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Preface

In 2013, ARM released its 64-bit ARMvS8 architecture, the first major change to the ARM
architecture since ARMv7 in 2007, and the most fundamental and far reaching change since the
original ARM architecture was created.

Development of the architecture has continued for some years. Early versions were being used
before the Cortex-A Series Programmer s Guide for ARMv7-A was first released. The first of
the Programmer’s Guide series from ARM, it post-dated the introduction of the 32-bit ARMv7
architecture by some years. Almost immediately there were requests for a version to cover the
ARMVS architecture. It was intended from the outset that a guide to ARMv8 should be available
as soon as possible.

This book was started when the first versions of the ARMvS architecture were being tested and
codified. As always, moving from a system that is known and understood to something new and
unknown can present a number of problems. The engineers who supplied information for the
present book are, by and large, the same engineers who supplied the information for the original
Cortex-A Series Programmer s Guide. This book has been made richer by their observations and
insights as they use, and solve the problems presented by the new architecture.

The Programmer’s Guides are meant to complement, rather than replace, other ARM
documentation available, such as the Technical Reference Manuals (TRMs) for the processors
themselves, documentation for individual devices or boards or, most importantly, the ARM
Architecture Reference Manual (the ARM ARM). They are intended to provide a gentle
introduction to the ARM architecture, and cover all the main concepts that you need to know
about, in an easy to read format, with examples of actual code in both C and assembly language,
and with hints and tips for writing your own code.

It might be argued that if you are an application developer, you do not need to know what goes
on inside a processor. ARM Application processors can easily be regarded as black boxes which
simply run your code when you say go. Instead, this book provides a single guide, bringing
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together information from a wide variety of sources, for those programmers who get the system
to the point where application developers can run applications, such as those involved in ASIC
verification, or those working on boot code and device drivers.

During bring-up of a new board or System-on-Chip (SoC), engineers may have to investigate
issues with the hardware. Memory system behavior is among the most common places for these
to manifest, for example, deadlocks where the processor cannot make forward progress because
of memory system lock. Debugging these problems requires an understanding of the operation
and effect of cache or MMU use. This is different from debugging a failing piece of code.

In a similar vein, system architects (usually hardware engineers) make choices early in the
design about the implementation of DMA, frame buffers and other parts of the memory system
where an understanding of data flow between agents in required. In this case it is difficult to
make sensible decisions about it if you do not understand when a cache will help you and when
it gets in the way, or how the OS will use the MMU. Similar considerations apply in many other
places.

This is not an introductory level book, nor is it a purely technical description of the architecture
and processors, which merely state the facts with little or no explanation of ‘how’ and ‘why’.
ARM and all who have collaborated on this book hope it successfully navigates between the two
extremes, while attempting to explain some of the more intricate aspects of the architecture.
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Glossary

Preface

Abbreviations and terms used in this document are defined here.

AAPCS

AArch32 state

AArché4 state

ABI
ACE
AES
AMBA®
AMP
ARM ARM
ASIC
ASID
AXI
BES
BTAC
BTB
CCI
CHI
CP15
DAP
DMA
DMB
DS-5™
DSB
DSP
DSTREAM
DVFS
EABI
ECC

ARM Architecture Procedure Call Standard.

The ARM 32-bit execution state that uses 32-bit general-purpose registers,
and a 32-bit Program Counter (PC), Stack Pointer (SP), and Link Register
(LR). AArch32 execution state provides a choice of two instruction sets,
A32 and T32, previously called the ARM and Thumb instruction sets.

The ARM 64-bit execution state that uses 64-bit general-purpose registers,
and a 64-bit Program Counter (PC), Stack Pointer (SP), and Exception
Link Registers (ELR). AArch64 execution state provides a single
instruction set, A64.

Application Binary Interface.

AXI Coherency Extensions.

Advanced Encryption Standard.

Advanced Microcontroller Bus Architecture.
Asymmetric Multi-Processing.

The ARM Architecture Reference Manual.
Application Specific Integrated Circuit.
Address Space ID.

Advanced eXtensible Interface.

Byte Invariant Big-Endian Mode.

Branch Target Address Cache.

Branch Target Buffer.

Cache Coherent Interface.

Coherent Hub Interface.

Coprocessor 15 for AArch32 and ARMv7-A- System control coprocessor.
Debug Access Port.

Direct Memory Access.

Data Memory Barrier.

The ARM Development Studio.

Data Synchronization Barrier.

Digital Signal Processing.

An ARM debug and trace unit.

Dynamic Voltage/Frequency Scaling.
Embedded ABI.

Error Correcting Code.
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ECT
ELO
EL1
EL2

EL3

ETB
ETM

Execution state

FIQ
FPSCR
GCC
GIC

Preface

Embedded Cross Trigger.
Exception level used to execute user applications.
Exception level normally used to run operating systems.

Hypervisor Exception level. In the Normal world, or Non-Secure state,
this is used to execute hypervisor code.

Secure Monitor exception level. This is used to execute the code that
guards transitions between the Secure and Normal worlds.

Embedded Trace Buffer™.
Embedded Trace Macrocell™.

The operational state of the processor, either 64-bit (AArch64) or 32-bit
(AArch32).

An interrupt type (formerly fast interrupt).
Floating-Point Status and Control Register.
GNU Compiler Collection.

Generic Interrupt Controller.

Harvard architecture

HCR
HMP

Architecture with physically separate storage and signal pathways for
instructions and data.

Hyp Configuration Register.

Heterogenous Multi-Processing.

IMPLEMENTATION DEFINED

IPA
IRQ
ISA
ISB
ISR

Jazelle

LLP64

LP64

LPAE
LSB
MESI

MMU

Some properties of the processor are defined by the manufacturer.
Intermediate Physical Address.

Interrupt Request, normally for external interrupts.

Instruction Set Architecture.

Instruction Synchronization Barrier.

Interrupt Service Routine.

The ARM bytecode acceleration technology.

Indicates the size in bits of basic C data types. Under LLP64 int and Tong
data types are 32 bit, pointers and Tong long are 64 bits.

Indicates the size in bits of basic C data types. Under LP64 int types are
32 bits, all others are 64 bits.

Large Physical Address Extension.
Least Significant Bit.

A cache coherency protocol with four states that are Modified, Exclusive,
Shared and Invalid.

Memory Management Unit.
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MOESI

Monitor mode

MPU
NEON"™

NIC

Normal world
PCS

PIPT

PoC

PoU

PSR

SCU

Secure world
SIMD

SMC

SMC32
SMCo64

Preface

A cache coherency protocol with five states that are Modified, Owned,
Exclusive, Shared and Invalid.

When EL3 is using AArch32, the PE mode in which the Secure Monitor
must execute. This mode guards transitions between the Secure and
Normal worlds.

Memory Protection Unit.

The ARM Advanced SIMD Extensions.

Network InterConnect.

The execution environment when the processor is in the Non-secure state.
Procedure Call Standard.

Physically Indexed, Physically Tagged.

Point of Coherency.

Point of Unification.

Program Status Register.

Snoop Control Unit.

The execution environment when the processor is in the Secure State.
Single Instruction, Multiple Data.

Secure Monitor Call. An ARM assembler instruction that causes an
exception that is taken synchronously to EL3.

32-bit SMC calling convention

64-bit SMC calling convention

SMC Function Identifier

SMMU
SMP

SoC

Sp

SPSR
Streamline
SvVC

SYS
Thumb®

Thumb-2

TLB

A 32-bit integer which identifies which function is being invoked by this
SMC call. Passed in RO or WO to every SMC call

System MMU.

Symmetric Multi-Processing.

System on Chip.

Stack Pointer.

Saved Program Status Register.

A graphical performance analysis tool.
Supervisor Call instruction.

System Mode.

An instruction set extension to ARM.

A technology extending the Thumb instruction set to support both 16-bit
and 32-bit instructions.

Translation Lookaside Buffer.
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TrustedOS This is the operating system running in the Secure World. It supports the
execution of trusted applications in Secure ELO. When EL3 is using
AArch64 it executes in Secure EL1. When EL3 is using AArch32 it
executes in Secure EL3 modes other than Monitor mode.

TrustZone® The ARM security extension.

TTB Translation Table Base.

TTBR Translation Table Base Register.

UART Universal Asynchronous Receiver/Transmitter.

UEFI Unified Extensible Firmware Interface.

U-Boot A Linux Bootloader.

UNK Unknown.

UNKNOWN Values in a register cannot be known before they are reset.

UNPREDICTABLE
The value taken cannot be predicted.

USR User mode, a non-privileged processor mode.

VFP The ARM floating-point instruction set. Before ARMv7, the VFP
extension was called the Vector Floating-Point architecture, and was used
for vector operations.

VIPT Virtually Indexed, Physically Tagged.

VMID Virtual Machine Identifier.

XN Execute Never.
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Note

In the event of a contradiction between this book and the ARM ARM, the ARM ARM is
definitive and must take precedence. In most instances, however, the ARM ARM and the
Cortex-A Series Programmer’s Guide for ARMvS-A cover two separate world views. The most
likely scenario is that this book describes something in a way that does not cover all
architecturally permitted behaviors, or simply rewords an abstract concept in more practical
terms.
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ELF for the ARM® Architecture (ARM THI 0044).

The individual processor Technical Reference Manuals provide a detailed description of the
processor behavior. They can be obtained from the ARM website documentation area
http://infocenter.arm.com.

The ARM Connected Community makes it easier to design using ARM processors and IP. It is
an interactive platform containing information, discussions and blogs which help you to develop
an ARM-based design efficiently, in collaboration with ARM engineers and our 1200+
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ecosystem Partners and enthusiasts. Visitors also use the community to find new companies to
work with from the many ARM Partners who first introduced their products and services in their
dedicated area. You can join the Connected Community on http://community.arm.com.
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Feedback on this book

ARM hopes you find the Cortex-A Series Programmer s Guide for ARMv8-A easy to read while
in enough depth to provide the comprehensive introduction to using the processors.

If you have any comments on this book, don’t understand our explanations, think something is
missing, or think that it is incorrect, send an e-mail to errata@arm.com. Give:

. The title.

. The number, ARM DEN0024A.

. The page number(s) to which your comments apply.
. What you think needs to be changed.

ARM also welcomes general suggestions for additions and improvements.
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Chapter 1

Introduction

ARMVS-A is the latest generation of the ARM architecture that is targeted at the Applications
Profile. In this book, the name ARMvVS is used to describe the overall architecture, which now
includes both 32-bit execution and 64-bit execution states. ARMvS introduces the ability to
perform execution with 64-bit wide registers, but provides mechanisms for backwards
compatibility to enable existing ARMv7 software to be executed.

AArch64 is the name used to describe the 64-bit execution state of the ARMvS architecture.
AArch32 describes the 32-bit execution state of the ARMvS architecture, which is almost
identical to ARMv7. GNU and Linux documentation (except for Redhat and Fedora
distributions) sometimes refers to AArch64 as ARM64.

Because many of the concepts of the ARMv8-A architecture are shared with the ARMv7-A
architecture, the details of all those concepts are not covered here. As a general introduction to
the ARMv7-A architecture, refer to the ARM® Cortex®™-A Series Programmer s Guide. This
guide can also help you to familiarize yourself with some of the concepts discussed in this
volume. However, the ARMvS8-A architecture profile is backwards compatible with earlier
iterations, like most versions of the ARM architecture. Therefore, there is a certain amount of
overlap between the way the ARMvS architecture and previous architectures function. The
general principles of the ARMvV7 architecture are only covered to explain the differences
between the ARMvS and earlier ARMv7 architectures.

Cortex-A series processors now include both ARMvS-A and ARMv7-A implementations:

. The Cortex-AS5, Cortex-A7, Cortex-A8, Cortex-A9, Cortex-A15, and Cortex-A17
processors all implement the ARMv7-A architecture.

. The Cortex-A53 and Cortex-AS57 processors implement the ARMv8-A architecture.

ARM DENO0024A
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Introduction

ARMVS processors still support software (with some exceptions) written for the ARMv7-A
processors. This means, for example, that 32-bit code written for the ARMv7 Cortex-A series
processors also runs on ARMvS processors such as the Cortex-A57. However, the code will
only run when the ARMvS processor is in the AArch32 execution state. The A64 64-bit
instruction set, however, does not run on ARMv7 processors, and only runs on the ARMvE
processors.

Some knowledge of the C programming language and microprocessors is assumed of the
readers of this book. There are pointers to further reading, referring to books and websites that
can give you a deeper level of background to the subject matter.

The change from 32-bit to 64-bit

There are several performance gains derived from moving to a 64-bit processor.

. The A64 instruction set provides some significant performance benefits, including a
larger register pool. The additional registers and the ARM Architecture Procedure Call
Standard (AAPCS) provide a performance boost when you must pass more than four
registers in a function call. On ARMv7, this would require using the stack, whereas in
AArch64 up to eight parameters can be passed in registers.

. Wider integer registers enable code that operates on 64-bit data to work more efficiently.
A 32-bit processor might require several operations to perform an arithmetic operation on
64-bit data. A 64-bit processor might be able to perform the same task in a single
operation, typically at the same speed required by the same processor to perform a 32-bit
operation. Therefore, code that performs many 64-bit sized operations is significantly
faster.

. 64-bit operation enables applications to use a larger virtual address space. While the Large
Physical Address Extension (LPAE) extends the physical address space of a 32-bit
processor to 40-bit, it does not extend the virtual address space. This means that even with
LPAE, a single application is limited to a 32-bit (4GB) address space. This is because
some of this address space is reserved for the operating system.

. Software running on a 32-bit architecture might need to map some data in or out of
memory while executing. Having a larger address space, with 64-bit pointers, avoids this
problem. However, using 64-bit pointers does incur some cost. The same piece of code
typically uses more memory when running with 64-pointers than with 32-bit pointers.
Each pointer is stored in memory and requires eight bytes instead of four. This might
sound trivial, but can add up to a significant penalty. Furthermore, the increased usage of
memory space associated with a move to 64-bits can cause a drop in the number of
accesses that hit in the cache. This in turn can reduce performance.

The larger virtual address space also enables memory-mapping larger files. This is the
mapping of the file contents into the memory map of a thread. This can occur even though
the physical RAM might not be large enough to contain the whole file.

ARM DENO0024A Copyright © 2015 ARM. All rights reserved. 1-2
ID050815 Non-Confidential



Introduction

11 How to use this book

This book provides a single guide for programmers who want to use the Cortex-A series
processors that implement the ARMvS architecture. The guide brings together information from
a wide variety of sources that is useful to both ARM assembly language and C programmers. It
is meant to complement rather than replace other ARM documentation available for ARMvS8
processors. The other documents for specific information includes the ARM Technical
Reference Manuals (TRMs) for the processors themselves, documentation for individual
devices or boards or, most importantly, the ARM Architecture Reference Manual - ARMVS, for
ARMVS-A architecture profile - the ARM ARM.

This book is not written at an introductory level. It assumes some knowledge of the C
programming language and microprocessors. Hardware concepts such as caches and Memory
Management Units are covered, but only where this knowledge is valuable to the application
writer. The book looks at the way operating systems utilize ARMvS features, and how to take
full advantage of the capabilities of the ARMvS8 processors. Some chapters contain pointers to
additional reading. We also refer to books and web sites that can give a deeper level of
background to the subject matter, but often the main focus is the ARM-specific detail. No
assumptions are made on the use of any particular toolchain, and both GNU and ARM tools are
mentioned throughout the book.

If you are new to the ARMVS architecture, Chapter 2 ARMvS-A Architecture and Processors
describes the previous 32-bit ARM architectures, introduces ARMvS, and describes some of the
properties of the ARMv8 processors. Next, Chapter 3 Fundamentals of ARMvS describes the
building blocks of the architecture in the form of Exception levels and Execution states.
Chapter 4 ARMvS Registers then describes the registers available to you in the ARMvVS
architecture.

One of the most significant changes introduced in the ARMvS8 architecture is the addition of a
64-bit instruction set, which complements the existing 32-bit architecture. Chapter 5 An
Introduction to the ARMvS Instruction Sets describes the differences between the Instruction Set
Architecture (ISA) of ARMv7 (A32), and that of the A64 instruction set. Chapter 6 The A64
instruction set looks at the Instruction Set and its use in more detail. In addition to a new
instruction set for general operation, ARMv8 also has a changed NEON and floating-point
instruction set. Chapter 7 A4rch64 Floating-point and NEON describes the changes in ARMv8
to ARM Advanced SIMD (NEON) and floating-point instructions. For a more detailed guide to
NEON and its capabilities at ARMvV7, refer to the ARM® NEON™ Programmer s Guide.

Chapter 8 Porting to A64 of this book covers the problems you might encounter when porting
code from other architectures, or previous ARM architectures to ARMvS. Chapter 9 The ABI
for ARM 64-bit Architecture describes the Application Binary Interface (ABI) for the ARM
architecture specification. The ABI is a specification for all the programming behavior of an
ARM target, which governs the form your 64-bit code takes. Chapter 10 A4rch64 Exception
Handling describes the exception handling behavior of ARMvS in AArch64 state.

Following this, the focus moves to the internal architecture of the processor. Chapter 11 Caches
describes the design of caches and how the use of caches can improve performance.

An important motivating factor behind ARMv8 and moving to a 64-bit architecture is
potentially enabling access to larger address space than is possible using just 32 bits. Chapter 12
The Memory Management Unit describes how the MMU converts virtual memory addresses to
physical addresses.

Chapter 13 Memory Ordering describes the weakly-ordered model of memory in the ARMv8

architecture. Generally, this means that the order of memory accesses is not required to be the
same as the program order for load and store operations. Only some programmers must be aware
of memory ordering issues. If your code interacts directly with the hardware or with code
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executing on other cores, directly loads or writes instructions to be executed, or modifies page
tables, then you might have to think about ordering and barriers. This also applies if you are
implementing your own synchronization functions or lock-free algorithms.

Chapter 14 Multi-core processors describes how the ARMv8-A architecture supports systems
with multiple cores. Systems that use the ARMvS processors are almost always implemented in
such a way. Chapter 15 Power Management describes how ARM cores use their hardware that
can reduce power use. A further aspect of power management, applied to multi-core and

multi-cluster systems is covered in Chapter 16 big. LITTLE Technology. This chapter describes
how big. LITTLE technology from ARM couples together an energy efficient LITTLE core with
a high performance big core, to provide a system with high performance and power efficiency.

Chapter 17 Security describes how the ARMv8 processors can create a Secure, or trusted system
that protects assets such as passwords or credit card details from unauthorized copying or
damage. The main part of the book then concludes with Chapter 18 Debug describing the
standard debug and trace features available in the Cortex-A53 and Cortex-AS7 processors.
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Chapter 2
ARMvS8-A Architecture and Processors

The ARM architecture dates back to 1985, but it has not stayed static. On the contrary, it has
developed massively since the early ARM cores, adding features and capabilities at each step:

ARMv4 and earlier

These early processors used only the ARM 32-bit instruction set.

ARMv4T  The ARMVAT architecture added the Thumb 16-bit instruction set to the ARM
32-bit instruction set. This was the first widely licensed architecture. It was
implemented by the ARM7TDMI® and ARM9TDMI® processors.

ARMVSTE The ARMVSTE architecture added improvements for DSP-type operations,
saturated arithmetic, and for ARM and Thumb interworking. The ARM926EJ-S*
implements this architecture.

ARMV6 ARMv6 made several enhancements, including support for unaligned memory
accesses, significant changes to the memory architecture and for multi-processor
support. Additionally, some support for SIMD operations operating on bytes or
halfwords within the 32-bit registers was included. The ARM1136JF-S®
implements this architecture. The ARMv6 architecture also provided some
optional extensions, notably Thumb-2 and Security Extensions (TrustZone").

Thumb-2 extends Thumb to be a mixed length 16-bit and 32-bit instruction set.

ARMv7-A  The ARMvV7-A architecture makes the Thumb-2 extensions mandatory and adds
the Advanced SIMD extensions (NEON). Before ARMv7, all cores conformed to
essentially the same architecture or feature set. To help address an increasing
range of differing applications, ARM introduced a set of architecture profiles:

. ARMvV7-A provides all the features necessary to support a platform
Operating System such as Linux.
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. ARMV7-R provides predictable real-time high-performance.

. ARMV7-M is targeted at deeply-embedded microcontrollers.
An M profile was also added to the ARMv6 architecture to enable features
for the older architecture. The ARMv6M profile is used by low-cost
microprocessors with low power consumption.
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VFPv2 Thumb-2 VFPv3/v4 Key Feature ARMv7-A
TrustZone NEON Compatibility
SIMD

ARMVv8-A Architecture and Processors

The ARMv8-A architecture is the latest generation ARM architecture targeted at the
Applications Profile. The name ARMv8 is used to describe the overall architecture, which now
includes both 32-bit execution and 64-bit execution. It introduces the ability to perform
execution with 64-bit wide registers, while preserving backwards compatibility with existing
ARMV7 software.

A32+T32 ISAs AB4 ISAs
[] Scalar FP (SP {1 Scalar FP (SP

and DP) and DP)

{J Adv SIMD (SP [ Adv SIMD (SP &
Float) DP Float)
AArch32 AArch64

Crypto Crypto

Figure 2-1 Development of the ARMv8 architecture

The ARMvVS8-A architecture introduces a number of changes, which enable significantly higher
performance processor implementations to be designed.

Large physical address

This enables the processor to access beyond 4GB of physical memory.

64-bit virtual addressing
This enables virtual memory beyond the 4GB limit. This is important for modern

desktop and server software using memory mapped file I/O or sparse addressing.
Automatic event signaling

This enables power-efficient, high-performance spinlocks.

Larger register files
Thirty-one 64-bit general-purpose registers increase performance and reduce
stack use.

Efficient 64-bit immediate generation

There is less need for literal pools.

Large PC-relative addressing range

A +/-4GB addressing range for efficient data addressing within shared libraries
and position-independent executables.
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Additional 16KB and 64KB translation granules
This reduces Translation Lookaside Buffer (TLB) miss rates and depth of page
walks.

New exception model

This reduces OS and hypervisor software complexity.

Efficient cache management
User space cache operations improve dynamic code generation efficiency. Fast
Data cache clear using a Data Cache Zero instruction.

Hardware-accelerated cryptography

Provides 3x to 10x better software encryption performance. This is useful for
small granule decryption and encryption too small to offload to a hardware
accelerator efficiently, for example https.

Load-Acquire, Store-Release instructions
Designed for C++11, C11, Java memory models. They improve performance of
thread-safe code by eliminating explicit memory barrier instructions.

NEON double-precision floating-point advanced SIMD

This enables SIMD vectorization to be applied to a much wider set of algorithms,
for example, scientific computing, High Performance Computing (HPC) and
supercomputers.
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2.2 ARMv8-A Processor properties

Table 2-1 compares the properties of the processor implementations from ARM that support the
ARMVv8-A architecture.

Table 2-1 Comparison of ARMv8-A processors

Processor
Cortex-A53 Cortex-A57
Release date July 2014 January 2015
Typical clock speed 2GHz on 28nm 1.5 to 2.5 GHz on 20nm
Execution order In-order Out of order, speculative

issue, superscalar

Cores 1to4 1to4

Integer Peak throughput 2.3MIPS/MHz 4.1 to 4.76MIPS/MHz?

Floating-point Unit Yes Yes

Half-precision Yes Yes

Hardware Divide Yes Yes

Fused Multiply Accumulate Yes Yes

Pipeline stages 8 15+

Return stack entries 4 8

Generic Interrupt Controller External External

AMBA interface 64-bit I'F AMBA 4 128-bit /F AMBA 4
(Supports AMBA 4 (Supports AMBA 4 and
and AMBA 5) AMBA 5)

L1 Cache size (Instruction) 8KB to 64 KB 48KB

L1 Cache structure (Instruction) 2-way set associative 3-way set associative

L1 Cache size (Data) 8KB to 64KB 32KB
L1 Cache structure (Data) 4-way set associative 2-way set associative
L2 Cache Optional Integrated
L2 Cache size 128KB to 2MB 512KB to 2MB
L2 Cache structure 16-way set associative  16-way set associative
Main TLB entries 512 1024
uTLB entries 10 48 I-side
32 D-side

A. IMPLEMENTATION DEFINED
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2.21 ARMv8 processors

This section describes each of the processors that implement the ARMv8-A architecture. It only
gives a general description in each case. For more specific information on each processor, see
Table 2-1 on page 2-5.

The Cortex-A53 processor

The Cortex-A53 processor is a mid-range, low-power processor with between one and four
cores in a single cluster, each with an L1 cache subsystem, an optional integrated GICv3/4
interface, and an optional L2 cache controller.

The Cortex-A53 processor is an extremely power efficient processor capable of supporting
32-bit and 64-bit code. It delivers significantly higher performance than the highly successful
Cortex-A7 processor. It is capable of deployment as a standalone applications processor, or
paired with the Cortex-A57 processor in a big. LITTLE configuration for optimum performance,
scalability, and energy efficiency.

ARM CoreSight Multicore Debug and Trace

Generic Interrupt Controller

NEON
Data Engine
with crypto ext
~.

Cortex-A53 processor
Y

Floating-point
unit

Instruction
Cache

Management

Cache w/ECC Unit

N
Level 1 J L Level 1 Data Memory

Performance Monitor Data Processing Core
Unit Unit 0

Integrated Level 2 Cache w/ECC
AMBA 4 ACE or AMBA 5 CHI Coherent Bus Interface

Figure 2-2 Cortex-A53 processor

The Cortex-AS53 processor has the following features:
. In-order, eight stage pipeline.

. Lower power consumption from the use of hierarchical clock gating, power domains, and
advanced retention modes.

. Increased dual-issue capability from duplication of execution resources and dual
instruction decoders.
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. Power-optimized L2 cache design delivers lower latency and balances performance with
efficiency.

The Cortex-A57 processor

The Cortex-A57 processor is targeted at mobile and enterprise computing applications
including compute intensive 64-bit applications such as high end computer, tablet, and server
products. It can be used with the Cortex-A53 processor into an ARM big. LITTLE configuration,
for scalable performance and more efficient energy use.

The Cortex-A57 processor features cache coherent interoperability with other processors,
including the ARM Mali™ family of Graphics Processing Units (GPUs) for GPU compute and
provides optional reliability and scalability features for high-performance enterprise
applications. It provides significantly more performance than the ARMv7 Cortex-A15
processor, at a higher level of power efficiency. The inclusion of cryptography extensions
improves performance on cryptography algorithms by 10 times over the previous generation of
processors.

ARM CoreSight Multicore Debug and Trace

Generic Interrupt Controller

NEON
Data Engine
with crypto ext
-

Cortex-A57 processor
Y

Floating-point
unit
N J

Level 1 t h
W ( Level 1 Data Memory

it o Cache w/ECC Protection Unit
Cache

- J

[ Performance Monitor Unit } Core

0

Integrated Level 2 Cache w/ECC
AMBA 4 ACE or AMBAS5 CHI Coherent Bus Interface

Figure 2-3 Cortex-A57 processor core

The Cortex-A57 processor fully implements the ARMvVS8-A architecture. It enables multi-core
operation with between one and four cores multi-processing within a single cluster. Multiple
coherent SMP clusters are possible, through AMBAS CHI or AMBA 4 ACE technology. Debug
and trace are available through CoreSight technology.

The Cortex-AS57 processor has the following features:

. Out-of-order, 15+ stage pipeline.
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Power-saving features include way-prediction, tag-reduction, and cache-lookup
suppression.

Increased peak instruction throughput through duplication of execution resources.
Power-optimized instruction decode with localized decoding, 3-wide decode bandwidth.

Performance optimized L2 cache design enables more than one core in the cluster to
access the L2 at the same time.
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Chapter 3

Fundamentals of ARMv8

In ARMvS, execution occurs at one of four Exception levels. In AArch64, the Exception level
determines the level of privilege, in a similar way to the privilege levels defined in ARMv7. The
Exception level determines the privilege level, so execution at ELx corresponds to privilege
PLn. Similarly, an Exception level with a larger value of # than another one is at a higher
Exception level. An Exception level with a smaller number than another is described as being
at a lower Exception level.

Exception levels provide a logical separation of software execution privilege that applies across
all operating states of the ARMvS architecture. It is similar to, and supports the concept of,
hierarchical protection domains common in computer science.

The following is a typical example of what software runs at each Exception level:

ELO
EL1
EL2
EL3

Normal user applications.
Operating system kernel typically described as privileged.
Hypervisor.

Low-level firmware, including the Secure Monitor.
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Normal world

e N
ELO Application] [Application] [Application] [Application
- J
EESEEEE Rt S
EL1 Kernel ] [ Kernel
N J
el
EL2 Hypervisor
N J

Figure 3-1 Exception levels

In general, a piece of software, such as an application, the kernel of an operating system, or a
hypervisor, occupies a single Exception level. An exception to this rule is in-kernel hypervisors
such as KVM, which operate across both EL2 and EL1.

ARMVv8-A provides two security states, Secure and Non-secure. The Non-secure state is also
referred to as the Normal World. This enables an Operating System (OS) to run in parallel with
a trusted OS on the same hardware, and provides protection against certain software attacks and
hardware attacks. ARM TrustZone technology enables the system to be partitioned between the
Normal and Secure worlds. As with the ARMv7-A architecture, the Secure monitor acts as a
gateway for moving between the Normal and Secure worlds.

Normal world Secure world

5

ELO [Applicationj [Application] [Applicationj [Application | [ Secure firmware J
J

_________________________________ B P

N

EL1 [ Guest OS ] [ Guest OS I [ Trusted OS ]
J |

EL2 ) ) -I No Hypervisor in

Hypervisor I Secure world

/|

Figure 3-2 ARMv8 Exception levels in the Normal and Secure worlds

ARMVv8-A also provides support for virtualization, though only in the Normal world. This
means that hypervisor, or Virtual Machine Manager (VMM) code can run on the system and
host multiple guest operating systems. Each of the guest operating systems is, essentially,
running on a virtual machine. Each OS is then unaware that it is sharing time on the system with
other guest operating systems.
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The Normal world (which corresponds to the Non-secure state) has the following privileged

components:

Guest OS kernels
Such kernels include Linux or Windows running in Non-secure EL1. When
running under a hypervisor, the rich OS kernels can be running as a guest or host
depending on the hypervisor model.

Hypervisor
This runs at EL2, which is always Non-secure. The hypervisor, when present and
enabled, provides virtualization services to rich OS kernels.

The Secure world has the following privileged components:

Secure firmware

On an application processor, this firmware must be the first thing that runs at boot
time. It provides several services, including platform initialization, the
installation of the trusted OS, and routing of Secure monitor calls.

Trusted OS

Trusted OS provides Secure services to the Normal world and provides a runtime
environment for executing Secure or trusted applications.

The Secure monitor in the ARMVS architecture is at a higher Exception level and is more
privileged than all other levels. This provides a logical model of software privilege.

Figure 3-2 on page 3-2 shows that a Secure version of EL2 is not available.
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3.1 Execution states

The ARMVS architecture defines two Execution States, AArch64 and AArch32. Each state is
used to describe execution using 64-bit wide general-purpose registers or 32-bit wide
general-purpose registers, respectively. While ARMv8 AArch32 retains the ARMv7 definitions
of privilege, in AArch64, privilege level is determined by the Exception level. Therefore,
execution at EL#n corresponds to privilege PLn.

When in AArch64 state, the processor executes the A64 instruction set. When in AArch32 state,
the processor can execute either the A32 (called ARM in earlier versions of the architecture) or
the T32 (Thumb) instruction set.

The following diagrams show the organization of the Exception levels in AArch64 and

AArch32.
In AArch64:
Normal world Secure world
5
ELO [Application] [Application] [Application] [Application | [ Secure firmware ]
J
_________________________________ e ——
11
EL1 [ Guest 0S ] [ Guest OS [ Trusted OS ]
J
EL2 ) ) -I No Hypervisor in
Hypervisor I Secure world
|

Figure 3-3 Exception levels in AArch64

In AArch32:
Normal world Secure world

N

ELO [Applicationj [Application] [Applicationj [Application | [ Secure firmware J
J

_______________________:+ ___________
EL1 [ Guest OS ] [ Guest OS I
______________________iI[ Trusted kernel ]

N I (operates at EL3)

EL2 [ Hypervisor | -
) | No EL2 in Secure

world

Figure 3-4 Exception levels in AArch32

In AArch32 state, Trusted OS software executes in Secure EL3, and in AArch64 state it
primarily executes in Secure EL1.
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Fundamentals of ARMv8

In the ARMv7 architecture, the processor mode can change under privileged software control
or automatically when taking an exception. When an exception occurs, the core saves the

current execution state and the return address, enters the required mode, and possibly disables
hardware interrupts.

This is summarized in the following table. Applications operate at the lowest level of privilege,
PLO, previously unprivileged mode. Operating systems run at PL1, and the Hypervisor in a
system with the Virtualization extensions at PL2. The Secure monitor, which acts as a gateway
for moving between the Secure and Non-secure (Normal) worlds, also operates at PL1.

Table 3-1 ARMv7 processor modes

Securit Privilege
Mode Function y 9
state level
User (USR) Unprivileged mode in which most applications run Both PLO
FIQ Entered on an FIQ interrupt exception Both PL1
IRQ Entered on an IRQ interrupt exception Both PL1
Supervisor Entered on reset or when a Supervisor Call instruction (SVC) ~ Both PL1
(SVC) is executed
Monitor (MON)  Entered when the SMC instruction (Secure Monitor Call) is Secure only PL1
executed or when the processor takes an exception which is
configured for secure handling.
Provided to support switching between Secure and
Non-secure states.
Abort (ABT) Entered on a memory access exception Both PL1
Undef (UND) Entered when an undefined instruction is executed Both PL1
System (SYS) Privileged mode, sharing the register view with User mode Both PL1
Hyp (HYP) Entered by the Hypervisor Call and Hyp Trap exceptions. Non-secure only  PL2
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Non-secure state Secure state
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IRQ mode IRQ mode
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Figure 3-5 ARMv7 privilege levels

In AArch64, the processor modes are mapped onto the Exception levels as in Figure 3-6. As in
ARMv7 (AArch32) when an exception is taken, the processor changes to the Exception level
(mode) that supports the handling of the exception.

Normal world Secure world

N
[Application] [Application} [Application} [Application | [
J

Secure firmware ] ELO

SVC, ABT, IRQ,
FIQ, UND, 8YS

~
Guest OS ] [ Guest OS I [ Trusted OS ] EL1
J |
) h No Hypervisor in
Hypervisor I Secure world EL2
/|

Figure 3-6 AArch32 processor modes

Movement between Exception levels follows these rules:

Moves to a higher Exception level, such as from ELO to EL1, indicate increased software
execution privilege.

An exception cannot be taken to a lower Exception level.

There is no exception handling at level EL0, exceptions must be handled at a higher
Exception level.
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An exception causes a change of program flow. Execution of an exception handler starts,
at an Exception level higher than ELO, from a defined vector that relates to the exception
taken. Exceptions include:

Interrupts such as IRQ and FIQ.
Memory system aborts.
Undefined instructions.

System calls. These permit unprivileged software to make a system call to an
operating system.
Secure monitor or hypervisor traps.

Ending exception handling and returning to the previous Exception level is performed by
executing the ERET instruction.

Returning from an exception can stay at the same Exception level or enter a lower
Exception level. It cannot move to a higher Exception level.

The security state does change with a change of Exception level, except when retuning
from EL3 to a Non-secure state. See Switching between Secure and Non-secure state on
page 17-8.
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3.3 Changing execution state

There are times when you must change the execution state of your system. This could be, for
example, if you are running a 64-bit operating system, and want to run a 32-bit application at
ELO. To do this, the system must change to AArch32.

When the application has completed or execution returns to the OS, the system can switch back
to AArch64. Figure 3-7 on page 3-9 shows that you cannot do it the other way around. An
AArch32 operating system cannot host a 64-bit application.

To change between execution states at the same Exception level, you have to switch to a higher
Exception level then return to the original Exception level. For example, you might have 32-bit
and 64-bit applications running under a 64-bit OS. In this case, the 32-bit application can
execute and generate a Supervisor Call (SVC) instruction, or receive an interrupt, causing a
switch to EL1 and AArch64. (See Exception handling instructions on page 6-21.) The OS can
then do a task switch and return to ELO in AArch64. Practically speaking, this means that you
cannot have a mixed 32-bit and 64-bit application, because there is no direct way of calling
between them.

You can only change execution state by changing Exception level. Taking an exception might
change from AArch32 to AArch64, and returning from an exception may change from AArch64
to AArch32.

Code at EL3 cannot take an exception to a higher exception level, so cannot change execution
state, except by going through a reset.

The following is a summary of some of the points when changing between AArch64 and
AArch32 execution states:

. Both AArch64 and AArch32 execution states have Exception levels that are generally
similar, but there are some differences between Secure and Non-secure operation. The
execution state the processor is in when the exception is generated can limit the Exception
levels available to the other execution state.

. Changing to AArch32 requires going from a higher to a lower Exception level. This is the
result of exiting an exception handler by executing the ERET instruction. See Exception
handling instructions on page 6-21.

. Changing to AArch64 requires going from a lower to a higher Exception level. The
exception can be the result of an instruction execution or an external signal.

. If, when taking an exception or returning from an exception, the Exception level remains
the same, the execution state cannot change.

. Where an ARMvS processor operates in AArch32 execution state at a particular
Exception level, it uses the same exception model as in ARMv7 for exceptions taken to
that Exception level. In the AArch64 execution state, it uses the exception handling model
described in Chapter 10 AArch64 Exception Handling.

Interworking between the two states is therefore performed at the level of the Secure monitor,
hypervisor or operating system. A hypervisor or operating system executing in AArch64 state
can support AArch32 operation at lower privilege levels. This means that an OS running in
AArch64 can host both AArch32 and AArch64 applications. Similarly, an AArch64 hypervisor
can host both AArch32 and AArch64 guest operating systems. However, a 32-bit operating
system cannot host a 64-bit application and a 32-bit hypervisor cannot host a 64-bit guest
operating system.
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Figure 3-7 Moving between AArch32 and AArch64

For the highest implemented Exception level (EL3 on the Cortex-A53 and Cortex-A57

processors), which execution state to use for each Exception level when taking an exception is
fixed. The Exception level can only be changed by resetting the processor. For EL2 and EL1, it
is controlled by the System registers on page 4-7.
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Chapter 4
ARMv8 Registers

The AArch64 execution state provides 31 x 64-bit general-purpose registers accessible at all
times and in all Exception levels.

Each register is 64 bits wide and they are generally referred to as registers X0-X30.
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X0/WO0
X1/wl
X2 /W2
X3/W3
X4 /W4
X5/W5
X6/W6
X7 /W7
X8/W8
X9/W9
X10/W10
X11/wWll
X12/wW12
X13/wW13
X14/wW14
X15/W15
X16/W16
X17 /W17
X18/W18
X19/W19
X20/W20
X21/w21
X22/W22
X23/W23
X24/W24
X25/W25
X26/W26
X27/W27
X28/W28
Frame pointer| X29/W29
Procedure link register| X30/W30
ELO, EL1,
EL2, EL3

Figure 4-1 AArch64 general-purpose registers
Each AArch64 64-bit general-purpose register (X0-X30) also has a 32-bit (W0-W30) form.

63 3231 0

)

N Wn )
Xn

Figure 4-2 64-bit register with W and X access.

The 32-bit W register forms the lower half of the corresponding 64-bit X register. That is, WO
maps onto the lower word of X0, and W1 maps onto the lower word of X1.

Reads from W registers disregard the higher 32 bits of the corresponding X register and leave
them unchanged. Writes to W registers set the higher 32 bits of the X register to zero. That is,
writing OxFFFFFFFF into WO sets X0 to 0x00000000FFFFFFFF.
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4.1 AArch64 special registers

In addition to the 31 core registers, there are also several special registers.

Zero register XZR/WZR
Special Program counter PC
registers Stack pointer| SP_ELO | [ SP_EL1 SP_EL2 SP_EL3
Program Status Register SPSR_EL | [ SPSR_EL2 | [SPSR_EL3
Exception Link Register ELR_EL1 ELR_EL2 ELR_EL3
b ELO EL1 EL2 EL3
Figure 4-3 AArch64 special registers
Note

There is no register called X31 or W31. Many instructions are encoded such that the number 31
represents the zero register, ZR (WZR/XZR). There is also a restricted group of instructions
where one or more of the arguments are encoded such that number 31 represents the Stack
Pointer (SP).

When accessing the zero register, all writes are ignored and all reads return 0. Note that the
64-bit form of the SP register does not use an X prefix.

Table 4-1 Special registers in AArch64

Name Size Description

WZR 32 bits  Zero register
XZR 64 bits  Zero register

WSP 32 bits  Current stack pointer

SP 64 bits  Current stack pointer

PC 64 bits  Program counter

In the ARMvVS architecture, when executing in AArch64, the exception return state is held in the
following dedicated registers for each Exception level:

. Exception Link Register (ELR).
. Saved Processor State Register (SPSR).
There is a dedicated SP per Exception level, but it is not used to hold return state.

Table 4-2 Special registers by Exception level

ELO EL1 EL2 EL3
Stack Pointer (SP) SP_ELO SP ELI1 SP_EL2 SP_EL3
Exception Link Register (ELR) ELR_ELI1 ELR_EL2 ELR EL3
Saved Process Status Register (SPSR) SPSR EL1 SPSR EL2 SPSR EL3
ARM DENO0024A Copyright © 2015 ARM. All rights reserved. 4-3
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The zero register reads as zero when used as a source register and discards the result when used
as a destination register. You can use the zero register in most, but not all, instructions.

In the ARMV8 architecture, the choice of stack pointer to use is separated to some extent from
the Exception level. By default, taking an exception selects the stack pointer for the target
Exception level, SP_ELn. For example, taking an exception to EL1 selects SP_EL1. Each
Exception level has its own stack pointer, SP_ELO, SP_EL1, SP EL2, and SP_EL3.

When in AArch64 at an Exception level other than ELO, the processor can use either:
. A dedicated 64-bit stack pointer associated with that Exception level (SP_ELn).
. The stack pointer associated with ELO (SP_ELO0).

ELO can only ever access SP_ELO.

Table 4-3 AArch64 Stack pointer options

Exception Options
level

ELO ELO:

EL1 EL1s EL1A
EL2 EL2¢, EL2h
EL3 EL3:, EL3A

The ¢ suffix indicates that the SP_ELO stack pointer is selected. The 4 suffix indicates that the
SP_ELn stack pointer is selected.

The SP cannot be referenced by most instructions. However, some forms of arithmetic
instructions, for example, the ADD instruction, can read and write to the current stack pointer to
adjust the stack pointer in a function. For example:

ADD SP, SP, #0x10 // Adjust SP to be 0x10 bytes before its current value

Program Counter

One feature of the original ARMV7 instruction set was the use of R15, the Program Counter
(PC) as a general-purpose register. The PC enabled some clever programming tricks, but it
introduced complications for compilers and the design of complex pipelines. Removing direct
access to the PC in ARMv8 makes return prediction easier and simplifies the ABI specification.

The PC is never accessible as a named register. Its use is implicit in certain instructions such as
PC-relative load and address generation. The PC cannot be specified as the destination of a data
processing instruction or load instruction.

Exception Link Register (ELR)

The Exception Link Register holds the exception return address.
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4.1.5 Saved Process Status Register

When taking an exception, the processor state is stored in the relevant Saved Program Status
Register (SPSR), in a similar way to the CPSR in ARMv7. The SPSR holds the value of PSTATE
before taking an exception and is used to restore the value of PSTATE when executing an
exception return.

313029282726252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

N|zZ|C|V SS| IL DIA]I|F M| MI3:0]

Figure 4-4 SPSR

The individual bits represent the following values for AArch64:

N Negative result (N flag).

V4 Zero result (Z) flag.

C Carry out (C flag).

\% Overflow (V flag).

SS Software Step. Indicates whether software step was enabled when an exception
was taken.

IL Illegal Execution State bit. Shows the value of PSTATE.IL immediately before

the exception was taken.

D Process state Debug mask. Indicates whether debug exceptions from watchpoint,
breakpoint, and software step debug events that are targeted at the Exception level
the exception occurred in were masked or not.

A SError (System Error) mask bit.

1 IRQ mask bit.

F FIQ mask bit.

M[4] Execution state that the exception was taken from. A value of 0 indicates
AArch64.

M]3:0] Mode or Exception level that an exception was taken from.

In ARMvS, the SPSR written to depends on the Exception level. If the exception is taken in EL1,
then SPSR_EL1 is used. If the exception is taken in EL2, then SPSR_EL?2 is used, and if the
exception is taken in EL3, SPSR_ELS3 is used. The core populates the SPSR when taking an
exception.

Note

The register pairs ELR_EL#n and SPSR_ELn that are associated with an Exception level retain
their state during execution at a lower Exception level.
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AArch64 does not have a direct equivalent of the ARMv7 Current Program Status Register
(CPSR). In AArch64, the components of the traditional CPSR are supplied as fields that can be
made accessible independently. These are referred to collectively as Processor State (PSTATE).

The Processor State, or PSTATE fields, for AArch64 have the following definitions:

Table 4-4 PSTATE field definitions

Name Description
N Negative condition flag.
Z Zero condition flag.
C Carry condition flag.
A" oVerflow condition flag.
D Debug mask bit.
A SError mask bit.
1 IRQ mask bit.
F FIQ mask bit.
SS Software Step bit.
IL Illegal execution state bit.
EL (2)  Exception level.
nRW Execution state
0 = 64-bit
1 =32-bit
Sp Stack Pointer selector.

0=SP ELO
1=SP ELn

In AArch64, you return from an exception by executing the ERET instruction, and this causes the
SPSR_ELn to be copied into PSTATE. This restores the ALU flags, execution state, Exception
level, and the processor branches. From here, you continue execution from the address in

ELR_ELn.

The PSTATE.{N, Z, C, V} fields can be accessed at ELO. All other PSTATE fields can be executed

at EL1 or higher and are UNDEFINED at ELO.
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System registers

In AArch64, system configuration is controlled through system registers, and accessed using
MSR and MRS instructions. This contrasts with ARMv7-A, where such registers were typically
accessed through coprocessor 15 (CP15) operations. The name of a register tells you the lowest
Exception level that it can be accessed from.

For example:
. TTBRO_ELL is accessible from EL1, EL2, and EL3.
. TTBRO_EL2 is accessible from EL2 and EL3.

Registers that have the suffix ELn have a separate, banked copy in some or all of the levels,
though usually not EL0. Few system registers are accessible from ELO0, although the Cache Type
Register (CTR_ELO) is an example of one that can be accessible.

Code to access system registers takes the following form:

MRS x@, TTBRO_EL1
MSR TTBRO_EL1, x0

// Move TTBRO_EL1 into x0
// Move x0@ into TTBRO_EL1

Previous versions of the ARM architecture have used coprocessors for system configuration.
However, AArch64 does not include support for coprocessors. Table 4-5 lists only the system
registers mentioned in this book.

For a complete list, see Appendix J of the ARM Architecture Reference Manual - ARMVS, for
ARMVS-A architecture profile.

The table shows the Exception levels that have separate copies of each register. For example,
separate Auxiliary Control Registers (ACTLRs) exist as ACTLR_EL1, ACTLR _EL2 and
ACTLR_EL3.

Table 4-5 System registers

Name Register Description Allowed
values of n
ACTLR _ELn Auxiliary Control ~ Controls processor-specific features. 1,2,3
Register
CCSIDR_ELn Current Cache Provides information about the architecture of the currently 1
Size ID Register selected cache. See Cache discovery on page 11-18.
CLIDR_ELn Cache Level ID The type of cache, or caches, implemented at each level. 1,2,3
Register The Level of Coherency and Level of Unification for the cache
hierarchy.
See Cache maintenance on page 11-13.
CNTFRQ _ELn Counter-timer Reports the frequency of the system timer. See Timers on 0
Frequency page 14-5.
Register
CNTPCT_ELn Counter-timer Holds the 64-bit current count value. See Zimers on page 14-5. 0

CNTKCTL_ELn

Physical Count
Register

Counter-timer
Kernel Control
Register

Controls the generation of an event stream from the virtual 1
counter. Also controls access from ELO to the physical counter,
virtual counter, EL1 physical timers, and the virtual timer. See
Timers on page 14-5.
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Table 4-5 System registers (continued)

Name Register Description Allowed
values of n
CNTP_CVAL ELn Counter-timer Holds the compare value for the EL1 physical timer. See Timers 0
Physical Timer on page 14-5.
Compare Value
Register
CPACR _ELn Coprocessor Controls access to Trace, floating-point, and NEON 1
Access Control functionality. See ISB in more detail on page 13-9.
Register
CSSELR_ELn Cache Size Selects the current Cache Size ID Register, CCSIDR _ELI, by 1
Selection Register  specifying the required cache level and the cache type, either
instruction or data cache. See Cache discovery on page 11-18.
CNTP_CTL_ELn Counter-timer Control register for the EL1 physical timer. See Timers on 0
Physical Control page 14-5.
Register
CTR_ELn Cache Type Information about the architecture of the integrated caches. See 0
Register Cache discovery on page 11-18.
DCZID _ELn Data Cache Zero Indicates the block size written with byte values of 0 by the Data 0
ID Register Cache Zero by Virtual Address (DCZVA) system instruction.
See Cache discovery on page 11-18.
ELR _ELn Exception Link Holds the address of the instruction which caused the exception. 1,2, 3
Register
ESR ELn Exception Includes information about the reasons for the exception. See 1,2,3
Syndrome The Exception Syndrome Register on page 10-9.
Register
FAR ELn Fault Address Holds the virtual faulting address. See Handling synchronous 1,2,3
Register exceptions on page 10-7.
FPCR Floating-point Controls floating-point extension behavior. The fields in this -
Control Register register map to the equivalent fields in the AArch32 FPSCR.
See New features for NEON and Floating-point in AArch64 on
page 7-2.
FPSR Floating-point Provides floating-point system status information. The fieldsin -
Status Register this register map to the equivalent fields in the AArch32
FPSCR. See New features for NEON and Floating-point in
AArch64 on page 7-2.
HCR_ELn Hypervisor Controls virtualization settings and trapping of exceptions to 2
Configuration EL2. See Exception handling on page 18-8.
Register
MAIR _ELn Memory Attribute  Provides the memory attribute encodings corresponding to the 1,2,3
Indirection possible values in a Long-descriptor format translation table
Register entry for stage 1 translations at ELn. See Memory types on
page 13-3.
MIDR _ELn Main ID Register ~ The type of processor the code is running on (part number and 1
revision).
MPIDR _ELn Multiprocessor The processor and cluster IDs, in multi-core or cluster systems. 1
Affinity Register See Determining which core the code is running on on

page 14-3.
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Table 4-5 System registers (continued)

Name Register Description Allowed
values of n
SCR_ELn Secure Controls Secure state and trapping of exceptions to EL3. See 3
Configuration Handling synchronous exceptions on page 10-7.
Register
SCTLR_ELn System Control Controls architectural features, for example the MMU, caches 0,1,2,3
Register and alignment checking.
SPSR_ELn Saved Program Holds the saved processor state when an exception is taken to abt, fiq, irq,
Status Register this mode or Exception level. und, 1,2, 3
TCR_ELn Translation Determines which of the Translation Table Base Registers 1,2,3
Control Register define the base address for a translation table walk required for
the stage 1 translation of a memory access from EL#n. Also
controls the translation table format and holds cacheability and
shareability information. See Separation of kernel and
application Virtual Address spaces on page 12-7.
TPIDR_ELn User Read/Write Provides a location where software executing at ELn can store 0, 1,2, 3
Thread ID thread identifying information, for OS management purposes.
Register See Context switching on page 12-27.
TPIDRRO _ELn User Read-Only Provides a location where software executing at EL1 or higher 0
Thread ID can store thread identifying information. This informaton is
Register visible to software executing at EL0, for OS management
purposes. See Context switching on page 12-27.
TTBRO_ELn Translation Table Holds the base address of translation table 0, and information 1,2,3
Base Register 0 about the memory it occupies. This is one of the translation
tables for the stage 1 translation of memory accesses at ELn. See
Separation of kernel and application Virtual Address spaces on
page 12-7.
TTBR1 ELn Translation Table Holds the base address of translation table 1, and information 1
Base Register 1 about the memory it occupies. This is one of the translation
tables for the stage 1 translation of memory accesses at EL0O and
EL1. See Separation of kernel and application Virtual Address
spaces on page 12-7.
VBAR ELn Vector Based Holds the exception base address for any exception thatis taken 1,2, 3
Address Register ~ to ELn. See AArch64 exception table on page 10-12.
VTCR _ELn Virtualization Controls the translation table walks required for the stage 2 2
Translation translation of memory accesses from Non-secure ELO and EL1.
Control Register Also holds cacheability and shareability information for the
accesses. See Translations at EL2 and EL3 on page 12-20.
VTTBR_ELn Virtualization Holds the base address of the translation table for the stage 2 2

Translation Table
Base Register

translation of memory accesses from Non-secure ELO and EL1.
See Memory translation on page 18-3.

The system control register

The System Control Register (SCTLR) is a register that controls standard memory, system
facilities and provides status information for functions that are implemented in the core.
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SCTLR_EL2

EE ! SACIAM SCTLR_EL3
WXN

Figure 4-5 SCTLR bit assignments

Not all bits are available above EL1. The individual bits represent the following:

UCI When set, enables ELO access in AArch64 for DC CVAU, DC CIVAC, DC CVAC, and
IC IVAU instructions. See Cache maintenance on page 11-13.
EE Exception endianness. See Endianness on page 4-12.
0 Little endian.
1 Big endian.
EOE Endianness of explicit data accesses at EL0. The possible values of this bit are:
0 Explicit data accesses at ELO are little-endian.
1 Explicit data accesses at ELO are big-endian.
WXN Write permission implies XN (eXecute Never). See Access permissions on
page 12-23.
0 Regions with write permission are not forced to XN.
1 Regions with write permission are forced to XN.
nTWE Not trap WFE. A value of 1 means that WFE instructions are executed as normal.
nTWI Not trap WFI. A value of 1 means that WFI instructions are executed as normal.
UCT When set, enables ELO access in AArch64 to the CTR_ELO register.
DZE Access to DC ZVA instruction at ELO. See Cache maintenance on page 11-13.
0 Execution prohibited.
1 Execution allowed.
I Instruction cache enable. This is an enable bit for instruction caches at EL0O and

EL1. Instruction accesses to cacheable Normal memory are cached.

UMA User Mask Access. Controls access to interrupt masks from ELO, when ELO is
using AArch64.

SED SETEND Disable. Disables SETEND instructions at ELO using AArch32.
0 SETEND instructions are enabled.
1 The SETEND instruction is disabled.
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ITD IT Disable. The possible values of this bit are:
0 The IT instruction is available.
1 The IT instruction is treated as a 16-bit instruction. Only another 16-bit

instruction, or the first half of a 32-bit instruction, can follow. This
depends upon the implementation.

CP15BEN CP15 barrier enable. If implemented, it is an enable bit for the AArch32 CP15
DMB, DSB, and ISB barrier operations.

SA0 Stack Alignment Check Enable for ELO.

SA Stack Alignment Check Enable.

C Data cache enable. This is an enable bit for data caches at ELO and EL1. Data
accesses to cacheable Normal memory are cached.

A Alignment check enable bit.

M Enable the MMU.

Accessing the SCTLR
To access the SCTLR_ELn, use:

MRS <Xt>, SCTLR_ELn // Read SCTLR_ELn into Xt
MSR SCTLR_ELn, <Xt> // Write Xt to SCTLR_ELn

For example:

Example 4-1 Setting bits in the SCTLR

MRS X0, SCTLR_EL1 // Read System Control Register configuration data

ORR X0, X0, #(1 << 2) // Set [C] bit and enable data caching

ORR X0, X0, #(1 << 12) // Set [I] bit and enable instruction caching

MSR SCTLR_EL1, X0 // Write System Control Register configuration data
Note

The caches in the processor must be invalidated before caching of data and instructions is
enabled in any of the Exception levels.
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There are two basic ways of viewing bytes in memory, either as Little-Endian (LE) or
Big-Endian (BE). On big-endian machines, the most significant byte of an object in memory is
stored at the lowest address, that is the address closest to zero. On little-endian machines, the
least significant byte is stored at the lowest address. The term byte-ordering can also be used
rather than endianness.

2 1 0 Byt

DEE

Little endian

."\=

0x12345678

EEEE

0 1 2 3 Byte

Big endian

Figure 4-6

This data endianness is controlled independently for each Execution level. For EL3, EL2 and
EL1, the relevant register of SCTLR_EL#n.EE sets the endianness. The additional bit at EL1,
SCTLR_EL1.EOE controls the data endian setting for EL0. In the AArch64 execution state, data
accesses can be LE or BE, while instruction fetches are always LE.

Whether a processor supports both LE and BE depends upon the implementation of the
processor. If only little-endianness is supported, then the EE and EOE bits are always 0.
Similarly, if only big-endianness is supported, then the EE and EOE bits are at a static 1 value.

When using AArch32, having the CPSR.E bit have a different value to the equivalent System
Control register EE bit when in EL1, EL2, or EL3 is now deprecated. The use of the ARMv7
SETEND instruction is also deprecated. It is possible to cause the Undef exception to be taken upon
executing a SETEND instruction, by setting the SCTLR.SED bit.
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4.5 Changing execution state (again)

In Changing execution state on page 3-8, we described the change between AArch64 and
AArch32 in terms of Exception levels. Now we consider the change from the point of view of
the registers.

On entry to an Exception level using AArch64 from an Exception level using AArch32:

. The values of the upper 32 bits of registers that were accessible to any lower Exception
level using AArch32 execution are UNKNOWN.

. The registers that are not accessible during AArch32 execution retain the state that they
had before AArch32 execution.

. On exception entry to EL3, when EL2 has been using AArch32, the values of the upper
32 bits of the ELR_FEL2 are UNKNOWN.

. AArch64 Stack Pointers (SPs) and Exception Link Registers (ELRs) associated with an
Exception level that is not accessible during AArch32 execution, at that Exception level,
retain the state that they had before AArch32 execution. This applies to the following
registers:

— SP_ELO.
— SP ELIL
— SP EL2.
— ELR ELL

In general, application programmers write applications for either AArch32 or AArch64. It is
only the OS that must take account of the two execution states and the switch between them.

451 Registers at AArch32

Being virtually identical to ARMv7 means AArch32 must match ARMv7 privilege levels. It
also means that AArch32 only deals with ARMv7 32-bit general-purpose registers. Therefore,
there must be some correspondence between the ARMvS architecture, and the view of it
provided by the AArch32 execution state.

Remember that in the ARMvV7 architecture there are sixteen 32-bit general-purpose registers
(RO-R15) for software use. Fifteen of them (R0-R14) can be used for general-purpose data
storage. The remaining register, R15, is the program counter (PC) whose value is altered as the
core executes instructions. Software can also access the CPSR, and the saved copy of the CPSR
from the previously executed mode, is the SPSR. On taking an exception, the CPSR is copied
to the SPSR of the mode to which the exception is taken.

Which of these registers is accessed, and where, depends upon the processor mode the software
is executing in and the register itself. This is called banking, and the shaded registers in
Figure 4-7 on page 4-14 are banked. They use physically distinct storage and are usually
accessible only when a process is executing in that particular mode.
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RO

R1

R2

R3

R4

R5

R6

R7

RS R8_fiq

R9 RO_fiq

R10 R10_fiq

R11 R11_fiq

R12 R12_fiq
R13 (sp) SP_fiq || SP_irq SP_abt || SP_svc SP_und || SP_mon SP_hyp
R14 (1r) LR_fiq || LR_irq LR_abt || LR_svc LR_und || LR_mon LR_hyp
R15 (pc)
[(A/COPSR| |

SPSR_fiq| [SPSR_1irqg| [SPSR_abt] |SPSR_svc| [SPSR_und| |SPSR_mon| |SPSR_hyp
ELR_hyp
User Sys FIQ IRQ ABT SVC UND MON HYP

Figure 4-7 The ARMv7 register set showing banked registers

Banking is used in ARMv7 to reduce the latency for exceptions. However, this also means that
of a considerable number of possible registers, fewer than half can be used at any one time.

In contrast, the AArch64 execution state has 31 x 64-bit general-purpose registers accessible at
all times and in all Exception levels. A change in execution state between AArch64 and

AArch32 means that the AArch64 registers must necessarily map onto the AArch32 (ARMv7)
register set. This mapping is shown in Figure 4-8 on page 4-15.

The upper 32 bits of the AArch64 registers are inaccessible when executing in AArch32. If the
processor is operating in AArch32 state, it uses the 32-bit W registers, which are equivalent to
the 32-bit ARMvV7 registers.

AArch32 maps the banked registers to AArch64 registers that would otherwise be inaccessible.
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Wo
wl
W2
w3
w4
W5
W6
'
w8 w24
w9 w25
W10 W26
Wil w27
w12 W28
E W29 w17 w21 W19 W23 W15
w14 W30 W16 W20 W18 W22
l(A/CyPSR| | |
SPSR_fig| [SPSR_irq| [SPSR_abt| [SPSR_EL1| [SPSR_und| [SPSR_EL3{ [SPSR_EL2
ELR_EL2
User Sys FIQ IRQ ABT SVC UND MON HYP

|:| Inaccessible from AArch64

Figure 4-8 AArch64 to AArch32 register mapping

The SPSR and ELR_Hyp registers in AArch32 are additional registers that are accessible using
system instructions only. They are not mapped into the general-purpose register space of the
AArch64 architecture. Some of these registers are mapped between AArch32 and AArch64:

. SPSR_svc maps to SPSR_EL1.
. SPSR _hyp maps to SPSR_EL2.
. ELR hyp maps to ELR_EL2.

The following registers are only used during AArch32 execution. However, because of the
execution at EL1 using AArch64, they retain their state despite them being inaccessible during
AArch64 execution at that Exception level.

. SPSR_abt.
. SPSR_und.
. SPSR irq.
. SPSR fiq.

The SPSR registers are only accessible during AArch64 execution at higher Exception levels
for context switching.

Again, if an exception is taken to an Exception level in AArch64 from an Exception level in
AArch32, the top 32 bits of the AArch64 ELR _ELn are all zero.
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452 PSTATE at AArch32

In AArch64, the different components of the traditional CPSR are presented as Processor State
(PSTATE) fields that can be made accessible independently. At AArch32, there are extra fields
corresponding to the ARMv7 CPSR bits.

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

N|z|c|v]|al IT [J Ll GE IT[7:2] E|A|I|F|T|M| M[3:0]

Figure 4-9 CPSR bit assignments in AArch32
Giving additional PSTATE bits which are accessible only at AArch32:

Table 4-6 PSTATE bit definitions

Name Description

Q Cumulative saturation (sticky) flag.

GE (4) Greater than or Equal flags.

IT (8)  If-Then execution bits.

J J bit.
T T32 bit.
E Endianness bit.
M Mode field.
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4.6 NEON and floating-point registers

In addition to the general-purpose registers, ARMv8 also has 32 128-bit floating-point registers
labeled V0-V31. The 32 registers are used to hold floating-point operands for scalar
floating-point instructions and both scalar and vector operands for NEON operations. NEON
and floating-point registers are also covered in Chapter 7 A4rch64 Floating-point and NEON.

4.6.1 Floating-point register organization in AArch64

In NEON and floating-point instructions that operate on scalar data, the floating-point and
NEON registers behave similarly to the main general-purpose integer registers. Therefore, only
the lower bits are accessed, with the unused high bits ignored on a read and set to zero on a write.
The qualified names for scalar floating-point and NEON names indicate the number of
significant bits as follows, where n is a register number 0-31.

Table 4-7 Operand name for differently sized floats

Precision Size (bits) Name
Half 16 Hn
Single 32 Sn
Double 64 Dn

Unused D31

Unused : S31

Unused | ! H31
| : '

Register V31 ! : i
127 64 63 32 31 16 15 0
EEER

Unused DO

Unused ! S0

Unused i : HO
! ! |

T
Register VO : ! i
127 64 63 32 31 16 15 0
Figure 4-10 Arrangement of floating-point values
Note

16-bit floating-point is supported, but only as a format to be converted from or to. It is not
supported for data processing operations.

The F prefix and the float size is specified by the floating-point ADD instruction:

FADD Sd, Sn, Sm // Single-precision
FADD Dd, Dn, Dm // Double-precision
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The half-precision floating-point instructions are for converting between different sizes:

FCVT Sd, Hn // half-precision to single-precision
FCVT Dd, Hn // half-precision to double-precision
FCVT Hd, Sn // single-precision to half-precision
FCVT Hd, Dn // double-precision to half-precision

4.6.2  Scalar register sizes

In AArch64, the mapping for the integer scalars has changed from what is used in ARMv7-A to
the mapping shown in Figure 4-11:

Q31
Unused D31
Unused : S31
Unused : : H31
| :
Unused ! | | B31
: | —
Register V31 | | L
127 64 63 32 31 1615 87 0
EER
Qo0
Unused DO
Unused : S0
Unused | ! HO
Unused i : : BO
: : —
Register VO : ! ! i
127 64 63 32 31 1615 87 O

Figure 4-11 Arrangement of ARMv8 registers when holding scalar values

In Figure 4-11 SO is the bottom half of DO, which is the bottom half of Q0. S1 is the bottom half
of D1, which is the bottom half of Q1, and so on. This eliminates many of the problems
compilers have in auto-vectorizing high-level code.

. The bottom 64-bits of each of the Q registers can also be viewed as D0-D31, 32 64-bit
wide registers for floating-point and NEON use.

. The bottom 32-bits of each of the Q registers can also be viewed as S0-S31, 32 32-bit wide
registers for floating-point and NEON use.

. The bottom 16-bits of each of the S registers can also be viewed as H0-H31, 32 16-bit
wide registers for floating-point and NEON use.

. The bottom 8-bits of each of the H registers can also be viewed as B0-B31, 32 8-bit wide
registers for NEON use.
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4.6.3

128-bit vector

64-bit vector

ARMv8 Registers

Note

Only the bottom bits of each register set are used in each case. The rest of the register space is
ignored when read, and filled with zeros when written.

A consequence of this mapping is that if a program executing in AArch64 is interpreting D or
S registers from AArch32 execution. Then the program must unpack the D or S registers from
the V registers before using them.

For the scalar ADD instruction:
ADD Vd, Vn, Vm
If the size was, for example, 32 bits, the instruction would be:

ADD Sd, Sn, Sm

Table 4-8 Operand name for differently sized scalars

Word size Size (bits) Name
Byte 8 Bn
Halfword 16 Hn
Word 32 Sn
Doubleword 64 Dn
Quadword 128 Qn

Vector register sizes

Vectors can be 64-bits wide with one or more elements or 128-bits wide with two or more
elements as shown in Figure 4-12:

_
| D | D | V0.2D
| S | S | s | S | V0.4S
| ow | ow | owm [ ow | ow | w | H | H |vosH

¥|B|B|B|B|B|B|B|B|B|B|B|B|B|B B|B|VO.1GB
127 64 63 32 31 1615 87 0

EEE

_
| Unused | D | V31.1D
| Unused | S | S | V31.2S
| Unused | H | H | H | H | V31.4H
| Unused |B|B|B|B B|B|B|B|V31.8B

e 127 64 63 32 31 1615 87 O

Figure 4-12 Vector sizes
For the vector ADD instruction:

ADD Vd.T, Vn.T, Vm.T
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For 32-bit vectors this time, with 4 lanes, the instruction becomes:

ADD Vd.4S, Vn.4S, Vm.4S

Table 4-9 Operand names for different size vectors

Name Shape

Vn.8B 8 lanes, each containing an 8-bit element

Vn.16B 16 lanes, each containing an 8-bit element

Vn.4H 4 lanes, each containing a 16-bit element

Vn.8H 8 lanes, each containing a 16-bit element

Vn.2S 2 lanes, each containing a 32-bit element

Vn.4S 4 lanes, each containing a 32-bit element
Vn.1D 1 lane containing a 64-bit element

Vn.2D 2 lanes, each containing a 64-bit element

When these registers are used in a specific instruction form, the names must be further qualified
to indicate the data shape. More specifically, this means the data element size and the number
of elements or lanes held within them.

4.6.4 NEON in AArch32 execution state.

In AArch32, the smaller registers are packed into larger ones (D0 and D1 are combined to form
Ql, for instance). This introduces some tricky loop-carried dependencies which can reduce the
ability of the compiler to vectorize loop structures.

s7 | S6 S5 sS4
D3 D2
Q1
127 63 31 15 7 0
s3 S2 S1 S0
D1 DO
Qo
127 63 31 15 7 0

Figure 4-13 Arrangement of ARMv7 SIMD registers

The floating-point and Advanced SIMD registers in AArch32 are mapped into the AArch64 FP
and SIMD registers. This is done to allow the floating-point and NEON registers of an
application or a virtual machine to be interpreted (and, as necessary, modified) by a higher level
of system software, for example, the OS or the Hypervisor.

The AArch64 V16-V31 FP and NEON registers are not accessible from AArch32. As with the
general-purpose registers, during execution in an Exception level using A Arch32 these registers
retain their state from the previous execution using AArch64.
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Chapter 5

An Introduction to the ARMvS8 Instruction Sets

One of the most significant changes introduced in the ARMv8 architecture is the addition of a
64-bit instruction set. This set complements the existing 32-bit instruction set architecture. This
addition provides access to 64-bit wide integer registers and data operations, and the ability to
use 64-bit sized pointers to memory. The new instructions are known as 464 and execute in the
AArch64 execution state. ARMvS also includes the original ARM instruction set, now called
A32, and the Thumb (732) instruction set. Both A32 and T32 execute in AArch32 state, and
provide backward compatibility with ARMv7.

Although ARMvS8-A provides backward compatibility with the 32-bit ARM Architectures, the
A64 instruction set is separate and distinct from the older ISA and is encoded differently. A64
adds some additional capabilities while also removing other features that would potentially limit
the speed or energy efficiency of high performance implementations. The ARMvS architecture
includes some enhancements to the 32-bit instruction sets (A32 and T32) as well. However,
code that makes use of such features is not compatible with older ARMv7 implementations.
Instruction opcodes in the A64 instruction set, however, are still 32 bits long, not 64 bits.

Programmers seeking a more detailed description of A64 assembly language can also refer to
the ARM®™ Compiler armasm Reference Guide v6.01.
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5.1 The ARMvS instruction sets

The new A64 instruction set is similar to the existing A32 instruction set. Instructions are 32 bits
wide and have similar syntax.

The instruction sets use a generic naming convention within the ARMvS architecture, so that
the original 32-bit instruction set states are now called:

A32 When in AArch32 state, the instruction set is largely compatible with ARMv7,
though there are differences. See, ARMVS-A Architecture Reference Manual. 1t
also provides some new instructions to align with some of the features that are
introduced in the A64 instruction set.

T32 The Thumb instruction set was first included in the ARM7TDMI processor and
originally contained only 16-bit instructions. 16-bit instructions gave much
smaller programs at the cost of some performance. ARMv7 processors, including
those in the Cortex-A series, support Thumb-2 technology, which extends the
Thumb instruction set to provide a mix of 16-bit and 32-bit instructions. This
gives performance similar to that of ARM, while retaining the reduced code size.
Because of its size and performance advantages, it is increasingly common for all
32-bit code to be compiled or assembled to take advantage of Thumb-2
technology.

A new instruction set has been introduced that the core can use when in AArch64 state. In
keeping with the naming convention, and reflecting the 64-bit operation, this instruction set is
called:

A64 A64 provides similar functionality to the A32 and T32 instruction sets in
AArch32 or ARMvV7. The design of the new A64 instruction set allowed several
improvements:

A consistent encoding scheme

The late addition of some instructions in A32 resulted in some
inconsistency in the encoding scheme. For example, LDR and STR
support for halfwords is encoded slightly differently to the mainstream
byte and word transfer instructions. The result of this is that the
addressing modes are slightly different.

Wide range of constants

A64 instructions provide a huge range of options for constants, each
tailored to the requirements of specific instruction types.

. Arithmetic instructions generally accept a 12-bit immediate
constant.

. Logical instructions generally accept a 32-bit or 64-bit constant,
which has some constraints in its encoding.

. MOV instructions accept a 16-bit immediate, which can be shifted
to any 16-bit boundary.

. Address generation instructions are geared to addresses aligned
to a 4KB page size.

There are slightly more complex rules for constants that are used in bit
manipulation instructions. However, bitfield manipulation instructions
can address any contiguous sequence of bits, in either the source or
destination operand.

A64 provides flexible constants, but encoding them, even determining

whether a particular constant can be legally encoded in a particular
context, can be non-trivial.
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Data types are easier

A64 deals naturally with 64-bit signed and unsigned data types in that
it offers more concise and efficient ways of manipulating 64-bit
integers. This can be advantageous for all languages which provide
64-bit integers such as C or Java.

Long offsets

A64 instructions generally provide longer offsets, both for PC-relative
branches and for offset addressing.

The increased branch range makes it easier to manage inter-section
jumps. Dynamically generated code is generally placed on the heap so
it can, in practice, be located anywhere. The runtime system finds it
much easier to manage this with increased branch ranges, and fewer
fix-ups are required.

The need for literal pools (blocks of literal data embedded in the code
stream) has long been a feature of ARM instruction sets. This still
exists in A64. However, the larger PC-relative load offset helps
considerably with the management of literal pools, making it possible
to use one per compilation unit. This removes the need to manufacture
locations for multiple pools in long code sequences.

Pointers Pointers are 64-bit in AArch64, which allows larger amounts of virtual
memory to be addressed and gives more freedom for address mapping.
However, using 64-bit pointers does incur some costs. The same piece
of code typically uses more memory when running with 64-pointers
than with 32-bit pointers. Each pointer is stored in memory and
requires eight bytes instead of four. This might sound trivial, but can
add up to a significant penalty. Additionally, the increased use of
memory space that is associated with a move to 64 bits can cause a
drop in the number of accesses that hit in cache. This drop of cache hits
can reduce performance.

Some languages can be implemented with compressed pointers, such
as Java, to circumvent the performance issue.

Conditional constructs are used instead of IT blocks

IT blocks are a useful feature of T32, enabling efficient sequences that
avoid the need for short forward branches around unexecuted
instructions. However, they are sometimes difficult for hardware to
handle efficiently. A64 removes these blocks and replaces them with
conditional instructions such as CSEL, or Conditional Select and CINC,
or Conditional Increment. These conditional constructs are more
straightforward and easier to handle without special cases.

Shift and rotate behavior is more intuitive

The A32 or T32 shift and rotate behavior does not always map easily
to the behavior expected by high-level languages.

ARMVv7 provides a barrel shifter that can be used as part of data
processing instructions. However, specifying the type of shift and the
amount to shift requires a certain number of opcode bits, which could
be used elsewhere.

A64 instructions therefore remove options that were rarely used, and

instead adds new explicit instructions to carry out more complicated
shift operations.
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Code generation

When generating code, both statically and dynamically, for common
arithmetic functions, A32 and T32 often require different instructions,
or instruction sequences. This is to cope with different data types.
These operations in A64 are much more consistent so it is much easier
to generate common sequences for simple operations on differently
sized data types.

For example, in T32 the same instruction can have different encodings
depending on what registers are used (either a low register or a high
register).

The A64 instruction set encodings are much more regular and
rationalized. Consequently, an assembler for A64 typically requires
fewer lines of code than an assembler for T32.

Fixed-length instructions

All A64 instructions are the same length, unlike T32, which is a
variable-length instruction set. This makes management and tracking
of generated code sequences easier, particularly affecting dynamic
code generators.

Three operands map better

A32, in general, preserves a true three-operand structure for
data-processing operations. T32, on the other hand, contains a
significant number of two-operand instruction formats, which make it
slightly less flexible when generating code. A64 sticks to a consistent
three-operand syntax, which further contributes to the regularity and
homogeneity of the instruction set for the benefit of compilers.

511 Distinguishing between 32-bit and 64-bit A64 instructions

Most integer instructions in the A64 instruction set have two forms, which operate on either
32-bit or 64-bit values within the 64-bit general-purpose register file.

When looking at the register name that the instruction uses:

. If the register name starts with X, it is a 64-bit value.

. If the register name starts with W, it is a 32-bit value.

Where a 32-bit instruction form is selected, the following facts hold true:

. Right shifts and rotates inject at bit 31, instead of bit 63.

. The condition flags, where set by the instruction, are computed from the lower 32 bits.
. Writes to the W register set bits [63:32] of the X register to zero.

This distinction applies even when the results of a 32-bit instruction form would be
indistinguishable from the lower 32 bits computed by the equivalent 64-bit instruction form. For
example, a 32-bit bitwise ORR could be performed using a 64-bit ORR and simply ignoring the top
32 bits of the result. The A64 instruction set includes separate 32 and 64-bit forms of the ORR
instruction.

The C and C++ LP64 and LLP64 data models are expected to be the most commonly used on
AArch64. They both define the frequently used int, short, and char types to be 32 bits or less.
By maintaining this semantic information in the instruction set, implementations can exploit this
information. For example, to avoid expending energy or cycles to compute, forward, and store
the unused upper 32 bits of such data types. Implementations are free to exploit this freedom in
whatever way they choose to save energy.
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So the new A64 instruction set provides distinct sign and zero-extend instructions. Additionally.
the A64 instruction set means it is possible to extend and shift the final source register of an ADD,
SUB, CMN, or CMP instruction and the index register of a Load or Store instruction. This results in
efficient implementation of array index calculations involving a 64-bit array pointer and 32-bit
array index.

When the processor can store 64-bit values in a single register, it becomes much simpler to
access large amounts of memory within a program. A single thread executing on a 32-bit core
is limited to accessing 4GB of address space. Large parts of that addressable space are reserved
for use by the OS kernel, library code, peripherals, and more. As a result, lack of space means
that the program might need to map some data in or out of memory while executing. Having a
larger address space, with 64-bit pointers, avoids this problem. It also makes techniques such as
memory-mapped files more attractive and convenient to use. The file contents are mapped into
the memory map of a thread, even though the physical RAM might not be large enough to
contain the whole file.

Other improvements to addressing include the following:

Exclusive accesses

Exclusive load-store of a byte, halfword, word and doubleword. Exclusive access
to a pair of doublewords permits atomic updates of a pair of pointers, for example
circular list inserts. All exclusive accesses must be naturally aligned, and
exclusive pair access must be aligned to twice the data size, that is, 128 bits for a
pair of 64-bit values.

Increased PC-relative offset addressing

PC-relative literal loads have an offset range of £+1MB. Compared to the
PC-relative loads of A32, this reduces the number of literal pools, and increases
sharing of literal data between functions. In turn, this reduces I-cache and TLB
pollution.

Most conditional branches have a range of +1MB, expected to be sufficient for
the majority of conditional branches that take place within a single function.

Unconditional branches, including branch and link, have a range of +128MB,
expected to be sufficient to span the static code segment of most executable load
modules and shared objects, without needing linker-inserted veneers.

Note

Veneers are small pieces of code that are automatically inserted by the linker, for
example, when it detects that a branch target is out of range. The veneer becomes
an intermediate target of the original branch with the veneer itself then being a
branch to the target address.

The linker can reuse a veneer generated for a previous call, for other calls to the
same function if it is in range from both calls. Occasionally, such veneers can be
a performance factor.

If you have a loop that calls multiple functions through veneers, you will get
many pipeline flushes and therefore sub-optimal performance. Placing related
code together in memory can avoid this.

PC-relative load and store and address generation with a range of +4GB can be
performed inline using only two instructions, that is, without the need to load an
offset from a literal pool.
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Unaligned address support

Except for exclusive and ordered accesses, all loads and stores support the use of
unaligned addresses when accessing normal memory. This simplifies porting
code to A64.

Bulk transfers

The LDM, STM, PUSH, and POP instructions do not exist in A64. Bulk transfers can be
constructed using the LDP and STP instructions. These instructions load and store
a pair of independent registers from consecutive memory locations.

The LDNP and STNP instructions provide a streaming or non-temporal hint, that the
data does not need to be retained in caches.

The PRFM, or prefetch memory instructions enable targeting of a prefetch to a
specific cache level.

Load/Store

All Load/Store instructions now support consistent addressing modes. This
makes it much easier, for example, to treat char, short, int and Tong Tong in the
same way when loading and storing quantities from memory.

The floating-point and NEON registers now support the same addressing modes
as the core registers, making it easier to use the two register banks
interchangeably.

Alignment checking

When executing in AArch64, additional alignment checking is performed on
instruction fetches and on loads or stores using the stack pointer, enabling
misalignment checking of the PC or the current SP.

This approach is preferable to forcing the correct alignment of the PC or SP,
because a misalignment of the PC or SP commonly indicates a software error,
such as corruption of an address in software.

There are a number of types of alignment checking:

. Program Counter alignment checking generates an exception associated
with instruction fetch whenever an attempt is made to execute an
instruction fetched with a misaligned PC in AArch64.

A misaligned PC is defined to be one where bits [1:0] of the PC are not 00.
A PC misalignment is identified in the exception syndrome register
associated with the target Exception level.

When the exception is handled using AArch64, the associated exception
link register holds the entire PC in its misaligned form, as does the Fault
Address Register, FAR_ELn, for the Exception level in which the exception
is taken.

PC alignment checking is performed in AArch64, and in AArch32 as part
of Data Abort exception handling.

. Stack Pointer (SP) alignment checking generates an exception associated
with data memory access whenever a load or store using the stack pointer
as a base address in AArch64 is attempted.

A misaligned stack pointer is one where bits [3:0] of the stack pointer, used
as the base address of the calculation, are not 0000. The stack pointer must
be 16-byte aligned whenever it is usedas a base address.

Stack pointer alignment checking is only performed in AArch64, and can
be enabled independently for each Exception level:

— ELO and EL1 are controlled by two separate bits in SCTLR_EL1.
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—  EL2 is controlled by a bit in SCTLR_EL2.
—  EL3 is controlled by a bit in SCTLR_EL3.

The A64 64-bit register bank helps reduce register pressure in most applications.

The A64 Procedure Call Standard (PCS) passes up to eight parameters in registers (X0-X7). In
contrast, A32 and T32 pass only four arguments in registers, with any excess being passed on
the stack.

The PCS also defines a dedicated Frame Pointer (FP), which makes debugging and call-graph
profiling easier by making it possible to reliably unwind the stack. Refer to Chapter 9 The ABI
for ARM 64-bit Architecture for further information.

A consequence of adopting 64-bit wide integer registers is the varying widths of variables used
by programming languages. A number of standard models are currently in use, which differ
mainly in the size defined for integers, longs, and pointers:

Table 5-1 Variable width

Type ILP32 LP64 LLP64
char 8 8 8

short 16 16 16

int 32 32 32

Tong 32 64 32

Tong Tong 64 64 64
size t 32 64 64
pointer 32 64 64

64-bit Linux implementations use LP64 and this is supported by the A64 Procedure Call
Standard. Other PCS variants are defined that can be used by other operating systems.

Zero register

The zero register (WZR/XZR) is used for a few encoding tricks. For example,
there is no plain multiply encoding, just multiply-add. The instruction MUL W@, W1,
W2 is identical to MADD W@, W1, W2, WZR which uses the zero register. Not all
instructions can use the XZR/WZR. As we mentioned in Chapter 4, the zero
register shares the same encoding as the stack pointer. This means that, for some
arguments, for a very limited number of instructions, WZR/XZR is not available,
but WSP/SP is used instead.

Example 5-1 Using the Zero register to write a zero to memory

In A32:

mov ro@, #0
str ro, [...]

In A64 using the zero register:
str wzr, [...]

No need for a spare register. Or write 16 bytes of zeros using:
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stp xzr, xzr, [...] etc

A convenient side-effect of the zero register is that there are many NOP instructions
with large immediate fields. For example, ADR XZR, #<imm> alone gives you 21 bits
of data in an instruction with no other side effects. This is very useful for JIT
compilers, where code can be patched at runtime.

Stack pointer

The Stack Pointer (SP) cannot be referenced by most instructions. Some forms of
arithmetic instructions can read or write the current stack pointer. This might be
done to adjust the stack pointer in a function prologue or epilogue. For example:

ADD SP, SP, #256 // SP = SP + 256

Program counter

The current Program Counter (PC) cannot be referred to by number as if part of
the general register file and therefore cannot be used as the source or destination
of arithmetic instructions, or as the base, index or transfer register of load and
store instructions.

The only instructions that read the PC are those whose function it is to compute a
PC-relative address (ADR, ADRP, literal load, and direct branches), and the
branch-and-link instructions that store a return address in the link register (BL and
BLR). The only way to modify the program counter is using branch, exception
generation and exception return instructions.

Where the PC is read by an instruction to compute a PC-relative address, then its
value is the address of that instruction. Unlike A32 and T32, there is no implied
offset of 4 or 8 bytes.

FP and NEON registers

The most significant update to the NEON registers is that NEON now has 32
16-byte registers, instead of the 16 registers it had before. The simpler mapping
scheme between the different register sizes in the floating-point and NEON
register bank make these registers much easier to use. The mapping is easier for
compilers and optimizers to model and analyze.

Register indexed addressing

The A64 instruction set provides additional addressing modes with respect to
A32, allowing a 64-bit index register to be added to the 64-bit base register, with
optional scaling of the index by the access size. Additionally, it provides sign or
zero-extension of a 32-bit value within an index register, again with optional
scaling.
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5.2 C/C++ inline assembly

In this section, we briefly cover how to include assembly code within C or C++ language
modules.

The asm keyword can incorporate inline GCC syntax assembly code into a function. For
example:

#include <stdio.h>

int add(int i, int j)

{
int res = 0;
asm (
"ADD %w[result], %w[input_i], %w[input_j]" //Use “%w[name]  to operate on W
// registers (as in this case).
// You can use “%x[name] = for X
// registers too, but this is the
// default.
: [result] "=r" (res)
: [input_il "r" (i), [input_j]l "r" (3)
)i
return res;
}
int main(void)
{
int a = 1;
int b = 2;
int ¢ = 0;
c = add(a,b)

printf(“Result of %d + %d = %d\n, a, b, c);
}

The general form of an asm inline assembly statement is:
asm(code [: output_operand_Tist [: input_operand_Tist [: clobber_1ist]]]);
where:
code is the assembly code. In our example, this is "ADD %[result], %[input_i], %[input_j1".

output_operand_1ist is an optional list of output operands, separated by commas. Each operand
consists of a symbolic name in square brackets, a constraint string, and a C expression in

parentheses. In this example, there is a single output operand: [result] "=r" (res).

input_operand_1ist is an optional list of input operands, separated by commas. Input operands
use the same syntax as output operands. In this example, there are two input operands: [input_i]
"r'" (i) and [input_j] "r" (j).

clobber_Tist is an optional list of clobbered registers, or other values. In our example, this is
omitted.

When calling functions between C/C++ and assembly code, you must follow the AAPCS64
rules.

For further information, see:
https://gcc.gnu.org/onTinedocs/gcc/Using-Assembly-Language-with-C.htm1#Using-Assembly-L
anguage-with-C
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5.3 Switching between the instruction sets
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It is not possible to use code from the two execution states within a single application. There is
no interworking between A64 and A32 or T32 instruction sets in ARMv8 as there is between
A32 and T32 instruction sets. Code written in A64 for the ARMv8 processors cannot run on
ARMVv7 Cortex-A series processors. However, code written for ARMv7-A processors can run
on ARMv8 processors in the AArch32 execution state. This is summarized in Figure 5-1.

T32

Mixed 16 and 32-bit instructions

32-bit general purpose registers Exception
7'y 7'y entry
BX >
BLX Exception
MOV PC entry or <
LDR PC return Exception
v v return

A64

32-bit instructions

A32

32-bit instructions
32-bit general purpose registers

32 and 64-bit general purpose registers

Figure 5-1 Switching between instruction sets
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Chapter 6

The A64 instruction set

Many programmers writing at the application level do not need to write code in assembly
language. However, assembly code can be useful in cases where highly optimized code is
required. This is the case when when writing compilers, or where use of low level features not
directly available in C is needed. It might be required for portions of boot code, device drivers,
or when developing operating systems. Finally, it can be useful to be able to read assembly code
when debugging C, and particularly, to understand the mapping between assembly instructions
and C statements.

ARM DENO0024A
ID050815

Copyright © 2015 ARM. All rights reserved. 6-1
Non-Confidential
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6.1 Instruction mnemonics

The A64 assembly language overloads instruction mnemonics, and distinguishes between the
different forms of an instruction based on the operand register names. For example, the ADD
instructions below all have different encodings, but you only have to remember one mnemonic,
and the assembler automatically chooses the correct encoding based on the operands.

ADD WO, W1, W2 // add 32-bit registers

ADD X0, X1, X2 // add 64-bit registers

ADD X0, X1, W2, SXTw // add sign extended 32-bit register to 64-bit extended
// register

ADD X0, X1, #42 // add immediate to 64-bit register

ADD V@.8H, V1.8H, V2.8H // NEON 16-bit add, in each of 8 lanes
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6.2 Data processing instructions

These are the fundamental arithmetic and logical operations of the processor and operate on
values in the general-purpose registers, or a register and an immediate value. Multiply and
divide instructions on page 6-4 can be considered special cases of these instructions.

Data processing instructions mostly use one destination register and two source operands. The
general format can be considered to be the instruction, followed by the operands, as follows:

Instruction Rd, Rn, Operand2

The second operand might be a register, a modified register, or an immediate value. The use of
R indicates that it can be either an X or a W register.

The data processing operations include:

. Arithmetic and logical operations.
. Move and shift operations.
. Instructions for sign and zero extension.

. Bit and bitfield manipulation.

. Conditional comparison and data processing.

6.2.1 Arithmetic and logical operations

Table 6-1 shows some of the available arithmetic and logical operations.

Table 6-1 Arithmetic and logical operations

Type Instructions

Arithmetic ADD, SUB, ADC, SBC, NEG

Logical AND, BIC, ORR, ORN, EOR, EON

Comparison ~ CMP, CMN, TST

Move MOV, MVN

Some instructions also have an S suffix, indicating that the instruction sets flags. Of the
instructions in Table 6-1, this includes ADDS, SUBS, ADCS, SBCS, ANDS, and BICS. There are other flag
setting instructions, notably CMP, CMN and TST, but these do not take an S suffix.

The operations ADC and SBC perform additions and subtractions that also use the carry condition
flag as an input.

ADC{S}: Rd = Rn + Rm + C
SBC{S}: Rd =Rn - Rm -1+ C
Example 6-1 Arithmetic instructions
ADD WO, W1, W2, LSL #3 // WO =Wl + (W2 << 3)
SUBS X0, X4, X3, ASR #2 // X0 = X4 - (X3 >> 2), set flags
MOV X0, X1 // Copy X1 to X0
CMP W3, W4 // Set flags based on W3 - W4
ADD W@, W5, #27 // WO = W5 + 27
ARM DENO0024A Copyright © 2015 ARM. All rights reserved. 6-3
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The logical operations are essentially the same as the corresponding boolean operators operating
on individual bits of the register.

The BIC (Bitwise bit Clear) instruction performs an AND of the register that is the first after the
destination register, with the inverted value of the second operand. For example, to clear bit [11]
of register X0, use:

MOV X1, #0x800
BIC X0, X0, X1

ORN and EON perform an OR or EOR respectively with a bitwise-NOT of the second operand.

The comparison instructions only modify the flags and have no other effect. The range of
immediate values for these instructions is 12 bits, and this value can be optionally shifted 12 bits
to the left.

6.2.2  Multiply and divide instructions

The multiply instructions provided are broadly similar to those in ARMv7-A, but with the
ability to perform 64-bit multiplies in a single instruction.

Table 6-2 Multiplication operations in assembly language

Opcode Description

Multiply instructions

MADD Multiply add

MNEG Multiply negate

MSUB Multiply subtract

MUL Multiply

SMADDL Signed multiply-add long

SMNEGL Signed multiply-negate long

SMSUBL Signed multiply-subtract long
SMULH Signed multiply returning high half
SMULL Signed multiply long

UMADDL Unsigned multiply-add long

UMNEGL Unsigned multiply-negate long
UMSUBL Unsigned multiply-subtract long
UMULH Unsigned multiply returning high half
UMULL Unsigned multiply long

Divide instructions

SDIV Signed divide

UDIVv Unsigned divide

There are multiply instructions that operate on 32-bit or 64-bit values and return a result of the
same size as the operands. For example, two 64-bit registers can be multiplied to produce a
64-bit result with the MUL instruction.
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MUL X0, X1, X2 // X0 = XL « X2

There is also the ability to add or subtract an accumulator value in a third source register, using
the MADD or MSUB instructions.

The MNEG instruction can be used to negate the result, for example:
MNEG X0, X1, X2 // X0 = -(X1 = X2)

Additionally, there are a range of multiply instructions that produce a long result, that is,
multiplying two 32-bit numbers and generating a 64-bit result. There are both signed and
unsigned variants of these long multiplies (UMULL, SMULL). There are also options to accumulate
a value from another register (UMADDL, SMADDL) or to negate (UMNEGL, SMNEGL).

Including 32-bit and 64-bit multiply with optional accumulation give a result size the same size
as the operands:

. 32 + (32 x 32) gives a 32-bit result.

. 64 £ (64 x 64) gives a 64-bit result.

. + (32 x 32) gives a 32-bit result.

. + (64 x 64) gives a 64-bit result.

Widening multiply, that is signed and unsigned, with accumulation gives a single 64-bit result:
. 64 + (32 x 32) gives a 64-bit result.

. + (32 x 32) gives a 64-bit result.

A 64 x 64 to 128-bit multiply requires a sequence of two instructions to generate a pair of 64-bit
result registers:

. + (64 x 64) gives the lower 64 bits of the result [63:0].
. (64 x 64) gives the higher 64 bits of the result [127:64].

Note

The list contains no 32 x 64 options. You cannot directly multiply a 32-bit W register by a 64-bit
X register.

The ARMvS-A architecture has support for signed and unsigned division of 32-bit and 64-bit
sized values. For example:

UDIV Wo, W1, W2 // WO = W1 / W2 (unsigned, 32-bit divide)
SDIV X0, X1, X2 // X0 = X1 / X2 (signed, 64-bit divide)

Overflow and divide-by-zero are not trapped:
. Any integer division by zero returns zero.

. Overflow can only occur in SDIV:

— INT_MIN / -1returns INT_MIN, where INT_MIN is the smallest negative number that
can be encoded in the registers used for the operation. The result is always rounded
towards zero, as in most C/C++ dialects.
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6.2.3  Shift operations
The following instructions are specifically for shifting:
. Logical Shift Left (LSL). The LSL instruction performs multiplication by a power of 2.
. Logical Shift Right (LSR). The LSR instruction performs division by a power of 2.

. Arithmetic Shift Right (ASR). The ASR instruction performs division by a power of 2,
preserving the sign bit.

. Rotate right (ROR). The ROR instruction performs a bitwise rotation, wrapping the bits
rotated from the LSB into the MSB.

Table 6-3 Shift and move operations

Instruction Description

Shift
ASR Arithmetic shift right
LSL Logical shift left
LSR Logical shift right
ROR Rotate right
Move
MoV Move
MVN Bitwise NOT
LSL Logical shift left LSR Logical shift right
Bits shifted P Register 0 0 Register e m Bits shifted
out are lost out are lost
Multiplication by 2n where n is Unsigned division by 2n
the shift amount where n is the shift amount
ASR Arithmetic shift right ROR Rotate right
sign-bit ﬂ

T

| . Bits shifted L . J

: Register —> ﬁ out are lost Register

Division by 2n, where n is the Bit rotate with wrap around
shift amount, preserving the from LSB to MSB

sign bit
Figure 6-1 Shift operations

The register that is specified for a shift can be 32-bit or 64-bit. The amount to be shifted can be
specified either as an immediate, that is up to register size minus one, or by a register where the
value is taken only from the bottom five (modulo-32) or six (modulo-64) bits.
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6.2.4 Bitfield and byte manipulation instructions

UBFX W1, WO, #18, #7 ;Bit field extract \

BFC W1, WZR, #3, #4 ;Bit field clear

There are instructions that extend a byte, halfword, or word to register size, which can be either
X or W. These instructions exist in both signed (SXTB, SXTH, SXTW) and unsigned (UXTB, UXTH)
variants and are aliases to the appropriate bitfield manipulation instruction.

Both the signed and unsigned variants of these instructions extend a byte, halfword, or word
(although only SXTW operates on a word) to register size. The source is always a W register. The
destination register is either an X or a W register, except for SXTW which must be an X register.

For example:

SXTB X0, W1 // Sign extend the Teast significant byte of register Wl
// from 8-bits to 64-bit by repeating the Teftmost bit of the
// byte.

Bitfield instructions are similar to those that exist in ARMv7 and include Bit Field Insert (BFI),
and signed and unsigned Bit Field Extract ((S/U)BFX). There are extra bitfield instructions too,
such as BFXIL (Bit Field Extract and Insert Low), UBFIZ (Unsigned Bit Field Insert in Zero), and
SBFIZ (Signed Bit Field Insert in Zero).

31 0

|0|o|o|o|o|o|o|o 1|o|1|o|1|1|o|o 0|1|o|o|1|1|1|o 0|1|1|1|o|1|o|o|

BFI WO, WO, #9, #6 ;Bit field insert /

31 0

|0|O|0|0|0|O|0|0 1|0|1|0|1|1|0|0 0|1|1|0|1|0|0|0 0|1|1|1|0|1|O|0|

31 0

|0|o|o|o|o|o|o|o o|o|o|o|o|o|o|o o|o|o|o|o|o|o|o 0|o|1|0|1|0|1|1|

<

Zero extend 0

31 0

|o|o|o|o|o|o|o|o 0|o|o|o|o|o|o|o 0|o|o|o|o|o|o|o 0 o|o|o|o 0|1|1|

Figure 6-2 Bit manipulation instructions

Note

There are also BFM, UBFM, and SBFM instructions. These are Bit Field Move instructions, which are
new for ARMvS. However, the instructions do not need to be used explicitly, as aliases are
provided for all cases. These aliases are the bitfield operations already described: [SUIXT[BHWX],
ASR/LSL/LSR immediate, BFI, BFXIL, SBFIZ, SBFX, UBFIZ, and UBFX.

If you are familiar with the ARMv7 architecture, you might recognize the other bit manipulation
instruction:

. CLZ Count leading zero bits in a register.
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Similarly, the same byte manipulation instructions:
. RBIT Reverse all bits.
. REV Reverse the byte order of a register.

. REV16 Reverse the byte order of each halfword in a register.

RV ARNF ARV RN

Xd |

Figure 6-3 REV16 instruction

. REV32 Reverse the byte order of each word in a register.

RN

R

Xd |

|

Figure 6-4 REV32 instruction

These operations can be performed on either word (32-bit) or doubleword (64-bit) sized
registers, except for REV32, which applies only to 64-bit registers.

6.2.5 Conditional instructions

The A64 instruction set does not support conditional execution for every instruction. Predicated
execution of instructions does not offer sufficient benefit to justify its significant use of opcode
space.

Processor state on page 4-6, describes the four status flags, Zero (Z), Negative (N), Carry (C)
and Overflow (V). Table 6-4 indicates the value of these bits for flag setting operations.

Table 6-4 Condition flag

Flag Name Description

N Negative  Set to the same value as bit[31] of the result. For a 32-bit signed integer, bit[31] being set indicates
that the value is negative.

V4 Zero Set to 1 if the result is zero, otherwise it is set to 0.

C Carry Set to the carry-out value from result, or to the value of the last bit shifted out from a shift
operation.

v Overflow  Setto 1 if signed overflow or underflow occurred, otherwise it is set to 0.

The C flag is set if the result of an unsigned operation overflows the result register.

The V flag operates in the same way as the C flag, but for signed operations.
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The condition flags (NZCV) and the condition codes are the same as in A32 and T32. However,
A64 adds NV (0b1111), though it behaves the same as its complement, AL (0b1110). This differs
from A32, which did not assign any meaning to 9b1111.

Table 6-5 Condition codes

Code Encoding Meaning (when set by CMP)  Meaning (when set by FCMP) Condition flags
EQ 0b000o Equal to. Equal to. Z=1
NE 0b0001 Not equal to. Unordered, or not equal to. Z=0
CS 0b0010 Carry set (identical to HS). Greater than, equal to, or unordered (identical C=
to HS).

HS 0b0010 Greater than, equal to (unsigned)  Greater than, equal to, or unordered (identical C=1

(identical to CS). to CS).
CC 0b0011 Carry clear (identical to LO). Less than (identical to LO). C=0
LO 0b0011 Unsigned less than (identical to Less than (identical to CC). C=0

CC).
MI 0b0100 Minus, Negative. Less than. N=
PL 0b0101 Positive or zero. Greater than, equal to, or unordered. N=0
VS 0b0110 Signed overflow. Unordered. (At least one argument was NaN). V=1
vC 0b0111 No signed overflow. Not unordered. (No argument was NaN). V=0
HI 0b1000 Greater than (unsigned). Greater than or unordered. C=1)&&(Z=0)
LS obl001 Less than or equal to (unsigned). Less than or equal to. C=0)|(Z=1)
GE 0b1010 Greater than or equal to (signed).  Greater than or equal to. N==
LT 0b1011 Less than (signed). Less than or unordered. NI=V
GT 0b1100 Greater than (signed). Greater than. (Z==0) && (N==V)
LE 0b1101 Less than or equal to (signed). Less than, equal to or unordered. (Z==1) || (N!I=V)
AL 0b1110 Always executed. Default. Always executed. Any
NV Ob1111 Always executed. Always executed. Any

There are a small set of conditional data processing instructions. These instructions are
unconditionally executed but use the condition flags as an extra input to the instruction. This set
has been provided to replace common usage of conditional execution in ARM code.

The instructions types which read the condition flags are:

Add/subtract with carry

The traditional ARM instructions, for example, for multi-precision arithmetic and

checksums.
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Conditional select with optional increment, negate, or invert

Conditionally select between one source register and a second incremented,
negated, inverted, or unmodified source register.

These are the most common uses of single conditional instructions in A32 and
T32. Typical uses include conditional counting or calculating the absolute value
of a signed quantity.

Conditional operations

The A64 instruction set enables conditional execution of only program flow control branch
instructions. This is in contrast to A32 and T32 where most instructions can be predicated with
a condition code. These can be summarized as follows:

Conditional select (move)

. CSEL Select between two registers based on a condition. Unconditional
instructions, followed by a conditional select, can replace short conditional
sequences.

. CSINC Select between two registers based on a condition. Return the first

source register or the second source register incremented by one.
. CSINV Select between two registers based on a condition. Return the first
source register or the inverted second source register.

. CSNEG Select between two registers based on a condition. Return the first
source register or the negated second source register.

Conditional set

Conditionally select between 0 and 1 (CSET) or 0 and -1 (CSETM). Used, for
example, to set the condition flags as a boolean value or mask in a general
register.

Conditional compare

(CMP and CMN) Sets the condition flags to the result of a comparison if the original
condition is true. If not true, the conditional flags are set to a specified condition
flag state. The conditional compare instruction is very useful for expressing
nested or compound comparisons.

Note

Conditional select and conditional compare are also available for floating-point registers using
the FCSEL and FCCMP instructions.

For example:

CSINC X0, X1, X0, NE // Set the return register X0 to X1 if Zero flag clear,
// else increment X0

Some aliases to the example instructions are provided, where either the zero register is used, or
the same register is used as both destination and both source registers for the instruction.

For example:

CINC X0, X0, LS // If less than or same (LS) then X0 = X0 + 1
CSET w0, EQ // If the previous comparison was equal (Z=1) then W0 = 1,
// else WO = 0
CSETM X0, NE // If not equal then X0 = -1, else X0 = 0
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This class of instructions provides a powerful way to avoid the use of branches or conditionally
executed instructions. Compilers, or assembly programmers, might adopt a technique of
performing the operations for both branches of an if-then-else statement. Then the correct result
is selected at the end.

For example, consider the simple C code:
if(i==0) r=r+2; else r=r-1;

This might produce code similar to:

CMP w0, #0 // if (i == 0)
SUB w2, wl, #1 // r=r-1
ADD wl, wl, #2 J/ r=r+2

CSEL wl, wl, w2, EQ // select between the two results
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6.3 Memory access instructions

As with all prior ARM processors, the ARMvVS architecture is a Load/Store architecture. This
means that no data processing instruction operates directly on data in memory. The data must
first be loaded into registers, modified, and then stored to memory. The program must specify
an address, the size of data to be transferred, and a source or destination register. There are
additional Load and Store instructions which provide further options, such as non-temporal
Load/Store, Load/Store exclusives, and Acquire/Release.

Memory instructions can access Normal memory in an unaligned fashion (see Chapter 13
Memory Ordering). This is not supported by exclusive accesses, load acquire or store release
variants. If unaligned accesses are not desired, they can be configured to be faulted.

6.3.1 Load instruction format

The general form of a Load instruction is as follows:

LDR Rt, <addr>

For loads into integer registers, you can choose a size to load. For example, to load a size smaller
than the specified register value, append one of the following suffixes to the LDR instruction:

. LDRB (8-bit, zero extended).

. LDRSB (8-bit, sign extended).
. LDRH (16-bit, zero extended).
. LDRSH (16-bit, sign extended).
. LDRSW (32-bit, sign extended).

There are also unscaled-offset forms such as LDUR<type> (see Specifying the address for a Load
or Store instruction on page 6-14). Programmers will not normally need to use the LDUR form
explicitly, because most assemblers can select the appropriate version based on the offset used.

You do not need to specify a zero-extended load to an X register, because writing a W register
effectively zero extends to the entire register width.

LDRSB W4, <addr> 8A Memory.

Sign extend
< A4
oo [ oo | oo | oo | fr | FF | FF | 8 | Rra
LDRSB X4, <addr> 8A Memory.
Sign extend
< v
FF | FF | FF | FF | FF | FF | FF | 8A | R4

LDRB W4, <addr> 8A Memory.

Zero extend

A
<&
<

00 | 00 | 00 | 00 | 00 | 00 | 00

(o]
>
P
~

Figure 6-5 Load instructions

ARM DENO0024A
ID050815

Copyright © 2015 ARM. All rights reserved. 6-12
Non-Confidential



The A64 instruction set

6.3.2 Store instruction format

Similarly, the general form of a Store instruction is as follows:
STR Rn, <addr>

There are also unscaled-offset forms such as STUR<type> (see Specifying the address for a Load
or Store instruction on page 6-14). Programmers will not normally need to use the STUR form
explicitly, as most assemblers can select the appropriate version based on the offset used.

The size to be stored might be smaller than the register. You specify this by adding a B or H
suffix to the STR. It is always the least significant part of the register that is stored in such a case.

6.3.3  Floating-point and NEON scalar loads and stores

Load and Store instructions can also access floating-point/NEON registers. Here, the size is
determined only by the register being loaded or stored, which can be any of the B, H, S, D, or
Q registers. This information is summarized in Table 6-6, and Table 6-7.

For Load instructions:

Table 6-6 Memory bits written by Load instructions

Load Xt Wt Qt Dt St Ht Bt
LDR 64 32 128 64 32 16 9
LDP 128 64 256 128 64 - -
LDRB - 8 - - - - -
LDRH - 16 - - - - -
LDRSB 8 8 - - - - -
LDRSH 16 16 - - - - -
LDRSW 32 - - - - - -
LDPSW - - - - - - -

For Store instructions:

Table 6-7 Memory bits read by Store instructions

Store Xt Wt Qt Dt St Ht Bt

STR 64 32 126 64 32 16 8
STP 128 64 256 128 64 - -
STRB - 8 - - - - -
STRH - 16 - - - - -

No sign-extension options are available for loads into FP/SIMD registers. Addresses for such
loads are still specified using the general-purpose registers.

For example:
LDR DO, [X0, X1]

Loads register D@ with the doubleword at the memory address pointed to by X@ plus X1.
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Note

Floating-point and scalar NEON Loads and Stores use the same addressing modes as integer
Loads and Stores.

6.3.4  Specifying the address for a Load or Store instruction

The addressing modes available to A64 are similar to those in A32 and T32. There are some
additional restrictions as well as some new features, but the addressing modes available to A64
will not be surprising to someone familiar with A32 or T32.

In A64, the base register of an address operand must always be an X register. However, several
instructions support zero-extension or sign-extension so that a 32-bit offset can be provided as
a W register.

Offset modes

Offset addressing modes add an immediate value or an optionally-modified register value to a
64-bit base register to generate an address.

Table 6-8 Offset addressing modes

Example instruction Description

LDR X0, [X1] Load from the address in X1

LDR X0, [X1, #8] Load from address X1 + 8

LDR X0, [X1, X2] Load from address X1 + X2

LDR X0, [X1, X2, LSL, #3] Load from address X1 + (X2 << 3)

LDR X0, [X1, W2, SXTW] Load from address X1 + sign_extend(W2)

LDR X0, [X1, W2, SXTW, #3] Load from address X1 + (sign_extend(W2) << 3)

Typically, when specifying a shift or extension option, the shift amount can be either 0 (the
default) or log2 of the access size in bytes (so that Rn << <shift> multiplies Rn by the access
size). This supports common array-indexing operations.

// A C example showing accesses that a compiler is 1ikely to generate.
void example_dup(int32_t a[], int32_t Tength) {

int32_t first = a[0]; // LDR W3, [X0]

for (int32_t i = 1; i < length; i++) {

af[i] = first; // STR W3, [X0, W2, SXTW, #2]
}

}

Index modes

Index modes are similar to offset modes, but they also update the base register. The syntax is the
same as in A32 and T32, but the set of operations is more restrictive. Usually, only immediate
offsets can be provided for index modes.
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There are two variants: pre-index modes which apply the offset before accessing the memory,
and post-index modes which apply the offset affer accessing the memory.

Table 6-9 Index addressing modes

Example instruction Description
LDR X0, [X1, #8]! Pre-index: Update X1 first (to X1 + #8), then load from the new address
LDR X0, [X1], #8 Post-index: Load from the unmodified address in X1 first, then update X1 (to X1 + #8)

STP X0, X1, [SP, #-16]! Push X0 and X1 to the stack.

LDP X0, X1, [SP], #16 Pop X0 and X1 off the stack.

These options map cleanly onto some common C operations:

// A C example showing accesses that a compiler is Tikely to generate.
void example_strcpy(char = dst, const char = src)

{

char c;

do {
C = #(src++); // LDRB W2, [X1], #1
#(dst++) = c; // STRB W2, [X0], #1
} while (c != "\0'");

}

PC-relative modes (load-literal)

A64 adds another addressing mode specifically for accessing literal pools. Literal pools are
blocks of data encoded in an instruction stream. The pools are not executed, but their data can
be accessed from surrounding code using PC-relative memory addresses. Literal pools are often
used to encode constant values that do not fit into a simple move-immediate instruction.

In A32 and T32, the PC can be read like a general-purpose register, so a literal pool can be
accessed simply by specifying PC as the base register.

In A64, PC is not generally accessible, but instead there is a special addressing mode (for load
instructions only) that accesses a PC-relative address. This special-purpose addressing mode
also has a much greater range than the PC-relative loads in A32 and T32 could achieve, so literal
pools can be positioned more sparsely.

Table 6-10
Example instruction Description
LDR WO, <label> Load 4 bytes from <label> into WO
LDR X0, <label> Load 8 bytes from <label> into X0
LDRSW X0, <label> Load 4 bytes from <label> and sign-extend into X0
LDR SO, <label> Load 4 bytes from <label> into SO
LDR D@, <label> Load 8 bytes from <label> into DO
LDR Q0, <label> Load 16 bytes from <label> into Q0
Note
<label> must be 4-byte-aligned for all variants.
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6.3.5 Accessing multiple memory locations

A64 does not include the Load Multiple (LDM) or Store Multiple (STM) instructions that are
available to A32 and T32 code.

In A64 code, there are the Load Pair (LDP) and Store Pair (STP) instructions. Unlike the A32 LDRD
and STRD instructions, any two integer registers can be read or written. Data is read or written to
or from adjacent memory locations. The addressing mode options provided for these
instructions are more restrictive than for other memory access instructions. LDP and STP
instructions can only use a base register with a scaled 7-bit signed immediate value, with
optional pre- or post-increment. Unaligned accesses are possible for LDP and STP, unlike the
32-bit LDRD and STRD.

Table 6-11 Register Load/Store pair

Load and Store pair Description

LDP W3, W7, [X0] Loads word at address X0 into W3 and word at
address X0 + 4 into W7. See Figure 6-6.

LDP X8, X2, [X0, #0x10]! Loads doubleword at address X0+ 0x10 into X8
and the doubleword at address X0 + 0x10 + 8
into X2 and add 0x10 to XO0. See Figure 6-7.

LDPSW X3, X4, [X0] Loads word at address X0 into X3 and word at
address X0 + 4 into X4, and sign extends both
to doubleword size.

LDP D8, D2, [X11], #0x10 Loads doubleword at address X11 into D8 and
the doubleword at address X11 + 8 into D2 and
adds 0x10 to X11.

STP X9, X8, [X4] Stores the doubleword in X9 to address X4 and

stores the doubleword in X8 to address X4 + 8.

X0 + 4 X0
| 4 bytes | 4 bytes |
63 3231 0
w | | | ws
Figure 6-6 LDP W3, W7 [X0]
[X0+0x10]+8 [X0+0x10]
| 8 bytes | 8 bytes |
127 6463 0
x| | | xe

Figure 6-7 LDP X8, X2, [X0 + #0x10]!
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6.3.6 Unprivileged access

The A64 LDTR and STTR instructions perform an unprivileged Load or Store (see LDTR and STTR in
ARMVS-A Architecture Reference Manual):

. At ELO, EL2 or EL3, they behave as normal Loads or Stores.

. When executed at EL1, they behave as if they had been executed at privilege level ELO.

These instructions are equivalent to the A32 LDRT and STRT instructions.

6.3.7  Prefetching memory

Prefetch from Memory (PRFM) enables code to provide a hint to the memory system that data
from a particular address will be used by the program soon. The effect of this hint is
IMPLEMENTATION DEFINED, but typically, it results in data or instructions being loaded into one
of the caches.

The instruction syntax is:
PRFM <prfop>, <addr> | Tabel

Where prfop is a concatenation of the following options:

Type PLD or PST (prefetch for load or store).
Target L1, L2, or L3 (which cache to target).
PoTicy KEEP or STRM (keep in cache, or streaming data).

For example, PLDLIKEEP.

These instructions are similar to the A32 PLD and PLI instructions.

6.3.8 Non-temporal load and store pair

A new concept in ARMVS is the non-temporal load and store. These are the LDNP and STNP
instructions that perform a read or write of a pair of register values. They also give a hint to the
memory system that caching is not useful for this data. The hint does not prohibit memory
system activity such as caching of the address, preload, or gathering. However, it indicates that
caching is unlikely to increase performance. A typical use case might be streaming data, but take
note that effective use of these instructions requires an approach specific to the
microarchitecture.

Non-temporal loads and stores relax the memory ordering requirements. In the above case, the
LDNP instruction might be observed before the preceding LDR instruction, which can result in
reading from an uncertain address in X0.

For example:

LDR X0, [X3]
LDNP X2, X1, [X0] // Xo may not be loaded when the instruction executes!

To correct the above, you need an explicit load barrier:

LDR X0, [X3]
DMB nshld
LDNP X2, X1, [Xe]
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6.3.9 Memory access atomicity

An aligned memory access, using a single general-purpose register, is guaranteed to be atomic.
Load pair and store pair instructions to a pair of general-purpose registers, using an aligned
memory address are guaranteed to appear as two individual atomic accesses. Unaligned
accesses are not atomic, as they typically require two separate accesses. Additionally,
floating-point and SIMD memory accesses are not guaranteed to be atomic.

6.3.10 Memory barrier and fence instructions

Both ARMv7 and ARMv8 provide support for different barrier operations. These are described
in more detail in Chapter 13 Memory Ordering:

. Data Memory Barrier (DMB). This forces all earlier-in-program-order memory accesses to
become globally visible before any subsequent accesses.

. Data Synchronization Barrier (DSB). All pending loads and stores, cache maintenance
instructions, and all TLB maintenance instructions, are completed before program
execution continues. A DSB behaves like a DMB, but with additional properties.

. Instruction Synchronization Barrier (ISB). This instruction flushes the CPU pipeline and
prefetch buffers, causing instructions after the ISB to be fetched (or re-fetched) from
cache or memory.

ARMVS introduces one-sided fences, which are associated with the Release Consistency model.
These are called Load-Acquire (LDAR) and Store-Release (STLR) and are address-based
synchronization primitives. (See One-way barriers on page 13-8.) The two operations can be
paired to form a full fence. Only base register addressing is supported for these instructions, no
offsets or other kinds of indexed addressing are provided.

6.3.11 Synchronization primitives

ARMvV7-A and ARMv8-A architectures both provide support for exclusive memory accesses.
In A64, this is the Load/Store exclusive (LDXR/STXR) pair.

The LDXR instruction loads a value from a memory address and attempts to silently claim an
exclusive lock on the address. The Store-Exclusive instruction then writes a new value to that
location only if the lock was successfully obtained and held. The LDXR/STXR pairing is used to
construct standard synchronization primitives such as spinlocks. A paired set of LDXRP and STXRP
instructions is provided, to allow code to atomically update a location that spans two registers.
Byte, halfword, word, and doubleword options are available. Like the Load Acquire/Store
Release pairing, only base register addressing, without any offsets, is supported.

The CLREX instruction clears the monitors, but unlike in ARMv7, exception entry or return also
clears the monitor. The monitor might also be cleared spuriously, for example by cache evictions
or other reasons not directly related to the application. Software must avoid having any explicit
memory accesses, system control register updates, or cache maintenance instructions between
paired LDXR and STXR instructions.

There is also an exclusive pair of Load Acquire/Store Release instructions called LDAXR and
STLXR. See Synchronization on page 14-6.
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The A64 instruction set provides a number of different kinds of branch instructions (see

Table 6-12). For simple relative branches, that is those to an offset from the current address, the
B instruction is used. Unconditional simple relative branches can branch backward or forward
up to 128MB from the current program counter location. Conditional simple relative branches,
where a condition code is appended to the B, have a smaller range of £1MB.

Calls to subroutines, where it is necessary for the return address to be stored in the link register
(X30), use the BL instruction. This does not have a conditional version. BL behaves as a B
instruction with the additional effect of storing the return address, which is the address of the
instruction after the BL, in register X30.

Table 6-12 Branch instructions

Branch instructions

B (offset) Program relative branch forward or back 128MB.
A conditional version, for example B.EQ, has a IMB range.

BL (offset) As B but store the return address in X30, and hint to branch prediction logic
that this is a function call.

BR Xn Absolute branch to address in Xn.

BLR Xn As BR but store the return address in X30, and hint to branch prediction
logic that this is a function call.

RET{Xn} As BR, but hint to branch prediction logic that this is a function return.

Returns to the address in X30 by default, but a different register can be
specified.

Conditional branch instructions

CBZ Rt, Tabel Compare and branch if zero. If Rt is zero, branch forward or back up to
IMB.

CBNZ Rt, Tlabel Compare and branch if non-zero. If Rt is not zero, branch forward or back
up to 1MB.

TBNZ Rt, bit, Tabel Test and branch if zero. Branch forward or back up to 32kB.

TBNZ Rt, bit, Tabel Test and branch if non-zero. Branch forward or back up to 32kB.

In addition to these PC-relative instructions, the A64 instruction set includes two absolute
branches. The BR Xn instruction performs an absolute branch to the address in Xn while BLR Xn has
the same effect, but also stores the return address in X30 (the link register). The RET instruction
behaves like BR Xn, but it hints to branch prediction logic that it is a function return. RET branches
to the address in X30 by default, though other registers can be specified..

The A64 instruction set includes some special conditional branches. These allow improved code
density in some cases because an explicit comparison is not necessary.

. CBZ Rt, Tabel // Compare and branch if zero
. CBNZ Rt, Tabel // Compare and branch if not zero

These instructions compare the source register, either 32-bit or 64-bit, with zero and then
conditionally perform a branch. The branch offset has a range of + 1MB. These instructions do
not read or write the condition code flags (NZCV).

There are two similar test and branch instructions
. TBZ Rt, bit, Tabel // Test and branch if Rt<bit> zero
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. TBNZ Rt, bit, label // Test and branch if Rt<bit> is not zero

These instructions test the bit in the source register at the bit position specified by the immediate
and conditionally branch depending on whether the bit is set or clear. The branch offset has a
range of £32kB. As with CBZ/CBNZ, these instructions do not read or write the condition code

flags (NZCV).
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6.5 System control and other instructions

The A64 instruction set contains instructions that relate to:
. Exception handling.

. System register access.
. Debug.
. Hint instructions, which in many systems have power management applications.

6.5.1 Exception handling instructions

There are three exception handling instructions whose purpose it is to cause an exception to be
taken. These are used to make a call to code that runs in a higher Exception level in the OS
(EL1), the Hypervisor (EL2), or Secure Monitor (EL3):

. SVC #imml6 // Supervisor call, allows application program to call the kernel
// (EL1).
. HVC #imm16 // Hypervisor call, allows 0S code to call hypervisor (EL2).

. SMC #imm1l6 // Secure Monitor call, allows OS or hypervisor to call Secure
// Monitor (EL3).

The immediate value is made available to the handler in the Exception Syndrome Register. This
is a change from ARMv7, where the immediate value had to be determined by reading the
opcode of the calling instruction. See Chapter 10 AA4Arch64 Exception Handling for further
information.

To return from an exception, use the ERET instruction. This instruction restores processor state
by copying SPSR_ELn to PSTATE and branches to the saved return address in ELR_ELn.

6.5.2 System register access

Two instructions are provided for system register access:

. MRS Xt, <system register> // This copies a system register into a general
// purpose register

For example
MRS X4, ELR_EL1 // Copies ELR_EL1 to X4

. MSR <system register>, Xt // This copies a general-purpose register into a
// system register

For example

MSR SPSR_EL1, X0 // Copies X0 to SPSR_EL1
Individual fields of PSTATE can also be accessed with MSR or MRS. For example, to select the
Stack Pointer associated with ELO or the current Exception level:

. MSR SPSel, #imm // A value of @ or 1 in this register is used to select
// between using EL@ stack pointer or the current exception
// level stack pointer

There are special forms of these instructions that can be used to clear or set individual exception
mask bits (see Saved Process Status Register on page 4-5):
. MSR DAIFCIr, #imm4

. MSR DAIFSet, #imm4

See System registers on page 4-7.
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6.5.3 Debug instructions

There are two debug-related instructions:

. BRK #imml6 // Enters monitor mode debug, where there is on-chip debug monitor
// code
. HLT #imml6 // Enters halt mode debug, where external debug hardware is connected

For information on debugging, see Chapter 18 Debug.

6.5.4 Hint instructions

HINT instructions can legally be treated as a NOP, but they can have implementation-specific
effects:

. NOP // No operation - not guaranteed to take time to execute

. YIELD // Hint that the current thread is performing a task that
// can be swapped out

. WFE // Wait for Event

. WFI // Wait for interrupt

. SEV // Send Event

. SEVL // Send Event Local

These concepts are also covered in Chapter 14 Multi-core processors and Chapter 15 Power
Management.

6.5.5 NEON instructions

The NEON instruction set also has several enhancements, some of which are quite significant.
Chapter 7 AArch64 Floating-point and NEON describes these in more detail.

Changes to NEON in A64 include

. Support for double precision floating-point, enabling C code using double precision
floating-point to be vectorized.

. New instructions to operate on scalar data stored in NEON registers.

. New instructions to insert and extract vector elements.

. New instructions for type conversion and saturating integer arithmetic.

. New instructions for normalization of floating-point values.

. New cross-lane instructions for vector reduction, summation, and taking the minimum or

maximum value.

. Instructions to perform actions such as compare, add, find absolute value, and negate have
been extended to be able to operate on 64-bit integer elements.

6.5.6  Floating-point instructions

A64 provides a similar set of floating-point instructions to those of the ARMv7-A VFPv4
extension, which provides single and double precision mathematical operations on scalar
floating-point values. There are a number of changes and new features:

. Floating-point comparisons set the condition flags (NZCV) directly. In A64 there is no
need to explicitly transfer the comparison results from floating-point to integer flags.
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Instructions have been added relating to the IEEE754-2008 standard, for example to
calculate the minimum and maximum of a pair of numbers.

A rounding mode can now be explicitly specified when converting from integer to
floating-point formats. It is no longer necessary to set the global FPCR flags when simple
conversions are required in a particular rounding mode. Some of these options are also
available to ARMv8 A32 and T32.

Instructions have been added to support conversions between 64-bit integers and
floating-point formats.

In A64, floating-point operations involving integer types work directly on integer
registers. There is no need to manually transfer integer values between floating-point and
integer registers for conversion operations.

6.5.7  Cryptographic instructions

An optional extension for ARMvS8 adds cryptographic instructions that significantly improve
performance on tasks such as AES encryption and SHA1 and SHA256 hashing.
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Chapter 7
AArch64 Floating-point and NEON

The ARM Advanced SIMD architecture, its associated implementations, and supporting
software, are commonly referred to as NEON technology. There are NEON instruction sets for
both AArch32 (equivalent to the ARMv7 NEON instructions) and for AArch64. Both can be
used to significantly accelerate repetitive operations on large data sets. This can be useful in
applications such as media codecs.

The NEON architecture for AArch64 uses 32 x 128-bit register, twice as many as for ARMv7.
These are the same registers used by the floating-point instructions. All compiled code and
subroutines conforms to the EABI, which specifies which registers can be corrupted and which
registers must be preserved within a particular subroutine. The compiler is free to use any
NEON/VFP registers for floating-point values or NEON data at any point in the code.

Both floating-point and NEON are required in all standard ARMv8 implementations. However,
implementations targeting specialized markets may support the following combinations:

. No NEON or floating-point.
. Full floating-point and SIMD support with exception trapping.

. Full floating-point and SIMD support without exception trapping.
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71 New features for NEON and Floating-point in AArch64

AArch64 NEON is based upon the existing AArch32 NEON, with the following changes:

There are now thirty-two 128-bit registers, rather than the 16 available for ARMv7.

Smaller registers are no longer packed into larger registers, but are mapped one-to-one to
the lower-order bits of the 128-bit register. A single precision floating-point value uses the
lower 32 bits, while double precision value uses the lower 64 bits of the 128-bit register.
See NEON and Floating-Point architecture on page 7-4.

The V prefix present in ARMv7-A NEON instructions has been removed.
Writes of 64 bits or less to a vector register result in the higher bits being zeroed.

In AArch64, there are no SIMD or saturating arithmetic instructions which operate on the
general-purpose registers. Such operations use the NEON registers.

New lane insert and extract instructions have been added to support the new register
packing scheme.

Additional instructions are provided for generating or consuming the top 64 bits of a
128-bit vector register. Data-processing instructions, which would generate more than one
result register (widening to a 256-bit vector), or consume two sources (narrowing to a
128-bit vector), have been split into separate instructions.

A new set of vector reduction operations provide across-lane sum, minimum and
maximum.

Some existing instructions have been extended to support 64-bit integer values. For
example, comparison, addition, absolute value and negate, including saturating versions.

Saturating instructions have been extended to include Unsigned Accumulate into Signed,
and Signed into Unsigned Accumulate.

Support is provided in AArch64 NEON for double-precision floating-point and full
IEEE754 operation including rounding modes, denormalized numbers, and NaN
handling.

Floating-point has been enhanced in AArch64 with the following changes:

The V prefix present in ARMv7-A floating-point instructions has been replaced with an F.

Support for both single-precision (32-bit) and double-precision (64-bit) floating-point
vector data types and arithmetic as defined by the IEEE 754 floating-point standard,
honoring the FPCR Rounding Mode field, the Default NaN control, the Flush-to-Zero
control, and (where supported by the implementation) the Exception trap enable bits.

Load/Store addressing modes for FP/NEON registers are identical to integer Load/Stores,
including the ability to Load or Store a pair of floating-point registers.

Floating-point FCSEL and Select and Compare instructions, equivalent to the integer CSEL
and CCMP have been added.

Floating-point FCMP, FCMPE, FCCMP, and FCCMP set the PSTATE.{N, Z, C, V} flags based on the
result of the floating-point comparison and do not modify the condition flags in the
Floating-Point Status Register (FPSR), as is the case in ARMv7.

All floating-point Multiply-Add and Multiply-Subtract instructions are fused.
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Fused multiply was introduced in VFPv4 and means that the result of the multiply is not
rounded before being used in the addition. In earlier ARM floating-point architectures, a
Multiply Accumulate operation would perform rounding of both the intermediate result
and final results, which could potentially cause a small loss of precision.

Additional conversion operations are provided, for example, between 64-bit integer and
floating-point and between half-precision and double-precision.

Convert float to integer (FCVTxU, FCVTxS) instructions encode a directed rounding mode:
—  Towards zero.

—  Towards +oo.

—  Towards —o.

—  Nearest with ties to even.

—  Nearest with ties to away.

Round float to nearest integer in floating-point format (FRINTx) has been added, with the
same directed rounding modes, as well as rounding according to the ambient rounding
mode.

A new double to single precision Down-Convert instruction with inexact rounding to odd,
suitable for ongoing down-conversion to half-precision with correct rounding (FCVTXN).

FMINNM and FMAXNM instructions have been added which implement the IEEE754-2008
minNum() and maxNum() operations. These return the numerical value if one of the operands
is a quiet NaN.

Instructions to accelerate floating-point vector normalization have been added (FRECPX,
FMULX).
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7.2 NEON and Floating-Point architecture

The contents of the NEON registers are vectors of elements of the same data type. A vector is
divided into /anes and each lane contains a data value called an element.

The number of lanes in a NEON vector depends on the size of the vector and the data elements
in the vector.

Usually, each NEON instruction results in n operations occurring in parallel, where n is the
number of lanes that the input vectors are divided into. There cannot be a carry or overflow from
one lane to another. Ordering of elements in the vector is from the least significant bit. This
means that element 0 uses the least significant bits of the register.

NEON and floating-point instructions operate on elements of the following types:

. 32-bit single precision and 64-bit double precision floating-point.

Note

16-bit floating-point is supported, but only as a format to be converted from or to. It is not
supported for data processing operations.

. 8-bit, 16-bit, 32-bit, or 64-bit unsigned and signed integers.

. 8-bit and 16-bit polynomials.

The polynomial type is for code, such as error correction, that uses power-of-two finite
fields or simple polynomials over {0,1}. Normal ARM integer code typically uses a
lookup table for finite field arithmetic. AArch64 NEON provides instructions to use large
lookup tables.

Polynomial operations are hard to synthesize out of other operations, so it is useful having
a basic multiply operation from which other, larger operations can be synthesized.

The NEON unit views the register file as:

32 x 128-bit quadword registers, V0-V31, each of which can be viewed as in Figure 7-1:

127 12 111 96 95 80 79 64 63 48 47 32 31 16 15 0
128-bit NEON register

127 64 63 0
2 x 64-bit lanes 1 0

127 96 95 64 63 32 31 0
4 x 32-bit lanes 3 2 1 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0
8 x 16-bit lanes 7 6 5 4 3 2 1 0

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0
16 x 8-bitlanes | 15 | 14 | 13 [ 12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0

Figure 7-1 Divisions of the V register

Thirty-two 64-bit D, or doubleword, registers, D@-D31, each of which can be viewed as in
Figure 7-2 on page 7-5:
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127 64 63 0
64-bit register
127 64 63 0
1 x 64-bit lane 0
127 64 63 32 31 0
2 x 32-bit lanes 1 0
127 64 63 48 47 32 31 16 15 0
4 x 16-bit lanes 3 2 1 0
127 64 63 48 47 32 31 16 15 0
8 x 8-bit lanes 7 6 5 4 3 2 1 0

Figure 7-2 Divisions of the D register

All of these registers are accessible at any time. Software does not have to explicitly switch
between them because the instruction used determines the appropriate view.
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In AArch64 the floating-point unit views the NEON register file as:

. 32 x 64-bit D registers D0-D31. The D registers are called double-precision registers and
contain double-precision floating-point values.

. 32 x 32-bit S registers S0-S31. The S registers are called single-precision registers and
contain single-precision floating-point values.

. 32 x 16-bit H registers Ho-H31. The H registers are called half-precision registers and

contain half-precision floating-point values.

. A combination of registers from the above views.

128-bit NEON register

64-bit floating point

32-bit floating point

16-bit floating point

7.2.2 Scalar data and NEON

127

112 111

96 95

80 79

64 63 48 47 32 31 16 15 0

64 63 0

64-bit double precision floating point

127

64 63 32 31 0

32-bit single precision

127

64 63 16 15 0

16-bit half
precision

Figure 7-3 Floating-point register divisions

Scalar data refers to a single value instead of a vector containing multiple values. Some NEON
instructions use a scalar operand. A scalar inside a register is accessed by index into the vector
of values.

The general array notation to access individual elements of a vector is:

<Instruction> Vd.Ts[index1], Vn.Ts[index2]

where:

Vd is the destination register.

Vn is the first source register.

Ts is the size specifier for the element.

index is the element index.

As in the following example:

INS Ve.S[1], V1.S5[0]
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Figure 7-4 Inserting an element into a vector (INS V0.S[1], V1.S[0])

In the MOV V@.B[3], W0 instruction, the least significant byte of register WO is copied into the
fourth byte in register VO.

ARM register WO NEON register VO

31 87 0 63 32 31 24 23 0

Figure 7-5 Moving a scalar to a lane (MOV V0.B[3], W0)

NEON scalars can be 8-bit, 16-bit, 32-bit, or 64-bit values. Other than multiply instructions,
instructions that access scalars can access any element in the register file.

Multiply instructions only allow 16-bit or 32-bit scalars, and can only access the first 128 scalars
in the register file:

. 16-bit scalars are restricted to registers Va.H[x], with 0 <n < 15.
. 32-bit scalars are restricted to registers Vn.S[x].

7.2.3 Floating-point parameters

Floating-point values are passed to (and returned from) functions using the floating-point
registers. Both integer (general-purpose) and floating-point registers can be used at the same
time. This means that the floating-point parameters are passed in the floating-point H, S or D
registers and other parameters are passed in integer X or W registers. The AArch64 Procedure
Call Standard mandates hardware floating-point wherever floating-point arithmetic is required,
so there is no software floating-point linkage in AArch64 state.

A detailed list of instructions is given in the ARMVvS-A Architecture Reference Manual, but the
main floating-point data processing operations are listed here to show the kind of things that can

be done:
Table 7-1
FABS Sd, Sn Calculates the absolute value.
FNEG Sd, Sn Negates the value.
FSQRT Sd, Sn Calculates the square root.
FADD Sd, Sn, Sm Adds values.
FSUB Sd, Sn, Sm Subtracts values.
FDIV Sd, Sn, Sm Divides one value by another.
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Table 7-1 (continued)

FMUL Sd, Sn, Sm

Multiplies two values.

FNMUL Sd, Sn, Sm

FMADD Sd, Sn, Sm, Sa

Multiplies and negates.

Multiplies and adds (fused).

FMSUB Sd, Sn, Sm, Sa

Multiplies, negates and subtracts (fused).

FNMADD Sd, Sn, Sm, Sa

FNMSUB Sd, Sn, Sm, Sa

Multiplies, negates and adds (fused).

Multiplies, negates and subtracts (fused).

FPINTy Sd, Sn

Rounds to an integral in floating-point format (where y
is one of a number of rounding mode options)

FCMP Sn, Sm

FCCMP Sn, Sm, #uimm4, cond

Performs a floating-point compare.

Performs a floating-point conditional compare.

FCSEL Sd, Sn, Sm, cond

Floating-point conditional select if (cond) Sd = Sn else
Sd = Sm.

FCVTSty Rn, Sm

SCVTF Sm, Ro

Converts a floating-point value to an integer value (ty
specifies type of rounding).

Converts an integer value to a floating-point value.
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7.3 AArch64 NEON instruction format

A number of changes have been made in the syntax of NEON and floating-point instructions to
harmonize with the AArch64 core integer and scalar floating-point instruction set syntax. The
instruction mnemonics are based closely on ARMv7 NEON.

The V prefix of ARMv7 NEON instructions has been removed.

Some mnemonics have been renamed where the removal of the V prefix caused a clash
with the ARM core instruction set mnemonics.

This means, for example, that there are now instructions with the same name which do the
same thing, and can be ARM core instructions, NEON, or floating-point, depending on
the syntax of the instruction, for example:

ADD WO, W1, W2{, shift #amount}}
and

ADD X0, X1, X2{, shift #amount}}
are A64 base instructions.

ADD D@, D1, D2
is a scalar floating-point instruction, and
ADD V@.4H, V1.4H, V2.4H

is a NEON vector instruction.

An S, U, F or P prefix has been added to indicate Signed, Unsigned, Floating-point, or
Polynomial (only one of these) data types. This mnemonic indicates the data type of the
operation. For example:

PMULL Vv@.8B, V1.8B, V2.8B

The vector organization (element size and number of lanes) is described by the register
qualifiers. For example:

ADD Vd.T, Vn.T, Vm.T

where Vd, Vn and Vm are the register names and T is the subdivision of the register to be
used. For this example, T is the arrangement specifier and is one of 8B, 16B, 4H, 8H, 2S, 4S
or 2D. Any of these can be used, depending on whether 64, 32, 16 or 8-bit data is used, and
whether 64 bits or 128 bits of the register are used.

To add 2 x 64 bit lanes, use
ADD V@.2D, Vv1.2D, V2.2D

As in ARMv7, some NEON data processing instructions are available in Normal, Long,
Wide, Narrow and Saturating variants. Long, Wide and Narrow variants are shown by a
suffix:

—  Normal instructions can operate on any vector types, and produce result vectors the
same size, and usually the same type, as the operand vectors.

—  Long or Lengthening instructions operate on doubleword vector operands and
produce a quadword vector result. The result elements are twice the width of the
operands. Long instructions are specified using an L appended to the instruction.
For example:

SADDL V@.4S, V1.4H, V2.4H
Figure 7-6 on page 7-10 shows this, with input operands being promoted before the
operation.
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| | | | | v2.4H

| | | | | v1.4H

V0.4S

Figure 7-6 NEON long instructions

—  Wide or Widening instructions operate on a doubleword vector operand and a
quadword vector operand, producing a quadword vector result. The result elements
and the first operand are twice the width of the second operand elements. Wide
instructions have a W appended to the instruction. For example:

SADDW V@.4S, V1.4H, V2.4S
Figure 7-7 shows this, with the input doubleword operands being promoted before
the operation.

| | | V2.4S

| | | | |v1.4H

V0.4S

Figure 7-7 NEON wide instructions

—  Narrow or Narrowing instructions operate on quadword vector operands, and
produce a doubleword vector result. The result elements are usually half the width
of the operand elements. Narrow instructions are specified using an N appended to
the instruction. For example:

SUBHN V@.4H, V1.4S, V2.4S
Figure 7-8 on page 7-11 shows this, with input operands being demoted before the
operation.
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| | | | |v2.4s

| | | | |v1.4s

| | | | |vo.4H

Figure 7-8 NEON narrow instructions

. Signed and unsigned saturating variants (identified by an SQ or UQ prefix) are available
for a number of instructions, as with SQADD and UQADD. If a result would exceed the
maximum or minimum values of the datatype, saturating instructions return that
maximum or minimum value. The saturation limits depend on the datatype of the

instruction.
Table 7-2 Saturation ranges

Data type Saturation range of x
Signed byte (S8) 27 <=x<27
Signed halfword (S16) 215 <=x <215
Signed word (S32) 231 <=x <231
Signed doubleword (S64) 2263 <= x < 263
Unsigned byte (U8) 0<=x<28
Unsigned halfword (U16) 0<=x<216
Unsigned word (U32) 0<=x<232
Unsigned doubleword (U64) (0 <=x <264

. The ARMvV7 P prefix for pairwise operations is now a suffix in ARMvS, as for example,

in ADDP. Pairwise instructions operate on adjacent pairs of doubleword or quadword
operands. For example:

ADDP V@.4S, V1.4S, V2.4S
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Vi.4s | & L] 5 | va.as
| | | | | vo.4s
Figure 7-9 Pairwise operation
. A V suffix has been added for an across-all-lanes (whole register) operation, for example,

as in ADDV. For example:
ADDV SO, V1.4S

Vn.4S| | | | |

L 1 1 Is

Figure 7-10 Across all lanes operation

. A 2 suffix, known as the second and upper half specifier, has been added for the new
widening, narrowing or lengthening second part instructions. If present, it causes the

operation to be performed on the upper 64 bits of the registers holding the narrower
elements:

Widening instructions with a 2 suffix get their input data from the high numbered
lanes of the vector that contains the narrower values, and write the expanded results
to the 128-bit destination. For example:

SADDW2 V@.2D, V1.2D, V2.4S

R T | | vaas

| ! | ! | V120

V0.2D

Figure 7-11 SADDW2
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—  Narrowing instructions with a 2 suffix get their input data from the 128-bit source
operands and insert their narrowed results into the high numbered lanes of the
128-bit destination, leaving the lower lanes unchanged. For example:

XTN2 Vv0.4S, V1.2D

» \ . V1.2D

\ \ \ V0.4S

Figure 7-12 XTN2

—  Lengthening instructions with a 2 suffix get their input data from the high numbered
lanes of the 128-bit source vectors and write the lengthened results to the 128-bit
destination. For example:

SADDL2 V@.2D, V1.4S, V2.4S

] | | vaas

T ] | | vias

V0.2D

Figure 7-13 SADDL2

Comparison instructions now use the condition code names to indicate what the condition
is and whether (if it applies) the condition is signed or unsigned, for example, CMGT and
CMHI, CMCE and CMHS.
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7.4 NEON coding alternatives

NEON code may be written in a number of ways. These are briefly listed here (but see the ARM
NEON Programmers Guide for details). These include the use of intrinsics, automatic
vectorization of C code, the use of libraries and of course directly writing in assembly language.

Intrinsics are C or C++ pseudo-function calls that the compiler replaces with the appropriate
NEON instructions. This allows you to use the data types and operations available in the NEON
implementation, while allowing the compiler to handle instruction scheduling and register
allocation. These intrinsics are defined in the ARM C Language Extensions document.

Auto-vectorization is controlled with the -fvectorize option in ARM Compiler 6, but is enabled
automatically at higher optimization levels (-O2 and above). Auto-vectorization is disabled at
-00 even if you specify -fvectorize. Therefore, you would use the following to enable
auto-vectorization at -01:

armclang --target=armv8a-arm-none-eabi -fvectorize -01 -c file.c

There are various libraries available which can use NEON code. The exact status of such
libraries changes over time and so current support is not covered in this guide.

Although it is technically possible to optimize NEON assembly by hand, this can be very
difficult because the pipeline and memory access timings have complex inter-dependencies.
Instead of hand assembly, ARM strongly recommends the use of intrinsics:

. It is easier to write code using instrinsics than using assembly mnemonics.
. Instrinsics provide good portability for cross-platform development.

. There is no need to worry about pipeline and memory access timings.

. For most cases, the result is good performance.

If you are not an experienced assembly language programmer, intrinsics can often achieve
better performance than assembly. Intrinsics provide almost as much control as writing
assembly language, but leave the allocation of registers to the compiler, so that you can
focus on the algorithms. This leads to more maintainable source code than using assembly
language.
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Chapter 8
Porting to A64

This chapter is not intended to act as an exhaustive guide to writing portable code for all
systems, however, this should cover the main areas that application engineers should know for
code porting on ARM specific machines. There are some significant differences that you should
be aware of when moving code to the A64 instruction set in AArch64 from A32 and T32
instruction sets:

Most instructions in the A32 instruction set can be executed conditionally. That is, it is
possible to append a condition code to the instruction and have the instruction execute (or
not) based on the outcome of a previous flag setting instruction. Although this enables
programming tricks to reduce code size and cycle count, this significantly complicates the
design of high performance processors with out-of-order execution.

The necessary bits reserved in the opcode field to denote the predication could usefully be
put to other purposes (for example, providing the space for selecting from a larger pool of
general-purpose registers). In A64 code therefore, only a small set of instructions can be
executed conditionally, while some comparison and selection operations depend upon a

condition. See Conditional instructions on page 6-8.

Many A64 instructions can apply an arbitrary constant shift to the source register or
registers limited only by the size of the operand. In addition, A64 provides
extended-register forms which can be very useful. Explicit instructions are required to
handle more complicated cases such as variable shifts. T32 is also more restrictive than
A32,s0in some ways A64 is a continuation of the same principles. The flexible Operand2
of A32 does not exist as such in A64, but individual instruction classes have their own
options.

There are some changes to the available addressing modes for load and store instructions.
The offset, pre-index and post-index forms from A32 and T32 are still available in A64.
There is a new, PC-relative addressing mode, as the PC cannot be accessed in the same

ARM DENO0024A
ID050815

Copyright © 2015 ARM. All rights reserved. 8-1
Non-Confidential



Porting to A64

way as a general-purpose register. A64 loads can shift the register inline (though not with
as much flexibility as in A32), and they can use some of the extend modes too (so you can
have a 32-bit array index, for example).

. A64 removes all multiple memory access instructions (Load or Store Multiple) from
previous ARM architectures, which were able to read or write an arbitrary list of registers
from memory. Load Pair (LDP) and Store Pair (STP) instructions, which can operate on any
two registers, should be used instead. PUSH and POP have also been removed.

. ARMVS adds load and store instructions that include a unidirectional memory barrier:
load-acquire and store-release. These are available in ARMv8 A32 and T32 as well as
A64. A load-acquire instruction requires that any subsequent memory accesses (in
program order) are only visible after the Toad-acquire. A store-release ensures that all
earlier memory accesses are visible before the store-release becomes visible. See
Memory barrier and fence instructions on page 6-18.

. AArch64 does not support the concept of coprocessors, including CP15. New system
instructions allow access the registers that are accessed via CP15 coprocessor instructions
in AArch32.

. The CPSR does not exist in AArch64 as a single register. Instead, PSTATE fields (such as
NZCV) can be accessed using special-purpose registers.

For many applications, porting code from older versions of the ARM Architecture, or other
processor architectures, to A64 means simply recompiling the source code. However, there are
a number of areas where C code is not fully portable.

The similarity between A64 and A32/T32 is illustrated in the following example. The three
sequences below show a simple C function and the output code in first T32 and then A64. The
correspondence between the two is very easy to see.

//C code

int foo(int val)

{
int newval = bar(val);
return val + newval;

}
//T32 //A64
foo: foo:
sub sp, sp, #8 sub sp, sp #16
strd r4, rl4, [sp] stp x19, x30, [sp]
mov r4, r@ mov w19, wo@
b1 bar b1 bar
add ro, ro, r4 add wo, wo, wl9
ldrd r4, rl4, [sp] Tdp x19, x30, [sp]
add sp, sp, #8 add sp, sp, #16
bx 1r ret

The general-purpose functionality provided by A64 has evolved from that found in A32 and
T32, so porting code between the two is fairly straightforward. Translating A32 assembly code
to A64 is also generally straightforward. Most instructions map easily between these instruction
sets and many sequences become simpler in A64.
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8.1 Alignment

Porting to A64

Data and code must be aligned to appropriate boundaries. The alignment of accesses can affect
performance on ARM cores and can represent a portability problem when moving code from an
earlier architecture to ARMvVS-A. It is worth being aware of alignment issues for performance
reasons, or when porting code that makes assumptions about pointers or 32-bit and 64-bit
integer variables.

Previous versions of the ARM compiler syntax assembly provide the ALICN n directive, where n
specifies the alignment boundary in bytes. For example, the directive ALIGN 128 aligns addresses
to 128-byte boundaries.

The GNU assember syntax (ARM Complier 6 syntax) provides the .balign n directive, which
uses the same format as ALIGN.

Note
GNU syntax assembly also provides the .align ndirective. However, the format of n varies from
system to system. The .balign directive provides the same alignment functionality as .align
with a consistent behavior across all architectures

You should convert all instances of ALIGN n to .balign n whn moving from the older compilers
to ARM Compiler 6.
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8.2

Data types

Porting to A64

In many programming environments for C and C-derived languages on 64-bit machines, int
variables are still 32 bits wide, but Tong integers and pointers are 64 bits wide. These are
described as having an LP64 data model. This chapter assumes LP64, though other data models
are available, see Table 5-1 on page 5-7.

The ARM ABI defines a number of basic data types for LP64. Some of these can vary between
architectures, and are included in the following:

Table 8-1 Basic data types

Type A32 Ab64 Description

int/long 32-bit 32-bit integer

short 16-bit 16-bit integer

char 8-bit 8-bit byte

Tong Tong 64-bit 64-bit integer

float 32-bit 32-bit single-precision IEEE floating-point
doubTe 64-bit 64-bit double-precision IEEE floating-point
bool 8-bit 8-bit Boolean

wchar_t?a 16-bit unsigned  16-bit unsigned  short (compiler dependent)

32-bit unsigned

32-bit unsigned

int (compiler dependent)

void« pointer

32-bit

64-bit

addresses to data or code

enumerated types 32-bit 32-bitb signed or unsigned integer

bit fields not larger than their natural container size

ABI defined extension types

__int128/__uint128  128-bit 128-bit signed/unsigned quadword

16 16-bit 16-bit half precision

a. Environment-dependent. In GNU-based systems (such as Linux) this type is always 32-bit.

b. If the set of values in an enumerated type cannot be represented using either int or unsigned int as a
container type, and the language permits extended enumeration sets, then a Tong long or unsigned long
Tong container may be used.

When comparing AArch64 with previous versions of the ARM architecture, 64-bit data types
can typically be handled more efficiently, because of 64-bit general-purpose registers and
operations. An int is still 32-bit, which can be handled efficiently through the available 32-bit
view of the general-purpose registers (W registers). Pointers, however, are 64-bit addresses to
data or code. The ARM ABI defines char to be unsigned by default. This is also true for previous
versions of the architecture.

Porting is simplified if your code does not manipulate pointers in non-portable ways, such as
cases of casting to or from non-pointer types or performing pointer arithmetic. This means you
have never stored a pointer in an int variable (with the possible exception of intptr_t and
uintptr_t) and have never cast a pointer to an int. For more information on this, see Issues when
porting code from a 32-bit to 64-bit environment on page 8-8.
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Porting to A64

Among other effects, this changes the size, and possibly the alignment of structures and
parameter lists. Use the int32_t and int64_t types from stdint.h in cases where storage size
matters. Note that size_t and ssize_t are both 64 bit in AAPCS64-LP64.

For performance reasons, the compiler tries to align data on natural size boundaries. Most
compilers try to optimize the layout of global data within a compilation module.

AArch64 provides support for 16, 32, 64 and 128-bit data unaligned accesses, where the address
used is not a multiple of the quantity to be loaded or stored. However, exclusive load or store
and load-acquire or store-release instructions can only access aligned addresses. This means that
variables used to construct semaphores and other locking mechanisms must typically be
aligned.

Note

Under normal circumstances all variables should be aligned. Unaligned access are still less
efficient on average than aligned access in most cases.

Unaligned accesses are never guaranteed to be atomic with respect to other CPUs or bus masters
in the system.

The only major exception to this rule is access to packed data structures -- this can save
significant effort when marshaling data to/from the outside world, via files or network
connection etc.

Unaligned accesses might have a performance impact when compared with aligned accesses.
Data aligned on a natural size boundary is accessed more efficiently and unaligned accesses
might cost additional bus or cache cycles. The packed attribute ( __attribute__((packed,
aligned(1))) should be used to warn the compiler of potential unaligned accesses, for example
when manually casting pointers pointing to different data types.

8.2.1 Assembly code

Many A32 assembly instructions can be easily replaced with similar A64 instructions.
Unfortunately there is no automated mechanism. However, much can be fairly simply
translated. The following table shows the close match in many areas between the A32/T32 and
A64 instruction sets.

Table 8-2 Instructions that are similar for A32 and A64

A32 A64

ADD Rd,Rn,#7 ADD Wd,Wn,#7

ADDS Rd,Rn,Rm,LSL #2 ADDS Wd,Wn,Wm,LSL #2

B Tabel B label

BFI Rd,Rn,#1sb,#wid BFI Wd,Wn,#1sb,#wid

BL Tabel BL Tabel

CBZ Rn,Tabel CBZ Wn,Tabel

CLZ Rd,Rm CLZ Wd,Wm

LDR Rt, [Rn,#imm] LDR Wt, [Xn,#imm]

LDR Rt, [Rn,#imm]! LDR Wt, [Xn,#imm]!
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Table 8-2 Instructions that are similar for A32 and A64 (continued)

A32 A64

MOV Rd,#imm MOV Wd, #imm
MUL Rd,Rn,Rm MUL Wd,Wn,Wm
RBIT Rd,Rm RBIT Wd,Wm

However, there are differences in many areas that require rewrites. The following tables show
some of these.

Table 8-3 Instructions that differ between A32 and A64

A32 A64

LDM/STM and PUSH/POP instructions are replaced with LDP/STP (Load/Store Pair)

PUSH {r@-rl1} STP X0, X1, [SP, #-16]!
POP {r0-rl} LDP X0, X1, [SP], #16
LDMIA r@, {rl, r2} LDP X1, X2, [X0], #8
STMIA r0, {rl, r2} STP X1, X2, [X0], #8
MLA MADD
BX <reg> BR <reg>
MOV pc, Tr RET
BX 1r
Movw Movz
MOVT MOVK

Note

The 64-bit APCS requires 128-bit (16 byte) stack alignment.

Table 8-4 shows how the CPSR is replaced by named fields within PSTATE.

Table 8-4 Use of named fields

A32 A64

CPSR is replaced with a set of separate registers and fields

Disable IRQ MRS R@, CPSR MSR DAIFSET, #IRQ_bit
ORR RO, RO, #IRQ Bit
MSR CPSR_c, RO

CPSID i
ALU Flags MRS RO, CPSR MRS X0, NzZCV
MSR CPSR_f, RO MSR NzZCV, X0
Set Endianness ~ SETEND BE SCTLR_ELn.EE controls EL#n data endianness
SCTLR_EL1.EQE controls ELO data endianness
MRS X0, SCTLR_EL1
ORR X0, X0, #EE_bit
MSR SCTLR_EL1, X@
See Endianness on page 4-12.
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The T32 conditional execution scheme compiles to the sequence as shown in the A32 column
of Table 8-4 on page 8-6. In A64, it makes use of the new conditional select instructions as

shown in the A64 column.

The difference between conditional execution in the two instruction sets (T32 and A64) is
illustrated by the following example:

//C code
int gcd (int a, int b)
while (a ! = h)
{
if (a >b)
{
a=a-bhb;
}
else
{
b=">b-a;
}
return a;
}
//A32 //A64
gcd: gcd:
CMP RO, R1 SUBS W2, we, wi
ITE CSEL W0, W2, Wo, gt
SUBGT RO, RO, R1 CSNEG W1, W1, W2, gt
SUBLE R1, R1, RO BNE  gcd
BNE gcd RET
BX Ir
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8.3 Issues when porting code from a 32-bit to 64-bit environment

There are some common problems that can arise when migrating C code to run in a 64-bit
environment. These are not specific to ARM.

. Take care with pointers and integers, as they might not be of the same size. ARM
recommends using uintptr_t or intptr_t from stdint.h for handling pointer types as
integral values. Offsets used in pointer arithmetic should be declared as ptrdiff_t, as
using an int could produce an incorrect result.

. A 64-bit system has a much larger potential memory reach and it is possible that a 32-bit
int might not be large enough to index all entries in an array.

. Implicit type conversions in C expressions can have some unexpected effects. Take care
to ensure that any constant values used have the same type as the mask itself.

. Take care when performing operations with data types of differing length or sign. For
example, when unsigned and signed 32-bit integers are mixed in an expression and the
result assigned to a signed long, it might be necessary to explicitly cast one of the
operands to its 64-bit type. This causes all of the other operands to be promoted to 64 bits,
too. Note that longs are typically 64-bit types on A64 (LP64).

8.3.1 Recompile or rewrite code

Any port inevitably requires an element of both re-compiling as well as rewriting code. The
objective in most cases is to maximize the former and minimize the latter.

The good news is that much code simply recompiles. However, exercise due caution as the size
of many fundamental types will have changed. Although well-written C code should not have
many dependencies on the size of individual types, it is likely that you will come across some.

So, best practice must be to enable all warnings and errors when recompiling and make sure you
take notice of any warnings issued by the compiler, even if the code appears to compile
error-free.

Pay very close attention to any explicit type casts in your code as these are often the source of
errors when the sizes of the underlying types change.

8.3.2 ARM Compiler 6 options for ARMv8-A

It is important to supply the correct options to the compiler to allow code generation or an
ARMVS8-A target, . The following are options are available, use:

--target
to generate code for the specified target.
The --target option is mandatory and has no default. You must always specify a target
architecture.
Syntax
--target=triple
where:
triple has the form architecture-vendor-0S-abi.

Supported targets are as follows:
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aarch64-arm-none-eabi

The AArch64 state of the ARMVS-A architecture.
armv8a-arm-none-eabi

The AArch32 state of the ARMvS8-A architecture.
armv7a-arm-none-eabi

The ARMv7-A architecture.

For example:

--target=armv8a-arm-none-eabi

Note

The --target option is an armclang option. For all of the other tools, such as armasm and
armlink, use the --cpu and --fpu options to specify target processors and architectures.

Use the --mcpu option to enable code generation for a specific ARM processor. See

-mcpu=<processor>+(no)crc - enable or disable crc instructions
-mcpu=<processor>+(no)crypto - enable or disable crytographic extension
-mcpu=<processor>+(no)fp - enable or disable the floating point extension
-mcpu=<processor>+(no)simd - enable or disable the NEON extension

where <processor> is either cortex-a53 or cortex-a57.

Compiling code for AArch32 produces very similar code to compiling for ARMv7-A. Although
AArch32 has some new instructions (such as Load-Acquire and Store-Release), and the SWP
instruction has been removed, these are not instructions generally generated by a compiler.

Compiling with the +nosimd option avoids any use of NEON/floating-point instructions or
registers. This might be useful for systems in which the NEON unit is not powered up or for
particular code segments, for example reset code and exception handlers, in which it is
important to ensure that NEON/floating-point is not used. The default is for no cryptographic
extension, but with NEON.
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8.4 Recommendations for new C code

. Use sizeof() instead of a constant for example:
(void«x) calloc(4,100)
becomes
(voidxx) calloc(sizeof(void «), 100)
or better still
void =a;
(void#x) calloc(sizeof(a), 100);
. Where an explicit type is needed, use the types from stdint.h.
. If you need to cast a pointer to an integer, use a type that is guaranteed to be able to hold
it, such as uintptr_t.
atype =bob; bob++ ; is however still preferred if you are not concerned with the actual
pointer's representation. Pointer arithmetic behaves appropriately for the underlying type.
. Where data size and layout are important, take care when ordering structure members. For
example, the code:
struct { void =a; int b; int c} bob
is preferred over:
struct { int b; void =a; int c;}
as in AAPCS64 the element a has 32 bits of padding inserted before it to keep it 64-bit
aligned.
. Use size_t appropriately.

. Use Timits.h where appropriate; be careful when making assumptions about data types.

. Use the appropriate functions/macros/built-ins for the type you are using.

For example, consider using Tong atol(char «) instead of int atoi(char =).

. When using atomic operations, use the correct 64-bit functions to carry them out against
64-Dbit types.

. Don't assume operations to different bitfields in the same structure are handled
independently - more bits can be read and written on a 64-bit platform than on a 32-bit
platform.

. Postfix literals with L for Tong when they are 32-bit on 32-bit compiles and 64 bit on 64-bit
compiles. This makes sure that they match the Tong type:

Tong value = 1L << SOMANY;
For literals that are 64-bit on 32 and 64-bit compilers, postfix with LL or ULL.
. Alternatively, you could use the macros provided by stdint.h in C99, (for example,

INT64_C and UINT64_C) which allow the definition of a literal without explicitly postfixing
using L and LL.

For example:
size_t value = UINT64_C(1) << SOMANY;

ARM DENO0024A Copyright © 2015 ARM. All rights reserved. 8-10
ID050815 Non-Confidential



Porting to A64

8.4.1 Explicit and implicit type conversions

The internal promotion and type conversion in C/C++ can cause some unexpected problems
when data types of different length and/or sign are mixed in expressions. In particular, it is
sometimes important to understand at what point conversions are made in the evaluation of an
expression.

For example:

int + long => Tong;
unsigned int + signed int => unsigned int
int64_t + uint32_t => intb4_t

If the loss of sign conversion is carried out before the promotion to Tong then the result might be
incorrect when assigned to a signed long.

In cases where unsigned and signed 32-bit integers are mixed in an expression and the result
assigned to a signed 64-bit integer, cast one of the operands to its 64-bit type. This causes the
other operands to be promoted to 64 bits and no further conversion is required when the
expression is assigned. Another solution is to cast the entire expression so that sign extension
occurs on assignment. However, there is no one-size-fits-all solution for these problems. In
practice, the best way to fix them is to understand what the code is trying to do.

Consider this example, in which you would expect the result -1 for a:

long a;

int b;

unsigned int c;
b=-2;
c=1;
a=b+c;

This gives a result of a = -1 (represented as 0xFFFFFFFF) for 32-bit Tongs, and a =
0x00000000FFFFFFFF (or 4 294 967 295 in decimal) for 64-bit Tongs. Clearly an unexpected and
very wrong result! This is because b is converted to unsigned int before the addition (to match
©), so the result of the addition is an unsigned int.

One possible solution is to cast to the longer type before the addition.

Tong a;

int b;

unsigned int c;
b =-2;

c=1;

a = (Tong)b + c;

This gives a result of -1 (or OxFFFFFFFFFFFFFFFF) in two’s complement representation, and is the
expected result. The calculation is carried out in 64-bit arithmetic and the conversion to signed
now gives the correct result.

8.4.2  Bit manipulation operations

Take care to ensure that bitmasks are of the correct width. There is the possibility that implicit
type conversions in C expressions can have some unexpected effects. Consider the following
function for setting a specified bit in a 64-bit variable:

Tong SetBitN(long value, unsigned bitNum)

{
Tong mask;
mask = 1 << bitNum;
return value | mask;
}
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8.4.3 Indexes

Porting to A64

This function works fine in a 32-bit environment and allows bits [31:0] to be set. To port it to a
64-bit system, you might think it sufficient to change the type of mask to allow bits [63:0] to be
set, as follows:

Tong long SetBitN(long Tong value, unsigned bitNum)
{

long Tong mask;
mask = 1 << bitNum;
return value | mask;

}

Again, this does not work correctly as the numeric literal 1 has int type. The exact behavior
depends on the configuration and assumptions of the individual compiler.

To make the code function correctly, you need to give the constant the same type as the mask:

Tong Tong SetBitN(Tong long value, unsigned bitNum)
{

Tong long mask;

mask = 1LL << bitNum;

return value | mask;

}

If you need an integer that is a particular size, use types such as uint32_t and the UINT32 C
family of macros, which are defined in stdint.h.

When using large arrays or objects in a 64-bit environment, be aware that an int might no longer
be large enough to index all entries. In particular, be careful when iterating over an array using
an int index.

static char array[BIG_NUMBER];
for (unsigned int index = @; index != BIG_NUMBER; index++) ...

Since size_t is a 64-bit type and unsigned int is a 32-bit type, it is possible to define the size
of the object so that the loop never terminates.
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Chapter 9
The ABI for ARM 64-bit Architecture

The Application Binary Interface (ABI) for the ARM Architecture specifies fundamental rules
to which all executable native code modules must adhere so that they can work correctly
together. These fundamental rules are supplemented by additional rules for specific
programming languages (for example, C++). Individual operating systems or execution
environments (for example, Linux) may specify additional rules to meet their own specific
requirements, beyond those rules specified by the ARM ABI.

There are a number of components to the ABI for the AArch64 architecture:

Executable and Linkable Format (ELF)

ELF for the ARM 64-bit Architecture (AArch64) specifies the object and
executable format.

Procedure Call Standard (PCS)

Procedure Call Standard for the ARM 64-bit Architecture (AArch64) ABI release
specifies how subroutines can be separately written, compiled and assembled to
work together. It specifies the contract between a calling routine and a callee, or
between a routine and its execution environment, for example, the obligations
when calling a routine or stack layout.

DWARF This is a widely used standardized debugging data format. AArch64 DWAREF is
based on DWARF 3.0, but with some additional rules. See DWARF for the ARM
64-bit Architecture (AArch64) for details.

C and C++ libraries

ARM Compiler ARM C and C++ Libraries and Floating-Point Support User
Guide describes the ARM C and C++ libraries.
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C++ ABI

The ABI for ARM 64-bit Architecture

C++ Application Binary Interface Standard for the ARM 64-bit Architecture
describes the generic C++ ABI.
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The ABI for ARM 64-bit Architecture

9.1 Register use in the AArch64 Procedure Call Standard

It can be useful to have knowledge of the standards for register use. Understanding how
parameters are passed can help you to:

. Write more efficient C code.

. Understand disassembled code.

. Write assembly code.

. Call functions written in a different language.

9.1.1 Parameters in general-purpose registers
For the purposes of function calls, the general-purpose registers are divided into four groups:

Argument registers (X0-X7)

These are used to pass parameters to a function and to return a result. They can
be used as scratch registers or as caller-saved register variables that can hold
intermediate values within a function, between calls to other functions. The fact
that 8 registers are available for passing parameters reduces the need to spill
parameters to the stack when compared with AArch32.

Caller-saved temporary registers (X9-X15)

If the caller requires the values in any of these registers to be preserved across a
call to another function, the caller must save the affected registers in its own stack
frame. They can be modified by the called subroutine without the need to save
and restore them before returning to the caller.

Callee-saved registers (X19-X29)

These registers are saved in the callee frame. They can be modified by the called
subroutine as long as they are saved and restored before returning.

Registers with a special purpose (X8, X16-X18, X29, X30)

. X8 is the indirect result register. This is used to pass the address location of
an indirect result, for example, where a function returns a large structure.

. X16 and X17 are IPO and IP1, intra-procedure-call temporary registers.
These can be used by call veneers and similar code, or as temporary
registers for intermediate values between subroutine calls. They are
corruptible by a function. Veneers are small pieces of code which are
automatically inserted by the linker, for example when the branch target is
out of range of the branch instruction.

. X18 is the platform register and is reserved for the use of platform ABIs.
This is an additional temporary register on platforms that don't assign a
special meaning to it.

. X29 is the frame pointer register (FP).
. X30 is the link register (LR).
Figure 9-1 on page 9-4 shows the 64-bit X registers. For more information on registers, see

Chapter 4. For information on floating-point parameters, see Floating-point parameters on
page 7-7.
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Figure 9-1 General-purpose register use in the ABI

To reiterate, the X8 (XR) register is used to pass the indirect result location. Here is some code:

struct struct_A foo(int i@, int il, double d@, double dl1)

//test.c//
struct struct_A
{
int 10;
int il;
double d0;
double di;
} AA;
{
struct struct_A Al,
Al.i0 = i0;
Al.il = i1;
Al1.d0 = do;
Al.dl = di;
return Al;
}
void bar()
{
AA = foo(0, 1, 1.0, 2.0);
}

and that can be compiled using:

armclang -target aarch64-arm-none-eabi -c test.c

fromelf-c test.o
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Note

The ABI for ARM 64-bit Architecture

This code is compiled without optimization to demonstrate the mechanisms and principles
involved. It is possible that with optimization, the compiler might remove all of this.

foo//
SUB SP, SP, #0x30
STR Wo, [SP, #0x2C]
STR W1, [SP, #0x28]
STR DO, [SP, #0x20]
STR D1, [SP, #0x18]
LDR W@, [SP, #0x2C]
STR Wo, [SP, #0]
LDR W@, [SP, #0x28]
STR Wo, [SP, #4]
LDR W@, [SP, #0x20]
STR Wo, [SP, #8]
LDR W@, [SP, #0x18]
STR Wo, [SP, #10]
LDR X9, [SP, #0x0]
STR X9, [X8, #0]
LDR X9, [SP, #8]
STR X9, [X8, #8]
LDR X9, [SP, #0x10]
STR X9, [X8, #0x10]
ADD SP, SP, #0x30
RET

bar//
STP X29, X30, [SP, #0x10]!
MOV X29, SP
SUB SP, SP, #0x20
ADD X8, SP, #8
MOV W@, WZR
ORR W1, WZR, #1

FMOV DO, #1.00000000
FMOV D1, #2.00000000

BL foo:

ADRP X8, {PC}, 0x78
ADD X8, X8, #0

LDR X9, [SP, #8]
STR X9, [X8, #0]
LDR X9, [SP, #0x10]
STR X9, [X8, #8]
LDR X9, [SP, #0x18]
STR X9, [X8, #0x10]
MOV SP, X29

LDP X20, X30, [SP], #0x10
RET

In this example, the structure contains more than 16 bytes. According to the AAPCS for
AArch64, the returned object is written to the memory pointed to by XR.

The generated code shows:

W@, W1, DO and D1 are used to pass the integer and double parameters.

bar() makes space on the stack for the return structure value of foo() and puts sp into X8.

bar() passes X8, together with the parameters in W0, W1, D@ and D1 into foo() before foo()

takes the address for further operations.

foo() might corrupt X8, so bar() accesses the return structure using SP.
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The ABI for ARM 64-bit Architecture

The advantage of using X8 (XR) is that it does not reduce the availability of registers for passing
the function parameters.

An AAPC64 stack frame shown in Figure 9-2. The frame pointer (X29) should point to the
previous frame pointer saved on stack, with the saved LR (X30) stored after it. The final frame
pointer in the chain should be set to 0. The Stack Pointer must always be aligned on a 16 byte
boundary. There can be some variation of the exact layout of a stack frame, particularly in the
case of variadic or frameless functions. Consult the AAPCS64 document for details.

P
LR”
FP” S—
Caller FP’ >
Stack args area
= SP >
Local variables
Callee save area
Callee LR’
FP’ —
FP >
Stack args area
_ SP >

Figure 9-2 Stack frame

Note

The AAPCS only specifies the FP, LR block layout and how these blocks are chained together.
Everything else in Figure 9-2 (including the precise location of the boundary between frames of
the two functions) is unspecified, and can be freely chosen by the compiler.

Figure 9-2 illustrates a frame that uses two callee-saved registers (X19 and X20) and one
temporary variable, with the following layout (number on left is offset from the FP in bytes):

40: <padding>

32: temp
24:  X20
16: X19
8: LR'
0: FP'

The padding is necessary to maintain the 16 byte alignment of the Stack Pointer.

function:
STP X29, X30, [SP, #-48]! // Push down stack pointer and store FP and LR
MOV X29, SP // Set the frame pointer to the bottom of the new
// frame
STP X19, X20, [X29, #16] // Save X19 and X20

Main bédy of code
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The ABI for ARM 64-bit Architecture

LDP X19, X20, [X29, #16] // Restore X19 and X29

LDP X29, X30, [SP], #48 // Restore FP' and LR' before setting the stack

// pointer to its original position
RET // Return to caller

9.1.3 Parameters in NEON and floating-point registers

Parameter and result
registers

The ARM 64-bit architecture also has thirty-two registers, v0-v3 1, which can be used by NEON
and floating-point operations. The name used to refer to the register changes indicating the size
of the access.

Note

Unlike in AArch32, in AArch64 the 128-bit and 64-bit views of a NEON and floating-point
register do not overlap multiple registers in a narrower view, so ql, d1 and sl all refer to the
same entry in the register bank.

—_

v4

<

I< I< III< I< I< I<

Callee must preserve
lower 64 bits across
subroutine calls

v10
vi1
v12
v13

<
-

<|l <
~ || oo

v15

Not preserved by callee

Caller should preserve
these before calls if the
registers are in use

v26
v27
v28
v29
v30
v31

Figure 9-3 SIMD and floating-point registers in the ABI

VO0-V7 are used to pass argument values into a subroutine and to return result values from
a function. They may also be used to hold intermediate values within a routine (but, in
general, only between subroutine calls).

V8-V15 must be preserved by a callee across subroutine calls.

Only the bottom 64 bits of each value stored in V8-V15 need to be preserved.

V16-V31 do not need to be preserved (or should be preserved by the caller).

ARM DENO0024A
ID050815

Copyright © 2015 ARM. All rights reserved.

Non-Confidential

©
i

7



Chapter 10

AArch64 Exception Handling

Strictly speaking, an interrupt is something that interrupts the flow of software execution.
However, in ARM terminology, that is actually an exception. Exceptions are conditions or
system events that require some action by privileged software (an exception handler) to ensure
smooth functioning of the system. There is an exception handler associated with each exception
type. Once the exception has been handled, privileged software prepares the core to resume
whatever it was doing before taking the exception.

The following types of exception exist:

Interrupts

There are two types of interrupts called IRQ and FIQ.

FIQ is higher priority than IRQ. Both of these kinds of exception are typically
associated with input pins on the core. External hardware asserts an interrupt
request line and the corresponding exception type is raised when the current
instruction finishes executing (although some instructions, those that can load
multiple values, can be interrupted), assuming that the interrupt is not disabled.

Both FIQ and IRQ are physical signals to the core, and when asserted, the core
takes the corresponding exception if it is currently enabled. On almost all
systems, various interrupt sources are connected using an interrupt controller. The
interrupt controller arbitrates and prioritizes interrupts, and in turn, provides a
serialized single signal that is then connected to the FIQ or IRQ signal of the core.
For more information see The Generic Interrupt Controller on page 10-17.

Because the occurrence of IRQ and FIQ interrupts are not directly related to the
software being executed by the core at any given time, they are classified as
asynchronous exceptions.
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Aborts Aborts can be generated either on failed instruction fetches (instruction aborts) or
failed data accesses (Data Aborts). They can come from the external memory
system giving an error response on a memory access (indicating perhaps that the
specified address does not correspond to real memory in the system).
Alternatively, the abort can be generated by the Memory Management Unit
(MMU) of the core. An OS can use MMU aborts to dynamically allocate memory
to applications.

An instruction can be marked within the pipeline as aborted, when it is fetched.
The instruction abort exception is taken only if the core then tries to execute it.
The exception takes place before the instruction executes. If the pipeline is
flushed before the aborted instruction reaches the execute stage of the pipeline,
the abort exception will not occur. A Data Abort exception happens as a result of
a load or store instruction and is considered to happen after the data read or write
has been attempted.

An abort is described as synchronous if it is generated as a result of execution or
attempted execution of the instruction stream, and where the return address
provides details of the instruction that caused it.

An asynchronous abort is not generated by executing instructions, while the
return address might not always provide details of what caused the abort. In
ARMVS8-A, the instruction and Data Aborts are synchronous. The asynchronous
exceptions are IRQ/FIQ and System errors (SError). See Synchronous and
asynchronous exceptions on page 10-7.

Reset Reset is treated as a special vector for the highest implemented Exception level.
This is the location of the instruction that the ARM processor jumps to when an
exception is raised. This vector uses an IMPLEMENTATION DEFINED address.
RVBAR ELn contains this reset vector address, where 7 is the number of the
highest implemented Exception level.

All cores have a reset input and take the reset exception immediately after they
have been reset. It is the highest priority exception and cannot be masked. This
exception is used to execute code on the core to initialize it, after power-up.

Exception generating instructions

Execution of certain instructions can generate exceptions. Such instructions are
typically executed to request a service from software that runs at a higher
privilege level:

. The Supervisor Call (SVC) instruction enables User mode programs to
request an OS service.

. The Hypervisor Call (HVC) instruction enables the guest OS to request
hypervisor services.

. The Secure monitor Call (SMC) instruction enables the Normal world to
request Secure world services.

If the resulting exception was generated as a result of an instruction fetch at ELO,
it is taken as an exception to EL1, unless the HCR_EL2.TGE bit is set in the
Non-secure state, in which case it is taken to EL2.

If the exception was generated as a result of an instruction fetch at any other
Exception level, the Exception level remains unchanged.

Earlier in the book, we saw that the ARMv8-A architecture has four Exception levels. Processor
execution can only move between Exception levels by taking, or returning from, an exception.
When the processor moves from a higher to a lower Exception level, the execution state can stay
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the same, or it can switch from AArch64 to AArch32. Conversely, when moving from a lower

to a higher Exception level, the execution state can stay the same or switch from AArch32 to
AArch64.

Core branches to higher
level handler specified by
vector table

Call to lower level handler for
specified source

Program
flow

Exception
occurs

Figure 10-1 Exception flow

Figure 10-1 shows schematically the program flow associated with an exception occurring
when running an application. The processor branches to a vector table which contains entries
for each exception type. The vector table contains a dispatch code which typically identifies the
cause of the exception, and select and call the appropriate function to handle it. This code
completes execution and then return to the high-level handler which then executes the ERET
instruction to return to the application.

ARM DENO0024A
ID050815

Copyright © 2015 ARM. All rights reserved. 10-3
Non-Confidential



AArch64 Exception Handling

10.1 Exception handling registers

Chapter 4 describes how the current state of the processor is stored within separate PSTATE fields.
If an exception is taken, the PSTATE information is saved in the Saved Program Status Register
(SPSR_ELn) which exists as SPSR_EL3, SPSR_EL2 and SPSR_EL1.

313029282726252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

N|zZ|C|V SS|IL D|IA|I|F M| MI[3:0]

Figure 10-2 When exceptions are taken from AArch64

313029282726252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

Njz|Cc|v([Q| IT |J IL GE IT[7:2] E|A[I|F[T|M] MI3:0]

Figure 10-3 When exceptions are taken from AArch32

The SPRSR.M field (bit 4) is used to record the execution state (0 indicates AArch64 and 1
indicates AArch32).

Table 10-1 PSTATE fields

PSTATE fields Description

NZCV Condition flags

Q Cumulative saturation bit

DAIF Exception mask bits

SPSel SP selection (ELO or EL#), not applicable to ELO
E Data endianness (AArch32 only)

IL Illegal flag

SS Software stepping bit

The exception bit mask bits (DAIF) allow the exception events to be masked. The exception is
not taken when the bit is set.

D Debug exceptions mask.

A SError interrupt Process state mask, for example, asynchronous External Abort.
I IRQ interrupt Process state mask.

F FIQ interrupt Process state mask.

The SPSel field selects whether the current Exception level Stack Pointer or SP_ ELO0 should be
used. This can be done at any Exception level, except ELO. This is discussed later in the chapter.

The IL field, when set, causes execution of the next instruction to trigger an exception. It is used
in illegal execution returns, for example, trying to return to EL2 as AArch64 when it is
configured for AArch32.
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The Software Stepping (SS) bit is covered in Chapter 18 Debug. It is used by debuggers to
execute a single instruction and then take a debug exception on the following instruction.

Some of these separate fields (CurrentEL, DAIF, NZCV and so on) are copied into a compact
form in SPSR_ELn when taking an exception (and the other way around when returning).

When an event which causes an exception occurs, the processor hardware automatically
performs certain actions. The SPSR_ELn# is updated, (where 7 is the Exception level where the
exception is taken), to store the PSTATE information required to correctly return at the end of the
exception. PSTATE is updated to reflect the new processor status (and this may mean that the
Exception level is raised, or it may stay the same). The return address to be used at the end of
the exception is stored in ELR_ELn.

Program

Exception

Exception

occurs Handler

Figure 10-4 Exception handling

Remember that the ELn suffix on register names denotes that there are multiple copies of these
registers existing at different Exception levels. For example, SPSR_EL1 is a different physical
register to SPSR_EL2. Additionally, in the case of a synchronous or SError exception,
ESR_ELn is also updated with a value which indicates the cause of the exception.

The processor has to be told when to return from an exception by software. This is done by
executing the ERET instruction. This restores the pre-exception PSTATE from SPSR_EL# and
returns program execution back to the original location by restoring the PC from ELR_ELn.

We have seen how the SPSR records the necessary state information for an exception return. We
will now look at the link register(s) used to store the program address information. The
architecture provides separate link registers for function calls and for exception returns.

As we saw in Chapter 6 The A64 instruction set, register X30 is used (in conjunction with the
RET instruction) to return from subroutines. Its value is updated with the address of the
instruction to return back to, whenever we execute a branch with link instruction (BL or BLR.)

The ELR_ELn register is used to store the return address from an exception. The value in this
register (actually several registers, as we have seen) is automatically written upon entry to an
exception and is written to the PC as one of the effects of executing the ERET instruction used to
return from exceptions.
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Note

When returning from an exception, you will see an error if the value in the SPSR conflicts with
the settings in the System Registers.

ELR_ELn contains the return address which is preferred for the specific exception type. For
some exceptions, this is the address of the next instruction after the one which generated the
exception. For example, when an SVC (system call) instruction is executed, we simply wish to
return to the following instruction in the application. In other cases, we may wish to re-execute
the instruction that generated the exception.

For asynchronous exceptions, the ELR ELn points to the address of the first instruction that has
not been executed, or executed fully, as a result of taking the interrupt. Handler code is permitted
to modify the ELR_Enr if, for example, it was necessary to return to the instruction after an
aborting a synchronous exception. The ARMv8-A model is significantly simpler than that used
in ARMv7-A, where for backward compatibility reasons, it was necessary to subtract 4 or 8
from the Link register value when returning from certain types of exception.

In addition to the SPSR and ELR registers, each Exception level has its own dedicated Stack
Pointer register. These are named SP_ELO, SP_EL1, SP_EL2 and SP_EL3. These registers are
used to point to a dedicated stack that can, for example, be used to store registers which are
corrupted by the exception handler, so that they can be restored to their original value before
returning to the original code.

Handler code may switch from using SP_EL#n to SP_ELO0. For example, it may be that SP_ EL 1
points to a piece of memory which holds a small stack that the kernel can guarantee to always
be valid. SP_ELO might point to a kernel task stack which is larger, but not guaranteed to be safe
from overflow. This switching is controlled by writing to the [SPSel] bit, as shown in the
following code:

MSR SPSel, #0 // switch to SP_ELO
MSR SPSel, #1 // switch to SP_ELn
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10.2 Synchronous and asynchronous exceptions

In AArch64, exceptions may be either synchronous, or asynchronous. An exception is described
as synchronous if it is generated as a result of execution or attempted execution of the instruction
stream, and where the return address provides details of the instruction that caused it. An
asynchronous exception is not generated by executing instructions, while the return address
might not always provide details of what caused the exception.

Sources of asynchronous exceptions are IRQ (normal priority interrupt), FIQ (fast interrupt) or
SError (System Error). System errors have a number of possible causes, the most common being
asynchronous Data Aborts (for example, an abort triggered by writeback of dirty data from a
cache line to external memory).

There are a number of sources of Synchronous exceptions:

. Instruction aborts from the MMU. For exam