in the second operand to two single-precision floating-point values. The
instructions then write the converted values into the destination. If a PI2FD conversion produces an
inexact value, the value is truncated (rounded toward zero).

5.6.5 Data Reordering

The integer data-reordering instructions pack, unpack, interleave, extract, insert, shuffle, and swap the
elements of vector operands.

Pack with Saturation. These instructions pack 2x-sized data types into 1x-sized data types, thus
halving the precision of each element in a vector operand.

• PACKSSDW—Pack with Saturation Signed Doubleword to Word

• PACKSSWB—Pack with Saturation Signed Word to Byte

• PACKUSWB—Pack with Saturation Signed Word to Unsigned Byte

The PACKSSDW instruction converts each 32-bit signed integer in its two source operands (an MMX
register or 64-bit memory location and another MMX register) into a 16-bit signed integer and packs
the converted values into the destination MMX register. The PACKSSWB instruction does the
analogous operation between word elements in the source vectors and byte elements in the destination
vector. The PACKUSWB instruction does the same as PACKSSWB except that it converts word
integers into unsigned (rather than signed) bytes.

Figure 5-12 on page 213 shows an example of a PACKSSDW instruction. The operation merges vector
elements of 2x size (doubleword-size) into vector elements of 1x size (word-size), thus reducing the
precision of the vector-element data types. Any results that would otherwise overflow or underflow are
saturated (clamped) at the maximum or minimum representable value, respectively, as described in
“Saturation” on page 204.



64-Bit Media Programming 213

24592—Rev. 3.15—November 2009 AMD64 Technology

Figure 5-12. PACKSSDW Pack Operation

Conversion from higher-to-lower precision may be needed, for example, after an arithmetic operation
which requires the higher-precision format to prevent possible overflow, but which requires the lower-
precision format for a subsequent operation.

Unpack and Interleave. These instructions interleave vector elements from the high or low half of
two source operands. They can be used to double the precision of operands.

• PUNPCKHBW—Unpack and Interleave High Bytes

• PUNPCKHWD—Unpack and Interleave High Words

• PUNPCKHDQ—Unpack and Interleave High Doublewords

• PUNPCKLBW—Unpack and Interleave Low Bytes

• PUNPCKLWD—Unpack and Interleave Low Words

• PUNPCKLDQ—Unpack and Interleave Low Doublewords

The PUNPCKHBW instruction unpacks the four high-order bytes from its two source operands and
interleaves them into the bytes in the destination operand. The bytes in the low-order half of the source
operand are ignored. The PUNPCKHWD and PUNPCKHDQ instructions perform analogous
operations for words and doublewords in the source operands, packing them into interleaved words
and interleaved doublewords in the destination operand.

The PUNPCKLBW, PUNPCKLWD, and PUNPCKLDQ instructions are analogous to their high-
element counterparts except that they take elements from the low doubleword of each source vector
and ignore elements in the high doubleword. If the source operand for PUNPCKLx instructions is in
memory, only the low 32 bits of the operand are loaded.

Figure 5-13 on page 214 shows an example of the PUNPCKLWD instruction. The elements are taken
from the low half of the source operands. In this register image, elements from operand2 are placed to
the left of elements from operand1.
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Figure 5-13. PUNPCKLWD Unpack and Interleave Operation

If one of the two source operands is a vector consisting of all zero-valued elements, the unpack
instructions perform the function of expanding vector elements of 1x size into vector elements of 2x
size (for example, word-size to doubleword-size). If both source operands are of identical value, the
unpack instructions can perform the function of duplicating adjacent elements in a vector.

The PUNPCKx instructions—along with MOVD and MOVQ—are among the most frequently used
instructions in 64-bit media procedures (both integer and floating-point).

Extract and Insert. These instructions copy a word element from a vector, in a manner specified by
an immediate operand.

• PEXTRW—Packed Extract Word

• PINSRW—Packed Insert Word

The PEXTRW instruction extracts a 16-bit value from an MMX register, as selected by the immediate-
byte operand, and writes it to the low-order word of a 32-bit or 64-bit general-purpose register, with
zero-extension to 32 or 64 bits. PEXTRW is useful for loading computed values, such as table-lookup
indices, into general-purpose registers where the values can be used for addressing tables in memory.

The PINSRW instruction inserts a 16-bit value from a the low-order word of a 32-bit or 64-bit general
purpose register or a 16-bit memory location into an MMX register. The location in the destination
register is selected by the immediate-byte operand. The other words in the destination register operand
are not modified.

Shuffle and Swap. These instructions reorder the elements of a vector.

• PSHUFW—Packed Shuffle Words

• PSWAPD—Packed Swap Doubleword
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The PSHUFW instruction moves any one of the four words in its second operand (an MMX register or
64-bit memory location) to specified word locations in its first operand (another MMX register). The
ordering of the shuffle can occur in any of 256 possible ways, as specified by the immediate-byte
operand. Figure 5-14 shows one of the 256 possible shuffle operations. PSHUFW is useful, for
example, in color imaging when computing alpha saturation of RGB values. In this case, PSHUFW
can replicate an alpha value in a register so that parallel comparisons with three RGB values can be
performed.

Figure 5-14. PSHUFW Shuffle Operation

The PSWAPD instruction swaps (reverses) the order of two 32-bit values in the second operand and
writes each swapped value in the corresponding doubleword of the destination. Figure 5-15 shows a
swap operation. PSWAPD is useful, for example, in complex-number multiplication in which the
elements of one source operand must be swapped (see “Accumulation” on page 226 for details).
PSWAPD supports independent source and result operands so that it can also perform a load function.

Figure 5-15. PSWAPD Swap Operation
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5.6.6 Arithmetic

The integer vector-arithmetic instructions perform an arithmetic operation on the elements of two
source vectors. Arithmetic instructions that are not specifically named as unsigned perform signed
two’s-complement arithmetic.

Addition

• PADDB—Packed Add Bytes

• PADDW—Packed Add Words

• PADDD—Packed Add Doublewords

• PADDQ—Packed Add Quadwords

• PADDSB—Packed Add with Saturation Bytes

• PADDSW—Packed Add with Saturation Words

• PADDUSB—Packed Add Unsigned with Saturation Bytes

• PADDUSW—Packed Add Unsigned with Saturation Words

The PADDB, PADDW, PADDD, and PADDQ instructions add each 8-bit (PADDB), 16-bit (PADDW),
32-bit (PADDD), or 64-bit (PADDQ) integer element in the second operand to the corresponding,
same-sized integer element in the first operand. The instructions then write the integer result of each
addition to the corresponding, same-sized element of the destination. These instructions operate on
both signed and unsigned integers. However, if the result overflows, only the low-order byte, word,
doubleword, or quadword of each result is written to the destination. The PADDD instruction can be
used together with PMADDWD (page 218) to implement dot products.

The PADDSB and PADDSW instructions perform additions analogous to the PADDB and PADDW
instructions, except with saturation. For each result in the destination, if the result is larger than the
largest, or smaller than the smallest, representable 8-bit (PADDSB) or 16-bit (PADDSW) signed
integer, the result is saturated to the largest or smallest representable value, respectively.

The PADDUSB and PADDUSW instructions perform saturating additions analogous to the PADDSB
and PADDSW instructions, except on unsigned integer elements.

Subtraction

• PSUBB—Packed Subtract Bytes

• PSUBW—Packed Subtract Words

• PSUBD—Packed Subtract Doublewords

• PSUBQ—Packed Subtract Quadword

• PSUBSB—Packed Subtract with Saturation Bytes

• PSUBSW—Packed Subtract with Saturation Words

• PSUBUSB—Packed Subtract Unsigned and Saturate Bytes

• PSUBUSW—Packed Subtract Unsigned and Saturate Words
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The subtraction instructions perform operations analogous to the addition instructions.

The PSUBB, PSUBW, PSUBD, and PSUBQ instructions subtract each 8-bit (PSUBB), 16-bit
(PSUBW), 32-bit (PSUBD), or 64-bit (PSUBQ) integer element in the second operand from the
corresponding, same-sized integer element in the first operand. The instructions then write the integer
result of each subtraction to the corresponding, same-sized element of the destination. These
instructions operate on both signed and unsigned integers. However, if the result underflows, only the
low-order byte, word, doubleword, or quadword of each result is written to the destination.

The PSUBSB and PSUBSW instructions perform subtractions analogous to the PSUBB and PSUBW
instructions, except with saturation. For each result in the destination, if the result is larger than the
largest, or smaller than the smallest, representable 8-bit (PSUBSB) or 16-bit (PSUBSW) signed
integer, the result is saturated to the largest or smallest representable value, respectively.

The PSUBUSB and PSUBUSW instructions perform saturating subtractions analogous to the
PSUBSB and PSUBSW instructions, except on unsigned integer elements.

Multiplication

• PMULHW—Packed Multiply High Signed Word

• PMULLW—Packed Multiply Low Signed Word

• PMULHRW—Packed Multiply High Rounded Word

• PMULHUW—Packed Multiply High Unsigned Word

• PMULUDQ—Packed Multiply Unsigned Doubleword and Store Quadword

The PMULHW instruction multiplies each 16-bit signed integer value in first operand by the
corresponding 16-bit integer in the second operand, producing a 32-bit intermediate result. The
instruction then writes the high-order 16 bits of the 32-bit intermediate result of each multiplication to
the corresponding word of the destination. The PMULLW instruction performs the same
multiplication as PMULHW but writes the low-order 16 bits of the 32-bit intermediate result to the
corresponding word of the destination.

The PMULHRW instruction performs the same multiplication as PMULHW but with rounding. After
the multiplication, PMULHRW adds 8000h to the lower word of the doubleword result, thus rounding
the high-order word which is returned as the result.

The PMULHUW instruction performs the same multiplication as PMULHW but on unsigned
operands. The instruction is useful in 3D rasterization, which operates on unsigned pixel values.

The PMULUDQ instruction, unlike the other PMULx instructions, preserves the full precision of the
result. It multiplies 32-bit unsigned integer values in the first and second operands and writes the full
64-bit result to the destination.

See “Shift” on page 219 for shift instructions that can be used to perform multiplication and division
by powers of 2.
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Multiply-Add

• PMADDWD—Packed Multiply Words and Add Doublewords

The PMADDWD instruction multiplies each 16-bit signed value in the first operand by the
corresponding 16-bit signed value in the second operand. The instruction then adds the adjacent 32-bit
intermediate results of each multiplication, and writes the 32-bit result of each addition into the
corresponding doubleword of the destination. PMADDWD thus performs two signed (16 × 16 = 32) +
(16 × 16 = 32) multiply-adds in parallel. Figure 5-16 shows the PMADDWD operation.

The only case in which overflow can occur is when all four of the 16-bit source operands used to
produce a 32-bit multiply-add result have the value 8000h. In this case, the result returned is
8000_0000h, because the maximum negative 16-bit value of 8000h multiplied by itself equals
4000_0000h, and 4000_0000h added to 4000_0000h equals 8000_0000h. The result of multiplying
two negative numbers should be a positive number, but 8000_0000h is the maximum possible 32-bit
negative number rather than a positive number.

Figure 5-16. PMADDWD Multiply-Add Operation

PMADDWD can be used with one source operand (for example, a coefficient) taken from memory and
the other source operand (for example, the data to be multiplied by that coefficient) taken from an
MMX register. The instruction can also be used together with the PADDD instruction (page 216) to
compute dot products, such as those required for finite impulse response (FIR) filters, one of the
commonly used DSP algorithms. Scaling can be done, before or after the multiply, using a vector-shift
instruction (page 219).
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For floating-point multiplication operations, see the PFMUL instruction on page 225. For floating-
point accumulation operations, see the PFACC, PFNACC, and PFPNACC instructions on page 226.

Average

• PAVGB—Packed Average Unsigned Bytes

• PAVGW—Packed Average Unsigned Words

• PAVGUSB—Packed Average Unsigned Packed Bytes

The PAVGx instructions compute the rounded average of each unsigned 8-bit (PAVGB) or 16-bit
(PAVGW) integer value in the first operand and the corresponding, same-sized unsigned integer in the
second operand. The instructions then write each average in the corresponding, same-sized element of
the destination. The rounded average is computed by adding each pair of operands, adding 1 to the
temporary sum, and then right-shifting the temporary sum by one bit.

The PAVGB instruction is useful for MPEG decoding, in which motion compensation performs many
byte-averaging operations between and within macroblocks. In addition to speeding up these
operations, PAVGB can free up registers and make it possible to unroll the averaging loops.

The PAVGUSB instruction (a 3DNow! instruction) performs a function identical to the PAVGB
instruction, described on page 219, although the two instructions have different opcodes.

Sum of Absolute Differences

• PSADBW—Packed Sum of Absolute Differences of Bytes into a Word

The PSADBW instruction computes the absolute values of the differences of corresponding 8-bit
signed integer values in the first and second operands. The instruction then sums the differences and
writes an unsigned 16-bit integer result in the low-order word of the destination. The remaining bytes
in the destination are cleared to all 0s.

Sums of absolute differences are used to compute the L1 norm in motion-estimation algorithms for
video compression.

5.6.7 Shift

The vector-shift instructions are useful for scaling vector elements to higher or lower precision,
packing and unpacking vector elements, and multiplying and dividing vector elements by powers of 2.

Left Logical Shift

• PSLLW—Packed Shift Left Logical Words

• PSLLD—Packed Shift Left Logical Doublewords

• PSLLQ—Packed Shift Left Logical Quadwords

The PSLLx instructions left-shift each of the 16-bit (PSLLW), 32-bit (PSLLD), or 64-bit (PSLLQ)
values in the first operand by the number of bits specified in the second operand. The instructions then
write each shifted value into the corresponding, same-sized element of the destination. The first and
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second operands are either an MMX register and another MMX register or 64-bit memory location, or
an MMX register and an immediate-byte value. The low-order bits that are emptied by the shift
operation are cleared to 0.

In integer arithmetic, left logical shifts effectively multiply unsigned operands by positive powers of 2.

Right Logical Shift

• PSRLW—Packed Shift Right Logical Words

• PSRLD—Packed Shift Right Logical Doublewords

• PSRLQ—Packed Shift Right Logical Quadwords

The PSRLx instructions right-shift each of the 16-bit (PSRLW), 32-bit (PSRLD), or 64-bit (PSRLQ)
values in the first operand by the number of bits specified in the second operand. The instructions then
write each shifted value into the corresponding, same-sized element of the destination. The first and
second operands are either an MMX register and another MMX register or 64-bit memory location, or
an MMX register and an immediate-byte value. The high-order bits that are emptied by the shift
operation are cleared to 0. In integer arithmetic, right logical shifts effectively divide unsigned
operands or positive signed operands by positive powers of 2.

PSRLQ can be used to move the high 32 bits of an MMX register to the low 32 bits of the register.

Right Arithmetic Shift

• PSRAW—Packed Shift Right Arithmetic Words

• PSRAD—Packed Shift Right Arithmetic Doublewords

The PSRAx instructions right-shifts each of the 16-bit (PSRAW) or 32-bit (PSRAD) values in the first
operand by the number of bits specified in the second operand. The instructions then write each shifted
value into the corresponding, same-sized element of the destination. The high-order bits that are
emptied by the shift operation are filled with the sign bit of the initial value.

In integer arithmetic, right arithmetic shifts effectively divide signed operands by positive powers of 2.

5.6.8 Compare

The integer vector-compare instructions compare two operands, and they either write a mask or they
write the maximum or minimum value.

Compare and Write Mask

• PCMPEQB—Packed Compare Equal Bytes

• PCMPEQW—Packed Compare Equal Words

• PCMPEQD—Packed Compare Equal Doublewords

• PCMPGTB—Packed Compare Greater Than Signed Bytes

• PCMPGTW—Packed Compare Greater Than Signed Words

• PCMPGTD—Packed Compare Greater Than Signed Doublewords
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The PCMPEQx and PCMPGTx instructions compare corresponding bytes, words, or doubleword in
the first and second operands. The instructions then write a mask of all 1s or 0s for each compare into
the corresponding, same-sized element of the destination.

For the PCMPEQx instructions, if the compared values are equal, the result mask is all 1s. If the values
are not equal, the result mask is all 0s. For the PCMPGTx instructions, if the signed value in the first
operand is greater than the signed value in the second operand, the result mask is all 1s. If the value in
the first operand is less than or equal to the value in the second operand, the result mask is all 0s.
PCMPEQx can be used to set the bits in an MMX register to all 1s by specifying the same register for
both operands.

By specifying the same register for both operands, PCMPEQx can be used to set the bits in an MMX
register to all 1s.

Figure 5-5 on page 198 shows an example of a non-branching sequence that implements a two-way
multiplexer—one that is equivalent to the following sequence of ternary operators in C or C++:

r0 = a0 > b0 ? a0 : b0
r1 = a1 > b1 ? a1 : b1
r2 = a2 > b2 ? a2 : b2
r3 = a3 > b3 ? a3 : b3

Assuming mmx0 contains a, and mmx1 contains b, the above C sequence can be implemented with the
following assembler sequence:

MOVQ mmx3, mmx0
PCMPGTW mmx3, mmx2 ; a > b ? 0xffff : 0
PAND mmx0, mmx3 ; a > b ? a: 0
PANDN mmx3, mmx1 ; a > b > 0 : b
POR mmx0, mmx3 ; r = a > b ? a: b

In the above sequence, PCMPGTW, PAND, PANDN, and POR operate, in parallel, on all four
elements of the vectors.

Compare and Write Minimum or Maximum

• PMAXUB—Packed Maximum Unsigned Bytes

• PMINUB—Packed Minimum Unsigned Bytes

• PMAXSW—Packed Maximum Signed Words

• PMINSW—Packed Minimum Signed Words

The PMAXUB and PMINUB instructions compare each of the 8-bit unsigned integer values in the
first operand with the corresponding 8-bit unsigned integer values in the second operand. The
instructions then write the maximum (PMAXUB) or minimum (PMINUB) of the two values for each
comparison into the corresponding byte of the destination.

The PMAXSW and PMINSW instructions perform operations analogous to the PMAXUB and
PMINUB instructions, except on 16-bit signed integer values.
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5.6.9 Logical

The vector-logic instructions perform Boolean logic operations, including AND, OR, and exclusive
OR.

And

• PAND—Packed Logical Bitwise AND

• PANDN—Packed Logical Bitwise AND NOT

The PAND instruction performs a bitwise logical AND of the values in the first and second operands
and writes the result to the destination.

The PANDN instruction inverts the first operand (creating a one’s complement of the operand), ANDs
it with the second operand, and writes the result to the destination, and writes the result to the
destination. Table 5-5 shows an example.

PAND can be used with the value 7FFFFFFF7FFFFFFFh to compute the absolute value of the
elements of a 64-bit media floating-point vector operand. This method is equivalent to the x87 FABS
(floating-point absolute value) instruction.

Or

• POR—Packed Logical Bitwise OR

The POR instruction performs a bitwise logical OR of the values in the first and second operands and
writes the result to the destination.

Exclusive Or

• PXOR—Packed Logical Bitwise Exclusive OR

The PXOR instruction performs a bitwise logical exclusive OR of the values in the first and second
operands and writes the result to the destination. PXOR can be used to clear all bits in an MMX
register by specifying the same register for both operands. PXOR can also used with the value
8000000080000000h to change the sign bits of the elements of a 64-bit media floating-point vector
operand. This method is equivalent to the x87 floating-point change sign (FCHS) instruction.

Table 5-5. Example PANDN Bit Values

Operand1 Bit
Operand1 Bit

(Inverted)
Operand2 Bit

PANDN
Result Bit

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0
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5.6.10 Save and Restore State

These instructions save and restore the processor state for 64-bit media instructions.

Save and Restore 64-Bit Media and x87 State

• FSAVE—Save x87 and MMX State

• FNSAVE—Save No-Wait x87 and MMX State

• FRSTOR—Restore x87 and MMX State

These instructions save and restore the entire processor state for x87 floating-point instructions and
64-bit media instructions. The instructions save and restore either 94 or 108 bytes of data, depending
on the effective operand size.

Assemblers issue FSAVE as an FWAIT instruction followed by an FNSAVE instruction. Thus, FSAVE
(but not FNSAVE) reports pending unmasked x87 floating-point exceptions before saving the state.
After saving the state, the processor initializes the x87 state by performing the equivalent of an FINIT
instruction.

Save and Restore 128-Bit, 64-Bit, and x87 State

• FXSAVE—Save XMM, MMX, and x87 State

• FXRSTOR—Restore XMM, MMX, and x87 State

The FXSAVE and FXRSTOR instructions save and restore the entire 512-byte processor state for 128-
bit media instructions, 64-bit media instructions, and x87 floating-point instructions. The architecture
supports two memory formats for FXSAVE and FXRSTOR, a 512-byte 32-bit legacy format and a
512-byte 64-bit format. Selection of the 32-bit or 64-bit format is determined by the effective operand
size for the FXSAVE and FXRSTOR instructions. For details, see “FXSAVE and FXRSTOR
Instructions” in Volume 2.

FXSAVE and FXRSTOR execute faster than FSAVE/FNSAVE and FRSTOR. However, unlike
FSAVE and FNSAVE, FXSAVE does not initialize the x87 state, and like FNSAVE it does not report
pending unmasked x87 floating-point exceptions. For details, see “Saving and Restoring State” on
page 234.

5.7 Instruction Summary—Floating-Point Instructions

This section summarizes the functions of the floating-point (3DNow! and a few SSE and SSE2)
instructions in the 64-bit media instruction subset. These include floating-point instructions that use an
MMX register for source or destination and data-conversion instructions that convert from floating-
point to integers formats. For a summary of the integer instructions in the 64-bit media instruction
subset, including data-conversion instructions that convert from integer to floating-point formats, see
“Instruction Summary—Integer Instructions” on page 207.
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For a summary of the 128-bit media floating-point instructions, see “Instruction Summary—Floating-
Point Instructions” on page 156. For a summary of the x87 floating-point instructions, see “Instruction
Summary” on page 261.

The instructions are organized here by functional group—such as data-transfer, vector arithmetic, and
so on. Software running at any privilege level can use any of these instructions, if the CPUID
instruction reports support for the instructions (see “Feature Detection” on page 229). More detail on
individual instructions is given in the alphabetically organized “64-Bit Media Instruction Reference”
in Volume 5.

5.7.1 Syntax

The 64-bit media floating-point instructions have the same syntax rules as those for the 64-bit media
integer instructions, described in “Syntax” on page 207, except that the mnemonics of most floating-
point instructions begin with the following prefix:

• PF—Packed floating-point

5.7.2 Data Conversion

These data-conversion instructions convert operands from floating-point to integer formats. The
instructions take 32-bit or 64-bit floating-point source operands. For data-conversion instructions that
take 64-bit integer source operands, see “Data Conversion” on page 211. For data-conversion
instructions that take 128-bit source operands, see “Data Conversion” on page 139 and “Data
Conversion” on page 162.

Convert Floating-Point to Integer

• CVTPS2PI—Convert Packed Single-Precision Floating-Point to Packed Doubleword Integers

• CVTTPS2PI—Convert Packed Single-Precision Floating-Point to Packed Doubleword Integers,
Truncated

• CVTPD2PI—Convert Packed Double-Precision Floating-Point to Packed Doubleword Integers

• CVTTPD2PI—Convert Packed Double-Precision Floating-Point to Packed Doubleword Integers,
Truncated

• PF2IW—Packed Floating-Point to Integer Word Conversion

• PF2ID—Packed Floating-Point to Integer Doubleword Conversion

The CVTPS2PI and CVTTPS2PI instructions convert two single-precision (32-bit) floating-point
values in the second operand (the low-order 64 bits of an XMM register or a 64-bit memory location)
to two 32-bit signed integers, and write the converted values into the first operand (an MMX register).
For the CVTPS2PI instruction, if the conversion result is an inexact value, the value is rounded as
specified in the rounding control (RC) field of the MXCSR register (“MXCSR Register” on page 117),
but for the CVTTPS2PI instruction such a result is truncated (rounded toward zero).

The CVTPD2PI and CVTTPD2PI instructions perform conversions analogous to CVTPS2PI and
CVTTPS2PI but for two double-precision (64-bit) floating-point values.
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The 3DNow! PF2IW instruction converts two single-precision floating-point values in the second
operand (an MMX register or a 64-bit memory location) to two 16-bit signed integer values, sign-
extended to 32-bits, and writes the converted values into the first operand (an MMX register). The
3DNow! PF2ID instruction converts two single-precision floating-point values in the second operand
to two 32-bit signed integer values, and writes the converted values into the first operand. If the result
of either conversion is an inexact value, the value is truncated (rounded toward zero).

As described in “Floating-Point Data Types” on page 205, PF2IW and PF2ID do not fully comply with
the IEEE-754 standard. Conversion of some source operands of the C type float (IEEE-754 single-
precision)—specifically NaNs, infinities, and denormals—are not supported. Attempts to convert such
source operands produce undefined results, and no exceptions are generated.

5.7.3 Arithmetic

The floating-point vector-arithmetic instructions perform an arithmetic operation on two floating-
point operands. For a description of 3DNow! instruction saturation on overflow and underflow
conditions, see “Floating-Point Data Types” on page 205.

Addition

• PFADD—Packed Floating-Point Add

The PFADD instruction adds each single-precision floating-point value in the first operand (an MMX
register) to the corresponding single-precision floating-point value in the second operand (an MMX
register or 64-bit memory location). The instruction then writes the result of each addition into the
corresponding doubleword of the destination.

Subtraction

• PFSUB—Packed Floating-Point Subtract

• PFSUBR—Packed Floating-Point Subtract Reverse

The PFSUB instruction subtracts each single-precision floating-point value in the second operand
from the corresponding single-precision floating-point value in the first operand. The instruction then
writes the result of each subtraction into the corresponding quadword of the destination.

The PFSUBR instruction performs a subtraction that is the reverse of the PFSUB instruction. It
subtracts each value in the first operand from the corresponding value in the second operand. The
provision of both the PFSUB and PFSUBR instructions allows software to choose which source
operand to overwrite during a subtraction.

Multiplication

• PFMUL—Packed Floating-Point Multiply

The PFMUL instruction multiplies each of the two single-precision floating-point values in the first
operand by the corresponding single-precision floating-point value in the second operand and writes
the result of each multiplication into the corresponding doubleword of the destination.
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Division

For a description of floating-point division techniques, see “Reciprocal Estimation” on page 227.
Division is equivalent to multiplication of the dividend by the reciprocal of the divisor.

Accumulation

• PFACC—Packed Floating-Point Accumulate

• PFNACC—Packed Floating-Point Negative Accumulate

• PFPNACC—Packed Floating-Point Positive-Negative Accumulate

The PFACC instruction adds the two single-precision floating-point values in the first operand and
writes the result into the low-order word of the destination, and it adds the two single-precision values
in the second operand and writes the result into the high-order word of the destination. Figure 5-17
illustrates the operation.

Figure 5-17. PFACC Accumulate Operation

The PFNACC instruction subtracts the first operand’s high-order single-precision floating-point value
from its low-order single-precision floating-point value and writes the result into the low-order
doubleword of the destination, and it subtracts the second operand’s high-order single-precision
floating-point value from its low-order single-precision floating-point value and writes the result into
the high-order doubleword of the destination.

The PFPNACC instruction subtracts the first operand’s high-order single-precision floating-point
value from its low-order single-precision floating-point value and writes the result into the low-order
doubleword of the destination, and it adds the two single-precision values in the second operand and
writes the result into the high-order doubleword of the destination.

PFPNACC is useful in complex-number multiplication, in which mixed positive-negative
accumulation must be performed. Assuming that complex numbers are represented as two-element
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vectors (one element is the real part, the other element is the imaginary part), there is a need to swap
the elements of one source operand to perform the multiplication, and there is a need for mixed
positive-negative accumulation to complete the parallel computation of real and imaginary results. The
PSWAPD instruction can swap elements of one source operand and the PFPNACC instruction can
perform the mixed positive-negative accumulation to complete the computation.

Reciprocal Estimation

• PFRCP—Packed Floating-Point Reciprocal Approximation

• PFRCPIT1—Packed Floating-Point Reciprocal, Iteration 1

• PFRCPIT2—Packed Floating-Point Reciprocal or Reciprocal Square Root, Iteration 2

The PFRCP instruction computes the approximate reciprocal of the single-precision floating-point
value in the low-order 32 bits of the second operand and writes the result into both doublewords of the
first operand.

The PFRCPIT1 instruction performs the first intermediate step in the Newton-Raphson iteration to
refine the reciprocal approximation produced by the PFRCP instruction. The first operand contains the
input to a previous PFRCP instruction, and the second operand contains the result of the same PFRCP
instruction.

The PFRCPIT2 instruction performs the second and final step in the Newton-Raphson iteration to
refine the reciprocal approximation produced by the PFRCP instruction or the reciprocal square-root
approximation produced by the PFSQRT instructions. The first operand contains the result of a
previous PFRCPIT1 or PFRSQIT1 instruction, and the second operand contains the result of a PFRCP
or PFRSQRT instruction.

The PFRCP instruction can be used together with the PFRCPIT1 and PFRCPIT2 instructions to
increase the accuracy of a single-precision significand.

Reciprocal Square Root

• PFRSQRT—Packed Floating-Point Reciprocal Square Root Approximation

• PFRSQIT1—Packed Floating-Point Reciprocal Square Root, Iteration 1

The PFRSQRT instruction computes the approximate reciprocal square root of the single-precision
floating-point value in the low-order 32 bits of the second operand and writes the result into each
doubleword of the first operand. The second operand is a single-precision floating-point value with a
24-bit significand. The result written to the first operand is accurate to 15 bits. Negative operands are
treated as positive operands for purposes of reciprocal square-root computation, with the sign of the
result the same as the sign of the source operand.

The PFRSQIT1 instruction performs the first step in the Newton-Raphson iteration to refine the
reciprocal square-root approximation produced by the PFSQRT instruction. The first operand contains
the input to a previous PFRSQRT instruction, and the second operand contains the square of the result
of the same PFRSQRT instruction.
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The PFRSQRT instruction can be used together with the PFRSQIT1 instruction and the PFRCPIT2
instruction (described in “Reciprocal Estimation” on page 227) to increase the accuracy of a single-
precision significand.

5.7.4 Compare

The floating-point vector-compare instructions compare two operands, and they either write a mask or
they write the maximum or minimum value.

Compare and Write Mask

• PFCMPEQ—Packed Floating-Point Compare Equal

• PFCMPGT—Packed Floating-Point Compare Greater Than

• PFCMPGE—Packed Floating-Point Compare Greater or Equal

The PFCMPx instructions compare each of the two single-precision floating-point values in the first
operand with the corresponding single-precision floating-point value in the second operand. The
instructions then write the result of each comparison into the corresponding doubleword of the
destination. If the comparison test (equal, greater than, greater or equal) is true, the result is a mask of
all 1s. If the comparison test is false, the result is a mask of all 0s.

Compare and Write Minimum or Maximum

• PFMAX—Packed Floating-Point Maximum

• PFMIN—Packed Floating-Point Minimum

The PFMAX and PFMIN instructions compare each of the two single-precision floating-point values
in the first operand with the corresponding single-precision floating-point value in the second operand.
The instructions then write the maximum (PFMAX) or minimum (PFMIN) of the two values for each
comparison into the corresponding doubleword of the destination.

The PFMIN and PFMAX instructions are useful for clamping, such as color clamping in 3D geometry
and rasterization. They can also be used to avoid branching.

5.8 Instruction Effects on Flags

The 64-bit media instructions do not read or write any flags in the rFLAGS register, nor do they write
any exception-status flags in the x87 status-word register, nor is their execution dependent on any
mask bits in the x87 control-word register. The only x87 state affected by the 64-bit media instructions
is described in “Actions Taken on Executing 64-Bit Media Instructions” on page 232.

5.9 Instruction Prefixes

Instruction prefixes, in general, are described in “Instruction Prefixes” on page 71. The following
restrictions apply to the use of instruction prefixes with 64-bit media instructions.
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5.9.1 Supported Prefixes

The following prefixes can be used with 64-bit media instructions:

• Address-Size Override—The 67h prefix affects only operands in memory. The prefix is ignored by
all other 64-bit media instructions.

• Operand-Size Override—The 66h prefix is used to form the opcodes of certain 64-bit media
instructions. The prefix is ignored by all other 64-bit media instructions.

• Segment Overrides—The 2Eh (CS), 36h (SS), 3Eh (DS), 26h (ES), 64h (FS), and 65h (GS)
prefixes affect only operands in memory. In 64-bit mode, the contents of the CS, DS, ES, SS
segment registers are ignored.

• REP—The F2 and F3h prefixes do not function as repeat prefixes for 64-bit media instructions.
Instead, they are used to form the opcodes of certain 64-bit media instructions. The prefixes are
ignored by all other 64-bit media instructions.

• REX—The REX prefixes affect operands that reference a GPR or XMM register when running in
64-bit mode. It allows access to the full 64-bit width of any of the 16 extended GPRs and to any of
the 16 extended XMM registers. The REX prefix also affects the FXSAVE and FXRSTOR
instructions, in which it selects between two types of 512-byte memory-image format, as described
in “Media and x87 Processor State” in Volume 2. The prefix is ignored by all other 64-bit media
instructions.

5.9.2 Special-Use and Reserved Prefixes

The following prefixes are used as opcode bytes in some 64-bit media instructions and are reserved in
all other 64-bit media instructions:

• Operand-Size Override—The 66h prefix.

• REP—The F2 and F3h prefixes.

5.9.3 Prefixes That Cause Exceptions

The following prefixes cause an exception:

• LOCK—The F0h prefix causes an invalid-opcode exception when used with 64-bit media
instructions.

5.10 Feature Detection

Before executing 64-bit media instructions, software should determine whether the processor supports
the technology by executing the CPUID instruction. “Feature Detection” on page 74 describes how
software uses the CPUID instruction to detect feature support. For full support of the 64-bit media
instructions documented here, the following features require detection:

• MMX instructions, indicated by bit 23 of CPUID function 1 and function 8000_0001h.

• 3DNow! instructions, indicated by bit 31 of CPUID function 8000_0001h.
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• MMX extensions, indicated by bit 22 of CPUID function 8000_0001h.

• 3DNow! extensions, indicated by bit 30 of CPUID function 8000_0001h.

• SSE instructions, indicated by bit 25 of CPUID function 8000_0001h.

• SSE2 instruction extensions, indicated by bit 26 of CPUID function 8000_0001h.

• SSE3 instruction extensions, indicated by bit 0 of CPUID function 0000_0001h.

• SSE4A instruction extensions, indicated by bit 6 of CPUID function 8000_0001h.

Software may also wish to check for the following support, because the FXSAVE and FXRSTOR
instructions execute faster than FSAVE and FRSTOR:

• FXSAVE and FXRSTOR, indicated by bit 24 of CPUID function 1 and function 8000_0001h.

Software that runs in long mode should also check for the following support:

• Long Mode, indicated by bit 29 of CPUID function 8000_0001h.

See “Processor Feature Identification” in Volume 2 for a full description of the CPUID instruction and
its function codes.

If the FXSAVE and FXRSTOR instructions are to be used, the operating system must support these
instructions by having set CR4.OSFXSR = 1. If the MMX floating-point-to-integer data-conversion
instructions (CVTPS2PI, CVTTPS2PI, CVTPD2PI, or CVTTPD2PI) are used, the operating system
must support the FXSAVE and FXRSTOR instructions and SIMD floating-point exceptions (by
having set CR4.OSXMMEXCPT = 1). For details, see “System-Control Registers” in Volume 2.

5.11 Exceptions

64-bit media instructions can generate two types of exceptions:

• General-Purpose Exceptions, described below in “General-Purpose Exceptions”

• x87 Floating-Point Exceptions (#MF), described in “x87 Floating-Point Exceptions (#MF)” on
page 231

All exceptions that occur while executing 64-bit media instructions can be handled by legacy
exception handlers used for general-purpose instructions and x87 floating-point instructions.

5.11.1 General-Purpose Exceptions

The sections below list exceptions generated and not generated by general-purpose instructions. For a
summary of the general-purpose exception mechanism, see “Interrupts and Exceptions” on page 86.
For details about each exception and its potential causes, see “Exceptions and Interrupts” in Volume 2.

Exceptions Generated. The 64-bit media instructions can generate the following general-purpose
exceptions:

• #DB—Debug Exception (Vector 1)
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• #UD—Invalid-Opcode Exception (Vector 6)

• #DF—Double-Fault Exception (Vector 8)

• #SS—Stack Exception (Vector 12)

• #GP—General-Protection Exception (Vector 13)

• #PF—Page-Fault Exception (Vector 14)

• #MF—x87 Floating-Point Exception-Pending (Vector 16)

• #AC—Alignment-Check Exception (Vector 17)

• #MC—Machine-Check Exception (Vector 18)

• #XF—SIMD Floating-Point Exception (Vector 19)—Only by the CVTPS2PI, CVTTPS2PI,
CVTPD2PI, and CVTTPD2PI instructions.

An invalid-opcode exception (#UD) can occur if a required CPUID feature flag is not set (see “Feature
Detection” on page 229), or if an attempt is made to execute a 64-bit media instruction and the
operating system has set the floating-point software-emulation (EM) bit in control register 0 to 1
(CR0.EM = 1).

For details on the system control-register bits, see “System-Control Registers” in Volume 2. For details
on the machine-check mechanism, see “Machine Check Mechanism” in Volume 2.

For details on #MF exceptions, see “x87 Floating-Point Exceptions (#MF)” on page 231.

Exceptions Not Generated. The 64-bit media instructions do not generate the following general-
purpose exceptions:

• #DE—Divide-By-Zero-Error Exception (Vector 0)

• Non-Maskable-Interrupt Exception (Vector 2)

• #BP—Breakpoint Exception (Vector 3)

• #OF—Overflow Exception (Vector 4)

• #BR—Bound-Range Exception (Vector 5)

• #NM—Device-Not-Available Exception (Vector 7)

• Coprocessor-Segment-Overrun Exception (Vector 9)

• #TS—Invalid-TSS Exception (Vector 10)

• #NP—Segment-Not-Present Exception (Vector 11)

For details on all general-purpose exceptions, see “Exceptions and Interrupts” in Volume 2.

5.11.2 x87 Floating-Point Exceptions (#MF)

The 64-bit media instructions do not generate x87 floating-point (#MF) exceptions as a consequence
of their own computations. However, an #MF exception can occur during the execution of a 64-bit
media instruction, due to a prior x87 floating-point instruction. Specifically, if an unmasked x87
floating-point exception is pending at the instruction boundary of the next 64-bit media instruction, the
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processor asserts the FERR# output signal. For details about the x87 floating-point exceptions and the
FERR# output signal, see “x87 Floating-Point Exception Causes” on page 279.

5.12 Actions Taken on Executing 64-Bit Media Instructions

The MMX registers are mapped onto the low 64 bits of the 80-bit x87 floating-point physical registers,
FPR0–FPR7, described in “Registers” on page 238. The MMX instructions do not use the x87 stack-
addressing mechanism. However, 64-bit media instructions write certain values in the x87 top-of-stack
pointer, tag bits, and high bits of the FPR0–FPR7 data registers.

Specifically, the processor performs the following x87-related actions atomically with the execution of
64-bit media instructions:

• Top-Of-Stack Pointer (TOP)—The processor clears the x87 top-of-stack pointer (bits 13–11 in the
x87 status word register) to all 0s during the execution of every 64-bit media instruction, causing it
to point to the mmx0 register.

• Tag Bits—During the execution of every 64-bit media instruction, except the EMMS and FEMMS
instructions, the processor changes the tag state for all eight MMX registers to full, as described
below. In the case of EMMS and FEMMS, the processor changes the tag state for all eight MMX
registers to empty, thus initializing the stack for an x87 floating-point procedure.

• Bits 79–64—During the execution of every 64-bit media instruction that writes a result to an MMX
register, the processor writes the result data to a 64-bit MMX register (the low 64 bits of the
associated 80-bit x87 floating-point physical register) and sets the exponent and sign bits (the high
16 bits of the associated 80-bit x87 floating-point physical register) to all 1s. In the x87
environment, the effect of setting the high 16 bits to all 1s indicates that the contents of the low 64
bits are not finite numbers. Such a designation prevents an x87 floating-point instruction from
interpreting the data as a finite x87 floating-point number.

The rest of the x87 floating-point processor state—the entire x87 control-word register, the remaining
fields of the status-word register, and the error pointers (instruction pointer, data pointer, and last
opcode register)—is not affected by the execution of 64-bit media instructions.

The 2-bit tag fields defined by the x87 architecture for each x87 data register, and stored in the x87 tag-
word register (also called the floating-point tag word, or FTW), characterize the contents of the MMX
registers. The tag bits are visible to software only after an FSAVE or FNSAVE (but not FXSAVE)
instruction, as described in “Media and x87 Processor State” in Volume 2. Internally, however, the
processor maintains only a one-bit representation of each 2-bit tag field. This single bit indicates
whether the associated register is empty or full. Table 5-6 on page 233 shows the mapping between the
1-bit internal tag—which is referred to in this chapter by its empty or full state—and the 2-bit
architectural tag.
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When the processor executes an FSAVE or FNSAVE (but not FXSAVE) instruction, it changes the
internal 1-bit tag state to its 2-bit architectural tag by reading the data in all 80 bits of the physical data
registers and using the mapping in Table 5-6. For example, if the value in the high 16 bits of the 80-bit
physical register indicate a NaN, the two tag bits for that register are changed to a binary value of 10
before the x87 status word is written to memory.

The tag bits have no effect on the execution of 64-bit media instructions or their interpretation of the
contents of the MMX registers. However, the converse is not true: execution of 64-bit media
instructions that write to an MMX register alter the tag bits and thus may affect execution of
subsequent x87 floating-point instructions.

For a more detailed description of the mapping shown in Table 5-6, see “Deriving FSAVE Tag Field
from FXSAVE Tag Field” in Volume 2 and its accompanying text.

5.13 Mixing Media Code with x87 Code

5.13.1 Mixing Code

Software may freely mix 64-bit media instructions (integer or floating-point) with 128-bit media
instructions (integer or floating-point) and general-purpose instructions in a single procedure.
However, before transitioning from a 64-bit media procedure—or a 128-bit media procedure that
accesses an MMX™ register—to an x87 procedure, or to software that may eventually branch to an
x87 procedure, software should clear the MMX state, as described immediately below.

5.13.2 Clearing MMX™ State

Software should separate 64-bit media procedures, 128-bit media procedures, or dynamic link libraries
(DLLs) that access MMX registers from x87 floating-point procedures or DLLs by clearing the MMX
state with the EMMS or FEMMS instruction before leaving a 64-bit media procedure, as described in
“Exit Media State” on page 209.

Table 5-6. Mapping Between Internal and Software-Visible Tag Bits

Architectural State
Internal State1

State Binary Value

Valid 00

Full (0)
Zero 01

Special

(NaN, infinity, denormal)2
10

Empty 11 Empty (1)

Note:
1. For a more detailed description of this mapping, see “Deriving FSAVE Tag Field

from FXSAVE Tag Field” in Volume 2.
2. The 64-bit media floating point (3DNow!™) instructions do not support NaNs, infin-

ities, and denormals.
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The 64-bit media instructions and x87 floating-point instructions interpret the contents of their aliased
MMX and x87 registers differently. Because of this, software should not exchange register data
between 64-bit media and x87 floating-point procedures, or use conditional branches at the end of
loops that might jump to code of the other type. Software must not rely on the contents of the aliased
MMX and x87 registers across such code-type transitions. If a transition to an x87 procedure occurs
from a 64-bit media procedure that does not clear the MMX state, the x87 stack may overflow.

5.14 State-Saving

5.14.1 Saving and Restoring State

In general, system software should save and restore MMX™ and x87 state between task switches or
other interventions in the execution of 64-bit media procedures. Virtually all modern operating
systems running on x86 processors implement preemptive multitasking that handle saving and
restoring of state across task switches, independent of hardware task-switch support.

No changes are needed to the x87 register-saving performed by 32-bit operating systems, exception
handlers, or device drivers. The same support provided in a 32-bit operating system’s device-not-
available (#NM) exception handler by any of the x87-register save/restore instructions described
below also supports saving and restoring the MMX registers.

However, application procedures are also free to save and restore MMX and x87 state at any time they
deem useful.

5.14.2 State-Saving Instructions

Software running at any privilege level may save and restore 64-bit media and x87 state by executing
the FSAVE, FNSAVE, or FXSAVE instruction. Alternatively, software may use move instructions for
saving only the contents of the MMX registers, rather than the complete 64-bit media and x87 state.
For example, when saving MMX register values, use eight MOVQ instructions.

FSAVE/FNSAVE and FRSTOR Instructions. The FSAVE, FNSAVE, and FRSTOR instructions are
described in “Save and Restore 64-Bit Media and x87 State” on page 223. After saving state with
FSAVE or FNSAVE, the tag bits for all MMX and x87 registers are changed to empty and thus
available for a new procedure. Thus, FSAVE and FNSAVE also perform the state-clearing function of
EMMS or FEMMS.

FXSAVE and FXRSTOR Instructions. The FSAVE, FNSAVE, and FRSTOR instructions are
described in “Save and Restore 128-Bit, 64-Bit, and x87 State” on page 223. The FXSAVE and
FXRSTOR instructions execute faster than FSAVE/FNSAVE and FRSTOR because they do not save
and restore the x87 error pointers (described in “Pointers and Opcode State” on page 247) except in the
relatively rare cases in which the exception-summary (ES) bit in the x87 status word (register image
for FXSAVE, memory image for FXRSTOR) is set to 1, indicating that an unmasked x87 exception
has occurred.
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Unlike FSAVE and FNSAVE, however, FXSAVE does not alter the tag bits (thus, it does not perform
the state-clearing function of EMMS or FEMMS). The state of the saved MMX and x87 registers is
retained, thus indicating that the registers may still be valid (or whatever other value the tag bits
indicated prior to the save). To invalidate the contents of the MMX and x87 registers after FXSAVE,
software must explicitly execute an FINIT instruction. Also, FXSAVE (like FNSAVE) and FXRSTOR
do not check for pending unmasked x87 floating-point exceptions. An FWAIT instruction can be used
for this purpose.

For details about the FXSAVE and FXRSTOR memory formats, see “Media and x87 Processor State”
in Volume 2.

5.15 Performance Considerations

In addition to typical code optimization techniques, such as those affecting loops and the inlining of
function calls, the following considerations may help improve the performance of application
programs written with 64-bit media instructions.

These are implementation-independent performance considerations. Other considerations depend on
the hardware implementation. For information about such implementation-dependent considerations
and for more information about application performance in general, see the data sheets and the
software-optimization guides relating to particular hardware implementations.

5.15.1 Use Small Operand Sizes

The performance advantages available with 64-bit media operations is to some extent a function of the
data sizes operated upon. The smaller the data size, the more data elements that can be packed into
single 64-bit vectors. The parallelism of computation increases as the number of elements per vector
increases.

5.15.2 Reorganize Data for Parallel Operations

Much of the performance benefit from the 64-bit media instructions comes from the parallelism
inherent in vector operations. It can be advantageous to reorganize data before performing arithmetic
operations so that its layout after reorganization maximizes the parallelism of the arithmetic
operations.

The speed of memory access is particularly important for certain types of computation, such as
graphics rendering, that depend on the regularity and locality of data-memory accesses. For example,
in matrix operations, performance is high when operating on the rows of the matrix, because row bytes
are contiguous in memory, but lower when operating on the columns of the matrix, because column
bytes are not contiguous in memory and accessing them can result in cache misses. To improve
performance for operations on such columns, the matrix should first be transposed. Such
transpositions can, for example, be done using a sequence of unpacking or shuffle instructions.
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5.15.3 Remove Branches

Branch can be replaced with 64-bit media instructions that simulate predicated execution or
conditional moves, as described in “Branch Removal” on page 198. Where possible, break long
dependency chains into several shorter dependency chains which can be executed in parallel. This is
especially important for floating-point instructions because of their longer latencies.

5.15.4 Align Data

Data alignment is particularly important for performance when data written by one instruction is read
by a subsequent instruction soon after the write, or when accessing streaming (non-temporal) data—
data that will not be reused and therefore should not be cached. These cases may occur frequently in
64-bit media procedures.

Accesses to data stored at unaligned locations may benefit from on-the-fly software alignment or from
repetition of data at different alignment boundaries, as required by different loops that process the data.

5.15.5 Organize Data for Cacheability

Pack small data structures into cache-line-size blocks. Organize frequently accessed constants and
coefficients into cache-line-size blocks and prefetch them. Procedures that access data arranged in
memory-bus-sized blocks, or memory-burst-sized blocks, can make optimum use of the available
memory bandwidth.

For data that will be used only once in a procedure, consider using non-cacheable memory. Accesses to
such memory are not burdened by the overhead of cache protocols.

5.15.6 Prefetch Data

Media applications typically operate on large data sets. Because of this, they make intensive use of the
memory bus. Memory latency can be substantially reduced—especially for data that will be used only
once—by prefetching such data into various levels of the cache hierarchy. Software can use the
PREFETCHx instructions very effectively in such cases, as described in “Cache and Memory
Management” on page 66.

Some of the best places to use prefetch instructions are inside loops that process large amounts of data.
If the loop goes through less than one cache line of data per iteration, partially unroll the loop to obtain
multiple iterations of the loop within a cache line. Try to use virtually all of the prefetched data. This
usually requires unit-stride memory accesses—those in which all accesses are to contiguous memory
locations.

5.15.7 Retain Intermediate Results in MMX™ Registers

Keep intermediate results in the MMX registers as much as possible, especially if the intermediate
results are used shortly after they have been produced. Avoid spilling intermediate results to memory
and reusing them shortly thereafter.
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6 x87 Floating-Point Programming

This chapter describes the x87 floating-point programming model. This model supports all aspects of
the legacy x87 floating-point model and complies with the IEEE 754 and 854 standards for binary
floating-point arithmetic. In hardware implementations of the AMD64 architecture, support for
specific features of the x87 programming model are indicated by the CPUID feature bits, as described
in “Feature Detection” on page 278.

6.1 Overview

Floating-point software is typically written to manipulate numbers that are very large or very small,
that require a high degree of precision, or that result from complex mathematical operations, such as
transcendentals. Applications that take advantage of floating-point operations include geometric
calculations for graphics acceleration, scientific, statistical, and engineering applications, and process
control.

6.1.1 Capabilities

The advantages of using x87 floating-point instructions include:

• Representation of all numbers in common IEEE-754/854 formats, ensuring replicability of results
across all platforms that conform to IEEE-754/854 standards.

• Availability of separate floating-point registers. Depending on the hardware implementation of the
architecture, this may allow execution of x87 floating-point instructions in parallel with execution
of general-purpose and 128-bit media instructions.

• Availability of instructions that compute absolute value, change-of-sign, round-to-integer, partial
remainder, and square root.

• Availability of instructions that compute transcendental values, including 2x-1, cosine, partial arc
tangent, partial tangent, sine, sine with cosine, y*log2x, and y*log2(x+1). The cosine, partial arc
tangent, sine, and sine with cosine instructions use angular values expressed in radians for
operands and results.

• Availability of instructions that load common constants, such as log2e, log210, log102, loge2, Pi, 1,
and 0.

x87 instructions operate on data in three floating-point formats—32-bit single-precision, 64-bit
double-precision, and 80-bit double-extended-precision (sometimes called extended precision)—as
well as integer, and 80-bit packed-BCD formats.

x87 instructions carry out all computations using the 80-bit double-extended-precision format. When
an x87 instruction reads a number from memory in 80-bit double-extended-precision format, the
number can be used directly in computations, without conversion. When an x87 instruction reads a
number in a format other than double-extended-precision format, the processor first converts the



238 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.15—November 2009

number into double-extended-precision format. The processor can convert numbers back to specific
formats, or leave them in double-extended-precision format when writing them to memory.

Most x87 operations for addition, subtraction, multiplication, and division specify two source
operands, the first of which is replaced by the result. Instructions for subtraction and division have
reverse forms which swap the ordering of operands.

6.1.2 Origins

In 1979, AMD introduced the first floating-point coprocessor for microprocessors—the AM9511
arithmetic circuit. This coprocessor performed 32-bit floating-point operations under microprocessor
control. In 1980, AMD introduced the AM9512, which performed 64-bit floating-point operations.
These coprocessors were second-sourced as the 8231 and 8232 coprocessors. Before then,
programmers working with general-purpose microprocessors had to use much slower, vendor-supplied
software libraries for their floating-point needs.

In 1985, the Institute of Electrical and Electronics Engineers published the IEEE Standard for Binary
Floating-Point Arithmetic, also referred to as the ANSI/IEEE Std 754-1985 standard, or IEEE 754.
This standard defines the data types, operations, and exception-handling methods that are the basis for
the x87 floating-point technology implemented in the legacy x86 architecture. In 1987, the IEEE
published a more general radix-independent version of that standard, called the ANSI/IEEE Std 854-
1987 standard, or IEEE 854 for short. The AMD64 architecture complies with both the IEEE 754 and
IEEE 854 standards.

6.1.3 Compatibility

x87 floating-point instructions can be executed in any of the architecture’s operating modes. Existing
x87 binary programs run in legacy and compatibility modes without modification. The support
provided by the AMD64 architecture for such binaries is identical to that provided by legacy x86
architectures.

To run in 64-bit mode, x87 floating-point programs must be recompiled. The recompilation has no side
effects on such programs, other than to make available the extended general-purpose registers and 64-
bit virtual address space.

6.2 Registers

Operands for the x87 instructions are located in x87 registers or memory. Figure 6-1 on page 239
shows an overview of the x87 registers.
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Figure 6-1. x87 Registers

These registers include eight 80-bit data registers, three 16-bit registers that hold the x87 control word,
status word, and tag word, two 64-bit registers that hold instruction and data pointers, and an 11-bit
register that holds a permutation of an x87 opcode.

6.2.1 x87 Data Registers

Figure 6-2 on page 240 shows the eight 80-bit data registers in more detail. Typically, x87 instructions
reference these registers as a stack. x87 instructions store operands only in these 80-bit registers or in
memory. They do not (with two exceptions) access the GPR registers, and they do not access the XMM
registers.
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Figure 6-2. x87 Physical and Stack Registers

Stack Organization. The bank of eight physical data registers, FPR0–FPR7, are organized internally
as a stack, ST(0)–ST(7). The stack functions like a circular modulo-8 buffer. The stack top can be set
by software to start at any register position in the bank. Many instructions access the top of stack as
well as individual registers relative to the top of stack.

Stack Pointer. Bits 13–11 of the x87 status word (“x87 Status Word Register (FSW)” on page 241)
are the top-of-stack pointer (TOP). The TOP specifies the mapping of the stack registers onto the
physical registers. The TOP contains the physical-register index of the location of the top of stack,
ST(0). Instructions that load operands from memory into an x87 register first decrement the stack
pointer and then copy the operand (often with conversion to the double-extended-precision format)
from memory into the decremented top-of-stack register. Instructions that store operands from an x87
register to memory copy the operand (often with conversion from the double-extended-precision
format) in the top-of-stack register to memory and then increment the stack pointer.

Figure 6-2 shows the mapping between stack registers and physical registers when the TOP has the
value 2. Modulo-8 wraparound addressing is used. Pushing a new element onto this stack—for
example with the FLDZ (floating-point load +0.0) instruction—decrements the TOP to 1, so that
ST(0) refers to FPR1, and the new top-of-stack is loaded with +0.0.

The architecture provides alternative versions of many instructions that either modify or do not modify
the TOP as a side effect. For example, FADDP (floating-point add and pop) behaves exactly like
FADD (floating-point add), except that it pops the stack after completion. Programs that use the x87
registers as a flat register file rather than as a stack would use non-popping versions of instructions to
ensure that the TOP remains unchanged. However, loads (pushes) without corresponding pops can
cause the stack to overflow, which occurs when a value is pushed or loaded into an x87 register that is
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not empty (as indicated by the register’s tag bits). To prevent overflow, the FXCH (floating-point
exchange) instruction can be used to access stack registers, giving the appearance of a flat register file,
but all x87 programs must be aware of the register file’s stack organization.

The FINCSTP and FDECSTP instructions can be used to increment and decrement, respectively, the
TOP, modulo-8, allowing the stack top to wrap around to the bottom of the eight-register file when
incremented beyond the top of the file, or to wrap around to the top of the register file when
decremented beyond the bottom of the file. Neither the x87 tag word nor the contents of the floating-
point stack itself is updated when these instructions are used.

6.2.2 x87 Status Word Register (FSW)

The 16-bit x87 status word register contains information about the state of the floating-point unit,
including the top-of-stack pointer (TOP), four condition-code bits, exception-summary flag, stack-
fault flag, and six x87 floating-point exception flags. Figure 6-3 on page 242 shows the format of this
register. All bits can be read and written, however values written to the B and ES bits (bits 15 and 7) are
ignored.

The FRSTOR and FXRSTOR instructions load the status word from memory. The FSTSW, FNSTSW,
FSAVE, FNSAVE, FXSAVE, FSTENV, and FNSTENV instructions store the status word to memory.
The FCLEX and FNCLEX instructions clear the exception flags. The FINIT and FNINIT instructions
clear all bits in the status-word.
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Figure 6-3. x87 Status Word Register (FSW)

The bits in the x87 status word are defined immediately below, starting with bit 0. The six exception
flags (IE, DE, ZE, OE, UE, PE) plus the stack fault (SF) flag are sticky bits. Once set by the processor,
such a bit remains set until software clears it. For details about the causes of x87 exceptions indicated
by bits 6–0, see “x87 Floating-Point Exception Causes” on page 279. For details about the masking of
x87 exceptions, see “x87 Floating-Point Exception Masking” on page 283.

Invalid-Operation Exception (IE). Bit 0. The processor sets this bit to 1 when an invalid-operation
exception occurs. These exceptions are caused by many types of errors, such as an invalid operand or
by stack faults. When a stack fault causes an IE exception, the stack fault (SF) exception bit is also set.

Denormalized-Operand Exception (DE). Bit 1. The processor sets this bit to 1 when one of the
source operands of an instruction is in denormalized form. (See “Denormalized (Tiny) Numbers” on
page 254.)

Zero-Divide Exception (ZE). Bit 2. The processor sets this bit to 1 when a non-zero number is
divided by zero.
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Overflow Exception (OE). Bit 3. The processor sets this bit to 1 when the absolute value of a
rounded result is larger than the largest representable normalized floating-point number for the
destination format. (See “Normalized Numbers” on page 254.)

Underflow Exception (UE). Bit 4. The processor sets this bit to 1 when the absolute value of a
rounded non-zero result is too small to be represented as a normalized floating-point number for the
destination format. (See “Normalized Numbers” on page 254.)

The underflow exception has an unusual behavior. When masked by the UM bit (bit 4 of the x87
control word), the processor only reports a UE exception if the UE occurs together with a precision
exception (PE).

Precision Exception (PE). Bit 5. The processor sets this bit to 1 when a floating-point result, after
rounding, differs from the infinitely precise result and thus cannot be represented exactly in the
specified destination format. The PE exception is also called the inexact-result exception.

Stack Fault (SF). Bit 6. The processor sets this bit to 1 when a stack overflow (due to a push or load
into a non-empty stack register) or stack underflow (due to referencing an empty stack register) occurs
in the x87 stack-register file. When either of these conditions occur, the processor also sets the invalid-
operation exception (IE) flag, and the processor distinguishes overflow from underflow by writing the
condition-code 1 (C1) bit (C1 = 1 for overflow, C1 = 0 for underflow). Unlike the flags for the other
x87 exceptions, the SF flag does not have a corresponding mask bit in the x87 control word.

If, subsequent to the instruction that caused the SF bit to be set, a second invalid-operation exception
(IE) occurs due to an invalid operand in an arithmetic instruction (i.e., not a stack fault), and if software
has not cleared the SF bit between the two instructions, the SF bit will remain set.

Exception Status (ES). Bit 7. The processor calculates the value of this bit at each instruction
boundary and sets the bit to 1 when one or more unmasked floating-point exceptions occur. If the ES
bit has already been set by the action of some prior instruction, the processor invokes the #MF
exception handler when the next non-control x87 or 64-bit media instruction is executed. (See
“Control” on page 273 for a definition of control instructions).

The ES bit can be written, but the written value is ignored. Like the SF bit, the ES bit does not have a
corresponding mask bit in the x87 control word.

Top-of-Stack Pointer (TOP). Bits 13–11. The TOP contains the physical register index of the
location of the top of stack, ST(0). It thus specifies the mapping of the x87 stack registers,
ST(0)–ST(7), onto the x87 physical registers, FPR0–FPR7. The processor changes the TOP during any
instructions that pushes or pops the stack. For details on how the stack works, see “Stack
Organization” on page 240.

Condition Codes (C3–C0). Bits 14 and 10–8. The processor sets these bits according to the result of
arithmetic, compare, and other instructions. In certain cases, other status-word flags can be used
together with the condition codes to determine the result of an operation, including stack overflow,
stack underflow, sign, least-significant quotient bits, last-rounding direction, and out-of-range
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operand. For details on how each instruction sets the condition codes, see “x87 Floating-Point
Instruction Reference” in Volume 5.

x87 Floating-Point Unit Busy (B). Bit 15. The processor sets the value of this bit equal to the
calculated value of the ES bit, bit 7. This bit can be written, but the written value is ignored. The bit is
included only for backward-compatibility with the 8087 coprocessor, in which it indicates that the
coprocessor is busy.

For further details about the x87 floating-point exceptions, see “x87 Floating-Point Exception Causes”
on page 279.

6.2.3 x87 Control Word Register (FCW)

The 16-bit x87 control word register allows software to manage certain x87 processing options,
including rounding, precision, and masking of the six x87 floating-point exceptions (any of which is
reported as an #MF exception). Figure 6-4 shows the format of the control word. All bits, except
reserved bits, can be read and written.

The FLDCW, FRSTOR, and FXRSTOR instructions load the control word from memory. The
FSTCW, FNSTCW, FSAVE, FNSAVE, and FXSAVE instructions store the control word to memory.
The FINIT and FNINIT instructions initialize the control word with the value 037Fh, which specifies
round-to-nearest, all exceptions masked, and double-extended precision (64-bit).

Figure 6-4. x87 Control Word Register (FCW)
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ZE, DE, IE), which are reported in the x87 status word as described in “x87 Status Word Register
(FSW)” on page 241. A bit masks its exception type when set to 1, and unmasks it when cleared to 0.

Masking a type of exception causes the processor to handle all subsequent instances of the exception
type in a default way. Unmasking the exception type causes the processor to branch to the #MF
exception service routine when an exception occurs. For details about the processor’s responses to
masked and unmasked exceptions, see “x87 Floating-Point Exception Causes” on page 279.

Precision Control (PC). Bits 9–8. Software can set this field to specify the precision of x87 floating-
point calculations, as shown in Table 6-1. Details on each precision are given in “Data Types” on
page 250. The default precision is double-extended-precision. Precision control affects only the
FADDx, FSUBx, FMULx, FDIVx, and FSQRT instructions. For further details on precision, see
“Precision” on page 260.

Rounding Control (RC). Bits 11–10. Software can set this field to specify how the results of x87
instructions are to be rounded. Table 6-2 lists the four rounding modes, which are defined by the IEEE
754 standard.

Round-to-nearest is the default rounding mode. It provides a statistically unbiased estimate of the true
result, and is suitable for most applications. Rounding modes apply to all arithmetic operations except
comparison and remainder. They have no effect on operations that produce not-a-number (NaN)
results. For further details on rounding, see “Rounding” on page 260.

Table 6-1. Precision Control (PC) Summary

PC Value
(binary)

Data Type

00 Single precision

01 reserved

10 Double precision

11 Double-extended precision (default)

Table 6-2. Types of Rounding

RC Value Mode Type of Rounding

00
(default)

Round to nearest
The rounded result is the representable value closest to
the infinitely precise result. If equally close, the even
value (with least-significant bit 0) is taken.

01 Round down
The rounded result is closest to, but no greater than, the
infinitely precise result.

10 Round up
The rounded result is closest to, but no less than, the
infinitely precise result.

11
Round toward
zero

The rounded result is closest to, but no greater in
absolute value than, the infinitely precise result.
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Infinity Bit (Y). Bit 12. This bit is obsolete. It can be read and written, but the value has no meaning.
On pre-386 processor implementations, the bit specified the affine (Y = 1) or projective (Y = 0)
infinity. The AMD64 architecture uses only the affine infinity, which specifies distinct positive and
negative infinity values.

6.2.4 x87 Tag Word Register (FTW)

The x87 tag word register contains a 2-bit tag field for each x87 physical data register. These tag fields
characterize the register’s data. Figure 6-5 shows the format of the tag word.

Figure 6-5. x87 Tag Word Register (FTW)

In the memory image saved by the instructions described in “x87 Environment” on page 248, each x87
physical data register has two tag bits which are encoded according to the Tag Values shown in
Figure 6-5. Internally, the hardware may maintain only a single bit that indicates whether the
associated register is empty or full. The mapping between such a 1-bit internal tag and the 2-bit
software-visible architectural representation saved in memory is shown in Table 6-3 on page 246. In
such a mapping, whenever software saves the tag word, the processor expands the internal 1-bit tag
state to the 2-bit architectural representation by examining the contents of the x87 registers, as
described in “128-Bit, 64-Bit, and x87 Programming” in Volume 2.

The FINIT and FNINIT instructions write the tag word so that it specifies all floating-point registers as
empty. Execution of 64-bit media instructions that write to an MMX™ register alter the tag bits by
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setting all the registers to full, and thus they may affect execution of subsequent x87 floating-point
instructions. For details, see “Mixing Media Code with x87 Code” on page 233.

6.2.5 Pointers and Opcode State

The x87 instruction pointer, instruction opcode, and data pointer are part of the x87 environment (non-
data processor state) that is loaded and stored by the instructions described in “x87 Environment” on
page 248. Figure 6-6 illustrates the pointer and opcode state. Execution of all x87 instructions—except
control instructions (see “Control” on page 273)—causes the processor to store this state in hardware.

For convenience, the pointer and opcode state is illustrated here as registers. However, the manner of
storing this state in hardware depends on the hardware implementation. The AMD64 architecture
specifies only the software-visible state that is saved in memory. (See “Media and x87 Processor State”
in Volume 2 for details of the memory images.)

Figure 6-6. x87 Pointers and Opcode State

Last x87 Instruction Pointer. The contents of the 64-bit last-instruction pointer depends on the
operating mode, as follows:

• 64-Bit Mode—The pointer contains the 64-bit RIP offset of the last non-control x87 instruction
executed (see “Control” on page 273 for a definition of control instructions). The 16-bit code-
segment (CS) selector is not saved. (It is the operating system’s responsibility to ensure that the 64-
bit state-restoration is executed in the same code segment as the preceding 64-bit state-store.)

• Legacy Protected Mode and Compatibility Mode—The pointer contains the 16-bit code-segment
(CS) selector and the 16-bit or 32-bit eIP of the last non-control x87 instruction executed.

• Legacy Real Mode and Virtual-8086 Mode—The pointer contains the 20-bit or 32-bit linear
address (CS base + eIP) of the last non-control x87 instruction executed.

The FINIT and FNINIT instructions clear all bits in this pointer.

Last x87 Opcode. The 11-bit instruction opcode holds a permutation of the two-byte instruction
opcode from the last non-control x87 floating-point instruction executed by the processor. The opcode
field is formed as follows:

• Opcode Field[10:8] = First x87-opcode byte[2:0].
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• Opcode Field[7:0] = Second x87-opcode byte[7:0].

For example, the x87 opcode D9 F8 (floating-point partial remainder) is stored as 001_1111_1000b.
The low-order three bits of the first opcode byte, D9 (1101_1001b), are stored in bits 10–8. The second
opcode byte, F8 (1111_1000b), is stored in bits 7–0. The high-order five bits of the first opcode byte
(1101_1b) are not needed because they are identical for all x87 instructions.

Last x87 Data Pointer. The operating mode determines the value of the 64-bit data pointer, as
follows:

• 64-Bit Mode—The pointer contains the 64-bit offset of the last memory operand accessed by the
last non-control x87 instruction executed.

• Legacy Protected Mode and Compatibility Mode—The pointer contains the 16-bit data-segment
selector and the 16-bit or 32-bit offset of the last memory operand accessed by an executed non-
control x87 instruction.

• Legacy Real Mode and Virtual-8086 Mode—The pointer contains the 20-bit or 32-bit linear
address (segment base + offset) of the last memory operand accessed by an executed non-control
x87 instruction.

The FINIT and FNINIT instructions clear all bits in this pointer.

6.2.6 x87 Environment

The x87 environment—or non-data processor state—includes the following processor state:

• x87 control word register (FCW)

• x87 status word register (FSW)

• x87 tag word (FTW)

• last x87 instruction pointer

• last x87 data pointer

• last x87 opcode

Table 6-4 lists the x87 instructions can access this x87 processor state.

Table 6-4. Instructions that Access the x87 Environment

Instruction Description State Accessed

FINIT Floating-Point Initialize Entire Environment

FNINIT Floating-Point No-Wait Initialize Entire Environment

FNSAVE Floating-Point No-Wait Save State Entire Environment

FRSTOR Floating-Point Restore State Entire Environment

FSAVE Floating-Point Save State Entire Environment

FLDCW Floating-Point Load x87 Control Word x87 Control Word
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For details on how the x87 environment is stored in memory, see “Media and x87 Processor State” in
Volume 2.

6.2.7 Floating-Point Emulation (CR0.EM)

The operating system can set the floating-point software-emulation (EM) bit in control register 0
(CR0) to 1 to allow software emulation of x87 instructions. If the operating system has set
CR0.EM = 1, the processor does not execute x87 instructions. Instead, a device-not-available
exception (#NM) occurs whenever an attempt is made to execute such an instruction, except that
setting CR0.EM to 1 does not cause an #NM exception when the WAIT or FWAIT instruction is
executed. For details, see “System-Control Registers” in Volume 2.

6.3 Operands

6.3.1 Operand Addressing

Operands for x87 instructions are referenced by the opcodes. Operands can be located either in x87
registers or memory. Immediate operands are not used in x87 floating-point instructions, and I/O ports
cannot be directly addressed by x87 floating-point instructions.

Memory Operands. Most x87 floating-point instructions can take source operands from memory,
and a few of the instructions can write results to memory. The following sections describe the methods
and conditions for addressing memory operands:

• “Memory Addressing” on page 14 describes the general methods and conditions for addressing
memory operands.

FNSTCW
Floating-Point No-Wait Store Control
Word

x87 Control Word

FSTCW Floating-Point Store Control Word x87 Control Word

FNSTSW
Floating-Point No-Wait Store Status
Word

x87 Status Word

FSTSW Floating-Point Store Status Word x87 Status Word

FLDENV Floating-Point Load x87 Environment
Environment, Not
Including x87 Data
Registers

FNSTENV
Floating-Point No-Wait Store
Environment

Environment, Not
Including x87 Data
Registers

FSTENV Floating-Point Store Environment
Environment, Not
Including x87 Data
Registers

Table 6-4. Instructions that Access the x87 Environment (continued)

Instruction Description State Accessed
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• “Instruction Prefixes” on page 277 describes the use of address-size instruction overrides by 64-bit
media instructions.

Register Operands. Most x87 floating-point instructions can read source operands from and write
results to x87 registers. Most instructions access the ST(0)–ST(7) register stack. For a few instructions,
the register types also include the x87 control word register, the x87 status word register, and (for
FSTSW and FNSTSW) the AX general-purpose register.

6.3.2 Data Types

Figure 6-7 shows register images of the x87 data types. These include three scalar floating-point
formats (80-bit double-extended-precision, 64-bit double-precision, and 32-bit single-precision), three
scalar signed-integer formats (quadword, doubleword, and word), and an 80-bit packed binary-coded
decimal (BCD) format. Although Figure 6-7 shows register images of the data types, the three signed-
integer data types can exist only in memory. All data types are converted into an 80-bit format when
they are loaded into an x87 register.

Figure 6-7. x87 Data Types
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Floating-Point Data Types. The floating-point data types, shown in Figure 6-8 on page 251, include
32-bit single precision, 64-bit double precision, and 80-bit double-extended precision. The default
precision is double-extended precision, and all operands loaded into registers are converted into
double-extended precision format.

All three floating-point formats are compatible with the IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std 754 and 854).

Figure 6-8. x87 Floating-Point Data Types

All of the floating-point data types consist of a sign (0 = positive, 1 = negative), a biased exponent
(base-2), and a significand, which represents the integer and fractional parts of the number. The integer
bit (also called the J bit) is either implied (called a hidden integer bit) or explicit, depending on the data
type. The value of an implied integer bit can be inferred from number encodings, as described in
“Number Encodings” on page 256. The bias of the exponent is a constant which makes the exponent
always positive and allows reciprocation, without overflow, of the smallest normalized number
representable by that data type.

Specifically, the data types are formatted as follows:

• Single-Precision Format—This format includes a 1-bit sign, an 8-bit biased exponent whose value
is 127, and a 23-bit significand. The integer bit is implied, making a total of 24 bits in the
significand.
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• Double-Precision Format—This format includes a 1-bit sign, an 11-bit biased exponent whose
value is 1023, and a 52-bit significand. The integer bit is implied, making a total of 53 bits in the
significand.

• Double-Extended-Precision Format—This format includes a 1-bit sign, a 15-bit biased exponent
whose value is 16,383, and a 64-bit significand, which includes one explicit integer bit.

Table 6-5 shows the range of finite values representable by the three x87 floating-point data types.

For example, in the single-precision format, the largest normal number representable has an exponent
of FEh and a significand of 7FFFFFh, with a numerical value of 2127 * (2 – 2–23). Results that overflow
above the maximum representable value return either the maximum representable normalized number
(see “Normalized Numbers” on page 254) or infinity, with the sign of the true result, depending on the
rounding mode specified in the rounding control (RC) field of the x87 control word. Results that
underflow below the minimum representable value return either the minimum representable
normalized number or a denormalized number (see “Denormalized (Tiny) Numbers” on page 254),
with the sign of the true result, or a result determined by the x87 exception handler, depending on the
rounding mode, precision mode, and underflow-exception mask (UM) in the x87 control word (see
“Unmasked Responses” on page 288).

Integer Data Type. The integer data types, shown in Figure 6-7 on page 250, include two’s-
complement 16-bit word, 32-bit doubleword, and 64-bit quadword. These data types are used in x87
instructions that convert signed integer operands into floating-point values. The integers can be loaded
from memory into x87 registers and stored from x87 registers into memory. The data types cannot be
moved between x87 registers and other registers.

For details on the format and number-representation of the integer data types, see “Data Types” on
page 36.

Packed-Decimal Data Type. The 80-bit packed-decimal data type, shown in Figure 6-9 on page 253,
represents an 18-digit decimal integer using the binary-coded decimal (BCD) format. Each of the 18
digits is a 4-bit representation of an integer. The 18 digits use a total of 72 bits. The next-higher seven

Table 6-5. Range of Finite Floating-Point Values

Data Type
Range of Finite Values1

Precision
Base 2 Base 10

Single Precision 2–126 to 2127 * (2 – 2–23) 1.17 * 10–38 to +3.40 * 1038 24 bits

Double Precision 2–1022 to 21023 * (2 – 2–52) 2.23 * 10–308 to +1.79 * 10308 53 bits

Double-Extended
Precision

2–16382 to 216383 * (2 – 2–63) 3.37 * 10–4932 to +1.18 * 104932 64 bits

Note:
1. See “Number Representation” on page 253.
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bits in the 80-bit format are reserved (ignored on loads, zeros on stores). The high bit (bit 79) is a sign
bit.

Figure 6-9. x87 Packed Decimal Data Type

Two x87 instructions operate on the packed-decimal data type. The FBLD (floating-point load binary-
coded decimal) and FBSTP (floating-point store binary-coded decimal integer and pop) instructions
push and pop, respectively, a packed-decimal memory operand between the floating-point stack and
memory. FBLD converts the value being pushed to a double-extended-precision floating-point value.
FBSTP rounds the value being popped to an integer.

For details on the format and use of 4-bit BCD integers, see “Binary-Coded-Decimal (BCD) Digits”
on page 38.

6.3.3 Number Representation

Of the following types of floating-point values, six are supported by the architecture and three are not
supported:

• Supported Values

- Normal

- Denormal (Tiny)

- Pseudo-Denormal

- Zero

- Infinity

- Not a Number (NaN)

• Unsupported Values

- Unnormal

- Pseudo-Infinity

- Pseudo-NaN

The supported values can be used as operands in x87 floating-point instructions. The unsupported
values cause an invalid-operation exception (IE) when used as operands.

079

Precision — 18 Digits, 72 Bits Used, 4-Bits/Digit

71

S
Ignore
or Zero

Description Bits
Ignored on Load, Zeros on Store 78-72
Sign Bit 79

78 72
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In common engineering and scientific usage, floating-point numbers—also called real numbers—are
represented in base (radix) 10. A non-zero number consists of a sign, a normalized significand, and a
signed exponent, as in:

+2.71828 e0

Both large and small numbers are representable in this notation, subject to the limits of data-type
precision. For example, a million in base-10 notation appears as +1.00000 e6 and -0.0000383 is
represented as -3.83000 e-5. A non-zero number can always be written in normalized form—that is,
with a leading non-zero digit immediately before the decimal point. Thus, a normalized significand in
base-10 notation is a number in the range [1,10). The signed exponent specifies the number of
positions that the decimal point is shifted.

Unlike the common engineering and scientific usage described above, x87 floating-point numbers are
represented in base (radix) 2. Like its base-10 counterpart, a normalized base-2 significand is written
with its leading non-zero digit immediately to the left of the radix point. In base-2 arithmetic, a non-
zero digit is always a one, so the range of a binary significand is [1,2):

+1.fraction ±exponent

The leading non-zero digit is called the integer bit, and in the x87 double-extended-precision floating-
point format this integer bit is explicit, as shown in Figure 6-8. In the x87 single-precision and the
double-precision floating-point formats, the integer bit is simply omitted (and called the hidden
integer bit), because its implied value is always 1 in a normalized significand (0 in a denormalized
significand), and the omission allows an extra bit of precision.

The following sections describe the supported number representations.

Normalized Numbers. Normalized floating-point numbers are the most frequent operands for x87
instructions. These are finite, non-zero, positive or negative numbers in which the integer bit is 1, the
biased exponent is non-zero and non-maximum, and the fraction is any representable value. Thus, the
significand is within the range of [1, 2). Whenever possible, the processor represents a floating-point
result as a normalized number.

Denormalized (Tiny) Numbers. Denormalized numbers (also called tiny numbers) are smaller than
the smallest representable normalized numbers. They arise through an underflow condition, when the
exponent of a result lies below the representable minimum exponent. These are finite, non-zero,
positive or negative numbers in which the integer bit is 0, the biased exponent is 0, and the fraction is
non-zero.

The processor generates a denormalized-operand exception (DE) when an instruction uses a
denormalized source operand. The processor may generate an underflow exception (UE) when an
instruction produces a rounded, non-zero result that is too small to be represented as a normalized
floating-point number in the destination format, and thus is represented as a denormalized number. If a
result, after rounding, is too small to be represented as the minimum denormalized number, it is
represented as zero. (See “Exceptions” on page 278 for specific details.)
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Denormalization may correct the exponent by placing leading zeros in the significand. This may cause
a loss of precision, because the number of significant bits in the fraction is reduced by the leading
zeros. In the single-precision floating-point format, for example, normalized numbers have biased
exponents ranging from 1 to 254 (the unbiased exponent range is from –126 to +127). A true result
with an exponent of, say, –130, undergoes denormalization by right-shifting the significand by the
difference between the normalized exponent and the minimum exponent, as shown in Table 6-6.

Pseudo-Denormalized Numbers. Pseudo-denormalized numbers are positive or negative numbers
in which the integer bit is 1, the biased exponent is 0, and the fraction is any value. The processor
accepts pseudo-denormal source operands but it does not produce pseudo-denormal results. When a
pseudo-denormal number is used as a source operand, the processor treats the arithmetic value of its
biased exponent as 1 rather than 0, and the processor generates a denormalized-operand exception
(DE).

Zero. The floating-point zero is a finite, positive or negative number in which the integer bit is 0, the
biased exponent is 0, and the fraction is 0. The sign of a zero result depends on the operation being
performed and the selected rounding mode. It may indicate the direction from which an underflow
occurred, or it may reflect the result of a division by +∞ or –∞.

Infinity. Infinity is a positive or negative number, +∞ and –∞, in which the integer bit is 1, the biased
exponent is maximum, and the fraction is 0. The infinities are the maximum numbers that can be
represented in floating-point format. Negative infinity is less than any finite number and positive
infinity is greater than any finite number (i.e., the affine sense).

An infinite result is produced when a non-zero, non-infinite number is divided by 0 or multiplied by
infinity, or when infinity is added to infinity or to 0. Arithmetic on infinities is exact. For example,
adding any floating-point number to +∞ gives a result of +∞. Arithmetic comparisons work correctly
on infinities. Exceptions occur only when the use of an infinity as a source operand constitutes an
invalid operation.

Not a Number (NaN). NaNs are non-numbers, lying outside the range of representable floating-point
values. The integer bit is 1, the biased exponent is maximum, and the fraction is non-zero. NaNs are of
two types:

• Signaling NaN (SNaN)

• Quiet NaN (QNaN)

A QNaN is a NaN with the most-significant fraction bit set to 1, and an SNaN is a NaN with the most-
significant fraction bit cleared to 0. When the processor encounters an SNaN as a source operand for
an instruction, an invalid-operation exception (IE) occurs and a QNaN is produced as the result, if the

Table 6-6. Example of Denormalization

Significand (base 2) Exponent Result Type

1.0011010000000000 –130 True result

0.0001001101000000 –126 Denormalized result
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exception is masked. In general, when the processor encounters a QNaN as a source operand for an
instruction—in an instruction other than FxCOMx, FISTx, or FSTx—the processor does not generate
an exception but generates a QNaN as the result.

The processor never generates an SNaN as a result of a floating-point operation. When an invalid-
operation exception (IE) occurs due to an SNaN operand, the invalid-operation exception mask (IM)
bit determines the processor’s response, as described in “x87 Floating-Point Exception Masking” on
page 283.

When a floating-point operation or exception produces a QNaN result, its value is derived from the
source operands according to the rules shown in Table 6-7.

6.3.4 Number Encodings

Supported Encodings. Table 6-8 on page 257 shows the floating-point encodings of supported
numbers and non-numbers. The number categories are ordered from large to small. In this affine
ordering, positive infinity is larger than any positive normalized number, which in turn is larger than
any positive denormalized number, which is larger than positive zero, and so forth. Thus, the ordinary
rules of comparison apply between categories as well as within categories, so that comparison of any
two numbers is well-defined.

The actual exponent field length is 8, 11, or 15 bits, and the fraction field length is 23, 52, or 63 bits,
depending on operand precision.

Table 6-7. NaN Results from NaN Source Operands

Source Operand
(in either order)1

NaN Result2

QNaN
Any non-NaN floating-point value
(or single-operand instruction)

Value of QNaN

SNaN
Any non-NaN floating-point value
(or single-operand instruction)

Value of SNaN,

converted to a QNaN3

QNaN QNaN
Value of QNaN with

the larger significand4

QNaN SNaN Value of QNaN

SNaN QNaN Value of QNaN

SNaN SNaN
Value of SNaN with

the larger significand4

Note:
1. This table does not include NaN source operands used in FxCOMx, FISTx, or FSTx

instructions.
2. A NaN result is produced when the floating-point invalid-operation exception is

masked.
3. The conversion is done by changing the most-significant fraction bit to 1.
4. If the significands of the source operands are equal but their signs are different, the

NaN result is undefined.
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The single-precision and double-precision formats do not include the integer bit in the significand (the
value of the integer bit can be inferred from number encodings). The double-extended-precision
format explicitly includes the integer in bit 63 and places the most-significant fraction bit in bit 62.
Exponents of all three types are encoded in biased format, with respective biasing constants of 127,
1023, and 16,383.

Table 6-8. Supported Floating-Point Encodings

Classification Sign
Biased

Exponent1
Significand2

Positive
Non-Numbers

SNaN 0 111 ... 111
1.011 ... 111
to
1.000 ... 001

QNaN 0 111 ... 111
1.111 ... 111
to
1.100 ... 000

Positive
Floating-Point
Numbers

Positive Infinity (+∞) 0 111 ... 111 1.000 ... 000

Positive Normal 0
111 ... 110
to
000 ... 001

1.111 ... 111
to
1.000 ... 000

Positive Pseudo-

Denormal3
0 000 ... 000

1.111 ... 111
to
1.000 ... 001

Positive Denormal 0 000 ... 000
0.111 ... 111
to
0.000 ... 001

Positive Zero 0 000 ... 000 0.000 ... 000

Note:
1. The actual exponent field length is 8, 11, or 15 bits, depending on operand preci-

sion.
2. The “1.” and “0.” prefixes represent the implicit or explicit integer bit. The actual frac-

tion field length is 23, 52, or 63 bits, depending on operand precision.
3. Pseudo-denormals can only occur in double-extended-precision format, because

they require an explicit integer bit.
4. The floating-point indefinite value is a QNaN with a negative sign and a significand

whose value is 1.100 ... 000.
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Unsupported Encodings. Table 6-9 on page 259 shows the encodings of unsupported values. These
values can exist only in the double-extended-precision format, because they require an explicit integer
bit. The processor does not generate them as results, and they cause an invalid-operation exception (IE)
when used as source operands.

Indefinite Values. Floating-point, integer, and packed-decimal data types each have a unique
encoding that represents an indefinite value. The processor returns an indefinite value when a masked
invalid-operation exception (IE) occurs. The indefinite values for various data types are provided in
Table 4-7 on page 132.

For example, if a floating-point arithmetic operation is attempted using a source operand which is in an
unsupported format, and IE exceptions are masked, the floating-point indefinite value is returned as
the result. Or, if an integer store instruction overflows its destination data type, and IE exceptions are
masked, the integer indefinite value is returned as the result.

Negative
Floating-Point
Numbers

Negative Zero 1 000 ... 000 0.000 ... 000

Negative Denormal 1 000 ... 000
0.000 ... 001
to
0.111 ... 111

Negative Pseudo-

Denormal3
1 000 ... 000

1.000 ... 001
to
1.111 ... 111

Negative Normal 1
000 ... 001
to
111 ... 110

1.000 ... 000
to
1.111 ... 111

Negative Infinity (-∞) 1 111 ... 111 1.000 ... 000

Negative
Non-Numbers

SNaN 1 111 ... 111
1.000 ... 001
to
1.011 ... 111

QNaN4 1 111 ... 111
1.100 ... 000
to
1.111 ... 111

Table 6-8. Supported Floating-Point Encodings (continued)

Classification Sign
Biased

Exponent1
Significand2

Note:
1. The actual exponent field length is 8, 11, or 15 bits, depending on operand preci-

sion.
2. The “1.” and “0.” prefixes represent the implicit or explicit integer bit. The actual frac-

tion field length is 23, 52, or 63 bits, depending on operand precision.
3. Pseudo-denormals can only occur in double-extended-precision format, because

they require an explicit integer bit.
4. The floating-point indefinite value is a QNaN with a negative sign and a significand

whose value is 1.100 ... 000.
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Table 6-10 shows the encodings of the indefinite values for each data type. For floating-point numbers,
the indefinite value is a special form of QNaN. For integers, the indefinite value is the largest
representable negative two’s-complement number, 80...00h. (This value is interpreted as the largest
representable negative number, except when a masked IE exception occurs, in which case it is
interpreted as an indefinite value.) For packed-decimal numbers, the indefinite value has no other
meaning than indefinite.

Table 6-9. Unsupported Floating-Point Encodings

Classification Sign
Biased

Exponent1
Significand2

Positive Pseudo-NaN 0 111 ... 111
0.111 ... 111

to
0.000 ... 001

Positive Pseudo-Infinity 0 111 ... 111 0.000 ... 000

Positive Unnormal 0
111 ... 110

to
000 ... 001

0.111 ... 111
to

0.000 ... 000

Negative Unnormal 1
000 ... 001

to
111 ... 110

0.000 ... 000
to

0.111 ... 111

Negative Pseudo-Infinity 1 111 ... 111 0.000 ... 000

Negative Pseudo-NaN 1 111 ... 111
0.000 ... 001

to
0.111 ... 111

Note:
1. The actual exponent field length is 15 bits.
2. The “0.” prefix represent the explicit integer bit. The actual fraction field length is 63

bits.

Table 6-10. Indefinite-Value Encodings

Data Type Indefinite Encoding

Single-Precision Floating-Point FFC0_0000h

Double-Precision Floating-Point FFF8_0000_0000_0000h

Extended-Precision Floating-Point FFFF_C000_0000_0000_0000h

16-Bit Integer 8000h

32-Bit Integer 8000_0000h

64-Bit Integer 8000_0000_0000_0000h

80-Bit BCD FFFF_C000_0000_0000_0000h
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6.3.5 Precision

The Precision control (PC) field comprises bits 9–8 of the x87 control word (“x87 Control Word
Register (FCW)” on page 244). This field specifies the precision of floating-point calculations for the
FADDx, FSUBx, FMULx, FDIVx, and FSQRT instructions, as shown in Table 6-11.

The default precision is double-extended-precision. Selecting double-precision or single-precision
reduces the size of the significand to 53 bits or 24 bits, but keeps the exponent in double extended
range. The reduced precision is provided to support the IEEE 754 standard. When using reduced
precision, rounding clears the unused bits on the right of the significand to 0s.

6.3.6 Rounding

The rounding control (RC) field comprises bits 11–10 of the x87 control word (“x87 Control Word
Register (FCW)” on page 244). This field specifies how the results of x87 floating-point computations
are rounded. Rounding modes apply to most arithmetic operations but not to comparison or remainder.
They have no effect on operations that produce NaN results.

The IEEE 754 standard defines the four rounding modes as shown in Table 6-12.

Round to nearest is the default (reset) rounding mode. It provides a statistically unbiased estimate of
the true result, and is suitable for most applications. The other rounding modes are directed roundings:

Table 6-11. Precision Control Field (PC) Values and Bit Precision

PC Field Data Type Precision (bits)

00 Single precision 241

01 reserved

10 Double precision 531

11 Double-extended precision 64

Note:
1. The single-precision and double-precision bit counts include the implied integer bit.

Table 6-12. Types of Rounding

RC Value Mode Type of Rounding

00
(default)

Round to nearest

The rounded result is the representable value
closest to the infinitely precise result. If equally
close, the even value (with least-significant bit 0)
is taken.

01 Round down
The rounded result is closest to, but no greater
than, the infinitely precise result.

10 Round up
The rounded result is closest to, but no less than,
the infinitely precise result.

11
Round toward
zero

The rounded result is closest to, but no greater in
absolute value than, the infinitely precise result.
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round up (toward +∞), round down (toward –∞), and round toward zero. Round up and round down are
used in interval arithmetic, in which upper and lower bounds bracket the true result of a computation.
Round toward zero takes the smaller in magnitude, that is, always truncates.

The processor produces a floating-point result defined by the IEEE standard to be infinitely precise.
This result may not be representable exactly in the destination format, because only a subset of the
continuum of real numbers finds exact representation in any particular floating-point format.
Rounding modifies such a result to conform to the destination format, thereby making the result
inexact and also generating a precision exception (PE), as described in “x87 Floating-Point Exception
Causes” on page 279.

Suppose, for example, the following 24-bit result is to be represented in single-precision format, where
“E2 1010” represents the biased exponent:

1.0011 0101 0000 0001 0010 0111 E2 1010

This result has no exact representation, because the least-significant 1 does not fit into the single-
precision format, which allows for only 23 bits of fraction. The rounding control field determines the
direction of rounding. Rounding introduces an error in a result that is less than one unit in the last place
(ulp), that is, the least-significant bit position of the floating-point representation.

6.4 Instruction Summary

This section summarizes the functions of the x87 floating-point instructions. The instructions are
organized here by functional group—such as data-transfer, arithmetic, and so on. More detail on
individual instructions is given in the alphabetically organized “x87 Floating-Point Instruction
Reference” in Volume 5.

Software running at any privilege level can use any of these instructions, if the CPUID instruction
reports support for the instructions (see “Feature Detection” on page 278). Most x87 instructions take
floating-point data types for both their source and destination operands, although some x87 data-
conversion instructions take integer formats for their source or destination operands.

6.4.1 Syntax

Each instruction has a mnemonic syntax used by assemblers to specify the operation and the operands
to be used for source and destination (result) data. Many of x87 instructions have the following syntax:

MNEMONIC st(j), st(i)

Figure 6-10 on page 262 shows an example of the mnemonic syntax for a floating-point add (FADD)
instruction.
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Figure 6-10. Mnemonic Syntax for Typical Instruction

This example shows the FADD mnemonic followed by two operands, both of which are 80-bit stack-
register operands. Most instructions take source operands from an x87 stack register and/or memory
and write their results to a stack register or memory. Only two of the instructions (FSTSW and
FNSTSW) can access a general-purpose registers (GPR), and none access the 128-bit media (XMM)
registers. Although the MMX registers map to the x87 registers, the contents of the MMX registers
cannot be accessed meaningfully using x87 instructions.

Instructions can have one or more prefixes that modify default operand properties. These prefixes are
summarized in “Instruction Prefixes” on page 71.

Mnemonics. The following characters are used as prefixes in the mnemonics of integer instructions:

• F—x87 Floating-point

In addition to the above prefix characters, the following characters are used elsewhere in the
mnemonics of x87 instructions:

• B—Below, or BCD

• BE—Below or Equal

• CMOV—Conditional Move

• c—Variable condition

• E—Equal

• I—Integer

• LD—Load

• N—No Wait

• NB—Not Below

• NBE—Not Below or Equal

• NE—Not Equal

• NU—Not Unordered

513-146.eps

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand

FADD   st(0),   st(i)
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• P—Pop

• PP—Pop Twice

• R—Reverse

• ST—Store

• U—Unordered

• x—One or more variable characters in the mnemonic

For example, the mnemonic for the store instruction that stores the top-of-stack and pops the stack is
FSTP. In this mnemonic, the F means a floating-point instruction, the ST means a store, and the P
means pop the stack.

6.4.2 Data Transfer and Conversion

The data transfer and conversion instructions copy data—in some cases with data conversion—
between x87 stack registers and memory or between stack positions.

Load or Store Floating-Point

• FLD—Floating-Point Load

• FST—Floating-Point Store Stack Top

• FSTP—Floating-Point Store Stack Top and Pop

The FLD instruction pushes the source operand onto the top-of-stack, ST(0). The source operand may
be a single-precision, double-precision, or double-extended-precision floating-point value in memory
or the contents of a specified stack position, ST(i).

The FST instruction copies the value at the top-of-stack, ST(0), to a specified stack position, ST(i), or
to a 32-bit or 64-bit memory location. If the destination is a memory location, the value copied is
converted to the precision allowed by the destination and rounded, as specified by the rounding control
(RC) field of the x87 control word. If the top-of-stack value is a NaN or an infinity, FST truncates the
stack-top exponent and significand to fit the destination size. (For details, see “FST FSTP” in AMD64
Architecture Programmer’s Manual Volume 5: 64-bit Media and x87 Floating-Point Instructions,
order# 26569.

The FSTP instruction is similar to FST, except that FSTP can also store to an 80-bit memory location
and it pops the stack after the store. FSTP can be used to clean up the x87 stack at the end of an x87
procedure by removing one register of preloaded data from the stack.

Convert and Load or Store Integer

• FILD—Floating-Point Load Integer

• FIST—Floating-Point Integer Store

• FISTP—Floating-Point Integer Store and Pop

• FISTTP—Floating-Point Integer Truncate and Store
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The FILD instruction converts the 16-bit, 32-bit, or 64-bit source signed integer in memory into a
double-extended-precision floating-point value and pushes the result onto the top-of-stack, ST(0).

The FIST instruction converts and rounds the source value in the top-of-stack, ST(0), to a signed
integer and copies it to the specified 16-bit or 32-bit memory location. The type of rounding is
determined by the rounding control (RC) field of the x87 control word.

The FISTP instruction is similar to FIST, except that FISTP can also store the result to a 64-bit
memory location and it pops ST(0) after the store.

The FISTTP instruction converts a floating-point value in ST(0) to an integer by truncating the
fractional part of the number and storing the integer result to the memory address specified by the
destination operand. FISTTP then pops the floating point register stack. The FISTTP instruction
ignores the rounding mode specified by the x87 control word.

Convert and Load or Store BCD

• FBLD—Floating-Point Load Binary-Coded Decimal

• FBSTP—Floating-Point Store Binary-Coded Decimal Integer and Pop

The FBLD and FBSTP instructions, respectively, push and pop an 80-bit packed BCD memory value
on and off the top-of-stack, ST(0). FBLD first converts the value being pushed to a double-extended-
precision floating-point value. FBSTP rounds the value being popped to an integer, using the rounding
mode specified by the RC field, and converts the value to an 80-bit packed BCD value. Thus, no
FRNDIT (round-to-integer) instruction is needed prior to FBSTP.

Conditional Move

• FCMOVB—Floating-Point Conditional Move If Below

• FCMOVBE—Floating-Point Conditional Move If Below or Equal

• FCMOVE—Floating-Point Conditional Move If Equal

• FCMOVNB—Floating-Point Conditional Move If Not Below

• FCMOVNBE—Floating-Point Conditional Move If Not Below or Equal

• FCMOVNE—Floating-Point Conditional Move If Not Equal

• FCMOVNU—Floating-Point Conditional Move If Not Unordered

• FCMOVU—Floating-Point Conditional Move If Unordered

The FCMOVcc instructions copy the contents of a specified stack position, ST(i), to the top-of-stack,
ST(0), if the specified rFLAGS condition is met. Table 6-13 on page 265 specifies the flag
combinations for each conditional move.
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Exchange

• FXCH—Floating-Point Exchange

The FXCH instruction exchanges the contents of a specified stack position, ST(i), with the top-of-
stack, ST(0). The top-of-stack pointer is left unchanged. In the form of the instruction that specifies no
operand, the contents of ST(1) and ST(0) are exchanged.

Extract

• FXTRACT—Floating-Point Extract Exponent and Significand

The FXTRACT instruction copies the unbiased exponent of the original value in the top-of-stack,
ST(0), and writes it as a floating-point value to ST(1), then copies the significand and sign of the
original value in the top-of-stack and writes it as a floating-point value with an exponent of zero to the
top-of-stack, ST(0).

6.4.3 Load Constants

Load 0, 1, or Pi

• FLDZ—Floating-Point Load +0.0

• FLD1—Floating-Point Load +1.0

• FLDPI—Floating-Point Load Pi

The FLDZ, FLD1, and FLDPI instructions, respectively, push the floating-point constant value, +0.0,
+1.0, and Pi (3.141592653...), onto the top-of-stack, ST(0).

Load Logarithm

• FLDL2E—Floating-Point Load Log2 e

• FLDL2T—Floating-Point Load Log2 10

Table 6-13. rFLAGS Conditions for FCMOVcc

Condition Mnemonic rFLAGS Register State

Below B Carry flag is set (CF = 1)

Below or Equal BE
Either carry flag or zero flag is set

(CF = 1 or ZF = 1)

Equal E Zero flag is set (ZF = 1)

Not Below NB Carry flag is not set (CF = 0)

Not Below or Equal NBE
Neither carry flag nor zero flag is set

(CF = 0, ZF = 0)

Not Equal NE Zero flag is not set (ZF = 0)

Not Unordered NU Parity flag is not set (PF = 0)

Unordered U Parity flag is set (PF = 1)
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• FLDLG2—Floating-Point Load Log10 2

• FLDLN2—Floating-Point Load Ln 2

The FLDL2E, FLDL2T, FLDLG2, and FLDLN2 instructions, respectively, push the floating-point
constant value, log2e, log210, log102, and loge2, onto the top-of-stack, ST(0).

6.4.4 Arithmetic

The arithmetic instructions support addition, subtraction, multiplication, division, change-sign, round,
round to integer, partial remainder, and square root. In most arithmetic operations, one of the source
operands is the top-of-stack, ST(0). The other source operand can be another stack entry, ST(i), or a
floating-point or integer operand in memory.

The non-commutative operations of subtraction and division have two forms, the direct FSUB and
FDIV, and the reverse FSUBR and FDIVR. FSUB, for example, subtracts the right operand from the
left operand, and writes the result to the left operand. FSUBR subtracts the left operand from the right
operand, and writes the result to the left operand. The FADD and FMUL operations have no reverse
counterparts.

Addition

• FADD—Floating-Point Add

• FADDP—Floating-Point Add and Pop

• FIADD—Floating-Point Add Integer to Stack Top

The FADD instruction syntax has forms that include one or two explicit source operands. In the one-
operand form, the instruction reads a 32-bit or 64-bit floating-point value from memory, converts it to
the double-extended-precision format, adds it to ST(0), and writes the result to ST(0). In the two-
operand form, the instruction adds both source operands from stack registers and writes the result to
the first operand.

The FADDP instruction syntax has forms that include zero or two explicit source operands. In the
zero-operand form, the instruction adds ST(0) to ST(1), writes the result to ST(1), and pops the stack.
In the two-operand form, the instruction adds both source operands from stack registers, writes the
result to the first operand, and pops the stack.

The FIADD instruction reads a 16-bit or 32-bit integer value from memory, converts it to the double-
extended-precision format, adds it to ST(0), and writes the result to ST(0).

Subtraction

• FSUB—Floating-Point Subtract

• FSUBP—Floating-Point Subtract and Pop

• FISUB—Floating-Point Integer Subtract

• FSUBR—Floating-Point Subtract Reverse

• FSUBRP—Floating-Point Subtract Reverse and Pop
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• FISUBR—Floating-Point Integer Subtract Reverse

The FSUB instruction syntax has forms that include one or two explicit source operands. In the one-
operand form, the instruction reads a 32-bit or 64-bit floating-point value from memory, converts it to
the double-extended-precision format, subtracts it from ST(0), and writes the result to ST(0). In the
two-operand form, both source operands are located in stack registers. The instruction subtracts the
second operand from the first operand and writes the result to the first operand.

The FSUBP instruction syntax has forms that include zero or two explicit source operands. In the zero-
operand form, the instruction subtracts ST(0) from ST(1), writes the result to ST(1), and pops the
stack. In the two-operand form, both source operands are located in stack registers. The instruction
subtracts the second operand from the first operand, writes the result to the first operand, and pops the
stack.

The FISUB instruction reads a 16-bit or 32-bit integer value from memory, converts it to the double-
extended-precision format, subtracts it from ST(0), and writes the result to ST(0).

The FSUBR and FSUBRP instructions perform the same operations as FSUB and FSUBP,
respectively, except that the source operands are reversed. Instead of subtracting the second operand
from the first operand, FSUBR and FSUBRP subtract the first operand from the second operand.

Multiplication

• FMUL—Floating-Point Multiply

• FMULP—Floating-Point Multiply and Pop

• FIMUL—Floating-Point Integer Multiply

The FMUL instruction has three forms. One form of the instruction multiplies two double-extended
precision floating-point values located in ST(0) and another floating-point stack register and leaves the
product in ST(0). The second form multiplies two double-extended precision floating-point values
located in ST(0) and another floating-point stack destination register and leaves the product in the
destination register. The third form converts a floating-point value in a specified memory location to
double-extended-precision format, multiplies the result by the value in ST(0) and writes the product to
ST(0).

The FMULP instruction syntax is similar to the form of FMUL described in the previous paragraph.
This instruction pops the floating-point register stack after performing the multiplication operation.
This instruction cannot take a memory operand.

The FIMUL instruction reads a 16-bit or 32-bit integer value from memory, converts it to the double-
extended-precision format, multiplies ST(0) by the memory operand, and writes the result to ST(0).

Division

• FDIV—Floating-Point Divide

• FDIVP—Floating-Point Divide and Pop

• FIDIV—Floating-Point Integer Divide
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• FDIVR—Floating-Point Divide Reverse

• FDIVRP—Floating-Point Divide Reverse and Pop

• FIDIVR—Floating-Point Integer Divide Reverse

The FDIV instruction syntax has forms that include one or two source explicit operands that may be
single-precision or double-precision floating-point values or 16-bit or 32-bit integer values. In the one-
operand form, the instruction reads a value from memory, divides ST(0) by the memory operand, and
writes the result to ST(0). In the two-operand form, both source operands are located in stack registers.
The instruction divides the first operand by the second operand and writes the result to the first
operand.

The FDIVP instruction syntax has forms that include zero or two explicit source operands. In the zero-
operand form, the instruction divides ST(1) by ST(0), writes the result to ST(1), and pops the stack. In
the two-operand form, both source operands are located in stack registers. The instruction divides the
first operand by the second operand, writes the result to the first operand, and pops the stack.

The FIDIV instruction reads a 16-bit or 32-bit integer value from memory, converts it to the double-
extended-precision format, divides ST(0) by the memory operand, and writes the result to ST(0).

The FDIVR and FDIVRP instructions perform the same operations as FDIV and FDIVP, respectively,
except that the source operands are reversed. Instead of dividing the first operand by the second
operand, FDIVR and FDIVRP divide the second operand by the first operand.

Change Sign

• FABS—Floating-Point Absolute Value

• FCHS—Floating-Point Change Sign

The FABS instruction changes the top-of-stack value, ST(0), to its absolute value by clearing its sign
bit to 0. The top-of-stack value is always positive following execution of the FABS instruction. The
FCHS instruction complements the sign bit of ST(0). For example, if ST(0) was +0.0 before the
execution of FCHS, it is changed to -0.0.

Round

• FRNDINT—Floating-Point Round to Integer

The FRNDINT instruction rounds the top-of-stack value, ST(0), to an integer value, although the value
remains in double-extended-precision floating-point format. Rounding takes place according to the
setting of the rounding control (RC) field in the x87 control word.

Partial Remainder

• FPREM—Floating-Point Partial Remainder

• FPREM1—Floating-Point Partial Remainder

The FPREM instruction returns the remainder obtained by dividing ST(0) by ST(1) and stores it in
ST(0). If the exponent difference between ST(0) and ST(1) is less than 64, all integer bits of the
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quotient are calculated, guaranteeing that the remainder returned is less in magnitude than the divisor
in ST(1). If the exponent difference is equal to or greater than 64, only a subset of the integer quotient
bits, numbering between 32 and 63, are calculated and a partial remainder is returned. FPREM can be
repeated on a partial remainder until reduction is complete. It can be used to bring the operands of
transcendental functions into their proper range. FPREM is supported for software written for early
x87 coprocessors. Unlike the FPREM1 instruction, FPREM does not calculate the partial remainder as
specified in IEEE Standard 754.

The FPREM1 instruction works like FPREM, except that the FPREM1 quotient is rounded using
round-to-nearest mode, whereas FPREM truncates the quotient.

Square Root

• FSQRT—Floating-Point Square Root

The FSQRT instruction replaces the contents of the top-of-stack, ST(0), with its square root.

6.4.5 Transcendental Functions

The transcendental instructions compute trigonometric functions, inverse trigonometric functions,
logarithmic functions, and exponential functions.

Trigonometric Functions

• FSIN—Floating-Point Sine

• FCOS—Floating-Point Cosine

• FSINCOS—Floating-Point Sine and Cosine

• FPTAN—Floating-Point Partial Tangent

• FPATAN—Floating-Point Partial Arctangent

The FSIN instruction replaces the contents of ST(0) (in radians) with its sine.

The FCOS instruction replaces the contents of ST(0) (in radians) with its cosine.

The FSINCOS instruction computes both the sine and cosine of the contents of ST(0) (in radians) and
writes the sine to ST(0) and pushes the cosine onto the stack. Frequently, a piece of code that needs to
compute the sine of an argument also needs to compute the cosine of that same argument. In such
cases, use the FSINCOS instruction to compute both functions concurrently, which is faster than using
separate FSIN and FCOS instructions.

The FPTAN instruction replaces the contents of the ST(0) (in radians), with its tangent, in radians, and
pushes the value 1.0 onto the stack.

The FPATAN instruction computes θ = arctan (Y/X), in which X is located in ST(0) and Y in ST(1).
The result, θ, is written over Y in ST(1), and the stack is popped.

FSIN, FCOS, FSINCOS, and FPTAN are architecturally restricted in their argument range. Only
arguments with a magnitude of less than 263 can be evaluated. If the argument is out of range, the C2
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condition-code bit in the x87 status word is set to 1, and the argument is returned as the result. If
software detects an out-of-range argument, the FPREM or FPREM1 instruction can be used to reduce
the magnitude of the argument before using the FSIN, FCOS, FSINCOS, or FPTAN instruction again.

Logarithmic Functions

• F2XM1—Floating-Point Compute 2x–1

• FSCALE—Floating-Point Scale

• FYL2X—Floating-Point y * log2x

• FYL2XP1—Floating-Point y * log2(x +1)

The F2XM1 instruction computes Y = 2X – 1. X is located in ST(0) and must fall between –1 and +1.
Y replaces X in ST(0). If ST(0) is out of range, the instruction returns an undefined result but no x87
status-word exception bits are affected.

The FSCALE instruction replaces ST(0) with ST(0) times 2n, where n is the value in ST(1) truncated
to an integer. This provides a fast method of multiplying by integral powers of 2.

The FYL2X instruction computes Z = Y * log2 X. X is located in ST(0) and Y is located in ST(1). X
must be greater than 0. The result, Z, replaces Y in ST(1), which becomes the new top-of-stack
because X is popped off the stack.

The FYL2XP1 instruction computes Z = Y * log2(X + 1). X located in ST(0) and must be in the range
0 < |X| < (1 – 2½ / 2). Y is taken from ST(1). The result, Z, replaces Y in ST(1), which becomes the new
top-of-stack because X is popped off the stack.

Accuracy of Transcendental Results. x87 computations are carried out in double-extended-
precision format, so that the transcendental functions provide results accurate to within one unit in the
last place (ulp) for each of the floating-point data types.

Argument Reduction Using Pi. The FPREM and FPREM1 instructions can be used to reduce an
argument of a trigonometric function by a multiple of Pi. The following example shows a reduction by
2π:

sin(n*2π + x) = sin(x) for all integral n

In this example, the range is 0 ≤ x < 2π in the case of FPREM or -π ≤ x ≤ π in the case of FPREM1.
Negative arguments are reduced by repeatedly subtracting –2π. See “Partial Remainder” on page 268
for details of the instructions.

6.4.6 Compare and Test

The compare-and-test instructions set and clear flags in the rFLAGS register to indicate the
relationship between two operands (less, equal, greater, or unordered).

Floating-Point Ordered Compare

• FCOM—Floating-Point Compare
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• FCOMP—Floating-Point Compare and Pop

• FCOMPP—Floating-Point Compare and Pop Twice

• FCOMI—Floating-Point Compare and Set Flags

• FCOMIP—Floating-Point Compare and Set Flags and Pop

The FCOM instruction syntax has forms that include zero or one explicit source operands. In the zero-
operand form, the instruction compares ST(1) with ST(0) and writes the x87 status-word condition
codes accordingly. In the one-operand form, the instruction reads a 32-bit or 64-bit value from
memory, compares it with ST(0), and writes the x87 condition codes accordingly.

The FCOMP instruction performs the same operation as FCOM but also pops ST(0) after writing the
condition codes.

The FCOMPP instruction performs the same operation as FCOM but also pops both ST(0) and ST(1).
FCOMPP can be used to initialize the x87 stack at the end of an x87 procedure by removing two
registers of preloaded data from the stack.

The FCOMI instruction compares the contents of ST(0) with the contents of another stack register and
writes the ZF, PF, and CF flags in the rFLAGS register as shown in Table 6-14. If no source is
specified, ST(0) is compared to ST(1). If ST(0) or the source operand is a NaN or in an unsupported
format, the flags are set to indicate an unordered condition.

The FCOMIP instruction performs the same comparison as FCOMI but also pops ST(0) after writing
the rFLAGS bits.

For comparison-based branches, the combination of FCOMI and FCMOVcc is faster than the classical
method of using FxSTSW AX to copy condition codes through the AX register to the rFLAGS register,
where they can provide branch direction for conditional operations.

The FCOMx instructions perform ordered compares, as opposed to the FUCOMx instructions. See the
description of ordered vs. unordered compares immediately below.

Floating-Point Unordered Compare

• FUCOM—Floating-Point Unordered Compare

• FUCOMP—Floating-Point Unordered Compare and Pop

• FUCOMPP—Floating-Point Unordered Compare and Pop Twice

• FUCOMI—Floating-Point Unordered Compare and Set Flags

Table 6-14. rFLAGS Values for FCOMI Instruction

Flag ST(0) > ST(i) ST(0) < ST(i) ST(0) = ST(i) Unordered

ZF 0 0 1 1

PF 0 0 0 1

CF 0 1 0 1
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• FUCOMIP—Floating-Point Unordered Compare and Set Flags and Pop

The FUCOMx instructions perform the same operations as the FCOMx instructions, except that the
FUCOMx instructions generate an invalid-operation exception (IE) only if any operand is an
unsupported data type or a signaling NaN (SNaN), whereas the ordered-compare FCOMx instructions
generate an invalid-operation exception if any operand is an unsupported data type or any type of NaN.
For a description of NaNs, see “Number Representation” on page 253.

Integer Compare

• FICOM—Floating-Point Integer Compare

• FICOMP—Floating-Point Integer Compare and Pop

The FICOM instruction reads a 16-bit or 32-bit integer value from memory, compares it with ST(0),
and writes the condition codes in the same way as the FCOM instruction.

The FICOMP instruction performs the same operations as FICOM but also pops ST(0).

Test

• FTST—Floating-Point Test with Zero

The FTST instruction compares ST(0) with zero and writes the condition codes in the same way as the
FCOM instruction.

Classify

• FXAM—Floating-Point Examine

The FXAM instruction determines the type of value in ST(0) and sets the condition codes accordingly,
as shown in Table 6-15.

Table 6-15. Condition-Code Settings for FXAM

C3 C2 C0 C11 Meaning

0 0 0 0 +unsupported

0 0 0 1 -unsupported

0 0 1 0 +NAN

0 0 1 1 -NAN

0 1 0 0 +normal

0 1 0 1 -normal

0 1 1 0 +infinity

0 1 1 1 -infinity

1 0 0 0 +0

1 0 0 1 -0

Note:
1. C1 is the sign of ST(0).
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6.4.7 Stack Management

The stack management instructions move the x87 top-of-stack pointer (TOP) and clear the contents of
stack registers.

Stack Control

• FDECSTP—Floating-Point Decrement Stack-Top Pointer

• FINCSTP—Floating-Point Increment Stack-Top Pointer

The FINCSTP and FDECSTP instructions increment and decrement, respectively, the TOP, modulo-8.
Neither the x87 tag word nor the contents of the floating-point stack itself is updated.

Clear State

• FFREE—Free Floating-Point Register

The FFREE instruction frees a specified stack register by setting the x87 tag-word bits for the register
to all 1s, indicating empty. Neither the stack-register contents nor the stack pointer is modified by this
instruction.

6.4.8 No Operation

This instruction uses processor cycles but generates no result.

• FNOP—Floating-Point No Operation

The FNOP instruction has no operands and writes no result. Its purpose is simply to delay execution of
a sequence of instructions.

6.4.9 Control

The control instructions are used to initialize, save, and restore x87 processor state and to manage x87
exceptions.

Initialize

• FINIT—Floating-Point Initialize

• FNINIT—Floating-Point No-Wait Initialize

1 0 1 0 +empty

1 0 1 1 -empty

1 1 0 0 +denormal

1 1 0 1 -denormal

Table 6-15. Condition-Code Settings for FXAM (continued)

C3 C2 C0 C11 Meaning

Note:
1. C1 is the sign of ST(0).
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The FINIT and FNINIT instructions set all bits in the x87 control-word, status-word, and tag word
registers to their default values. Assemblers issue FINIT as an FWAIT instruction followed by an
FNINIT instruction. Thus, FINIT (but not FNINIT) reports pending unmasked x87 floating-point
exceptions before performing the initialization.

Both FINIT and FNINIT write the control word with its initialization value, 037Fh, which specifies
round-to-nearest, all exceptions masked, and double-extended-precision. The tag word indicates that
the floating-point registers are empty. The status word and the four condition-code bits are cleared to 0.
The x87 pointers and opcode state (“Pointers and Opcode State” on page 247) are all cleared to 0.

The FINIT instruction should be used when pending x87 floating-point exceptions are being reported
(unmasked). The no-wait instruction, FNINIT, should be used when pending x87 floating-point
exceptions are not being reported (masked).

Wait for Exceptions

• FWAIT or WAIT—Wait for Unmasked x87 Floating-Point Exceptions

The FWAIT and WAIT instructions are synonyms. The instruction forces the processor to test for and
handle any pending, unmasked x87 floating-point exceptions.

Clear Exceptions

• FCLEX—Floating-Point Clear Flags

• FNCLEX—Floating-Point No-Wait Clear Flags

These instructions clear the status-word exception flags, stack-fault flag, and busy flag. They leave the
four condition-code bits undefined.

Assemblers issue FCLEX as an FWAIT instruction followed by an FNCLEX instruction. Thus,
FCLEX (but not FNCLEX) reports pending unmasked x87 floating-point exceptions before clearing
the exception flags.

The FCLEX instruction should be used when pending x87 floating-point exceptions are being reported
(unmasked). The no-wait instruction, FNCLEX, should be used when pending x87 floating-point
exceptions are not being reported (masked).

Save and Restore x87 Control Word

• FLDCW—Floating-Point Load x87 Control Word

• FSTCW—Floating-Point Store Control Word

• FNSTCW—Floating-Point No-Wait Store Control Word

These instructions load or store the x87 control-word register as a 2-byte value from or to a memory
location.

The FLDCW instruction loads a control word. If the loaded control word unmasks any pending x87
floating-point exceptions, these exceptions are reported when the next non-control x87 or 64-bit media
instruction is executed.
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Assemblers issue FSTCW as an FWAIT instruction followed by an FNSTCW instruction. Thus,
FSTCW (but not FNSTCW) reports pending unmasked x87 floating-point exceptions before storing
the control word.

The FSTCW instruction should be used when pending x87 floating-point exceptions are being
reported (unmasked). The no-wait instruction, FNSTCW, should be used when pending x87 floating-
point exceptions are not being reported (masked).

Save x87 Status Word

• FSTSW—Floating-Point Store Status Word

• FNSTSW—Floating-Point No-Wait Store Status Word

These instructions store the x87 status word either at a specified 2-byte memory location or in the AX
register. The second form, FxSTSW AX, is used in older code to copy condition codes through the AX
register to the rFLAGS register, where they can be used for conditional branching using general-
purpose instructions. However, the combination of FCOMI and FCMOVcc provides a faster method of
conditional branching.

Assemblers issue FSTSW as an FWAIT instruction followed by an FNSTSW instruction. Thus,
FSTSW (but not FNSTSW) reports pending unmasked x87 floating-point exceptions before storing
the status word.

The FSTSW instruction should be used when pending x87 floating-point exceptions are being
reported (unmasked). The no-wait instruction, FNSTSW, should be used when pending x87 floating-
point exceptions are not being reported (masked).

Save and Restore x87 Environment

• FLDENV—Floating-Point Load x87 Environment

• FNSTENV—Floating-Point No-Wait Store Environment

• FSTENV—Floating-Point Store Environment

These instructions load or store the entire x87 environment (non-data processor state) as a 14-byte or
28-byte block, depending on effective operand size, from or to memory.

When executing FLDENV, any exception flags are set in the new status word, and these exceptions are
unmasked in the control word, a floating-point exception occurs when the next non-control x87 or 64-
bit media instruction is executed.

Assemblers issue FSTENV as an FWAIT instruction followed by an FNSTENV instruction. Thus,
FSTENV (but not FNSTENV) reports pending unmasked x87 floating-point exceptions before storing
the status word.

The x87 environment includes the x87 control word register, x87 status word register, x87 tag word,
last x87 instruction pointer, last x87 data pointer, and last x87 opcode. See “Media and x87 Processor
State” in Volume 2 for details on how the x87 environment is stored in memory.
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Save and Restore x87 and 64-Bit Media State

• FSAVE—Save x87 and MMX State.

• FNSAVE—Save No-Wait x87 and MMX State.

• FRSTOR—Restore x87 and MMX State.

These instructions save and restore the entire processor state for x87 floating-point instructions and
64-bit media instructions. The instructions save and restore either 94 or 108 bytes of data, depending
on the effective operand size.

Assemblers issue FSAVE as an FWAIT instruction followed by an FNSAVE instruction. Thus, FSAVE
(but not FNSAVE) reports pending unmasked x87 floating-point exceptions before saving the state.

After saving the state, the processor initializes the x87 state by performing the equivalent of an FINIT
instruction. For details, see “State-Saving” on page 290.

Save and Restore x87, 128-Bit, and 64-Bit State

• FXSAVE—Save XMM, MMX, and x87 State.

• FXRSTOR—Restore XMM, MMX, and x87 State.

The FXSAVE and FXRSTOR instructions save and restore the entire 512-byte processor state for 128-
bit media instructions, 64-bit media instructions, and x87 floating-point instructions. The architecture
supports two memory formats for FXSAVE and FXRSTOR, a 512-byte 32-bit legacy format and a
512-byte 64-bit format. Selection of the 32-bit or 64-bit format is determined by the effective operand
size for the FXSAVE and FXRSTOR instructions. For details, see “Media and x87 Processor State” in
Volume 2.

FXSAVE and FXRSTOR execute faster than FSAVE/FNSAVE and FRSTOR. However, unlike
FSAVE and FNSAVE, FXSAVE does not initialize the x87 state, and like FNSAVE it does not report
pending unmasked x87 floating-point exceptions. For details, see “State-Saving” on page 290.

6.5 Instruction Effects on rFLAGS

The rFLAGS register is described in “Flags Register” on page 33. Table 6-16 on page 277 summarizes
the effect that x87 floating-point instructions have on individual flags within the rFLAGS register.
Only instructions that access the rFLAGS register are shown—all other x87 instructions have no effect
on rFLAGS.

The following codes are used within the table:

• Mod—The flag is modified.

• Tst—The flag is tested.

• Gray shaded cells indicate the flag is not affected by the instruction.
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6.6 Instruction Prefixes

Instruction prefixes, in general, are described in “Instruction Prefixes” on page 71. The following
restrictions apply to the use of instruction prefixes with x87 instructions.

Supported Prefixes. The following prefixes can be used with x87 instructions:

• Operand-Size Override—The 66h prefix affects only the FLDENV, FSTENV, FNSTENV,
FSAVE, FNSAVE, and FRSTOR instructions, in which it selects between a 16-bit and 32-bit
memory-image format. The prefix is ignored by all other x87 instructions.

• Address-Size Override—The 67h prefix affects only operands in memory, in which it selects
between a 16-bit and 32-bit addresses. The prefix is ignored by all other x87 instructions.

• Segment Overrides—The 2Eh (CS), 36h (SS), 3Eh (DS), 26h (ES), 64h (FS), and 65h (GS)
prefixes specify a segment. They affect only operands in memory. In 64-bit mode, the CS, DS, ES,
SS segment overrides are ignored.

• REX—The REX.W bit affects the FXSAVE and FXRSTOR instructions, in which it selects
between two types of 512-byte memory-image formats, as described in "Saving Media and x87
Processor State" in Volume 2. The REX.W bit also affects the FLDENV, FSTENV, FSAVE, and
FRSTOR instructions, in which it selects the 32-bit memory-image format. The REX.R, REX.X,
and REX.B bits only affect operands in memory, in which they are used to find the memory
operand.

Ignored Prefixes. The following prefixes are ignored by x87 instructions:

• REP—The F3h and F2h prefixes.

Prefixes That Cause Exceptions. The following prefixes cause an exception:

• LOCK—The F0h prefix causes an invalid-opcode exception when used with x87 instructions.

Table 6-16. Instruction Effects on rFLAGS

Instruction
Mnemonic

rFLAGS Mnemonic and Bit Number

OF
11

SF
7

ZF
6

AF
4

PF
2

CF
0

FCMOVcc Tst Tst Tst

FCOMI
FCOMIP
FUCOMI

FUCOMIP

Mod Mod Mod
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6.7 Feature Detection

Before executing x87 floating-point instructions, software should determine if the processor supports
the technology by executing the CPUID instruction. “Feature Detection” on page 74 describes how
software uses the CPUID instruction to detect feature support. For full support of the x87 floating-
point features, the following feature must be present:

• On-Chip Floating-Point Unit, indicated by bit 0 of CPUID function 1 and CPUID function
8000_0001h.

• CMOVcc (conditional moves), indicated by bit 15 of CPUID function 1 and CPUID function
8000_0001h. This bit indicates support for x87 floating-point conditional moves (FCMOVcc)
whenever the On-Chip Floating-Point Unit bit (bit 0) is also set.

Software may also wish to check for the following support, because the FXSAVE and FXRSTOR
instructions execute faster than FSAVE and FRSTOR:

• FXSAVE and FXRSTOR, indicated by bit 24 of CPUID function 1 and function 8000_0001h.

Software that runs in long mode should also check for the following support:

• Long Mode, indicated by bit 29 of CPUID function 8000_0001h.

See “Processor Feature Identification” in Volume 2 for a full description of the CPUID instruction and
its function codes.

6.8 Exceptions

Types of Exceptions. x87 instructions can generate two types of exceptions:

• General-Purpose Exceptions, described below in “General-Purpose Exceptions”

• x87 Floating-Point Exceptions (#MF), described in “x87 Floating-Point Exception Causes” on
page 279

Relation to 128-Bit Media Exceptions. Although the x87 floating-point instructions and the 128-bit
media instructions each have certain exceptions with the same names, the exception-reporting and
exception-handling methods used by the two instruction subsets are distinct and independent of each
other. If procedures using both types of instructions are run in the same operating environment,
separate service routines should be provided for the exceptions of each type of instruction subset.

6.8.1 General-Purpose Exceptions

The sections below list general-purpose exceptions generated and not generated by x87 floating-point
instructions. For a summary of the general-purpose exception mechanism, see “Interrupts and
Exceptions” on page 86. For details about each exception and its potential causes, see “Exceptions and
Interrupts” in Volume 2.

Exceptions Generated. x87 instructions can generate the following general-purpose exceptions:
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• #DB—Debug Exception (Vector 1)

• #BP—Breakpoint Exception (Vector 3)

• #UD—Invalid-Opcode Exception (Vector 6)

• #NM—Device-Not-Available Exception (Vector 7)

• #DF—Double-Fault Exception (Vector 8)

• #SS—Stack Exception (Vector 12)

• #GP—General-Protection Exception (Vector 13)

• #PF—Page-Fault Exception (Vector 14)

• #MF—x87 Floating-Point Exception-Pending (Vector 16)

• #AC—Alignment-Check Exception (Vector 17)

• #MC—Machine-Check Exception (Vector 18)

For details on #MF exceptions, see “x87 Floating-Point Exception Causes” below.

Exceptions Not Generated. x87 instructions do not generate the following general-purpose
exceptions:

• #DE—Divide-by-zero-error exception (Vector 0)

• Non-Maskable-Interrupt Exception (Vector 2)

• #OF—Overflow exception (Vector 4)

• #BR—Bound-range exception (Vector 5)

• Coprocessor-segment-overrun exception (Vector 9)

• #TS—Invalid-TSS exception (Vector 10)

• #NP—Segment-not-present exception (Vector 11)

• #MC—Machine-check exception (Vector 18)

• #XF—SIMD floating-point exception (Vector 19)

For details on all general-purpose exceptions, see “Exceptions and Interrupts” in Volume 2.

6.8.2 x87 Floating-Point Exception Causes

The x87 floating-point exception-pending (#MF) exception listed above in “General-Purpose
Exceptions” is actually the logical OR of six exceptions that can be caused by x87 floating-point
instructions. Each of the six exceptions has a status flag in the x87 status word and a mask bit in the
x87 control word. A seventh exception, stack fault (SF), is reported together with one of the six
maskable exceptions and does not have a mask bit.

If a #MF exception occurs when its mask bit is set to 1 (masked), the processor responds in a default
way that does not invoke the #MF exception service routine. If an exception occurs when its mask bit is
cleared to 0 (unmasked), the processor suspends processing of the faulting instruction (if possible) and,
at the boundary of the next non-control x87 or 64-bit media instruction (see “Control” on page 273),
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determines that an unmasked exception is pending—by checking the exception status (ES) flag in the
x87 status word—and invokes the #MF exception service routine.

#MF Exception Types and Flags. The #MF exceptions are of six types, five of which are mandated
by the IEEE 754 standard. These six types and their bit-flags in the x87 status word are shown in
Table 6-17. A stack fault (SF) exception is always accompanied by an invalid-operation exception
(IE). A summary of each exception type is given in “x87 Status Word Register (FSW)” on page 241.

The sections below describe the causes for the #MF exceptions. Masked and unmasked responses to
the exceptions are described in “x87 Floating-Point Exception Masking” on page 283. The priority of
#MF exceptions are described in “x87 Floating-Point Exception Priority” on page 282.

Invalid-Operation Exception (IE). The IE exception occurs due to one of the attempted operations
shown in Table 6-18 on page 281. An IE exception may also be accompanied by a stack fault (SF)
exception. See “Stack Fault (SF)” on page 282.

Table 6-17. x87 Floating-Point (#MF) Exception Flags

Exception and Mnemonic
x87 Status-
Word Bit1

Comparable IEEE 754
Exception

Invalid-operation exception (IE) 0 Invalid Operation

Invalid-operation exception (IE)
with stack fault (SF) exception

0 and 6 none

Denormalized-operand exception (DE) 1 none

Zero-divide exception (ZE) 2 Division by Zero

Overflow exception (OE) 3 Overflow

Underflow exception (UE) 4 Underflow

Precision exception (PE) 5 Inexact

Note:
1. See “x87 Status Word Register (FSW)” on page 241 for a summary of each exception.
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Denormalized-Operand Exception (DE). The DE exception occurs in any of the following cases:

• Denormalized Operand (any precision)—An arithmetic instruction uses an operand of any
precision that is in denormalized form, as described in “Denormalized (Tiny) Numbers” on
page 254.

• Denormalized Single-Precision or Double-Precision Load—An instruction loads a single-
precision or double-precision (but not double-extended-precision) operand, which is in
denormalized form, into an x87 register.

Zero-Divide Exception (ZE). The ZE exception occurs when:

• Divisor is Zero—An FDIV, FDIVP, FDIVR, FDIVRP, FIDIV, or FIDIVR instruction attempts to
divide zero into a non-zero finite dividend.

• Source Operand is Zero—An FYL2X or FXTRACT instruction uses a source operand that is zero.

Table 6-18. Invalid-Operation Exception (IE) Causes

Operation Condition

Arithmetic
(IE exception)

Any Arithmetic Operation
• A source operand is an SNaN, or
• A source operand is an unsupported data type (pseudo-

NaN, pseudo-infinity, or unnormal).

FADD, FADDP Source operands are infinities with opposite signs.

FSUB, FSUBP, FSUBR,
FSUBRP

Source operands are infinities with same sign.

FMUL, FMULP Source operands are zero and infinity.

FDIV, FDIVP, FDIVR,
FDIVRP

Source operands are both infinities or both zeros.

FSQRT
Source operand is less than zero (except ±0 which returns
±0).

FYL2X
Source operand is less than zero (except ±0 which returns
±∞).

FYL2XP1 Source operand is less than minus one.

FCOS, FPTAN, FSIN,
FSINCOS

Source operand is infinity.

FCOM, FCOMP,
FCOMPP, FCOMI,
FCOMIP

A source operand is a QNaN.

FPREM, FPREM1 Dividend is infinity or divisor is zero.

FIST, FISTP, FISTTP Source operand overflows the destination size.

FBSTP Source operand overflows packed BCD data size.

Stack
(IE and SF exceptions) Stack overflow or underflow.1

Note:
1. The processor sets condition code C1 = 1 for overflow, C1 = 0 for underflow.
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Overflow Exception (OE). The OE exception occurs when the value of a rounded floating-point
result is larger than the largest representable normalized positive or negative floating-point number in
the destination format, as shown in Table 6-5 on page 252. An overflow can occur through
computation or through conversion of higher-precision numbers to lower-precision numbers. See
“Precision” on page 260. Integer and BCD overflow is reported via the invalid-operation exception.

Underflow Exception (UE). The UE exception occurs when the value of a rounded, non-zero
floating-point result is too small to be represented as a normalized positive or negative floating-point
number in the destination format, as shown in Table 6-5 on page 252. Integer and BCD underflow is
reported via the invalid-operation exception.

Precision Exception (PE). The PE exception, also called the inexact-result exception, occurs when a
floating-point result, after rounding, differs from the infinitely precise result and thus cannot be
represented exactly in the specified destination format. Software that does not require exact results
normally masks this exception. See “Precision” on page 260 and “Rounding” on page 260.

Stack Fault (SF). The SF exception occurs when a stack overflow (due to a push or load into a non-
empty stack register) or stack underflow (due to referencing an empty stack register) occurs in the x87
stack-register file. The empty and non-empty conditions are shown in Table 6-3 on page 246. When
either of these conditions occur, the processor also sets the invalid-operation exception (IE) flag, and it
sets or clears the condition-code 1 (C1) bit to indicate the direction of the stack fault (C1 = 1 for
overflow, C1 = 0 for underflow). Unlike the flags for the other x87 exceptions, the SF flag does not
have a corresponding mask bit in the x87 control word.

6.8.3 x87 Floating-Point Exception Priority

Table 6-19 shows the priority with which the processor recognizes multiple, simultaneous SIMD
floating-point exceptions and operations involving QNaN operands. Each exception type is
characterized by its timing, as follows:

• Pre-Computation—an exception that is recognized before an instruction begins its operation.

• Post-Computation—an exception that is recognized after an instruction completes its operation.

For post-computation exceptions, a result may be written to the destination, depending on the type of
exception and whether the destination is a register or memory location. Operations involving QNaNs
do not necessarily cause exceptions, but the processor handles them with the priority shown in
Table 6-19 on page 283 relative to the handling of exceptions.
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For exceptions that occur before the associated operation (pre-operation, as shown in Table 6-19), if an
unmasked exception occurs, the processor suspends processing of the faulting instruction but it waits
until the boundary of the next non-control x87 or 64-bit media instruction to be executed before
invoking the associated exception service routine. During this delay, non-x87 instructions may
overwrite the faulting x87 instruction’s source or destination operands in memory. If that occurs, the
x87 service routine may be unable to perform its job.

To prevent such problems, analyze x87 procedures for potential exception-causing situations and
insert a WAIT or other safe x87 instruction immediately after any x87 instruction that may cause a
problem.

6.8.4 x87 Floating-Point Exception Masking

The six floating-point exception flags in the x87 status word have corresponding exception-flag masks
in the x87 control word, as shown in Table 6-20 on page 284.

Table 6-19. Priority of x87 Floating-Point Exceptions

Priority Exception or Operation Timing

1
Invalid-operation exception (IE) with stack fault
(SF) due to underflow

Pre-Computation

2
Invalid-operation exception (IE) with stack fault
(SF) due to overflow

Pre-Computation

3
Invalid-operation exception (IE) when accessing
unsupported data type

Pre-Computation

4
Invalid-operation exception (IE) when accessing
SNaN operand

Pre-Computation

5 Operation involving a QNaN operand1 —

6
Any other type of invalid-operation exception (IE) Pre-Computation

Zero-divide exception (ZE) Pre-Computation

7 Denormalized operation exception (DE) Pre-Computation

8
Overflow exception (OE) Post-Computation

Underflow exception (UE) Post-Computation

9 Precision (inexact) exception (PE) Post-Computation

Note:
1. Operations involving QNaN operands do not, in themselves, cause exceptions but they are

handled with this priority relative to the handling of exceptions.
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Each mask bit, when set to 1, inhibits invocation of the #MF exception handler and instead continues
normal execution using the default response for the exception type. During initialization with FINIT or
FNINIT, all exception-mask bits in the x87 control word are set to 1 (masked). At processor reset, all
exception-mask bits are cleared to 0 (unmasked).

Masked Responses. The occurrence of a masked exception does not invoke its exception handler
when the exception condition occurs. Instead, the processor handles masked exceptions in a default
way, as shown in Table 6-21 on page 285.

Table 6-20. x87 Floating-Point (#MF) Exception Masks

Exception Mask
and Mnemonic

x87 Control-Word
Bit1

Invalid-operation exception mask (IM) 0

Denormalized-operand exception mask (DM) 1

Zero-divide exception mask (ZM) 2

Overflow exception mask (OM) 3

Underflow exception mask (UM) 4

Precision exception mask (PM) 5

Note:
1. See “x87 Status Word Register (FSW)” on page 241 for a summary of each exception.
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Table 6-21. Masked Responses to x87 Floating-Point Exceptions

Exception and
Mnemonic

Type of
Operation1 Processor Response

Invalid-operation
exception (IE)2

Any Arithmetic Operation:
Source operand is an SNaN.

Set IE flag, and return a QNaN value.

Any Arithmetic Operation:
Source operand is an
unsupported data type
or
FADD, FADDP: Source
operands are infinities with
opposite signs
or
FSUB, FSUBP, FSUBR,
FSUBRP: Source operands are
infinities with same sign
or
FMUL, FMULP: Source
operands are zero and infinity
or
FDIV, FDIVP, FDIVR, FDIVRP:
Source operands are both
infinities or both are zeros
or
FSQRT: Source operand is less
than zero (except ±0 which
returns ±0)
or
FYL2X: Source operand is less
than zero (except ±0 which
returns ±∞)

or
FYL2XP1: Source operand is
less than minus one.

Set IE flag, and return the floating-point indefinite

value3.

Note:
1. See “Instruction Summary” on page 261 for the types of instructions.
2. Includes invalid-operation exception (IE) together with stack fault (SF).
3. See “Indefinite Values” on page 258.
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Invalid-operation
exception (IE)2

FCOS, FPTAN, FSIN,
FSINCOS: Source operand is
∞
or
FPREM, FPREM1: Dividend is
infinity or divisor is 0.

Set IE flag, return the floating-point indefinite value3,
and clear condition code C2 to 0.

FCOM, FCOMP, or FCOMPP:
One or both operands is a NaN
or
FUCOM, FUCOMP, or
FUCOMPP: One or both
operands is an SNaN.

Set IE flag, and set C3–C0 condition codes to reflect
the result.

FCOMI or FCOMIP: One or
both operands is a NaN
or
FUCOMI or FUCOMIP: One or
both operands is an SNaN.

Sets IE flag, and sets the result in eflags to
"unordered."

FIST, FISTP, FISTTP: Source
operand overflows the
destination size.

Set IE flag, and return the integer indefinite value3.

FXCH: A source register is
specified empty by its tag bits.

Set IE flag, and perform exchange using floating-

point indefinite value3 as content for empty
register(s).

FBSTP: Source operand
overflows packed BCD data
size.

Set IE flag, and return the packed-decimal indefinite

value3.

Denormalized-operand exception (DE)
Set DE flag, and return the result using the denormal
operand(s).

Zero-divide
exception (ZE)

FDIV, FDIVP, FDIVR, FDIVRP,
FIDIV, or FIDIVR: Divisor is 0.

Set ZE flag, and return signed ∞ with sign bit = XOR
of the operand sign bits.

FYL2X: ST(0) is 0 and ST(1) is
a non-zero floating-point value.

Set ZE flag, and return signed ∞ with sign bit =
complement of sign bit for ST(1) operand.

FXTRACT: Source operand is
0.

Set ZE flag, write ST(0) = 0 with sign of operand, and
write ST(1) = –∞.

Table 6-21. Masked Responses to x87 Floating-Point Exceptions (continued)

Exception and
Mnemonic

Type of
Operation1 Processor Response

Note:
1. See “Instruction Summary” on page 261 for the types of instructions.
2. Includes invalid-operation exception (IE) together with stack fault (SF).
3. See “Indefinite Values” on page 258.
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Overflow exception
(OE)

Round to nearest.

• If sign of result is positive, set OE flag, and return
+∞.

• If sign of result is negative, set OE flag, and return
-∞.

Round toward +∞.

• If sign of result is positive, set OE flag, and return
+∞.

• If sign of result is negative, set OE flag, and return
finite negative number with largest magnitude.

Round toward -∞.

• If sign of result is positive, set OE flag, and return
finite positive number with largest magnitude.

• If sign of result is negative, set OE flag, and return
-∞.

Round toward 0.

• If sign of result is positive, set OE flag and return
finite positive number with largest magnitude.

• If sign of result is negative, set OE flag and return
finite negative number with largest magnitude.

Underflow exception (UE)

• If result is both denormal (tiny) and inexact, set UE
flag and return denormalized result.

• If result is denormal (tiny) but not inexact, return
denormalized result but do not set UE flag.

Precision exception
(PE)

Without overflow or underflow
Set PE flag, return rounded result, write C1 condition
code to specify round-up (C1 = 1) or not round-up
(C1 = 0).

With masked overflow or
underflow

Set PE flag and respond as for the OE or UE
exceptions.

With unmasked overflow or
underflow for register
destination

Set PE flag, respond to the OE or UE exception by
calling the #MF service routine.

With unmasked overflow or
underflow for memory
destination

Do not set PE flag, respond to the OE or UE
exception by calling the #MF service routine. The
destination and the TOP are not changed.

Table 6-21. Masked Responses to x87 Floating-Point Exceptions (continued)

Exception and
Mnemonic

Type of
Operation1 Processor Response

Note:
1. See “Instruction Summary” on page 261 for the types of instructions.
2. Includes invalid-operation exception (IE) together with stack fault (SF).
3. See “Indefinite Values” on page 258.
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Unmasked Responses. The processor handles unmasked exceptions as shown in Table 6-22 on
page 288.

Table 6-22. Unmasked Responses to x87 Floating-Point Exceptions

Exception and
Mnemonic

Type of
Operation Processor Response1

Invalid-operation exception (IE)
Set IE and ES flags, and call the #MF service routine2. The
destination and the TOP are not changed.Invalid-operation exception (IE)

with stack fault (SF)

Denormalized-operand exception (DE) Set DE and ES flags, and call the #MF service routine2. The
destination and the TOP are not changed.

Zero-divide exception (ZE) Set ZE and ES flags, and call the #MF service routine2. The
destination and the TOP are not changed.

Overflow exception (OE)

• If the destination is memory, set OE and ES flags, and

call the #MF service routine2. The destination and the
TOP are not changed.

• If the destination is an x87 register:

- divide true result by 224576,
- round significand according to PC precision control

and RC rounding control (or round to double-extended
precision for instructions not observing PC precision
control),

- write C1 condition code according to rounding (C1 = 1
for round up, C1 = 0 for round toward zero),

- write result to destination,
- pop or push stack if specified by the instruction,

- set OE and ES flags, and call the #MF service routine2.

Note:
1. For all unmasked exceptions, the processor’s response also includes assertion of the FERR# output signal at the

completion of the instruction that caused the exception.
2. When CR0.NE is set to 1, the #MF service routine is taken at the next non-control x87 instruction. If CR0.NE is

cleared to zero, x87 floating-point instructions are handled by setting the FERR# input signal to 1, which external
logic can use to handle the interrupt.
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FERR# and IGNNE# Signals. In all unmasked-exception responses, the processor also asserts the
FERR# output signal at the completion of the instruction that caused the exception. The exception is
serviced at the boundary of the next non-waiting x87 or 64-bit media instruction following the
instruction that caused the exception. (See “Control” on page 273 for a definition of control
instructions.)

System software controls x87 floating-point exception reporting using the numeric error (NE) bit in
control register 0 (CR0), as follows:

• If CR0.NE = 1, internal processor control over x87 floating-point exception reporting is enabled.
In this case, an #MF exception occurs immediately. The FERR# output signal is asserted, but is not

Underflow exception (UE)

• If the destination is memory, set UE and ES flags, and call

the #MF service routine2. The destination and the TOP
are not changed.

• If the destination is an x87 register:

- multiply true result by 224576,
- round significand according to PC precision control

and RC rounding control (or round to double-extended
precision for instructions not observing PC precision
control),

- write C1 condition code according to rounding (C1 = 1
for round up, C1 = 0 for round toward zero),

- write result to destination,
- pop or push stack if specified by the instruction,

- set UE and ES flags, and call the #MF service routine2.

Precision exception
(PE)

Without overflow or
underflow

Set PE and ES flags, return rounded result, write C1
condition code to specify round-up (C1 = 1) or not round-up

(C1 = 0), and call the #MF service routine2.

With masked overflow or
underflow

Set PE and ES flags, respond as for the OE or UE

exception, and call the #MF service routine2.With unmasked overflow
or underflow for register
destination

With unmasked overflow
or underflow for memory
destination

Do not set PE flag, respond to the OE or UE exception by
calling the #MF service routine. The destination and the
TOP are not changed.

Table 6-22. Unmasked Responses to x87 Floating-Point Exceptions (continued)

Exception and
Mnemonic

Type of
Operation Processor Response1

Note:
1. For all unmasked exceptions, the processor’s response also includes assertion of the FERR# output signal at the

completion of the instruction that caused the exception.
2. When CR0.NE is set to 1, the #MF service routine is taken at the next non-control x87 instruction. If CR0.NE is

cleared to zero, x87 floating-point instructions are handled by setting the FERR# input signal to 1, which external
logic can use to handle the interrupt.
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used externally. It is recommended that system software set NE to 1. This enables optimal
performance in handling x87 floating-point exceptions.

• If CR0.NE = 0, internal processor control of x87 floating-point exceptions is disabled and the
external IGNNE# input signal controls whether x87 floating-point exceptions are ignored, as
follows:

- When IGNNE# is 0, x87 floating-point exceptions are reported by asserting the FERR# output
signal, then stopping program execution until an external interrupt is detected. External logic
use the FERR# signal to generate the external interrupt.

- When IGNNE# is 1, x87 floating-point exceptions do not stop program execution. After
FERR# is asserted, instructions continue to execute.

Using NaNs in IE Diagnostic Exceptions. Both SNaNs and QNaNs can be encoded with many
different values to carry diagnostic information. By means of appropriate masking and unmasking of
the invalid-operation exception (IE), software can use signaling NaNs to invoke an exception handler.
Within the constraints imposed by the encoding of SNaNs and QNaNs, software may freely assign the
bits in the significand of a NaN. See the section “Not a Number (NaN)” on page 255 for format details.

For example, software can pre-load each element of an array with a signaling NaN that encodes the
array index. When an application accesses an uninitialized array element, the invalid-operation
exception is invoked and the service routine can identify that element. A service routine can store
debug information in memory as the exceptions occur. The routine can create a QNaN that references
its associated debug area in memory. As the program runs, the service routine can create a different
QNaN for each error condition, so that a single test-run can identify a collection of errors.

6.9 State-Saving

In general, system software should save and restore x87 state between task switches or other
interventions in the execution of x87 floating-point procedures. Virtually all modern operating systems
running on x86 processors implement preemptive multitasking that handle saving and restoring of
state across task switches, independent of hardware task-switch support. However, application
procedures are also free to save and restore x87 state at any time they deem useful.

6.9.1 State-Saving Instructions

FSAVE/FNSAVE and FRSTOR Instructions. Application software can save and restore the x87
state by executing the FSAVE (or FNSAVE) and FRSTOR instructions. Alternatively, software may
use multiple FxSTx (floating-point store stack top) instructions for saving only the contents of the x87
data registers, rather than the complete x87 state.

The FSAVE instruction stores the state, but only after handling any pending unmasked x87 floating-
point exceptions, whereas the FNSAVE instruction skips the handling of these exceptions. The state of
all x87 data registers is saved, as well as all x87 environment state (the x87 control word register, status
word register, tag word, instruction pointer, data pointer, and last opcode register). After saving this
state, the tag bits for all x87 registers are changed to empty and thus available for a new procedure.
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FXSAVE and FXRSTOR Instructions. Application software can save and restore the 128-bit media
state, 64-bit media state, and x87 floating-point state by executing the FXSAVE and FXRSTOR
instructions. The FXSAVE and FXRSTOR instructions execute faster than FSAVE/FNSAVE and
FRSTOR because they do not save and restore the x87 pointers (last instruction pointer, last data
pointer, and last opcode, described in “Pointers and Opcode State” on page 247) except in the
relatively rare cases in which the exception-summary (ES) bit in the x87 status word (the ES register
image for FXSAVE, or the ES memory image for FXRSTOR) is set to 1, indicating that an unmasked
x87 exception has occurred.

Unlike FSAVE and FNSAVE, however, FXSAVE does not alter the tag bits. The state of the saved x87
data registers is retained, thus indicating that the registers may still be valid (or whatever other value
the tag bits indicated prior to the save). To invalidate the contents of the x87 data registers after
FXSAVE, software must explicitly execute an FINIT instruction. Also, FXSAVE (like FNSAVE) and
FXRSTOR do not check for pending unmasked x87 floating-point exceptions. An FWAIT instruction
can be used for this purpose.

The architecture supports two memory formats for FXSAVE and FXRSTOR, a 512-byte 32-bit legacy
format and a 512-byte 64-bit format, used in 64-bit mode. Selection of the 32-bit or 64-bit format is
determined by the effective operand size for the FXSAVE and FXRSTOR instructions. For details, see
“Media and x87 Processor State” in Volume 2.

6.10 Performance Considerations

In addition to typical code optimization techniques, such as those affecting loops and the inlining of
function calls, the following considerations may help improve the performance of application
programs written with x87 floating-point instructions.

These are implementation-independent performance considerations. Other considerations depend on
the hardware implementation. For information about such implementation-dependent considerations
and for more information about application performance in general, see the data sheets and the
software-optimization guides relating to particular hardware implementations.

6.10.1 Replace x87 Code with 128-Bit Media Code

Code written with 128-bit media floating-point instructions can operate in parallel on four times as
many single-precision floating-point operands as can x87 floating-point code. This achieves
potentially four times the computational work of x87 instructions that use single-precision operands.
Also, the higher density of 128-bit media floating-point operands may make it possible to remove local
temporary variables that would otherwise be needed in x87 floating-point code. 128-bit media code is
easier to write than x87 floating-point code, because the XMM register file is flat rather than stack-
oriented, and, in 64-bit mode there are twice the number of XMM registers as x87 registers.

6.10.2 Use FCOMI-FCMOVx Branching

Depending on the hardware implementation of the architecture, the combination of FCOMI and
FCMOVcc is often faster than the classical approach using FxSTSW AX instructions for comparison-
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based branches that depend on the condition codes for branch direction, because FNSTSW AX is often
a serializing instruction.

6.10.3 Use FSINCOS Instead of FSIN and FCOS

Frequently, a piece of code that needs to compute the sine of an argument also needs to compute the
cosine of that same argument. In such cases, use the FSINCOS instruction to compute both
trigonometric functions concurrently, which is faster than using separate FSIN and FCOS instructions
to accomplish the same task.

6.10.4 Break Up Dependency Chains

Parallelism can be increased by breaking up dependency chains or by evaluating multiple dependency
chains simultaneously (explicitly switching execution between them). Depending on the hardware
implementation of the architecture, the FXCH instruction may prove faster than FST/FLD pairs for
switching execution between dependency chains.
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