
CS3210: Tutorial session 3

Elephant in memory

1



Overview

• Memory size and its latency

•  Structure alignment

• Discussion on lab2 exercise 1

2



Memory size and its Latency

• Memory analogy (commonly found):

•  Desk and storage racks!

• RAM -- storage bin

•  Caches -- files lying on your desk

3



Caches

•   L1 : 3.0 ns

•   L2 : 4.8 ns

•   L3 : 9.5 ns

•   RAM : 33.1 ns

4



Cache Associativity

• Direct mapped

•  Only one block for each line

• Easy to find, but difficult to put

•  Fully associative

• Can use whole cache

•  Easy to allocate, but difficult to find

• m-way set associative

•  m blocks in each set of the cache

• Easier to allocate and find

5



Approximating Cache and acccess time

• Strided approach

•  Sequential acccess of large chunk of array

• Pointer chasing approach

•  Randomly accessing the array elements

Demo

6



Mymachine's cache and access time

7



Structures alignment
struct {

char *p;
char c;

};

•  Expected size: 9 bytes

• Acutal size: 16 bytes??

Demo : struct alignment

8



Structures alignment
struct {

char *p;
char c;

};

- Expected size: 9 bytes
- Acutal size: 16 bytes??

• Makes memory access faster

•  Fetching/storing the data via single instruction

9



Points to consider for structure alignment

• Generally, struct will have alignment of widest member

•  Reorder members in decreasing alignment:

• pointers / long (8 bytes)

•  int (4 bytes)

• short (2 bytes)

•  char (1 byte)

Demo : struct alignment

10



Cacheline alignment

• Aligning structs on the cacheline boundary

#define L1D_CACHELINE_SIZE (64)
struct foo {

/* elements */
} __attribute__ ((aligned (L1D_CACHELINE_SIZE)));

11



Discussion on lab2 exercise 1

• Let's play with the code!

12


