
CS3210: Virtual memory applications

Taesoo Kim

1

Administrivia
• Lab schedule

• No Lab 6 (sad, but bonus pt!)

• One extra week for Lab 4 (part A)

• (Feb 23) Quiz #1. Lab1-3, Ch 0-2, Appendix A/B

• Open book/laptop

• No Internet

• (Feb 25) Time to brainstorm project ideas!!

• Prep question: submit 1-page pre-proposal (by Feb 24, 10pm)

2

Summary of last lectures
• Power-on → BIOS → bootloader → kernel → init (+ user bins)

• OS: abstraction, multiplexing, isolation, sharing

• OS design: monolithic (xv6) vs. micro kernels (jos)

• Isolation mechanisms

• CPL (aka ring), address space (aka process)

• Virtual memory, paging

3

Recap: address translation

• Q: what are the advantanges of the address translation?

• Q: what are the disadvantanges of the address translation?

4

Recap: page translation
5

Recap: design trade-off
• We devide a 32 bit address into [dir=10|tbl=10|off=12]

• [dir=00|tbl=20|off=12]?

• [dir=10|tbl=00|off=22]?

• [dir=05|tbl=15|off=12]?

• [dir=15|tbl=05|off=12]?

• Q: what's "super page"? good or bad?

6

So, why paging is good?
• Primary purpose: isolation

• each process has its own address space

• Benefits:

• memory utilization, fragmentation, sharing, etc.

• Level-of-indirection

• provides kernel with opportunity to do cool stuff

7

Today: potential applications
• Kernel tricks (e.g., one zero-filled page)

• Faster system calls (e.g., copy-on-write fork)

• New features (e.g., memory-mapped files)

• NOTE : project idea?

8

Key idea: interposition
#define PTE_P 0x001 // Present
#define PTE_W 0x002 // Writeable
#define PTE_U 0x004 // User
#define PTE_PWT 0x008 // Write-Through
#define PTE_PCD 0x010 // Cache-Disable
#define PTE_A 0x020 // Accessed (Q?)
#define PTE_D 0x040 // Dirty (Q?)
#define PTE_PS 0x080 // Page Size

• Q: what if PTE is not present (P)?

• Q: what if a process attempts to write to non-writable memory?

• Q: what are these options for?

9

Code: paging in xv6 (once more)
• entry() in entry.S

• kinit1() in main.c

• kvmalloc() in main.c

$ cat /proc/iomem
00000000-00000fff : reserved
00001000-0009cfff : System RAM
0009d000-0009ffff : reserved
...

10

The first address space in xv6
 +------------------+ <- 0xFFFFFFFF
 | |
 | free memory |
 ++------------------+
 / | kernel text/data | (kernel)
 / +------------------+ <- 0x80100000
 + | BIOS |
 physical mem / ++------------------+ <- 0x80000000
 / / | heap | (KERNBASE)
+------------------+ | +------------------+
| kernel text/data | + | stack |
+------------------+ / +------------------+
| BIOS |/ | user text/data | (initcode)
+------------------+ +------------------+ <- 0x00000000

11

Protection: preventing NULL dereference
• Q: what's NULL dereference? how serious? in xv6? (Linux exploit)

• NULL pointer dereference exception

• Q: how would you implement this for Java, say obj->field

• Trick: put a non-mapped page at VA zero

• Useful for catching program bugs

• Q: limitations?

12

https://blogs.oracle.com/ksplice/entry/much_ado_about_null_exploiting1

Protection: preventing stack overflow
• Q: what's stack overflow? how serious? in xv6? (check cs6265!)

• "Toyota's major stack mistakes" (see Michael Barr's Bookout v. Toyota)

• Trick: put a non-mapped page right below user stack

• JOS: inc/memlayout.h

 UTOP,UENVS ------> +------------------------------+ 0xeec00000
 UXSTACKTOP -/ | User Exception Stack | RW/RW PGSIZE
 +------------------------------+ 0xeebff000
 | Empty Memory (*) | --/-- PGSIZE
 USTACKTOP ---> +------------------------------+ 0xeebfe000
 | Normal User Stack | RW/RW PGSIZE
 +------------------------------+ 0xeebfd000

13

https://tc.gtisc.gatech.edu/cs6265/2015/cal.html
http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf

Feature: "virtual" memory
• Q: can we run an app. requiring > 2GB in xv6?

• Q: what about an app. requiring > 1GB on a machine with 512MB?

14

Feature: "virtual" memory
• Applications often need more memory than physical memory

• early days: two floppy drives

• strawman: applications store part of state to disk and load back later

• hard to write applications

• Virtual memory: offer the illusion of a large, continuous memory

• swap space: OS pages out some pages to disk transparently

• distributed shared memory: access other machines' memory across

network

15

Feature: "virtual" memory
$ free
 total used free shared buff/cache available
Mem: 19G 5.1G 424M 1.4G 13G 12G
Swap: 0B 0B 0B

16

Feature: memory-mapped files
• Q: what's benefit of having open(), read(), write()?

• mmap(): map files, read/write files like memory

• Simple programming interface, memory read/write

• Avoid data copying: e.g., send an mmaped file to network

• compare to using read/ write

• no data transfer from kernel to user

• Q: when to page-in/page-out content?

17

Feature: single zero page
• Q: calloc()? memset(buf, 0, buflen)?

• Often need to allocate a page with zeros to start with

• Trick: keep one zero page for all such pages

• Q: what if one process writes to the page?

18

Feature: copy-on-write (CoW) fork (Lab 4)
• Q: what's fork()? and what happens when forking?

• Observation: child and parent share most of the data

• mark pages as copy-on-write

• make a copy on page fault

• Other sharing

• multiple guest OSes running inside the same hypervisor

• shared objects: .so/ .dll files

19

Feature: virtual linear page tables
• Q: how big is the page table if we have a single level (4KB pages)?

• Q: how to make all page tables show up on our address space?

20

Feature: virtual linear page tables
• uvpt[n] gives the PTE of page n

• Self mapping: set one PDE to point to the page directory

• CPU walks the tree as usual, but ends up in one level up

21

Feature: virtual linear page tables
22

Next tutorial
• Lazy allocation

• Grow stack on demand

23

References
• Intel Manual

• UW CSE 451

• OSPP

• MIT 6.828

• Wikipedia

• The Internet

24

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://courses.cs.washington.edu/courses/cse451/15au/
http://ospp.cs.washington.edu/
https://pdos.csail.mit.edu/6.828/2014/

