CS3210: Crash consistency

Taesoo Kim

Administrivia

Quiz #2.Lab4-5, Ch 3-6 (read "xv6 book")
Open laptop/book, no Internet
3:05pm ~ 4:25-30pm (sharp)
NOTE Labé:10% bonus, a single lab (bump up your grade!)
NOTE +5ptin quiz2, if you submit an anonymous "token” shown at the

end of the course evaluation

Summary of ¢s3210

Power-on — BIOS — bootloader — kernel — user programs
OS: abstraction, multiplexing, isolation, sharing

Design: monolithic (xv6) vs. micro kernels (jos)

Abstraction: process, system calls, files, IPC, networking (lab6)

Isolation mechanisms: CPL, segmentation, paging

Why crash recovery (power failure)?

Why crash recovery (bugs)?

Phoronix

ARTICLES & REVIEWS NEWS ARCHIVE FORUMS PREMIUM 8 CATEGORIES

Mare information & opt-out options =

This ad has been matched to your interests. [t was selected for [x]
ou based on I browssing activicy.
What is interest based advertising » ¥ ¥ou ng b
MediaMath Privacy Policy Mediaiath helped ta determine that you might be interested in
an ad like this.

Privacy Controls by Ghostery. Inc.

2015-03-19
The Linux 4.0 Kernel Currently Has An EXT4 Corruption Issue

Written by Michael Larabel in Linux Kernel on 19 May 2015 at 08:34 PM EDT. 45 Comments

o

It appears that the current Linux 4.0.% kermel is plagued by an EXT4 file-system corruption issue. If
thera's anv nnsitive note aur of the situation it seems o mosthy affect FXTA |inis RAIT nsars

Q: what happens after a FS crash?

Q: Is it possible that AAAA doesn't exist? (yes/no?) Then, BBBB ?
Q: Is it possible that BBBB contains junks? (yes/no?)

Q: Is it possible that BBBB is empty? (yes/no?)

Q: Is it possible that BBBB contains "hello? (yes/no?)

Q: Is it possible that BB exists in the current directory? (yes/no?)

$ cat AAAA
hello world!
$ cp AAAA BBBB

[panic] ...
[reboot]

Why crash recovery?

Q: Then, is your file system still usable?
Main problem:
crash during multi-step operation
leaves FS invariants violated (Q: examples?)

can lead to ugly FS corruption

NOTE worse yet, media corruption (very frequent!) is out-of-scope

Example: inconsistent file systems

Breakdowns of create() :
create new dirent
allocate file inode
Crash: dirent points to free inode -- disaster!

Crash: inode not free but not used -- not so bad

Today's Lecture

Problem: crash recovery
crash leads to inconsistent on-disk file system
on-disk data structure has "dangling” pointers
Solutions:
synchronous write

delayed writes (e.g., write-back cache, soft updates)

logging

What can we hope for? (after recovery)

FS internal invariants maintained
e.g., no block is both in free list and in a file
All but last few operations preserved on disk
e.g., data written yesterday are preserved
No order anomalies

echo 99 > result ; echo done > status

10

Simplifying assumption: disk is "fail-stop”

Disk executes the writes FS sends it, and does nothing else Perhaps
doesn't perform the very last write
no wild writes

no decay of sectors

11

Correctness vs. performance

Safety — write to disk ASAP
Speed — don't write the disk (e.g., batch, write-back cache)
Two approaches:

synchronous meta-data update + fsck (linux ext2)

logging (xv6 and linux ext3/4)

meta-data : other than actual file contents (i.e., data block)

12

Synchronous-write solution

Synchronous meta-data update:
an old approach to crash recovery
simple, slow, incomplete

Most problem cases look like dangling references
inode — free block

dirent — free inode

13

Idea: always initialize on disk before I
creating any reference

"'synchronous writes” is implemented by
doing the initialization write
waiting for it to complete

and then doing the referencing write

Example: file creation

Q: what's the right order of synchronous writes (dirent — free inode)?

Example: file creation

Q: what's the right order of synchronous writes (dirent — free inode)?
mark inode as allocated

create directory entry

16

What will be true after crash+reboot?

create():
mark inode as allocated < Q: what if failed after 1alloc() ?

create directory entry

Idea: fix FS when mounting (if crashed)

--’Il ’I'ﬂ,
G- May- 2966)

Mosee has b-n munt-d 29 tines without being checked, check forced
Done: 7 Z2.6%

To free unreferenced inodes and blocks (orphan)

To clean-up an interrupted rename()

18

Problems with sync. meta-data update

Very slow during normal operation (Q: why?)

Very slow during recovery (Q: why? e.g., 100 MB/sec on 2TB HDD)

How to get better performance?

Use RAM (e.g., write-back cache)

Exploit disk sequential throughput (100 MB/sec)

Keep track of dependencies among buffer caches
Q: cycle dependencies?

Q: still need slow fsck?

20

Storage performance

Q: HDD vs. SSD? faster? bandwidth?

Q: which one is faster? read vs. write?

—~—

Q:in sequential vs. random?

(ref. http://www.pcgamer.com/hard-drive-vs-ssd-performance/2/)

21

http://www.pcgamer.com/hard-drive-vs-ssd-performance/2/

Chartl: Sequential read

Intel 55D 750 NVMe 1.2TB

Samsung SM351 NVMe 25668

Samsung 850 Evo 2x250GE RAIDO

Samsung B50 Pro 1TB

Corsair Neutron XT 4B0GB

OCE Vector 180 960GB

Intel 550 520 240GB

AS SSD - Sequential Read

0OCZ Trion 100 480GB m

Seagate ST3000DM 001 _ 200.7
o

500 1000 1500
Throughput (MB/s)

2000

2500

22

Chart2: Sequential write

AS SSD - Sequential Write

Intel 55D 750 NVMe 1.2TB

Samsung SM351 NVMe 25668

Samsung 850 Evo 2x250GE RAIDO

Samsung B50 Pro 1TB

OCEZ Vector 180 96068

Corsair Neutron XT 480GHE

Intel 550 520 240GB

OCZ Trion 100 480GB

200 400 600 BOO0
Throughput (MB/s)

1000 1200

1400

23

Chart3: Random read

AS SSD - Random Read

Samsung 5M951 NVMe 25668
Corsair Neutron XT 480G B
Samsung 850 Evo 2x250GE RAIDD
Intel 550 750 NVMe 1.2TB

OLZ Trion 100 480GE

Samsung B50 Pro 1TB

Intel 550 520 240G8

0CZ Vector 18096068 -

Seagate 5T3000DMO0L F 0.6

o 10 20 30
Throughput (MB/s)

24

Chart4: Random write

Intel 55D 750 NVMe 1.2TB

Samsung SM351 NVMe 25668

Intel 550 520 240G8

Corsair Neutron XT 480GHR

OCEZ Vector 180 96068

Samsung 850 Evo 2x250GE RAIDD

Samsung B0 Pro 1T8

OCZ Trion 100 480GB

Seagate 5T3000DMO0L

AS SSD - Random Write

rm

o

50 100 150
Throughput (MB/s)

200

250

25

Better idea: "logging”

How can we get both speed and safety?
write only to cache
somehow remember relationships among writes

e.g., don't send #1 to disk w/o #2 and #3

26

Goals of logging

Atomic system calls w.r.t. crashes
Fast recovery (no hour-long fsck)

Speed of write-back cache for normal operations

27

Basic approach: "write-ahead" logging

Atomicity : transaction either fails or succeeds
record all writes to the log
record "done”’
do the real writes
clear "done”
On crash+recovery:
if "done” in log, replay all writes in log

if no "done’, ignore log

28

xv6's simple logging

01
02
03
04
05
06
07

+ beg_op();
bp = bread(dev, bn);
// modify bp->data[]
bwrite(buf);

+ Llog write(bp);
brelse(bp);

+ end_op();

29

What is good about this design?

Correctness due to write-ahead log

Good disk throughput (Q: why? why not?)
Faster recovery without slow fsck

Q: What about concurrency?

Xv6:no concurrency to make our life easier

30

Disk structure for logging

I
log

superblock
~

data blocks

logheader
n

block[LOGSIZE]

Example: writing a block (bn = 100)

superblock
~

data blocks -

bn=100
n=0
|
+ ylog
DD... logheader

n=0
block[LOGSIZE]

Step1: writing to a log

bn=100

n=0

superblock
~

data blocks -

logheader
n=0
block[LOGSIZE]

Step2: flushing the logheader (committing)

bn=100

—t

5 logheader AA..
superblock | data blocks -+ n=0
N R block[LOGSIZE]
n=1

block[0] = 100

Step3: overwriting the data block

bn=100

n=1
|
+ log
AA... logheader AA. ..
superblock | data blocks --- n=1
N block[LOGSIZE]

n=1
block[0] = 100

Step4: cleaning up the logheader

bn=100

n=0

y log

superblock
~

data blocks -

logheader

block[LOGSIZE

block [0] =

0

What if failed (say power-off and reboot)?

Does FS contain 'AA.." (@) or "BB.." (®)?
Q: Stepl: writing to a log (®/@7?)
Q: Step2: flushing the logheader (®/@?)
Q: Step3: overwriting the data block (@8/@7?)
Q: Step4: cleaning up the logheader (@®/@7?)

Q? Step1: writing to a log

bn=100

n=0

superblock
~

data blocks -

logheader
n=0
block[LOGSIZE]

0? Step2: flushing the logheader

bn=100

—t

: logheader AA.
superblock | data blocks -+ n=0
N | block[LOGSIZE]
n=1

block[0] = 100

Q? Step3: overwriting the data block

bn=100

n=1
|
+ log
AA... logheader AA. ..
superblock | data blocks --- n=1
N block[LOGSIZE]

n=1
block[0] = 100

Q? Step4: cleaning up the logheader

bn=100

n=0

y log

superblock
~

data blocks -

logheader

block[LOGSIZE

block [0] =

0

DEMO: dumplog.c

01
02
03
04
05
06
07
08
09
10
11
12
13

static void commit() {
if (log.lh.n > 0) {

write_Llog(); //
// Q1: panic("after
write_head(); //

// Q2: panic("after

42

Write modified blocks from cache to log
writing to log!");

Write header to disk -- the real commit
writing the loghead!");

install _trans(); // Now install writes to home locations

// Q3: panic("after
log.lh.n = 0;

write head(); //
// Q4: panic("after

the transaction!");

Erase the transaction from the log
cleaning the loghead!");

A few complications

How to write larger data that doesn't fit to the log region?

How to handle concurrency?
How to avoid 2x writing (redundant)?

How to log partial data (changes on a few bits)?

43

References

Intel Manual
UW CSE 451
OSPP

MIT 6.828
Wikipedia

The Internet

44

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://courses.cs.washington.edu/courses/cse451/15au/
http://ospp.cs.washington.edu/
https://pdos.csail.mit.edu/6.828/2014/

