
CS3210: Crash consistency

Taesoo Kim

1

Administrivia
• Quiz #2. Lab4-5, Ch 3-6 (read "xv6 book")

• Open laptop/book, no Internet

• 3:05pm ~ 4:25-30pm (sharp)

• NOTE Lab6: 10% bonus, a single lab (bump up your grade!)

• NOTE +5pt in quiz2, if you submit an anonymous "token" shown at the

end of the course evaluation

2

Summary of cs3210
• Power-on → BIOS → bootloader → kernel → user programs

• OS: abstraction, multiplexing, isolation, sharing

• Design: monolithic (xv6) vs. micro kernels (jos)

• Abstraction: process, system calls, files , IPC, networking (lab6)

• Isolation mechanisms: CPL, segmentation, paging

3

Why crash recovery (power failure)?
4

Why crash recovery (bugs)?
5

Q: what happens after a FS crash?
• Q: Is it possible that AAAA doesn't exist? (yes/no?) Then, BBBB?

• Q: Is it possible that BBBB contains junks? (yes/no?)

• Q: Is it possible that BBBB is empty? (yes/no?)

• Q: Is it possible that BBBB contains "hello"? (yes/no?)

• Q: Is it possible that BB exists in the current directory? (yes/no?)

$ cat AAAA
hello world!
$ cp AAAA BBBB
[panic] ...
[reboot]

6

Why crash recovery?
• Q: Then, is your file system still usable?

• Main problem:

• crash during multi-step operation

• leaves FS invariants violated (Q: examples?)

• can lead to ugly FS corruption

NOTE worse yet, media corruption (very frequent!) is out-of-scope

7

Example: inconsistent file systems
• Breakdowns of create():

• create new dirent

• allocate file inode

• Crash: dirent points to free inode -- disaster!

• Crash: inode not free but not used -- not so bad

8

Today's Lecture
• Problem: crash recovery

• crash leads to inconsistent on-disk file system

• on-disk data structure has "dangling" pointers

• Solutions:

• synchronous write

• delayed writes (e.g., write-back cache, soft updates)

• logging

9

What can we hope for? (after recovery)
1. FS internal invariants maintained

• e.g., no block is both in free list and in a file

2. All but last few operations preserved on disk

• e.g., data written yesterday are preserved

3. No order anomalies

• echo 99 > result ; echo done > status

10

Simplifying assumption: disk is "fail-stop"
• Disk executes the writes FS sends it, and does nothing else Perhaps

doesn't perform the very last write

• no wild writes

• no decay of sectors

11

Correctness vs. performance
• Safety → write to disk ASAP

• Speed → don't write the disk (e.g., batch, write-back cache)

• Two approaches:

• synchronous meta-data update + fsck (linux ext2)

• logging (xv6 and linux ext3/4)

meta-data : other than actual file contents (i.e., data block)

12

Synchronous-write solution
• Synchronous meta-data update:

• an old approach to crash recovery

• simple, slow, incomplete

• Most problem cases look like dangling references

• inode → free block

• dirent → free inode

13

Idea: always initialize on disk before
creating any reference

• "synchronous writes" is implemented by

1. doing the initialization write

2. waiting for it to complete

3. and then doing the referencing write

14

Example: file creation
• Q: what's the right order of synchronous writes (dirent → free inode)?

15

Example: file creation
• Q: what's the right order of synchronous writes (dirent → free inode)?

1. mark inode as allocated

2. create directory entry

16

What will be true after crash+reboot?
• create():

1. mark inode as allocated ← Q: what if failed after ialloc()?

2. create directory entry

17

Idea: fix FS when mounting (if crashed)

• To free unreferenced inodes and blocks (orphan)

• To clean-up an interrupted rename()

18

Problems with sync. meta-data update
• Very slow during normal operation (Q: why?)

• Very slow during recovery (Q: why? e.g., 100 MB/sec on 2TB HDD)

19

How to get better performance?
• Use RAM (e.g., write-back cache)

• Exploit disk sequential throughput (100 MB/sec)

• Keep track of dependencies among buffer caches

• Q: cycle dependencies?

• Q: still need slow fsck?

20

Storage performance
• Q: HDD vs. SSD? faster? bandwidth?

• Q: which one is faster? read vs. write?

• Q: in sequential vs. random?

(ref. http://www.pcgamer.com/hard-drive-vs-ssd-performance/2/)

21

http://www.pcgamer.com/hard-drive-vs-ssd-performance/2/

Chart1: Sequential read
22

Chart2: Sequential write
23

Chart3: Random read
24

Chart4: Random write
25

Better idea: "logging"
• How can we get both speed and safety?

• write only to cache

• somehow remember relationships among writes

• e.g., don't send #1 to disk w/o #2 and #3

26

Goals of logging
1. Atomic system calls w.r.t. crashes

2. Fast recovery (no hour-long fsck)

3. Speed of write-back cache for normal operations

27

Basic approach: "write-ahead" logging
• Atomicity : transaction either fails or succeeds

1. record all writes to the log

2. record "done"

3. do the real writes

4. clear "done"

• On crash+recovery:

• if "done" in log, replay all writes in log

• if no "done", ignore log

28

xv6's simple logging
01 + beg_op();
02 bp = bread(dev, bn);
03 // modify bp->data[]
04 - bwrite(buf);
05 + log_write(bp);
06 brelse(bp);
07 + end_op();

29

What is good about this design?
• Correctness due to write-ahead log

• Good disk throughput (Q: why? why not?)

• Faster recovery without slow fsck

• Q: What about concurrency?

• xv6: no concurrency to make our life easier

30

Disk structure for logging

superblock data blocks
logheader

log

n
block[LOGSIZE]

n

...

31

Example: writing a block (bn = 100)

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

DD...
...

AA...
bn=100

n=0

32

Step1: writing to a log

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

n=0

AA...

AA...
bn=100

DD...
...

33

Step2: flushing the logheader (committing)

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

n=1

AA...

AA...
bn=100

DD...

n = 1
block[0] = 100

...

34

Step3: overwriting the data block

superblock data blocks
logheader

log

... n = 1
block[LOGSIZE]

AA...AA...

n = 1
block[0] = 100

...

AA...
bn=100

n=1

35

Step4: cleaning up the logheader

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

AA...

bn=100

AA...

n = 1
block[0] = 100

...

n = 0
block[0] = 0

n=0

36

What if failed (say power-off and reboot)?
• Does FS contain "AA.." (❶) or "BB.." (❷)?

• Q: Step1: writing to a log (❶/❷?)

• Q: Step2: flushing the logheader (❶/❷?)

• Q: Step3: overwriting the data block (❶/❷?)

• Q: Step4: cleaning up the logheader (❶/❷?)

37

Q? Step1: writing to a log

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

n=0

AA...

AA...
bn=100

DD...
...

38

Q? Step2: flushing the logheader

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

n=1

AA...

AA...
bn=100

DD...

n = 1
block[0] = 100

...

39

Q? Step3: overwriting the data block

superblock data blocks
logheader

log

... n = 1
block[LOGSIZE]

AA...AA...

n = 1
block[0] = 100

...

AA...
bn=100

n=1

40

Q? Step4: cleaning up the logheader

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

AA...

bn=100

AA...

n = 1
block[0] = 100

...

n = 0
block[0] = 0

n=0

41

DEMO: dumplog.c
01 static void commit() {
02 if (log.lh.n > 0) {
03 write_log(); // Write modified blocks from cache to log
04 // Q1: panic("after writing to log!");
05 write_head(); // Write header to disk -- the real commit
06 // Q2: panic("after writing the loghead!");
07 install_trans(); // Now install writes to home locations
08 // Q3: panic("after the transaction!");
09 log.lh.n = 0;
10 write_head(); // Erase the transaction from the log
11 // Q4: panic("after cleaning the loghead!");
12 }
13 }

42

A few complications
• How to write larger data that doesn't fit to the log region?

• How to handle concurrency?

• How to avoid 2x writing (redundant)?

• How to log partial data (changes on a few bits)?

43

References
• Intel Manual

• UW CSE 451

• OSPP

• MIT 6.828

• Wikipedia

• The Internet

44

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://courses.cs.washington.edu/courses/cse451/15au/
http://ospp.cs.washington.edu/
https://pdos.csail.mit.edu/6.828/2014/

