Writable FAT52 Filesystem

== BY: TONy Tang, Elizabeth Dudley, =
Ling Tham, Jingkai Yu

Objective

Implement a fully functional filesystem by expanding the Lab 3 Filesystem to
implement writing

Motivation

e Enable persistent file creation/storage

e Utilization of entire storage space instead of RAM

e Implementing readable FAT32 in lab3 — why not do writable too so we
have complete FAT32 filesystem?

e Creating a more dynamic system for the user
o e.g.enabling wifi and other peripherals to edit the environment

Demo

e Without Save

Create a new File

Append to File

Output modified file to demonstrate changes

o Turn off/on computer and open file to show file did not save

e Save File
o Modifications will persist after turning off/on computer
e Stretch: Edit & Save File in text editor environment

O O O

Approach

1. Implement a Readable FAT32 Filesystem (March 2)

2. Translate modification from cache to storage (March 2-March 27)
a. Modify FAT
b. Link different FATs when not enough memory
c. Handle write to cluster
d. Handle memory allocation when editing File
3. Create commands that write to file and save file (April 3)

a. ex:write hello.txt “hello world”
b. ex:save hello.txt

4. Integrate a fully working writable Filesystem (April 9)

Timeline

cluster

Mar2 | Mar9 | Mar28 | Apr4 Apr 9
Finish Ability to Heap Creating Integrate
Lab3 modify FAT | Allocation | Commands | System

table to interact

with FS

Dynamically

link FAT

entries

Handle

writing to

Q&A
Thank you!

Evaluate Team#1

Next: Team#?2

is a testing technique that involves testing a target
system with random input o find faults. Fuzzing

Fuzzin g can be time consuming, but can help

detect hugs that can potentially COSt millions w0 a

company.

GIOAI_Si

\

Fuzzing file systems by injecting semi-random data into a program or stack
Test the building block of an OS and identify bugs

Best method of testing without knowing about a target (polymorphism)
Prevent system reboots, OS deadlock, and unrecoverable errors of system
image

Overall interest in security

File systems are one of the most vulnerable structures in any operating
system. The possible results of exploiting the file system or causing
unforeseen bugs can cause significant damage to a system.

Fuzzing seeks to identify bugs in afile system so developers can patch them,

closing security loopholes

Enaglfem oh B |
7 S\ |

The purpose of fuzzing relies on the assumption that there are bugs within every
program, which are waiting to be discovered.

| Creating a simple fuzzer helps us identify bugs in the file system implemented as

"part of Lab 3 in an automated fashion. We want to see if there Is anywhere in our
file system that hasn’t been implemented securely. Fuzzing allows us to find
classical security issues like exploitable buffer overflow that may cause the system

to crash.

We are going to show the bugs, once we've isolated them.

* 5.5 weeks

ﬁ[]iE’M&BiE

Feb 25/27 Mar 6 Mar 13 March 17 -19 Mar 27 April 9
Proposal Week 1 Week 2 Spring Break Week 4 Demo
BEVY Checkpoint Checkpoint ~ Checkpoint Checkpoint BEVY
| | | | | | |
| | | | | | |
Getting the Learn about Continue Fuzz the file
file system how to fuzz working on system of lab
work properly a file the fuzzer 3 and identify
on Raspberry system and vulnerabilities
Pi 3 work on the

fuzzer

Questions???

Fvaluate Team#?2

Next: Team#3

DRIVER FOR INTERFACING WITH KD/ §0U
BASED LCD DISPLAYS

HUMAN — PTINTERFACE

Goal: Creating a display driver/API
for a Raspberry Pi using Rust

Driver will be designed to work with
HD44780-controlled displays through
GPIO

Managing the text will be
user—-friendly and accessible

7102 Id Ausqdsey ©
T\ +8 [9poN Id Aueqdsey
0149

APl

LcdWriteString(&str) //print ASCII string to LCD display
LcdSetCursor (u8, u8) //move cursor to the given coordinate
LcdClearScreen() //clear LCD display of any characters

LcdSetBackLight (u8) //set brightness of backlight (0-100)

DEMO

Showcase API implementation
RustOS Shell on LCD display

RioRand LCD Module (20 x 4)

[IMELINE

Proposal
March 17

March 31

Demo

Idea
Slides

Set up hardware
Implement low-level API for communication with HD44780

Write higher level abstractions — user API

Use our driver to display RustOS shell prompt on LCD

Fvaluate Team#3

Next: Team#4

Tetanus - A
RustOS Audio
Driver

Team 4
Yotam Kanny, J.T. Parrish, Owen Schupp, Harry Wang

https://www.youtube.com/watch?v=LDU_Txk06tM

The Need for Auditory Feedback

e When considering a computer error message, many things come
to mind, like the exclamation point symbol or a pop-up window,
but none match the potency of a sudden z»

e Audiois abasicdriver included in all common OS’s

e Audioisevenincluded on motherboards for BIOS error codes

e Currently, our version of RustOS does not support audio in any
fashion, nor do any of the future labs plan on implementing it.

e Our solution...

http://www.youtube.com/watch?v=iqztd7uMvVI

\ Introducing the Tetanus Driver™

We will provide auditory output using GPIO PWM and a
peripheral speaker device

We will produce a command line interface to play MP3 files from
the SD card over the speaker

This is a proof of concept to show that our OS could produce
useful auditory feedback and even be used to play media

\ Challenges and Extensions

e No GPIO pins support analog output which would be ideal for
audio
o Use PWM instead

e Would like to output audio over 3.5mm jack
o Documentation unclear
o Stretch Goal

N\

1.

Tetanus Project Phases

Emit sound through GP1O/3.5mm audio jack (1 week)
o Current research hasn’'t shown much documentation re: 3.5mm jack
o This amounts to transmitting data over GPIO using the PWM API for
the BCM2837
Decode MP3 file format into playable audio stream for RustOS (3 weeks)
Create CLI tool for playing MP3 audio files to our new audio output (2

weeks)
o Extension of the shell we began building in lab 2

Evaluate Team#4

Next: Team#5

Writable FAT32

Objective

e Extend FAT32 Filesystem to be writable.

e |ntroduce corresponding system calls for users
and update existing ones.

Timeline

- Complete Lab 3 (3/2)

- Research required changes to the current filesystem API + SD Card Driver (3/16)
- Architect and implement above changes (3/30)

- Implement system calls for users and kernel to write to the filesystem (4/6)

- Implement the cat/touch command to create files in our shell (4/9)

Notable Challenges

Modifying the SD Card Driver to have write_sector support.

Request source code from TAS?

Write Allocation strategies -- different methods and conflict resolution

Overwriting files/directories

Possible stretch goal: thread safety

Fvaluate Team#5

Next: Team#6

User Login and Abstraction

Henri Smulders, Aljon Pineda, Isaac Weintraub, Markian Hromiak

CS 3210 Spring 2020
Final Project Team 6

Problem

User Login is a key feature of most modern operating systems

e Theyallow user abstraction, which in turn allows us to isolate users in different layers
Password protection is necessary to prevent unauthorized access to a user

e Weintend to add a user login system that would allow us to create new users, password protect
them, and provide them with different levels of access

Background

In Unix operating systems, one of the ways users are granted different levels of access is file permissions.
Users have 3 main types:

e The creator of the file, known as the “Owner”
e Multiple Users with the same access to a file, known as a “Group”
e A User with access to the file, but is not part of a group, known as “Other”

Each file defines what each user type is allowed to do: read, write, and/or execute

Requirements

e User Login/Logout
o Different Users should be able to create their own passwords
o Password hashing

e Administrator
e File Permissions: user, group, other
Commands

$chmod, $Is -1, $addgroup, $usermod, $adduser, $login, $logout

Stretch features

e sudo

Timeline

March April
v Projects and Epics 2 9 16 23 30 6
v & project group 6 s [+
Feb 24 - Apr7

[E] Add file permissions
Mar 23 - Apr 7

(E] Add file permissions

[E] Create/Edit Groups
Mar 16 - Mar 23

[E] Create/Edit Groups

[E] User Edit/Creation/Login
Mar 2 - Mar 16

[E] User Edit/Creation/Login

[E] Finish FAT32 Filesystem
Feb 24 - Mar 2

(B Finish FAT32 Filesystem

Evaluate Team#6

Next: Team#/

cgroups on Redox OS

CS 3210 Project Proposal
Group 7: Ethan, David, Julian

cgroups(7)
DESCRIPTION

Control groups, usually referred to as cgroups, are a Linux kernel feature
which allow processes to be organized into hierarchical groups whose usage of
various types of resources can then be limited and monitored.

Control Group (cgroup)

Image Source:

https://linuxacademy.com/blog/containers/a-game-
changer-for-containers-cgroups/

Allocatable resources

As of version 2:

cpu

cpuset
memory
devices

net cls
blkio

pids

... and more

‘ ‘ I . t. I . L .
DRM manages the GPU
cgroups are responsible for resource management. If your sound card can do hardware mixing, and KNS manages the display controller (CRTC
It nakes sense, to g n your Linux device driver supports this feature, The display controller usualy sits on th
access to this functionality to avoid lots of then multiple prograns can access your sound S o (6 @1, o) LI CEidh
card at the same tine and you hear them all i CIEr, O, G i fosiedan

problens
simultaneously! or the refresh rate.

systend-nspawn PulseAudio daemon does software mixing.
Without hardware or software mixing, only one Dayid Hernan split DRH and KNS,

progran can access the sound card; as a result, then added "render nodes" to the DRN.

Automatic equal distribution of CPU to B ey
at the same time! X.0rg doen't need to be root any longer,
JACK daenon does the same but targets professionalpyt its still wise (technically necessar
o grant it exclusive access to the Ki

audio editor:

services
o Application level resource management

System Call Interface (SCI)

Process Memory TS
scheduler manager grotp
S

e Docker A
Linux kernel

) ' System | | l
Hardware RAM | Storage ‘ Network

More on Docker

Containerized Applications

Docker

Host Operating System

Virtual Machine

Guest
Operating
System

Virtual Machine

Guest
Operating
System

Hypervisor

Virtual Machine

Guest
Operating
System

Using cgroups in Linux

e systemd

o Monitor and manage with systemd-ctop
and other systemd utils

O “slices” $ cat /sys/fs/cgroup/user.slice/user-1000.slice/cgroup.controllers

e /cgroup virtual file system

cpuset cpu io memory pids

$ systemd-run --user --slice=my.slice command

Stolen from the Arch Linux wiki (btw)

ir [sys/fs/cgroup/memory/<group_name>
2008080000 > [sys/fs/cgroup/memory/<group_name>/memory.limit_in_bytes
pid > [sys/fs/cgroup/memory/<group_name>/cgroup.procs

Redox OS

e \Written in Rust for its memory safe features

e Microkernel
o As much as possible in userspace including drivers
m Reduces critical security risks due to smaller kernel code-base
o Performance cost due to more frequent context switch
e “Everythingis a URL"
o Extension of the UNIX philosophy “Everything is a file”
m InLinux: /proc/stat
m In Redox: sys:/context
e POSIX-ey, not compliant

o Subset of standard Linux syscalls

Monolithic vs Microkernel lllustration

Monolithic Kernel
based Operating System

Application System/call

/

F—,

\

%
N

VFS

IPC, File System

Scheduler, Virtual Memory

Device Drivers, Dispatcher, ...

Microkernel
based Operating System

Application UNIX Device File
IPC Server Driver | Server

%
N\
p

Basic IPC, Virtual Memory, Scheduling

Hardware Hardware

Thanks to Wikipedia for the image

Project Design Goals

e Rust

e In Userspace

e Use Redox design principle
“Everything is a URL”

Goal of our Project

e Implement cgroups functionality for Redox OS that can
allocate:
o Ccpu
O memory
o pids

e |If time-permitting, work on adding more allocatable
resources than the aforementioned three

Thank you!

Evaluate Team#7/

Next: Team#8

AUX Audio Output

Team 8
Andrew Johnston | Kevin Park | Anthony Tan | Lewey Wilson

\ Objective
e

e Primary: Write driver to interface with =
the Raspberry Pi 3’s audio output device

o Interface with the 3.5 MM audio jack

o Connect it to aspeaker -
o Readraw audio files, transfer the signals -
through the audio jack, and play them -
from the speaker. -

o Stretch goal: play MP3 files _ eron 1

Alt Function on GPIO 40 and 45 correspond to
PWM 0 and 1: the left and right audio output
channels.

\ Raspberry Pi Audio Out

ALDIO L
J7

N

AUD _PWM1

GMD WCC

/N

AUD PWMO

2
4
L5111\
3
1

™~
AZ |~ Y2

C80
||_AuDIO R STX-35017-4N
]

NCTWZ16 CBE1
100n ——
1005 47u
3216
— COMPVID

Background: PWM

e “Pulse width modulation (PWM), or pulse-duration modulation (PDM), is a method
of reducing the average power delivered by an electrical signal, by effectively
choppingit up into discrete parts.” (Wikipedia)

e Method used to encode approximate analog signals using digital signals

Reference ———
Limits

Output ——

Analog signals

—
)
>
E
-

o
tn

Delta-PWM signal
=
o

(ms) 20

March 2 - 8

Detailed
Research

Research how the AUX
audio device interacts

with GPIO pins and
PWM (pulse width
modulation). Write and
test proof-of-concept
code to verify
understanding.

Imeline

March 9-15

Code hardware
interface for pins

Write Rust code to
properly interact with
the appropriate GPIO
pins so that PWM can
be output correctly.

March 23 - 29

Generate proper
PWM for audio
frequencies

Research and
implement the
conversion of individual
audio frequencies into
corresponding PWM.

March 30 - April 5

Convert audio file
to PWM, play raw
audio file

Implement the
conversion of raw audio
files into PWM and the
ability to play. Also
prepare for demo day.

April 6 - April 12

Fix bugs and
optimize code

Fix any bugs that arise
and optimize
implementation. Write
code to convert MP3
files, if time permitting.

\ Challenges

Verifying our understanding of the relationship
between pins and output

Following the timeline even when there are technical
road bumps

Producing acceptable sound quality

Bonus: Work-life balance

\ References

Broadcom. “BCM2835 ARM Peripherals”. Available:
https://cs140e.sergio.bz/docs/BCM2837-ARM-Peripherals.pdf

Hackaday. “Behind the Pin: How the Raspberry Pi Gets Its Audio”. Available:
https://hackaday.com/2018/07/13/behind-the-pin-how-the-raspberry-pi-gets-its-
audio/

Raspberry Pi Github. “Linux Sound ARM Driver”. Available:
https://github.com/raspberrypi/linux/tree/3b1047181fbbbd2067b6b7476c42819947
4fdd19/sound/arm

https://cs140e.sergio.bz/docs/BCM2837-ARM-Peripherals.pdf
https://hackaday.com/2018/07/13/behind-the-pin-how-the-raspberry-pi-gets-its-audio/
https://github.com/raspberrypi/linux/tree/3b1047181fbbbd2067b6b7476c428199474fdd19/sound/arm

Evaluate Team#8

Next: Team#9

Georgia [&
Tech

=

CREATING THE NEXT /i

iiiiiiiza

\
W\ N\
A\
\\
A\ \\\
R
N\

o

/

A

//
£l
////

FreeBSD SD Driver
)\x‘}il‘l Rust

/
7
i
/

Patrick Coppock
James Thomas

February 19, 2020

» Raspberry Pi 3 Model B+ hardware platform
« SD card device driver

* FreeBSD 12.1 stable operating system

* Rust system programming language

* Long term: dtrace probes for debugging

* No OpenBSD Raspberry Pi SD/MMC driver
* FreeBSD/Rust is easier than OpenBSD/C

« Supportive community
* Rust integration
* Previous experience with Rust

» Possibly extend to OpenBSD/C

 Try to mount SD card and fail

 Load our kernel module

* Try again to mount SD card and succeed
 Transfer/read files to/from SD card

= YN =

FreeBSD dev. environment on RPi (week 1)
Hello world module (week 2)

SD driver module (week 3-6)

Debugging (week 7-00)

Evaluate Team#9

Next: Team#10

PiGrate

Process migration across multiple hosts

Ananth Dandibhotla, Yaotian Feng, Will Gulian, Oswin So, and Kyle Stachowicz

Process Migration

e Migrate a running process from Pi A (source) to Pi B (target) over network
e Immediately resume on Pi B

Motivations

e Maintenance
o A process can be moved from one Pi to another to avoid hardware downtime / kernel
upgrades, etc.

e Remote process management
o execve()/ fork() onto another node
e Checkpointing
o Suspend /resume behavior

e Load balancing
o Automatically transfer processes across multiple Pis to maximize resource utilisation

Security Model

“T \iSH THESE PARTS
COULD COMMUNICATE
MORE. ERSILY"

&S

{

“OOH, THIS NEW TECHNOLOGY
MAKES IT EASY TO ENCLOSE
ARBITRARY THINGS IN

SECURE. SANDBOXES!"

&),
o

“00H, THIS NEW) TECHNOLOGY
MAKES IT EASY TO CREATE

"= | ARBITRARY CONNECTIONS,

INTEGRATING EVERYTHING!

“UH-OH, THERE ARE
S0 MANY CONNECTIONS
ITS CREATING BUGS
PND SECURITY HOLES!

1 CS 6265 is it

Stretch Goal: Priority Paging

e Prioritize (immediately transfer) necessary pages
e Continue to send remainder of pages at lower priority
e At page faults, target requests specific pages at high priority

Stretch Goal: Load Balancing

e Master node controls migration

MASTER
CPU: 100% CPU: 75% CPU: 80%

Master facilitates
process transfer
over network

Milestones

Networking between multiple Pis (Lab 5)

Manually initiated basic process migration between multiple Pis
Automatic checkpointing and process restoration

Live process migration / Priority paging

Load detection (CPU time metrics)

Load balancing algorithms

SRSl

Fvaluate Team#10

Next: Team#11

Writeable,
Encrypted FAT32
File System

Eric Frankel, Ohad Rau, Matthew Sklar, and
Ben Remer

\ What?

e Writable FAT32 File System
e Full Disk AES Encryption
o Hardware Accelerated

AES Design

— S
—

\ Why?

Security
Privacy
Encrypted Swap
Sounds fun

\ Timeline

Basic write for FAT32

Architect AES driver

Optimize AES implementation using SIMD

Block device abstraction that supports encryption
Testing

\ Demo Plan

e Writefileto SD Card using encrypted FS

e Show that data stored on desk is not readable without
encryption key

e Readfiles back from disk using encryption key

Fvaluate Team#11

Next: Team#12

I GDB Remote Debugging

Dennis Henderson

1/6

I GDB Without Linux

 GDB supports running a program on one
computer while debugging it on another

» Two ways to do this:

- Run GDB on both machines

- Run GDB on the computer you're
debugging from, run a debugging stub on
the computer you're running the program
on

* Since we don’t want to reimplement all of

Linux’s system calls, we’ll use the stub e

I GDB Debugging Stub

* The remote stub should be implemented into

the program being debugged. In our case,
this is the kernel

* The stub needs to implement a few functions
for serial communication and exception

* The kernel needs to call the stub’s setup
functions

3/6

I Difficulties

* The stub needs exception handling, so need
to learn how ARM does that

* |f you want to be able to stop the program
while it's running you need interrupts

 How do you debug the debugging stub? GDB
doesn’t exactly work yet

- QEMU

- Existing serial connection
- LEDs

4/6

I Future Work

* Implement debugging programs running on
RustOS, not just the kernel itself

5/6

I Timeline

 March 8: Read GDB docs, ARM docs, other
people’s implementation for other
architectures and languages

 March 18 (Spring Break): Finish implementing
stub

 March 22 (Spring Break): Finish debugging
the debugging stub

* April 9/14: Demo days

6/6

Fvaluate Team#12

Next: Team#14

CS 3210 Project

Stephen Tong

Layers of Abstraction

AN x64 PROCESSOR 16 SCREAMING ALONG AT BLUONS OF
CYCLES PER SECOND To RUN THE XNU KERNEL, WHICH 1S
FRANTICALLY WORKING THROUGH ALL THE FOSIX-SPECIFIED
ARSTRACTION T» CREATE THE DRRWIN SYSTEM UNDERING
05 X, WHICH IN TURN IS STRAINING ITSELF T0 RUN FIREFOX
AND IT5 GECKO RENDERER, WHICH CREATES A RAGH OBTECT
WHICH RENDERS TDZENS OF VIDED FRANMES EVERY SECOND

BECAUSE I WANTED TO SEE A CAT
JUMP INTD A BOX AND FALL OVER.

O T AM A GOD.

This xked brought to
o you by sys arch gang

Purpose of OS?

 Share resources between

user applications
e Scheduling: time multiplexing

* Provide interface between

software and hardware

 Hardware abstraction layer:
hide HW behind API

G

Devices

J

Code privilege levels (x86)

Least privileged

Device drivers Most privileged [) (* “ r ~
Device drivers CPU Memory Devices
_) " y N)

Applications

Code privilege levels (x86)

Device drivers

Device drivers

Applications

Y
Devices

Q: Ring -17?

Device drivers
Device drivers

Applications

Apps

—| Apps

1|Guest OS

VM

Host OS

VMM

A: Hypervisors!!!

Mormalworld

52 [Hypervisor]

Why Hypervisor?

72-core Xeon Phi Centriq 2400 QGC2IPU
SPARC M7 \032 -core AMD Epyc
IBM 213 Storage Comrollec\ _-Apple A12X Bionic
T ra Xavier SoC
18- c:;:?:;:;:i;? >4 8 Qualcomm Snapdragon 8cx/SCX8180
61.core Xeon Phi 8 \ HiSilicon Kirin 980 + Apple A12 Bionic
12-core POWER ’ “HiSilicon Kirin 710

8-core Xeon Nehalem-EX~, 100 ugﬁ:rg "(‘Igfgr] Broadwell-E
roadwell-U

Six-core Xeon 7400 Dual-core + GPU Iris Co?g?7
E . 2’ > 8 °Quad -core + GPU GT2 Core i7 Skylake K
Pentium D Presler, ooweRs 8 < . o Ouad -core + GPU Core i7 Haswell
Itanigm 2 with L4 Q Apple A7 (dual-core ARMB4 "mobile SoC")
B cache@ Core i7 (Q
Itanium 2 Madison 6ME

K10 qwd core 2M L3
ore 2
Pentium D Smithfield

ona
@ 2 Duo Con
tanium 2 McKinley: © g&eil Core 2 Duo Wolfdale 3M

Pentium 4 Prescott-2M€@ \OCOfe 2 Duo Allendale

Pentium 4 Cedar Mill
AMD K8 @ 0Pemlum 4 Prescott

Pentium 4 Nonh\-:ood’
Barton
PO oP(muu: lIl Tualatin b -
Pentium | Mobile Dixon,
AMD K7 QARM Cortex-A9
AMD K6-I

%PennHrBen Katma.

AMD K86,
Pentium P"b p? gp

AM% KS

?Pennum 1l Coppermine

Penhum°
SAT110
Intel 80486,
© %o
T1 Explorer’s 32-bit
.sé%aé’k.io chip® AR3700
intel 80386¢g Intel i Q@ARM 3
Motorola 68020 @ :9%00
ulh¥vtan
Mgg A lnle420286 &%\c’ '
° QIintel 80186
Intel 8086¢p € Inte! 8088 mM 2 m%u 6
Motorola 816
TMS 1000 Zilog zao 8503 65§8 0’15
RCA 1802 ntol 8085
Intel 8008, intel 8080

/ Technol
Motorola 55%% ogy
Intel 4&4 8508

Why Hypervisor?

72-core Xeon Phi Centriq 2400 ©GC21PU

SPARC M7 \032 -core AMD Epyc
IBM 213 Storage Conlrollec App'e M?X Bionic
1 X H. I T ra Xavier SoC
s c::;x (z)onne ""::::es* OECS © 8 Oﬁglcomm Snapdragon 8¢x/SCX8180
61-core Xeon Phi 8 ™ HiSilicon Kirin 980 + Apple A12 Bionic
12-core POWER ~8 sw cH'Sd?xén Kngn 1"1%
3 8 core Cor roa e
8-core Xeon Nehalem-EX~, S ope.oo r; O \

Six:core Xeon 7400 DA cora s G o o Broadwell-U
b (o S ° ‘ ° °Quad core + GPU GT2 Core i7 Skylake K
g L4 . Ouad -core + GPU Core i7 Haswell

Pentium D Presler
OWERS
llsr;\'i‘uemcgez% 0 COfe i7 (Quad) Apple A7 (dual-core ARMB4 "mobile SoC")
K10 qwd core 2M L3
Duo

Mainframes e St gg Core 2 udtio

ltanium 2 McKinley @ €l @Core 2 Duo Wolfdale 3M
Pentium 4 Prescott-2M@ \QCoce 2 Duo Allendale

Time-sharing OG0 B s

Pentium 4 Northwo!

0 % Barton
Fontigrre Wikametiegp °F‘cmlu: Il Tualatin Shtor
Pentium II Mobile Dixon, ©ARM Cortex-A9

AMD K7 ?Penlmm 1l Coppermine

AMD K6-Ii
AMD K8, K
_ ? Qe ficm HBeschites’
Pentium Pr(b tiu
Kamath
Penhumo AMD K5
SAT110
Intel 80486,
L4 °mooo

Ti Explorer’s 32-bit

Llsp%\achl?‘m (:h'p° AR3700

intel 80386, Intel o Q@ARM 3

Motorola 68020 @ :9%00
. gﬁu‘than
Motorola lmelgOZBb &%&r& '
° QIntel 80186
Intel 8085¢p € Inte! 8088 QARM 2 AR%I 6
RM 1
Motorola 65C816 o
TMS 1000 Zilog Z80 8% ol NCibie
RCA 1802 &n(el soes | T
Intel 8008 3 Intel 8080
M Technok
9 Moigge SR

Intel 4004

Why Hypervisor?

72-core Xeon Phi Centriq 2400 @GC2 IPU

SPARC M7 @ 32-core AMD Epyc
IBM 213 Storage Conlronec AApple A12X Bionic
T ra Xavier SoC
o Cst';:‘(’;’:e":f::es";ﬁ \ >4 8 e Snapdragon 8cx/SCXB180
" HiSilicon Kirin 980 + Apple A12 Bionic

hi
611(?:Oégr>ée€8x‘[lﬂ *8 8 310 CH-S x;:gn KI(!‘IH 1”1%
8-core Xeon Nehalem-EX~, core Core i7 Broadwel
Six-core xgoon 7400 ‘ Quaicomm Snapdrag

Dual-core + GPU Ins (,cxe |l Bvoadweu U
“« M O d e r n ” O S e S Dusé-Sore Ranium g °Quad core + GPU GT2 Core i7 Skylake K
Pentium D Presler, p g 2 ’ ° Ouad core + GPU Core i7 Haswell

Apple A7 (dual-core ARMB4 "mobile SoC*)
Core i7 (Quad)

. AN
. V t I : AMD K1 d-core 2M L3
Mainframes Irtual memaory T geff“sfo%":mm
ltanium 2 McKinley @ L2 ell @Core 2 Duo Wolfdale 3M

Pentium 4 Prescott-2M@ \QCOfe 2 Duo Allendale

Pentium 4 Cedar Mill
AMD K8 @ 0Pennum 4 Prescott

Pentium 4 Norﬂw.oodo
Barton
Pentium 4 Wilamette ¢y €@ ”
Pentium lIl Tualatin
Pentium || Mobile Dixon,
AMD K7 8 ©@Pentium lll Coppermine

Time-sharing
QAtom
QARM Cortex-A9

AMD Ké&-1ll
AMD K6 K
; g x" .823' sch"ﬁtnggl
Pentium P(o0 tio
Klamath
Penhum° AMD K5
SAS110
Intel 80486,
L4 0mcoo
T1 Explore: 2-bit
Lisp machi ch1p° Anamo
intel 80386 Intel
559 lide @ARMS3
Motorola 68020 @
OOEC WRL
g 3 MuitiTitan
Motorola Intel 80286 ;&A
= TOMI
Qlntel 80186
Intel 80864 @ Intel 8088 o, M2 e A
ARM 1
Motorola 65C816 °
TMS 1000 Zilog Z80 8&008 8 N%’f'ﬁs
RCA 1802 &ntel gogs OOvU
Intel 8008 2 Intel 8080
MQOS Technol
Motorota 8508 G

Intel 4004

Why Hypervisor?

72-core Xeon Phi Centriq 2400 ©GC21PU

SPARC M7 @ 32-core AMD Epyc
IBM 213 Storage Controllu AApple A12X Bionic
1 2 X Haswell Teqra Xavier SoC
& c)(:;ox %V:P n?j nc;o? 0 8 Qualcomm Snapdragon 8cx/SCX8180
61-core Xeon Phi \ \Hxs licon Kirin 980 + Apple A12 Bionic
12-core POWERB~ o CHIC- xluén Ku(vjm /12
8-core Xeon Nehalem-EX~ 10-core Core i7 Broadwell
Six-core Xeon 7400 ‘ Oua.c‘omm’ napdragon, 835 o
o" V24 Dual-core ftaniom 3 ° Dual-core + GPU Ins Core 17 Broadwell-U
IVI O d e r n O S e S S . Quad-core + GPU GT2 Core i7 Skylake K
Pentium D Presler POWERS g L S Gaad core + GPU Core i7 Haswell

It mum 2 v..m Apple A7 (dual-core ARMB4 "mobile SoC*)

ore i7 (Quad)

. V " t I rrkeess . AJN<I0 apad-core 2M L3
Mainframes Irtual memory nzusmong g OYNISES
ltanium 2 McKinley @ - 2 ell re 2 Duo Wolfdale 3M
o i Pentium 4 Prescott-2M© \OCoe : D‘uo Allendale
Tl me-S h arin g AMO K8® Ooiim 4 Proscl o

Pentium 4 Nonh..oodo ©ia
rton
Pentium 4 Willamettep €

Pentium lIl Tualatin
Pentium || Mobile Dixon

AL
AMD K7 8 @Pentium lll Coppermine QARM briex-A9

AMD Ké&-1ll
AMD K86 %
Q %Punhgjx:x” Bolsl,geut{ggl
Pentium Proo i
K amath
Pentiume, AMD K5
SAS110
Intel 804869, @
. 2-bit
3 > chip® Anﬁmo I d .
wolotsBtg, o @AM Cloud computing
Motorola 68020 @ e
? DEG WRL . . .
vgon, lS0zse p.2 Virtualization
68000¢ STOMI
QIintel 80186
Intel 8086€p € intel 8088 o QARM 2 ,\;1?.4 6
ARM 1
i Motorola 65816 &,
TMS 1000 Zilog 280 (Q@S wle NEiGi6
v
RCA1802 Qnioigoss o 2
Intel 8008, Intel 8080

/ °M Technok
Motorgla §538 o
Intel 4004 8 8

Hypervisor is like OS...

 Share resources
between OSes

HO
 Abstract hardware:
virtual devices -
« CPU
* Memory y
e NIC

Normalworld

[ﬁppmamn] [ﬁppcainn] [ﬁ@pcahnn J[ﬁppcannn J

[Hypervisor]

Use case of Hypervisor?

* Desktop virtualization
* Benefit is obvious

e Paravirtualization: pick up the whole OS and move it
 Hardware is virtualized; OS doesn’t care

* Virtualization-based security
* Even if kernel is compromised, hypervisor remains secure

* Subvert guest OS, good for antivirus?
* Or 1337 game hacks

Hypervisors are everywhere!

* Vmware

* Virtualbox

* Hyper-V

* Xen

e KVM

* Chances are you are running in one right now!!!

Type 1 & Type 2 Hypervisor

Virtual machine 1 Virtual machine 2 vmtr) wmz
. ! " ! I i~ ! Ii' »
1T} Application || || Application
Application | | Application Application | | Application | | 1]} L)
: i it Ii' R
- 1| = = | 1]| Guest OS ||| Guest O3
: -) L'-.. -
Guest 051 Guest 05 2 i i h
| Hypervisor Applications
. L .-". . L ~ J I L L -
e Ty I r
Virtualizer software (or Hypervisar) : Guest OF
b, - | k., o~
I
I
I
I
Type 1 Type 2

Bare metal Hasted

Type 1 & Type 2 Hypervisor

Virtual mg il W w2
I i~ ! li' »
1T} Application || || Application
: e | e A
I L ", i N
||| Guest OS5 Guest OS5
: -) L'-.. -
| I
| Hypervisor] Applications
.-". . L ~ | L L
|
Virtualizer software (or Hypervisar) : Guest OF
| k.,
I
I
I
I
Type 1 Type 2
Bare metal Haosted

The End

* Hypervisors are cool

Fvaluate Team#14

Next: Team#15

Comparison of Scheduling Algorithms
Implemented in Rust

Team 15:

Aaron Anderson

Purpose and Questions

= What Scheduling Algorithms perform best for the lightweight Raspberry Pl Rust OS under what
circumstances?

= What hyperparameters (e.g. quantum) give the best performance for scheduling algorithms unde
circumstances?

= How to define performance? What factors effect the efficiency and reliability of a scheduling a
what are the unique benefits and drawbacks of each algorithm?

Candidate Algorithms

FCFS

Round-Robin
Priority

STF

SRTF

LTF

LRTF

Multi-Level Queue
Hybrid

Other?

Tentative Timeline

WED
Apr 1 2 4

Writing Test Programs, Gathering Statistics, Analysis

Wiriting Algarithms
Basic Non-Preemptive Algorithms Basic Preemptive Algorithms

Spring Break! (but not rly lol)

Writing Algorithms
Advanced (Multi-Level Algorithms) Novel Algorithms

29

Writing Test Programs, Gathering Statistics, Analysis

Fvaluate Team#15

Next: Team#16

USB Device Driver for RustOS

Huancheng PUYANG
Pak Nin NG

KaHo CHIU

Baichen YANG

Problem Statement

- Incurrent implementation of RustOS, we haven’t not fully utilized the USB interface of our
Raspberry Pi.

- Interactions with Raspberry Pi heavily depend on our computers and the UART interface.

Idea

- Implement more device drivers in RustOS kernel module for easy interaction.
- Utilize the interfaces offered by Raspberry Pi, like USB and HDMI.
- Usel/O devices like USB Keyboard or external screen.

- Implement corresponding user program.

Demo Plan

- Demonstrate how the interfaces work between kernel space driver and user space application.
- Explain the design and use-cases of our device driver.
- Will balance the number of drivers to be implemented and the time we have during development.

- Tentatively we will only implement the USD keyboard device driver due to the time constraint.

Timeline

Feb 24 Mar 16 ¢ Apri?

Proposal Finish implementing driver Finish implementing
user program

Mar 2 Apr9o/14

Survey on the driver Demo

Fvaluate Team#16

Next: Team#17/

Final Project Proposal.:
Fork and Clone

Alex Diaz and Michael Sherman
February 23, 2020

Problem Definition

User programs have no way to multitask/multi-thread by themselves.

User programs need system calls that can allocate a process to another CPU and
begin execution of another program.

1. Clone() - schedules a new process onto a CPU with a specific virtual address
space

2. Fork() - uses clone() to create a new process on a CPU but continues
execution of the same program

Parent

Child

main() pid = 3456

{
— pid=fork();
if (pid == 0)
ChildProcess() ;
else

ParentProcess() ;

}
void ChildProcess()

t;tain() pid = 0

— pid=fork() ;
if (pid == 0)
ChildProcess() ;
else
ParentProcess() ;

}

void ChildProcess()

Feasibility

In Lab 4, we will be implementing system calls, multitasking, and virtual memory for
processes. Implementing the fork() and clone() system calls depends on completing Lab 4,
so we will be able to work on our final project during and after Lab 4.

We will have completed Lab 4 by March 30 and demos will take place April 9 and April 14.

Due Dates:

1. Friday, March 26 - have an understanding of fork() and clone().
2. Friday, April 2 - have an implementation of clone() completed.
3. Wednesday, April 8 - have the implementations of clone() and fork() completed.

Fvaluate Team#17/

Next: Team#18

File System++

Damian, Henry, Jakob, and Pete

Statement

“We will expand on the existing operating system by adding

write capabilities and user permissions to the FAT32 file

system. We also plan to implement associated commands and
features to improve usability.”

MVP

e Writable File System

® User permissions
O Read/write only

® Text “Editor”

Commands and Features

Output Redirection
touch

grep
rm

Su

Demo Plan

Create a new empty file with "“touch’

Redirect command output to this new empty file
Demonstrate command output has been successfully added to
empty file

Use text “editor” to append to this file

Demonstrate text “editor” successfully added to file

Change user to a non-root user
O Attempt to read and remove this new file
0 Show error resulting from invalid file permissions
® Change user to root user
O Demonstrate ability to read and remove this new file

Timeline

Complete Lab 3 - Readable file system (2/29)
User File Permissions (3/1-3/31)

Writable File System (3/1-3/31)

Text “Editor” (4/1 - 4/12)

Commands and Features (4/13 - 4/20)

Fvaluate Team#18

Next: Team#20

Implementing Audio
Playback

Matthew Musselman, Colin Sergi,
Matthew So, and Joshua Viszlai

Goal

We will attempt to implement a device driver that allows our
OS to interface with the Raspberry Pi’s headphone jack.

This will allow us to output sounds through
headphones/speakers connected to the Pi, allowing the Pi to
be used as a music player that reads audio files off the SD
card.

Motivation

Audio support is a typical feature of many operating systems,
and would offer a nice opportunity to work with different data

formats
It would allow for many fun applications such as:

e Sound-enabled applications for music or notifications
e A moreimmersive kernel panic experience

Feasibility

The Pi already has device registers that
enable PWM output, so it should be
possible to output simple waveforms.

The Pi also has device registers that
support PCM, so it may be possible to
DMA certain uncompressed formats by
only setting a few registers.

Supporting compressed formats like
MP3 will be a greater challenge due to
decompressing files while maintaining
preemptive multitasking and providing
a minimum of loading delay, all while
providing smooth output.

Cc83

R61
1.8K
1%
1005

A/V

J7

N

4
(LIS

w

R16
||_AUDIO L
U1t —__1 1
3V3A 220R R17 P
1005 C59 100R ” PP25
AUD_PWM1 A1 Yi| 6 1% ——100n | [1% 3216 o
2= 1005 [_| 1005
GND vee |2
AUD_PWMO P 4 &
A2 L7 Y2 = PP26
Rl c80
||__AUDIO R
NCTWZ16 C61 —f I
100n 220R R19
1005 1005 C62 100R

XL

1%

—100n 1%
1005 1005

R60

47u 1.8K
3216 1%
1005

STX-35017-4N
3v3

D4]—
COMPVID 3 r”‘ 2
o, s

BAV99

Roadmap

1. Output asimple square-wave signal. (By Monday, Week 10)
a. Addshell command to output square wave signals of various
lengths/frequencies/L-R balances
b. Add support for chords and other wave shapes (sine, triangle)
c. Add support for MIDI file output

2. Output araw, uncompressed audio file. (By Monday, Week 15)

a. Addsupport for more audio file formats.
b. Add shell command(s) to play audio files in the background (without
blocking other processes), with support for play, pause, seek

Fvaluate Team#20

