
Writable FAT32 Filesystem
By: Tony Tang, Elizabeth Dudley,

Ling Tham, Jingkai Yu

Objective
Implement a fully functional filesystem by expanding the Lab 3 Filesystem to
implement writing

Motivation
● Enable persistent file creation/storage
● Utilization of entire storage space instead of RAM
● Implementing readable FAT32 in lab3 → why not do writable too so we

have complete FAT32 filesystem?
● Creating a more dynamic system for the user

○ e.g. enabling wifi and other peripherals to edit the environment

Demo
● Without Save

○ Create a new File
○ Append to File
○ Output modified file to demonstrate changes
○ Turn off/on computer and open file to show file did not save

● Save File
○ Modifications will persist after turning off/on computer

● Stretch: Edit & Save File in text editor environment

Approach
1. Implement a Readable FAT32 Filesystem (March 2)
2. Translate modification from cache to storage (March 2-March 27)

a. Modify FAT
b. Link different FATs when not enough memory
c. Handle write to cluster
d. Handle memory allocation when editing File

3. Create commands that write to file and save file (April 3)
a. ex: write hello.txt “hello world”
b. ex: save hello.txt

4. Integrate a fully working writable Filesystem (April 9)

Timeline
Mar 2 Mar 9 Mar 28 Apr 4 Apr 9

Finish
Lab3

Ability to
modify FAT
table

Heap
Allocation

Creating
Commands
to interact
with FS

Integrate
System

Dynamically
link FAT
entries

Handle
writing to
cluster

Q&A

Thank you!

Evaluate Team#1
Next: Team#2

Fuzzing File System
Sam, Haoran, Rahul, Jacob

is a testing technique that involves testing a target

system with random input to find faults. Fuzzing

can be time consuming, but can help

detect bugs that can potentially cost millions to a

company.

Fuzzing

● Fuzzing file systems by injecting semi-random data into a program or stack

● Test the building block of an OS and identify bugs

● Best method of testing without knowing about a target (polymorphism)

● Prevent system reboots, OS deadlock, and unrecoverable errors of system

image

● Overall interest in security

● File systems are one of the most vulnerable structures in any operating

system. The possible results of exploiting the file system or causing

unforeseen bugs can cause significant damage to a system.

● Fuzzing seeks to identify bugs in a file system so developers can patch them,

closing security loopholes

The purpose of fuzzing relies on the assumption that there are bugs within every

program, which are waiting to be discovered.

Creating a simple fuzzer helps us identify bugs in the file system implemented as

part of Lab 3 in an automated fashion. We want to see if there is anywhere in our

file system that hasn’t been implemented securely. Fuzzing allows us to find

classical security issues like exploitable buffer overflow that may cause the system

to crash.

We are going to show the bugs, once we’ve isolated them.

★ 5.5 weeks

April 9

Demo

Day

Feb 25/27

Proposal

Day

March 17 -19

Spring Break

Checkpoint

Mar 6

Week 1

Checkpoint

Mar 13

Week 2

Checkpoint

Mar 27

Week 4

Checkpoint

Apr 3 Week

5

Checkpoint

Getting the

file system

work properly

on Raspberry

Pi 3

Working on

presentation

slides and

report

Learn about

how to fuzz

a file

system and

work on the

fuzzer

Continue

working on

the fuzzer

Fuzz the file

system of lab

3 and identify

vulnerabilities

Questions???

Evaluate Team#2
Next: Team#3

Driver for interfacing with HD44780U
based LCD displays

Daniel Yang & Mark Faingold

Human — Pi Interface
Goal: Creating a display driver/API
for a Raspberry Pi using Rust

Driver will be designed to work with
HD44780-controlled displays through
GPIO

Managing the text will be
user-friendly and accessible

API
LcdWriteString(&str)

LcdSetCursor(u8, u8)

LcdClearScreen()

LcdSetBackLight(u8)

...

...

//print ASCII string to LCD display

//move cursor to the given coordinate

//clear LCD display of any characters

//set brightness of backlight (0-100)

Demo

Showcase API implementation

RustOS Shell on LCD display

RioRand LCD Module (20 x 4)

Timeline

March 17

Demo

Proposal

March 31

Idea
Slides

Set up hardware
Implement low-level API for communication with HD44780

Write higher level abstractions — user API

Use our driver to display RustOS shell prompt on LCD

Evaluate Team#3
Next: Team#4

Tetanus - A
RustOS Audio
Driver

Team 4
Yotam Kanny, J.T. Parrish, Owen Schupp, Harry Wang

Crab Rave

https://www.youtube.com/watch?v=LDU_Txk06tM

The Need for Auditory Feedback

● When considering a computer error message, many things come
to mind, like the exclamation point symbol or a pop-up window,
but none match the potency of a sudden

● Audio is a basic driver included in all common OS’s
● Audio is even included on motherboards for BIOS error codes
● Currently, our version of RustOS does not support audio in any

fashion, nor do any of the future labs plan on implementing it.
● Our solution...

http://www.youtube.com/watch?v=iqztd7uMvVI

Introducing the Tetanus Driver™

● We will provide auditory output using GPIO PWM and a
peripheral speaker device

● We will produce a command line interface to play MP3 files from
the SD card over the speaker

● This is a proof of concept to show that our OS could produce
useful auditory feedback and even be used to play media

Challenges and Extensions

● No GPIO pins support analog output which would be ideal for
audio
○ Use PWM instead

● Would like to output audio over 3.5mm jack
○ Documentation unclear
○ Stretch Goal

Tetanus Project Phases

1. Emit sound through GPIO/3.5mm audio jack (1 week)
○ Current research hasn’t shown much documentation re: 3.5mm jack
○ This amounts to transmitting data over GPIO using the PWM API for

the BCM2837
2. Decode MP3 file format into playable audio stream for RustOS (3 weeks)
3. Create CLI tool for playing MP3 audio files to our new audio output (2

weeks)
○ Extension of the shell we began building in lab 2

Evaluate Team#4
Next: Team#5

Writable FAT32

Objective

● Extend FAT32 Filesystem to be writable.

● Introduce corresponding system calls for users

and update existing ones.

Timeline

- Complete Lab 3 (3/2)

- Research required changes to the current filesystem API + SD Card Driver (3/16)

- Architect and implement above changes (3/30)

- Implement system calls for users and kernel to write to the filesystem (4/6)

- Implement the cat/touch command to create files in our shell (4/9)

Notable Challenges

- Modifying the SD Card Driver to have write_sector support.

- Request source code from TAs?

- Write Allocation strategies -- different methods and conflict resolution

- Overwriting files/directories

- Possible stretch goal: thread safety

Evaluate Team#5
Next: Team#6

User Login and Abstraction

Henri Smulders, Aljon Pineda, Isaac Weintraub, Markian Hromiak

CS 3210 Spring 2020
Final Project Team 6

Problem

User Login is a key feature of most modern operating systems

● They allow user abstraction, which in turn allows us to isolate users in different layers

● Password protection is necessary to prevent unauthorized access to a user

● We intend to add a user login system that would allow us to create new users, password protect

them, and provide them with different levels of access

Background

In Unix operating systems, one of the ways users are granted different levels of access is file permissions.

Users have 3 main types:

● The creator of the file, known as the “Owner”

● Multiple Users with the same access to a file, known as a “Group”

● A User with access to the file, but is not part of a group, known as “Other”

Each file defines what each user type is allowed to do: read, write, and/or execute

Requirements

● User Login/Logout
○ Different Users should be able to create their own passwords

○ Password hashing

● Administrator

● File Permissions: user, group, other

Commands

$chmod, $ls -l, $addgroup, $usermod, $adduser, $login, $logout

Stretch features

● sudo

Timeline

Evaluate Team#6
Next: Team#7

cgroups on Redox OS
CS 3210 Project Proposal

Group 7: Ethan, David, Julian

cgroups(7)
DESCRIPTION

 Control groups, usually referred to as cgroups, are a Linux kernel feature
which allow processes to be organized into hierarchical groups whose usage of
various types of resources can then be limited and monitored.

Image Source:

https://linuxacademy.com/blog/containers/a-game-
changer-for-containers-cgroups/

Allocatable resources
As of version 2:

● cpu
● cpuset
● memory
● devices
● net_cls
● blkio
● pids
● ... and more

Applications of cgroups in Linux
● Systemd

○ Automatic equal distribution of CPU to
services

○ Application level resource management

● 💣(){ 💣| 💣& }; 💣
● Docker

More on Docker

VS

● systemd
○ Monitor and manage with systemd-ctop

and other systemd utils
○ “slices”

● /cgroup virtual file system

Using cgroups in Linux

Stolen from the Arch Linux wiki (btw)

Redox OS
● Written in Rust for its memory safe features
● Microkernel

○ As much as possible in userspace including drivers
■ Reduces critical security risks due to smaller kernel code-base

○ Performance cost due to more frequent context switch

● “Everything is a URL”
○ Extension of the UNIX philosophy “Everything is a file”

■ In Linux: /proc/stat
■ In Redox: sys:/context

● POSIX-ey, not compliant
○ Subset of standard Linux syscalls

Monolithic vs Microkernel Illustration

Thanks to Wikipedia for the image

Project Design Goals

● Rust
● In Userspace
● Use Redox design principle

“Everything is a URL”

Goal of our Project

● Implement cgroups functionality for Redox OS that can
allocate:
○ cpu
○ memory
○ pids

● If time-permitting, work on adding more allocatable
resources than the aforementioned three

Thank you!

Evaluate Team#7
Next: Team#8

AUX Audio Output

Team 8

Andrew Johnston | Kevin Park | Anthony Tan | Lewey Wilson

Objective

● Primary: Write driver to interface with

the Raspberry Pi 3’s audio output device

○ Interface with the 3.5 MM audio jack

○ Connect it to a speaker

○ Read raw audio files, transfer the signals

through the audio jack, and play them

from the speaker.

○ Stretch goal: play MP3 files

Alt Function on GPIO 40 and 45 correspond to
PWM 0 and 1: the left and right audio output
channels.

Raspberry Pi Audio Out

Background: PWM
● “Pulse width modulation (PWM), or pulse-duration modulation (PDM), is a method

of reducing the average power delivered by an electrical signal, by effectively

chopping it up into discrete parts.” (Wikipedia)

● Method used to encode approximate analog signals using digital signals

Timeline

Fix bugs and
optimize code

Fix any bugs that arise

and optimize

implementation. Write

code to convert MP3

files, if time permitting.

April 6 - April 12

Convert audio file
to PWM, play raw
audio file

Implement the

conversion of raw audio

files into PWM and the

ability to play. Also

prepare for demo day.

March 30 - April 5

Generate proper
PWM for audio
frequencies

Research and

implement the

conversion of individual

audio frequencies into

corresponding PWM.

March 23 - 29

Code hardware
interface for pins

Write Rust code to

properly interact with

the appropriate GPIO

pins so that PWM can

be output correctly.

March 9 - 15

Detailed
Research

Research how the AUX

audio device interacts

with GPIO pins and

PWM (pulse width

modulation). Write and

test proof-of-concept

code to verify

understanding.

March 2 - 8

Challenges

● Verifying our understanding of the relationship

between pins and output

● Following the timeline even when there are technical

road bumps

● Producing acceptable sound quality

● Bonus: Work-life balance

References

Broadcom. “BCM2835 ARM Peripherals”. Available:

https://cs140e.sergio.bz/docs/BCM2837-ARM-Peripherals.pdf

Hackaday. “Behind the Pin: How the Raspberry Pi Gets Its Audio”. Available:

https://hackaday.com/2018/07/13/behind-the-pin-how-the-raspberry-pi-gets-its-

audio/

Raspberry Pi Github. “Linux Sound ARM Driver”. Available:

https://github.com/raspberrypi/linux/tree/3b1047181fbbbd2067b6b7476c42819947

4fdd19/sound/arm

https://cs140e.sergio.bz/docs/BCM2837-ARM-Peripherals.pdf
https://hackaday.com/2018/07/13/behind-the-pin-how-the-raspberry-pi-gets-its-audio/
https://github.com/raspberrypi/linux/tree/3b1047181fbbbd2067b6b7476c428199474fdd19/sound/arm

Evaluate Team#8
Next: Team#9

FreeBSD SD Driver
in Rust
Patrick Coppock
James Thomas

February 19, 2020

• Raspberry Pi 3 Model B+ hardware platform

• SD card device driver

• FreeBSD 12.1 stable operating system

• Rust system programming language

• Long term: dtrace probes for debugging

Goal

• No OpenBSD Raspberry Pi SD/MMC driver

• FreeBSD/Rust is easier than OpenBSD/C
• Supportive community

• Rust integration

• Previous experience with Rust

• Possibly extend to OpenBSD/C

Motivation

• Try to mount SD card and fail

• Load our kernel module

• Try again to mount SD card and succeed

• Transfer/read files to/from SD card

Demonstration

1. FreeBSD dev. environment on RPi (week 1)

2. Hello world module (week 2)

3. SD driver module (week 3-6)

4. Debugging (week 7-∞)

Timeline

Evaluate Team#9
Next: Team#10

PiGrate
Process migration across multiple hosts

Ananth Dandibhotla, Yaotian Feng, Will Gulian, Oswin So, and Kyle Stachowicz

Process Migration
● Migrate a running process from Pi A (source) to Pi B (target) over network
● Immediately resume on Pi B

A B

Motivations
● Maintenance

○ A process can be moved from one Pi to another to avoid hardware downtime / kernel
upgrades, etc.

● Remote process management
○ execve() / fork() onto another node

● Checkpointing
○ Suspend / resume behavior

● Load balancing
○ Automatically transfer processes across multiple Pis to maximize resource utilisation

Security Model 1

1 CS 6265 is lit

Stretch Goal: Priority Paging
● Prioritize (immediately transfer) necessary pages
● Continue to send remainder of pages at lower priority
● At page faults, target requests specific pages at high priority

Stretch Goal: Load Balancing
● Master node controls migration

P1P2 P3P4
Master facilitates
process transfer

over network

CPU: 100%

CPU: 0%

CPU: 80%CPU: 75%
MASTER

Milestones
1. Networking between multiple Pis (Lab 5)
2. Manually initiated basic process migration between multiple Pis
3. Automatic checkpointing and process restoration
4. Live process migration / Priority paging
5. Load detection (CPU time metrics)
6. Load balancing algorithms

Evaluate Team#10
Next: Team#11

Writeable,
Encrypted FAT32
File System

Eric Frankel, Ohad Rau, Matthew Sklar, and
Ben Remer

What?

● Writable FAT32 File System

● Full Disk AES Encryption

○ Hardware Accelerated

Why?

● Security

● Privacy

● Encrypted Swap

● Sounds fun

Timeline

● Basic write for FAT32

● Architect AES driver

● Optimize AES implementation using SIMD

● Block device abstraction that supports encryption

● Testing

Demo Plan

● Write file to SD Card using encrypted FS

● Show that data stored on desk is not readable without

encryption key

● Read files back from disk using encryption key

Evaluate Team#11
Next: Team#12

 1 / 6

GDB Remote Debugging

Dennis Henderson

 2 / 6

GDB Without Linux

● GDB supports running a program on one
computer while debugging it on another

● Two ways to do this:

– Run GDB on both machines
– Run GDB on the computer you’re

debugging from, run a debugging stub on
the computer you’re running the program
on

● Since we don’t want to reimplement all of
Linux’s system calls, we’ll use the stub

 3 / 6

GDB Debugging Stub

● The remote stub should be implemented into
the program being debugged. In our case,
this is the kernel

● The stub needs to implement a few functions
for serial communication and exception

● The kernel needs to call the stub’s setup
functions

 4 / 6

Difficulties

● The stub needs exception handling, so need
to learn how ARM does that

● If you want to be able to stop the program
while it’s running you need interrupts

● How do you debug the debugging stub? GDB
doesn’t exactly work yet

– QEMU
– Existing serial connection
– LEDs

 5 / 6

Future Work

● Implement debugging programs running on
RustOS, not just the kernel itself

 6 / 6

Timeline

● March 8: Read GDB docs, ARM docs, other
people’s implementation for other
architectures and languages

● March 18 (Spring Break): Finish implementing
stub

● March 22 (Spring Break): Finish debugging
the debugging stub

● April 9/14: Demo days

Evaluate Team#12
Next: Team#14

CS 3210 Project
Stephen Tong

Layers of Abstraction

This xkcd brought to
you by sys arch gang

Purpose of OS?

• Share resources between
user applications
• Scheduling: time multiplexing

•Provide interface between
software and hardware
• Hardware abstraction layer:

hide HW behind API

Code privilege levels (x86)

Code privilege levels (x86)

Q: Ring -1?

A: Hypervisors!!!

Why Hypervisor?

Why Hypervisor?

Mainframes
Time-sharing

Why Hypervisor?

Mainframes
Time-sharing

“Modern” OSes
Virtual memory

Why Hypervisor?

Mainframes
Time-sharing

“Modern” OSes
Virtual memory

Cloud computing
Virtualization

Hypervisor is like OS…

• Share resources
between OSes

•Abstract hardware:
virtual devices
• CPU

• Memory

• NIC

Use case of Hypervisor?

•Desktop virtualization
• Benefit is obvious

•Paravirtualization: pick up the whole OS and move it
• Hardware is virtualized; OS doesn’t care

•Virtualization-based security
• Even if kernel is compromised, hypervisor remains secure

• Subvert guest OS, good for antivirus?
• Or 1337 game hacks

Hypervisors are everywhere!

• Vmware

• Virtualbox

• Hyper-V

• Xen

• KVM

• Chances are you are running in one right now!!!

Type 1 & Type 2 Hypervisor

Type 1 & Type 2 Hypervisor

The End

• Hypervisors are cool

Evaluate Team#14
Next: Team#15

Comparison of Scheduling Algorithms
Implemented in Rust

Team 15:

Aaron Anderson

Purpose and Questions

▪ What Scheduling Algorithms perform best for the lightweight Raspberry PI Rust OS under what
circumstances?

▪ What hyperparameters (e.g. quantum) give the best performance for scheduling algorithms under what
circumstances?

▪ How to define performance? What factors effect the efficiency and reliability of a scheduling algorithm, and
what are the unique benefits and drawbacks of each algorithm?

Candidate Algorithms

▪ FCFS

▪ Round-Robin

▪ Priority

▪ STF

▪ SRTF

▪ LTF

▪ LRTF

▪ Multi-Level Queue

▪ Hybrid

▪ Other?

Tentative Timeline

March April

Evaluate Team#15
Next: Team#16

USB Device Driver for RustOS

Huancheng PUYANG
Pak Nin NG

Ka Ho CHIU
Baichen YANG

Problem Statement

- In current implementation of RustOS, we haven’t not fully utilized the USB interface of our

Raspberry Pi.

- Interactions with Raspberry Pi heavily depend on our computers and the UART interface.

Idea

- Implement more device drivers in RustOS kernel module for easy interaction.

- Utilize the interfaces offered by Raspberry Pi, like USB and HDMI.

- Use I/O devices like USB Keyboard or external screen.

- Implement corresponding user program.

Demo Plan

- Demonstrate how the interfaces work between kernel space driver and user space application.

- Explain the design and use-cases of our device driver.

- Will balance the number of drivers to be implemented and the time we have during development.

- Tentatively we will only implement the USD keyboard device driver due to the time constraint.

DemoSurvey on the driver

Finish implementing driver

Apr 9/14

Timeline

Feb 24
Proposal

Mar 2

Mar 16

Feb Mar April

Finish implementing

user program

Apr 1

Evaluate Team#16
Next: Team#17

Final Project Proposal:

Fork and Clone
Alex Diaz and Michael Sherman

February 23, 2020

Problem Definition

User programs have no way to multitask/multi-thread by themselves.

User programs need system calls that can allocate a process to another CPU and

begin execution of another program.

1. Clone() - schedules a new process onto a CPU with a specific virtual address

space

2. Fork() - uses clone() to create a new process on a CPU but continues

execution of the same program

In Lab 4, we will be implementing system calls, multitasking, and virtual memory for

processes. Implementing the fork() and clone() system calls depends on completing Lab 4,

so we will be able to work on our final project during and after Lab 4.

We will have completed Lab 4 by March 30 and demos will take place April 9 and April 14.

Due Dates:

1. Friday, March 26 - have an understanding of fork() and clone().

2. Friday, April 2 - have an implementation of clone() completed.

3. Wednesday, April 8 - have the implementations of clone() and fork() completed.

Feasibility

Evaluate Team#17
Next: Team#18

File System++

Damian, Henry, Jakob, and Pete

Statement

“We will expand on the existing operating system by adding

write capabilities and user permissions to the FAT32 file

system. We also plan to implement associated commands and

features to improve usability.”

MVP

● Writable File System

● User permissions
○ Read/write only

● Text “Editor”

Commands and Features

● Output Redirection

● touch

● grep

● rm

● su

Demo Plan

● Create a new empty file with `touch`

● Redirect command output to this new empty file

● Demonstrate command output has been successfully added to

empty file

● Use text “editor” to append to this file

● Demonstrate text “editor” successfully added to file

● Change user to a non-root user
○ Attempt to read and remove this new file

○ Show error resulting from invalid file permissions

● Change user to root user
○ Demonstrate ability to read and remove this new file

Timeline

● Complete Lab 3 - Readable file system (2/29)

● User File Permissions (3/1-3/31)

● Writable File System (3/1-3/31)

● Text “Editor” (4/1 - 4/12)

● Commands and Features (4/13 - 4/20)

Evaluate Team#18
Next: Team#20

Implementing Audio
Playback

Matthew Musselman, Colin Sergi,
Matthew So, and Joshua Viszlai

Goal

We will attempt to implement a device driver that allows our
OS to interface with the Raspberry Pi’s headphone jack.

This will allow us to output sounds through
headphones/speakers connected to the Pi, allowing the Pi to
be used as a music player that reads audio files off the SD
card.

Motivation

Audio support is a typical feature of many operating systems,
and would offer a nice opportunity to work with different data
formats

 It would allow for many fun applications such as:

● Sound-enabled applications for music or notifications
● A more immersive kernel panic experience

Feasibility

The Pi already has device registers that
enable PWM output, so it should be
possible to output simple waveforms.

The Pi also has device registers that
support PCM, so it may be possible to
DMA certain uncompressed formats by

only setting a few registers.

Supporting compressed formats like
MP3 will be a greater challenge due to
decompressing files while maintaining
preemptive multitasking and providing
a minimum of loading delay, all while
providing smooth output.

Roadmap

1. Output a simple square-wave signal. (By Monday, Week 10)
a. Add shell command to output square wave signals of various

lengths/frequencies/L-R balances

b. Add support for chords and other wave shapes (sine, triangle)

c. Add support for MIDI file output

2. Output a raw, uncompressed audio file. (By Monday, Week 15)
a. Add support for more audio file formats.

b. Add shell command(s) to play audio files in the background (without

blocking other processes), with support for play, pause, seek

Evaluate Team#20

