
Lec11: Fuzzing

Taesoo Kim

1

Scoreboard
2

NSA Codebreaker Challenges
3

Administrivia
• Welcome to the last lab!

• Two options: 1) sandboxing/kernel or 2) Web exploitation

• Last lecture (Dec 2): real-world exploit (iPhone jailbreaking) + NSA Q&A

• Due: Lab04 / Lab10 / Lab11 on Dec 1

• Let you know your grade on Dec 2 in class

4

Today: Fuzzing
• intro

• DEMO: fuzzing

5

So far, focuses are more on "exploitation"
• More important question: how to find bugs?

• often, with source code

• but mostly, with only binary

6

Two Conditions
• Locating a bug (i.e., bug finding)

• Triggering the bug (i.e., reachability)

 if (magic == 0xdeadbeef)
 memcpy(dst, src, len)

7

Solution 1: Code Auditing (w/ code)
8

Solution 2: Static Analysis (on binary)
• Reverse Engineering (e.g., IDA)

9

Problem: Too Complex (e.g., browser)
10

Two Popular Directions
• Symbolic Execution (also static)

• Fuzzing (dynamic)

11

Symbolic Execution
12

Problem: State Explosion
• Too many path to explore (e.g., strcmp("hello", input))

• Too huge state space (e.g., browser? OS?)

• Solving constraints is a hard problem

13

Today's Topic: Fuzzing
• Two key ideas

• Reachability is given (since we are executing!)

• Focus on quickly exploring the path/state

• How? mutating inputs

• How well? e.g., coverage

14

Example: How well fuzzing can explore all
paths?

15

Game Changing Fact: Speed
• In this example,

• Symbolic execution explores/checks just two conditions

• Fuzzing requires 256 times (by scanning values from 0 to 256)

• But, what if fuzzer is an order of magnitude faster (say, 10k times)?

16

Importance of High-quality Corpus
• In fact, fuzzing is really bad at exploring paths

• e.g., if (a == 0xdeadbeef)

• So, paths should be (or mostly) given by corpus (sample inputs)

• e.g., pdf files utilizing full features

• but, not too many! (do not compromise your performance)

• A fuzzer will trigger the exploitable state

• e.g., len in malloc()

17

AFL (American Fuzzy Lop)
• VERY well-engineered fuzzer w/ lots of heuristics

18

Examples of Mutation Techniques
• interest: -1, 0x8000000, 0xffff, etc

• bitflip: flipping 1,2,3,4,8,16,32 bits

• havoc: random tweak in fixed length

• extra: dictionary, etc

• etc

19

Key Idea: Mapping Input to State Transitions
• Input → [IPs] (problem?)

20

Key Idea: Mapping Input to State Transitions
• Input → [IPs] (problem?)

• Input → map[IPs % len] (problem? A→B vs B→A)

21

Key Idea: Mapping Input to State Transitions
• Input → [IPs] (problem?)

• Input → map[IPs % len] (problem? A→B vs B→A)

• Input → map[(prevIP >> 1 ^ curIP) % len] (problem?)

22

Key Idea: Mapping Input to State Transitions
• Input → [IPs] (problem?)

• Input → map[IPs % len] (problem? A→B vs B→A)

• Input → map[(prevIP >> 1 ^ curIP) % len] (problem?)

• Input → map[(rand1 >> 1 ^ rand2) % len]

23

Key Idea: Avoiding Redundant Paths
• If you see the duplicated state, throw out

• e.g., i1 = 1, 2, 3

• If you see the new path, keep it for further exploration

• e.g., i1 = 81

24

How to Create Mapping?
• Instrumentation

• Source code → compiler (e.g., gcc, clang)

• Binary → QEMU

if (block_address > elf_text_start && block_address < elf_text_end) {
 cur_location = (block_address >> 4) ^ (block_address << 8)
 shared_mem[cur_location ^ prev_location] ++;
 prev_location = cur_location >> 1;
}

25

AFL Arts
26

Other Types of Fuzzer
• Radamsa: syntax-aware fuzzer

• Cross-fuzz: function syntax for Javascript

• langfuzz: fuzzing program languages

• Driller: fuzzing + symbolic execution

27

Today's Tutorial
• In-class tutorial:

• Fuzzing with source code

• Fuzzing on binary

• Fuzzing a real-world program

28

In-class Tutorial
$ git git@clone tc.gtisc.gatech.edu:seclab-pub cs6265
or
$ git pull
$ cd cs6265/lab11
$./init.sh

$ cd tut
$ cat README

29

