
Lab1 tutorial – CS 3210 

 https://tc.gtisc.gatech.edu/cs3210/2016/lab/lab1.html



Lab session general structure

 Session A - overview presentation  (30 min)
- About concept, tutorial and demo 

 Session B - group activity (30 min)
    - Each student will get his/her hands dirty on tutorials
    - We will provide a README and/or source code 
    - Divide class in three groups
    - Note: README is only for practice

 Session C (20 min)
    - Q&A lab



Lab1 goals

Understanding the tools required for OS development

Part 1 – Git source control and its internals

Part 2 – QEMU and debugging with QEMU

Part 3 – Basics of boot process and JOS makef ile



Source control - Git Basics



Why version control?
Basic functionality 

- Keep track of changes made to f iles
- Merge the contributions of multiple developers

Accountability 
- Who wrote the code? 
- Do we have the rights to it?

Software branches
-Different software versions, ensure bug f ixes shared

Record keeping
-Commit logs may tie to issue tracking system or be 
used to enforce guidelines



Setting up Git

In this class, we will use Git

Lets walkthrough basic commands and then the 
internals

Update your conf ig, one time only
$ git conf ig --global  user.name “john.lastname”
$ git conf ig --global user.email john@gatech.edu



Getting started

Course git repo:  git://tc.gtisc.gatech.edu/cs3210-lab

$ mkdir ~/cs3210
$ cd ~/cs3210
$ git clone git://tc.gtisc.gatech.edu/cs3210-lab lab
$ Cloning into lab...
$ cd lab



Committing your changes

$ git add code1.c  /*  Tells git to track a f ile */
$ git commit -am 'my solution for lab1 exercise 9'

$ make handin LAB=1



Git - distributed version control



Git internals - blob

Git is a DAG (directed acyclic graph) of different type of 
objects

Objects are stored compressed and identif ied by an SHA-1

Blob: simplest object, just a bunch of bytes, often a f ile



Git - distributed snapshots



Git internals - trees and blobs

Directories are represented by a tree object

They point to blob objects or subtrees



 Git internals – blobs and trees

$ f ind .git/objects -type f

.git/objects/02/b365d4af3f74b0b1f18c41507c82b3ee571

.git/objects/37/ce98f6635fa1192d843bcaa4622537b2eb87 - Tree

.git/objects/f0/5245cba7f23f998a5e372812d1a390375314c

$ git cat-f ile -p 37ce98f6635fa1192d85243bcaa4622537b2eb87

100644 blob 5fe92a0481023dfa3d2e64a0556dda3bbb852e5d     init.scm
100644 blob 20fa5e19fcb963f8a4ff249a815413153fb6b4e3    opdef ines.h
10644 blob 69c742cc2544e336230d637b8115d69f0c050720   scheme.h
100644 blob badef17026a45893a7b3174db325e868c3a688b7     scheme.c



Git internals - commit

Commit refers to a tree that represents the state of the f iles 
at the time of the commit



Git internals - commit

It also refers to 0..n other commits that are its parents



Git internals - commit

A branch is a pointer to a commit.



Git internals - commit

The f iles in the working directory ref lect HEAD



Git internals - creating branch

git checkout testing



Git internals - creating branch

git commit  -m “commit is53”



X86 Assembly



Why x86 assembly?
All labs require understanding of assembly instructions

We need to understand what instructions are executed 
during the boot

The book “PC Assembly Language” is an excellent 
resource to understand the basics
    https://tc.gtisc.gatech.edu/cs3210/2016/refs.html

We will not be covering it today in the class

https://tc.gtisc.gatech.edu/cs3210/2016/refs.html


QEMU emulator



PC emulator
Debugging and modifying real PC boot is hard

So, we use a program that faithfully emulates a PC 

We can track, debug when our kernel boots 

So what does the emulator PC require?

- A working OS!

- Let's discuss the internals



What is QEMU? 
Modes:

System-mode emulation – emulation of a full system
User-mode emulation – launch processes compiled for 
another CPU(same OS)

Ex. execute arm/linux program on x86/linux

Popular uses:
For cross-compilation development environments
virtualization, device emulation, for kvm
Android Emulator(part of SDK)



Target CPU instruction → Host CPU instruction 

Dynamic translation



What is QEMU? 

QEMU is a user-level processor emulator
 
Simulation vs. Emulation
    
    Simulation – for analysis and study
    
    Emulation – for usage as substitute

 



Translation and execution

l Main Loop:
Ø IRQ handle
Ø translation
Ø run guest

initalize the process or and
jump to the host code

restore normal state and
return to the main loop

Overhead!



Building CS3210 kernel for emulator
$ cd lab
$ make

Successful build generates our CS3210 kernel 
 - check kern/kernel.img 

Next we install our PC emulator - QEMU
$ sudo apt-get install qemu 

When done, we can boot our PC 
     $ make qemu



Starting QEMU 
$ make qemu-gdb

You will see the following printed on the screen

$ qemu-system-i386 -drive f ile=obj/kern/kernel.img, 
index=0,media=disk,format=raw -serial mon:stdio -gdb 
tcp::26001 -D qemu.log

We will next discuss 

  - Boot procedure 

  - Using QEMU with gdb to understand boot procedure



How does computer startup
Booting is a bootstrapping process that starts operating 
systems when the user turns on a computer system  

A boot sequence is the set of operations the performs 
when it is switched on that load an operating system



Understanding the OS booting



What is BIOS

•

BIOS refers to the software code run by a computer 
when f irst powered on
The primary function of BIOS is code program 
embedded on a chip that recognizes and controls various 
devices that make up the computer.

BIOS on board
BIOS on screen



 PC physical address space and BIOS loading

• Initial PC address in our
emulator 0xffff0

Flash vs ROM differences? 

Our emulator PC is 32 bit. 
64 bit – beyond 4GB address



Booting sequence - high-level steps f irst

•

1. Turning on the computer
 
2. CPU jumps to address of BIOS (0xFFFF0)

3. BIOS runs POST (Power-On Self Test)

4. Finds a bootable device

5. Loads and executes boot sector form MBR

6. Loads OS



Boot sector

•

OS is booted from a hard disk, where the master boot 
Record (MBR) contains the primary boot loader

The MBR is a 512-byte sector, located in the f irst 
sector on the disk (sector 1 of cylinder 0, head 0)

After the MBR is loaded into RAM, the BIOS 
yields control to it

. 



Boot loader

•

Boot loader is a code responsible for loading your kernel

In JOS, you can f ind the boot-loader implementation in 
boot/main.c

The boot loader does two important steps

  1. Switches processor from real mode to 32-bit (Why?)

  2. Reads the kernel from the hard disk



QEMU generic features? 
Self-modifying code
 
Precise excepton
 
      Process state corresponds to sequental executon   
      when an interrupt occurs

FPU - sofware emulaton of host FPU instructons

Dynamic translaton to natve code => speed



Boot sector

•

OS is booted from a hard disk, where the master boot 
Record (MBR) contains the primary boot loader

The MBR is a 512-byte sector, located in the f irst 
sector on the disk (sector 1 of cylinder 0, head 0)

After the MBR is loaded into RAM, the BIOS 
yields control to it

. 



How can we debug PC booting?

GDB is the GNU program debugger 

GDB provides some helpful functionality
Allows you to stop your program at any given point. 
You can examine the program state when stopped. 
Change things in your program, so you can experiment 
with correcting the effects of a bug.

So, let's see a demo for debugging our PC emulator



Both boot.S and main.c correspond as JOS's boot loader  

It should be stored in the f irst sector of the disk

The 2nd sector onward holds the kernel image

In JOS source, bootmain() function is where it all starts

Function readsect() reads the f irst sector (boot loader) 



Cscope - Walking through the source kernel
Cscope can be a particularly useful tool if you need to 
wade into a large code base

Fast, targeted searches rather than randomly grepping 
through the source f iles by hand

To recursively parse a directory, use
 
 $ cscope -R -p X

X represents the number of levels of subdirectories



Cscope - Walking through the source kernel
Commonly used Cscope options

Find this C symbol:  (functions or symbols to be searched)

Find this global def inition: (function def inition)

Find functions called by this function: (callee's of a func)

Find functions calling this function: (caller's of a func)

Find this egrep pattern: (search by grepping)

Find this f ile:  (locate a f ile)



Getting hands dirty

git clone git://tc.gtisc.gatech.edu/cs3210-pub

cd cs3210-pub/tut/tut1

Open README f ile


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Git - Distributed Version Control
	Slide 10
	Git - Distributed - Snapshots
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Dynamic Translation
	Slide 26
	Translation & Execution
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

